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1 Introduction

Discussions about applied Cost Benefit Analysis are incomplete without the thorny issue of discounting
emerging at some point. Indeed, since the calculation of Net Present Values (NPV), and hence the efficiency
of a project or policy, hinges so crucially upon the level of the discount rate applied across time, the analysis
of time preference and discounting has become an active area of research in its own right. Nowhere is this
debate more hotly contended that when CBA is used to evaluate projects with impacts that extend into
the far distant future such as biodiversity conservation, nuclear power and, of course, climate change. This
chapter aims to review some of the more recent contributions to this debate and in particular, the theory
that underpins recent calls for the use of declining discount rates (DDRs). We then discuss how a schedule
of DDRs can be estimated and illustrate their impact upon two topical policy questions: climate change and
nuclear power.
Economists and others have argued at length over which of several potential discount rates should be

used as the SDR (e.g. Marglin 1963, Baumol 1968, Lind 1982). Several candidates exist, the most widely
recognised of which are the social rate of return on investment (r) and the rate at which society values
consumption at different points of time, the Social Rate of Time Preference (δ). The distinction between
these discount rates is most important in the second best world in which distortions to the economy, such
as corporate and personal taxes or environmental externalities, prevent these rates from being equalised.
The choice of SDR is inherently complicated in such situations3 . Common practice in CBA has been that,
however one chooses the SDR, the relative weights applied to all adjacent time periods would be invariant
across the time horizon considered.
A common critique of discounting is that it militates against solutions to the long-run environmental

problems mentioned above. Some policy questions and projects need to be evaluated over a time horizon of
several hundred years. With a constant rate, the costs and benefits accruing to generations in the distant
future appear relatively unimportant in present values terms. Hence decisions made today on the basis
of CBA appear to tyrannise future generations and in extreme cases leave them exposed to potentially
catastrophic consequences. Such risks can either result from current actions, where future costs are carry
no weight, e.g. nuclear decommission, or from current inaction, where the future benefits carry no weight,
e.g. climate change. Hence the question arises: What is the appropriate procedure for such long time
horizons? There is wide agreement that discounting at a constant positive rate in these circumstances is
problematic, irrespective of the particular discount rate employed. These intergenerational issues associated
with discounting have puzzled generations of economists. Pigou (1932) referred to the apparent myopia
of exponential discounting with regard to future welfare as a ‘defective telescopic faculty’. More recently
Weitzman (1998) summarises this puzzle succinctly when he states:

‘to think about the distant future in terms of standard discounting is to have an uneasy intuitive

feeling that something is wrong, somewhere’.

Discounting also appears to be contrary to the widely supported goal of ‘sustainability’ which by most
definitions implies that policies and investments now must have due regard for the need to secure sustained
increases in per capita welfare for future generations (Wald Commission on Environment and Development
1987, Atkinson et al. 1997). Also, by attaching little weight to future welfare conventional discounting
appears to ignore any notion of intergenerational equity. So, in short, the correct procedure in these circum-
stances is not immediately obvious.

1Department of Economics, University College London.
2School of Business, Department of Economics, Reading University.
3See Lind (1982) for an excellant review of thes issues.
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A recently proposed solution to this problem is to use a discount rate which declines with time, according
to some predetermined trajectory, this raising the weight attached to the welfare of future generations. It
is immediately obvious that using a declining discount rate (DDR) would make an important contribution
towards meeting the goal of sustainable development. So, what formal justifications exist for using a DDR
and what is the optimal trajectory of the decline?
As far as the former issue is concerned, there are a number of rationales that effectively assume a

deterministic world. For example, Dasgupta (2001) shows that DDRs can arise as a result of known changes
in the growth rate or the consumption smoothing/risk aversion parameter. A seminal contributions by
Krutilla and Fisher (1975) was the first to suggest that the evolution of willingness to pay for the environment
could also be captured by the discount rate, a theme also touched upon by Weitzman (1994) in the presence
of environmental externalities. The strengths and weaknesses.of these rationales have been well documented
(e.g. Arrow et al 1995, Horowitz 2002).
Additional motivations emerge once uncertainty is considered. Uncertainty of the discount rate itself pro-

vides a simple and intuitive approach in a risk neutral environment (Weitzman 1998, 2001). In the presence
of uncertain growth Gollier (2002a,b) shows that the shape of the yield curve, that is the term structure of
the interest rate, depends upon preferences for risk and prudence, and higher order moments of the utility
function. DDRs also emerge from the specification of a ‘sustainable’ welfare function á la Chichilnisky (1997)
and Li and Löfgren (2000). Lastly, there is considerable empirical and experimental evidence to show that
individuals are frequently hyperbolic discounters (e.g. Lowenstein and Prelec 1992, Frederick et al 2002)4 .
Bateman and Henderson (1995) argue that this is sufficient reason for similar discounting schedules to be
employed in social decision making.
Once a rationale for DDR has been subscribed to, implementation requires the practitioner to identify a

particular set of parameters, i.e. an answer to the second question raised: what trajectory a DDR should
follow? The required parameters for determining the time invariant discount rate in the deterministic
case have been discussed extensively elsewhere (see, for example, Pearce and Ulph, 1999) and are well
understood. In this chapter, we focus upon the application of the more recent contributions. Section 2 gives
the background literature, section 3 dicussed the the implications of declining discount rates by using a case
study on the climate change policy in the UK and section 4 concludes the paper.

2 Background Literature

2.1 Uncertainty and DDRs

In the case of Gollier (2002a,b, 2004b) and Weitzman (1998) it is uncertainty that drives DDRs, with regard
to future growth and the discount rate respectively. One thing common to both of these approaches is
that the eventual schedule of discount rates is highly dependent upon the characterisation of the background
uncertainty and hence the question of implementation is one of characterizing the uncertainty of the uncertain
variables in some coherent way. However, of these two approaches it is Weitzman (1998) that has proven to be
more amenable to implementation mainly because the informational requirements stop at the characterization
of uncertainty, and do not extend to specific attributes of future generations’ risk preferences as would be
unavoidable in the case of Gollier5 .
Weitzman’s Certainty Equivalent Discount Rate (CER) is a summary statistic of the distribution of

the discount rate. and the level and behaviour over time of this statistic is clearly dependent upon the
features (static and dynamic)of the associated probability distribution. The two applications that exist have
taken different approaches stemming from different interpretations of uncertainty. Weitzman (2001) defines
uncertainty by the current lack of consensus on the appropriate discount rate for the very long term. His
survey of professional economists results in a gamma probability distribution for the discount rate which
leads to the so-called ‘gamma discounting’ approach, a version of which can also be seen in Sozou (1998).
In particular, Weitzman uses certainty equivalent analysis for risk-neutral agents and defines the certainty

equivalent discount factor (CEDF) as the expectation of the discount factor. From this he derives the

4See Groom et al (2004a) for a review.
5Weitzman (1998) assumes risk neutral agents for exposition, but this represents a special case of his general point. For

realistic scenarios, determination of DDRs a la Gollier (2002a, 2002b) requires knowledge of the 4th and 5th derivatives of
utility functions, something that he admits is very far from being accomplished.
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certainty equivalent discount rate (CER). Supposing that each potential discount rate rj is realised with
probability pj , such that Σpj = 1 and rj ∈ [rmin, rmax] (j = 1, ..., n). Defining the discount factor for a

particular scenario is aj (t) = exp
(
−
∫ t
0
r (s) ds

)
, the certainty equivalent discount factor for a risk neutral

agent is defined as:

A (t) = E

[
exp

(
−

∫ t

0

r̃ (s) ds

)]
=
∑

j

pjaj (t) (1)

From this it is possible to define both the average and marginal certainty equivalent discount rates at time
t, corresponding to the definitions in Section 2: rCERa and rCERm respectively:

exp
(
−rCERa (t) t

)
= A (t) =⇒ (2)

rCERa (t) = −
1

t
ln [A (t)] (3)

rCERm (t) = −
∂
∂t
A (t)

A (t)
(4)

The former is the rate of discount that if applied in every period from 0 to t would yield the same value
as the expected discount factor at time t. The latter is the instantaneous, period-to-period rate. Weitzman
(1998) works with rCERm , noting that at the limit, as t → ∞, they are precisely the same. Importantly he
shows that rCERm declines continuously and monotonically over time and that its limit as t → ∞ is rmin.
More generally, Gollier (2002b) explains that an arbitrage exists if, prior to realisation of r, (2) does not
hold. Hence, the certainty equivalent discount rate is the equilibrium socially efficient rate for risk neutral
agents prior to the realisation of r̃.
The mechanics behind the result are shown in Appendix 1, however, the intuition is as follows. In

calculating the weighted average that is the certainty equivalent each potential realisation of the discount
rate is weighted by a term which contains aj (t) , the discount factor associated with that scenario. In
scenarios with higher discount rates the discount factors decline more rapidly to zero. As such, the weight
placed on scenarios with high discount rates itself declines with time, until the only relevant scenario is
that with the lowest conceivable interest rate. In effect, the power of exponential discounting reduces the
importance of future scenarios with high discount rates to zero, since the discount factor in these scenarios
goes to zero. Since in the ex ante equilibrium the certainty equivalent rate of discount must equal the socially
efficient discount rate in all periods of time, this results in a SDR which declines over time.

2.1.1 Numerical Example of Weitzman’s CER:

Suppose that there are two potential realisations of the discount rate (r1, r2) with associated probabilities
(p1, p2) . Using the definitions (1) and (4) we obtain the certainty equivalent discount factor and rate at time
t:

A (t) = p1 exp (−r1t) + p2 exp (−r2t) = p1a1 (t) + p2a2 (t) =
∑

pjaj (t)

rCERm = −
Ȧ (t)

A (t)
=
r1p1a1 (t) + r2p2a2 (t)

p1a1 (t) + p2a2 (t)
= w1 (t) r1 +w2 (t) r2 =

∑
wj (t) rj

where the weights are w1 (t) = p1a1/ (p1a1 + p2a2) and w2 (t) = p2a2/ (p1a1 + p2a2) and Σwj (t) = 1. This
formula is used for rCERm in Table 1 below. The formula for rCERa is:

rCERa = −
1

t
ln [p1 exp (−r1t) + p2 exp (−r2t)]

Using (11) and the fact that:
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ẇj (t) =
pjaj (t)

Σpjaj (t)
.
Σripiai (t)

Σpiai (t)
−
rjpjaj (t)

Σpjaj (t)
= wj (t)

(
rCERm − rj

)

the derivative of rCERm with respect to time then becomes:

d

dt
rCERm = −

[
w1
(
rCERm − r1

)
r1 +w2

(
rCERm − r2

)
r2
]
= −

∑
ωj (t)

(
rCERm − rj

)2

which is clearly negative.
Table 1 shows the resulting schedule of marginal and average discount rates over continuous time assuming

that (r1, r2) = (5%, 2%) and (p1, p2) = (0.5, 0.5). Table 1 reflects the aspects of the certainty equivalent
discount rate described above. Both the average and the marginal certainty equivalent rates are declining
monotonically through time while approaching the lowest possible realisation in the long-run: rmin = 2%.

Year (t)
10 50 100 200 500

Discount factor (a1 (t)) 0.819 0.368 0.135 0.018 0.000
Discount factor (a2 (t)) 0.607 0.082 0.007 0.000 0.000
CEDF (A (t)) 0.713 0.225 0.071 0.009 0.000
Marginal CER

(
rCERm

)
3.277% 2.547% 2.142% 2.007% 2.000%

Average CER
(
rCERa

)
3.388% 2.983% 2.645% 2.345% 2.139%

Table 1. Numerical Example of Weitzman’s Certainty Equivalent Rate

More recently, Newell and Pizer (2003) consider the interest rate as a stochastic process, that is there is
uncertainty in the future about interest rates. N&P characterise this uncertainty using time series econo-
metric modelling of the autocorrelation process of interest rates. The estimated model is used to forecast
future rates based upon their behaviour in the past. From these forecasts they derive numerical solutions for
the CER. In doing so they are also able to provide a test of another assumption important to the Weitzman
(1998) result, namely the presence of persistence of discount rates over time. They compare the discount
rates modelled as a mean reversion process to a random walk model, and find support for the latter. The
practical implications of implementing the declining discount rates that result are significant.
When applied to global warming damages, the present value of damages from carbon emissions increases

by 82%, compared with the same damages evaluated at the constant treasury rate of 4%. In monetary terms
this translates into an increase in the benefits of carbon mitigation from $5.7/ton of carbon, to $10.4/ton
of carbon. However, using UK interest rate data Groom et al (2004) provide a more thorough econometric
analysis of the extent to which uncertainty in the future causes DDRs and find that model specification is
crucial to the analysis, not least because of the distributional assumptions contained therein. Indeed, they
find little evidence of the persistence noted by Newell and Pizer, suggesting that in the UK context the effect
of future uncertainty upon the valuation of global warming damages is minimal.
The rationale for declining discount rates provided by Gollier (2002a, 2002b) is perhaps the most the-

oretically rigorous of all the contributions, given the indeterminacy surrounding Weitzman (1998). But
determination of the trajectory requires very specific information concerning the preferences of current gen-
erations at the very least, and, in the long-run, the preferences of future generations6 . These parameters
include the aversion to consumption fluctuations over time, the pure time preference rate, and the degree of
relative risk aversion. For the case with zero recession, restrictions on the 4th and 5th derivatives of the utility
function become necessary. In addition, the probability distribution of growth needs to be characterised in
some way. Clearly, the informational requirements of the Gollier approach could be daunting.

2.2 Intergenerational Equity and Sustainability

Then we have the contributions which take sustainable growth and inter-generational equity as their depar-
ture point. The main focus of the discussion is on the important contributions of Chichilnisky (1996, 1997)

6With the infinitely lived representative agent approach there is effectively only one agent, and thus one generation. The
reference to current and future generations is therefore an intuitive interpretation of the long-run.
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and Li and Löfgren (2000), both of which explicitly introduce the notions of intergenerational equity and
sustainability. Each paper models optimal sustainable economic growth and each is concerned with deriving
the welfare effects of growth paths which are sustainable in the sense that they satisfy particular axioms with
regard to intergenerational equity. The axioms employed imply social preferences which are ‘sustainable’ or
‘intertemporally equitable’. Welfare is measured in terms of the utility of a social planner and, with utility as
their numeraire, the discussion of discount rates concerns the utility discount rate, ρ, rather than the social
rate of time preference, δ, or the social rate of return, r. Both contributions show that a declining utility
discount rate is consistent with a rule whereby current (future) generations must always take into account
the well-being of future (current) generations. That is, there must be no ‘dictatorship’ of one generation
over another.
Chichilnisky (1997) introduces two axioms for sustainable development7 . She also characterises the

preferences that satisfy these axioms. The axioms require that the ranking of alternative consumption paths
is sensitive not only to what happens in the present and immediate future, but also to what happens in the
very long run. Sensitivity to the present means that there is no date before which events are given zero
weight. Sensitivity to the long-run future means that there is no date where changes after that date do not
matter, in the sense of affecting the ranking. Chichilnisky’s criterion can be represented in the following
objective function:

max
c,s

π

∫
∞

0

u (c (t) , s (t)) exp (−ρt) dt+ (1− π) lim
t→∞

u (c (t) , q (t)) (5)

Instantaneous utility u (.) is a function of consumption (c) and the resource stock (s) at each time period
(t), while exp (−ρt) is the conventional exponential utility discount factor. u (.) is assumed to be the same
for all dates so that generations are assumed to be the same in the way they rank alternatives.
Intuitively, the limit term reflects the sustainable utility level attained by a particular policy decision

regarding c (t) and s (t). This can be interpreted as the well-being of generations in the far distant future.
Chichilnisky’s approach is a mixture of the two approaches seen so far: a generalisation of the discounted
utilitarian approach, mixed with an approach that ranks paths of consumption and natural resource use
according to their long-run characteristics, or sustainable utility levels. This criterion can be applied under
the two main axioms regarding the ranking of alternative utility paths. Notice that π ∈ [0, 1], can be
interpreted as the weight that the decision maker applies to each component of the criterion, with π providing
the weight given to the present generation, and (1− π) representing the weight placed upon the future
generation.
In contrast to Chichilnisky (1997) who treats present and future generations as separate entities in the

objective function of the decision maker, Li and Löfgren (2000) treat the future differently. Li and Löfgren
assume society consists of two individuals, a utilitarian and a conservationist, each of which makes decisions
over the inter-temporal allocation of resources. The utility functions of these two individuals are identical,
and again have consumption and the resource stock as their arguments. The objective function employed
by Li and Löfgren is:

maxU = πU1 + (1− π)U2 =

∫
∞

0

u (c (t) , s (t))D (t) dt

where,

U1 =

∫
∞

0

u (c (t) , s (t)) exp (−ρU t) dt (6)

U1 = lim
ρC→0

∫
∞

0

u (c (t) , s (t)) exp (−ρCt) dt (7)

where D (t) is the discount factor. The important difference between these two decision makers is that they
are assumed to discount future utilities at different rates. The utilitarian, who wants to maximise the present
value of his utility (U1), has a rate of time preference equal to ρU . The conservationist, who derives utility
from conserving the stock of the natural resource, has a rate of time preference equal to ρC and maximises

7A discussion of this model is also found in Heal (1998).
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his utility. The overall societal objective is to maximise a weighted sum of wellbeing for both members of
the society, given their different respective weights upon future generations. The effective utility discount
rate in Li and Löfgren is given by:

ρ (t) = −
1

t
ln {(1− π) exp (−ρCt) + π exp (−ρU t)} (8)

A time profile of discount rates can therefore be found by merely selecting the discount rates for the
conservationist and the utilitarian, ρC and ρU respectively. For example, if the conservationist discounts the
future at a rate of zero: ρC = 0, the discount factor becomes:

D (t) = (1− π) + π exp (−ρU t) (9)

In the distant future when t is large it has a minimum value of (1− π), the weight attached to the
conservationist, or future generations. It is in this way that the effective discount rate can be thought of as
declining over time to zero. Thus, unlike the utilitarian discount function, which tends to zero as time reaches
towards infinity, the weighted discount function tends to the weight for the far distant future. Hence Li and
Löfgren’s model results in a positive welfare weight for the conservationist and there is no dictatorship of
present over future generations. As the utilitarian’s welfare level is explicitly considered, there will also not be
any dictatorship of the future over the present. Thus, the model explicitly considers intergenerational equity.
Within this framework, the conservationist will dominate the far-distant future. Therefore the discount rate
will be a declining function of the time horizon.
Implementation of the Li and Löfgren and Chichilnisky approaches requires the identification of several

other parameters, including specification of the utility discount rate for the ‘utilitarian’, and perhaps more
importantly, the relative weight to be assigned between ‘conservationist’ and ‘utilitarian’ preferences. Al-
though the selection of this weighting might appear to be relatively arbitrary, it makes the trade-off between
present and future generations explicit, and could possibly be determined by an appropriate political process.

3 Implications of declining discount rates: climate change policy

in the UK

In this section we describe a declining discount rate schedule derived from the application of the estimation
procedure used by Newell and Pizer (2003) (N&P) to UK interest rate data. In short, interest rates are
forecasted over a period of 400 years using the results of an estimated reduced form random walk model.
The schedule of certainty equivalent discount rates is derived from the simulation of up to 100,000 interest
rate forecasts and use of Weitzman’s definition of the certainty equivalent discount rate (CER). We also
present the results of a ‘state-space’ model applied to the UK data which takes into account the possibility of
structural breaks and allows for the autocorrelation process driving interest rates to change over time. These
are important determinants of discount rate uncertainty, which represent a more appropriate methodology
for forecasting discount rates for the very long-term and a departure from N&P.
Figure 1 compares the schedule of the certainty equivalent discount factors derived from the two forecasted

models to the discount factor that is derived from discounting at a flat rate of 3.5%. It is easy to see that
schedule of certainty equivalent discount factors derived from the state space model is higher than those
derived from the N&P method, whilst the latter is fractionally higher than with constant discounting. These
results are similar to those of N&P for the US: interest rate uncertainty in the UK provides a rationale for
DDRs to be employed in project appraisal. However, there are two further practical points that arise from
this analysis. Firstly, in applying N&P, we fail to establish the existence of persistence, indicating that the
mean reverting model is more appropriate than the random walk model. This is the inverse of N&P’s finding
for the US. Secondly, model selection is important. The state space model8 is introduced to improve upon

8See Newell and Pizer (2003) for their empirical specification. The State Space model employed here is as follows:

rt = c1 + αtrt−1 + et

αt = c2αt−1 + ut

where ut and et are vectors of serially independent zero-mean normal disturbances. In other words, we model uncertainty of
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Figure 1: Conventional and Empirical Discount Functions

the misspecified mean reverting model. The model and results show the importance of introducing flexibility
into the characterisation of uncertainty e.g. accounting for structural breaks and autocorrelated coefficients.
Indeed there are a number of other empirical issues that need to be addressed before an acceptable schedule
can be determined empirically. These issues are discussed at length in Groom et al (2004b). The implications
of these estimates are described below.

3.1 Social Cost of Carbon

The social cost of carbon is an estimate of the present monetary value of damage done by anthropogenic
carbon-dioxide emissions. The UK has an ‘official’ value of this shadow price (Clarkson and Deyes 2002) at £
70 per tC, although the validity of the number is disputed (Pearce 2003) and the official value is under review
at the time of writing. Self-evidently, higher values of the social cost of carbon imply that investment in
climate change mitigation is more attractive. The discounting framework employed has a significant impact
upon such estimates. It is obvious, for instance, that a lower (constant) discount rate will increase the
present value of the marginal damage from emissions. For example, the marginal damage values from the
Fund 1.6 model (Tol 1999) increase from $20/tC to $42/tC to $109/tC, as the discount rate declines from
rates of 5% to 3% to 1% respectively.
In order to illustrate the difference between the various discounting frameworks on the social cost of

carbon, we start with an approximate profile of the economic damage done by one tonne of carbon emissions
in 2000, shown in Figure 2. This is the profile of damages generated by the DICE model of Nordhaus and
Boyer (2000). Applying the various discounting regimes to this damage profile over the next 400 years results
in estimates of the social cost of carbon presented in Figure 3. For the 200-year period, the estimates vary
from approximately £ 2.50/tC at a 6% flat discount rate, to about £20.50/tC under a discounting regime
based on the Li and Löfgren approach.
Increasing the time horizon from 200 to 400 years makes no difference when constant discount rates are

employed, because the discount factor approaches zero well before the 200 year mark. In contrast, marginal
damage estimates under declining discount rate regimes are noticeably larger when the time horizon is
extended to 400 years.
Furthermore, the application of N&P’s methodology to UK data increases the 400 year estimates of

the interest rate as an AR (1) process with AR (1) coefficients. Details of this and other specifications can be found in Groom
et al (2004).
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Figure 2: Profile of Carbon Damages from the DICE model

marginal damage costs by a mere 4.3% compared to the constant discounting regime. This contrasts with
N&P’s finding of an 84% increase. This reflects the lower level of persistence found in the UK case compared
to the US, resulting in the mean reverting model being more appropriate than the random walk model of
N&P. The state-space model leads to a 150% increase in the value of marginal damage. This model is well
specified and is therefore more credible. The magnitude of the differences reflects once more the practical
implications of model selection in determining the schedule of CER.
This illustration suggests that estimates of the social cost of carbon are likely to at least double if

declining discount rates are employed. This would have formidable implications for policy in several areas.
For example, a higher social cost of carbon would make it more likely that commitments to Kyoto targets
would pass a cost-benefit test (Pearce, 2003).

4 Conclusions

The realisation that actions taken today can have long term consequences presents a challenge to decision
makers in assessing the desirability of policies and projects. The use of the classical net present value (NPV)
rule to assess the economic efficiency of policies with costs and benefits that accrue in the long term is felt
by many to be particularly problematic. The welfare of future generations barely influences the outcome of
such a rule when constant socially efficient discount rates are used for all time. The deleterious effects of
exponential discounting ensure that projects that benefit generations in the far distant future at the cost of
those in the present are less likely to be seen as efficient, even if the benefits are substantial in future value
terms. In this respect it appears that the present wields a dictatorship over the future. The idea of using
Declining Social Discount Rates (DDRs) has emerged largely in response to these awkward implications and
recently DDRs have even been entertained at an official level in the UK (HM Treasury 2003).
The approaches reviewed here are predominantly theoretical contributions to an inherently practical

issue. Ultimately, the practitioner is faced with a potentially confusing array of rationales and a sense that
almost any discount rate can be applied. Moreover, it is important that the practitioner is aware that the
implications of employing declining discount rates are of considerable moment. As our case studies show,
there is the potential to reverse the recommendations of social cost benefit analysis in the long-term policy
arena. This is especially important given the nature of this policy arena and the considerable changes that
might be required in order to prevent the impact of global warming.
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Figure 3: The discounted value of carbon mitigation

That social discount rates should be declining is still not clear, despite the sometimes compelling contri-
butions described above. In many cases only the conditions under which DDRs are said to exist have been
defined. Whether or not these conditions prevail is another question altogether. Indeed, the use of DDRs
may put us in danger of placing more weight upon potentially far richer individuals in the far distant future
that we place on present, or even near future generations. What is more widely agreed is the limited extent to
which discount rates can be manipulated to simultaneously reflect the numerous underlying issues that have
motivated their investigation, namely inter-generational equity, sustainability and efficiency. Practitioners
would be wise to note this as well as the potentially fundamental limitations of CBA in dealing with long
-term investments (Lind 1995).
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Appendix 1 The mechanics of Weitzman’s results are as follows. From (1) and (4) it is easy to show
that the certainty equivalent marginal rate can be written as a weighted average of the potential realisations
of r:

rCERm =
∑

j

wj (t) rj (10)

where the weights in this case are simply: wj (t) = pjaj (t) /Σpjaj (t) and Σwj (t) = 1. Taking the derivative
of this with respect to time we obtain:

d

dt
rCERm =

∑

j

ẇj (t) rj = −
∑

j

wj (t)
(
rj − r

CER
m

)2
(11)

which is clearly negative9 . That the limit of limt→∞ r
CER
m = rmin comes from noticing that, where r1 = rmin

:

lim
t→∞

wj (t)

w1 (t)
= 0

which means that as t→∞ the weights associated with all but the lowest discount rate tend to zero due to
the presence of aj (t), and yet, since Σwj (t) = 1, the weight for the lowest discount rate, w1 (t), must tends
towards 110 .

9The last step is not entirely obvious, so we elaborate. Dropping the m subscript from rCERm , note that:

ẇj (t) = wj (t) (Σwi (t) ri − rj) = wj (t)
(
rCER − rj

)
, therefore d

dt
rCER =

∑
wj (t)

(
rCERrj − r

2

j

)
=
(
rCER

)
2

−∑
wj (t) r2j . This term is equal to that obtained by multiplying out (11). That is, noting that Σwj (t) = 1 we get:

−

∑
wj (t)

(
r2
j
+
(
rCER

)
2

− 2rjrCER
)
= 2
(
rCER

)
2

−

(
rCER

)
2

−

∑
wj (t) r2j and we are done.

10Gollier (2002a) provides an elegant proof of the following: limt→∞ rCERa = rmin, i.e. for the averager CER, by appeal to
Pratts Theorem.
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