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Abstract

The concept of ambiguity with respect to decision making about climate change has recently

attracted a lot of research interest. The standard approach for introducing ambiguity into this

framework is to assume that the decision maker (DM) exhibits ambiguity aversion, with the

latter being represented by axioms on DMs preferences di¤erent than Savage�s (sure-thing

principle). As a result, DM is deprived of the property of probabilistic sophistication, since

she is faced with either multiple prior probability functions, or a single but incoherent one

(capacity). This paper approaches the issue of ambiguity with respect to climate change from

a di¤erent perspective. In particular, we assume that ambiguity does exists but it does not

a¤ect the formation of DMs prior probability function. Instead, it a¤ects the formation of her

posterior probability function. Speci�cally, we assume that there are n experts, who supply

DM with probabilistic input. Hence, although DM has a well de�ned prior (formed before

any expert information on objective probabilities has arrived), she cannot decide which piece

of information should conditionalize upon (defer to). We refer to this type of ambiguity as

"deferential ambiguity" and show that it a¤ects both DM and the experts. We also introduce

a second type of ambiguity, which is solely born by the experts. This type of ambiguity stems

from the experts potential inability to discern DMs preferences. This ambiguity is referred

to as "preferential ambiguity" in the paper. The main objective of the paper is to analyze

the possible interactions between the two types of ambiguity mentioned above and to assess

their impact on the probabilistic properties (in particular, tail risks) of environmental-policy

variables.
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1 Introduction

It is often claimed that decision making on climate change is characterized by ambiguity (or deep

uncertainty). The term "ambiguity" is used, in a practical sense, to portray the massive uncertainty

that besets the e¤ects of emissions of greenhouse gases on global warming and in a more formal

sense, to characterize the epistemic state of the agents involved in the determination and evolution

of the climate-related variable, say Y: To this end, we may distinguish three types of such agents.

(a) The decision maker (DM), whose actions today a¤ect the level of Y tomorrow. (ii) The expert

(or experts) who either knows the true model for the determination of Y over time or he possesses

an approximation of it and (iii) the public. Ambiguity, being an epistemic state rather than a

physical property may a¤ect some or all of the agents mentioned above. The main aim of the

paper is �rst, to characterize the ambiguity faced by DM as well as the one faced by the expert,

second to examine their interactions and third to analyze their e¤ects on the probabilistic properties

of Y:

More speci�cally, the problem of ambiguity that arises in the context of decision making akin

to climate change may be described as follows: Consider a decision maker, DM, who at time t

is about to form her system of probabilistic beliefs, that is her subjective probability function,

PDMt ; de�ned on a �eld of propositions/events �. DM is assumed to be rational, which amounts

to saying that (i) DM�s subjective probability function is coherent for every t, (ii) DM updates

her probabilistic beliefs in the light of new evidence by Bayesian conditionalization (BC) and, (iii)

DM obeys the Principal Principle (PP) (see, Lewis 1980). PP (roughly) states that if DM knows

the objective probability (chance), Cht(A); of A 2 �; then she sets her subjective probability of A

equal to the corresponding objective probability.

Let us now bring another type of agent into the picture, namely the expert(s). An expert in

this context is de�ned to be the agent who knows the objective probabilities (chances), Cht(A);

A 2 � of the events of interest. In the case that there is a unique expert, DM is most likely to

perceive this expert as the true bearer of objective probabilities, which in turn implies that she will

have a strong incentive (especially if DM is benevolent) to defer to him at each point in time. As a

result, DM�s subjective probability distribution always coincides with the corresponding (unique)

objective probability distribution. Hence, DM always knows the true probabilities of the events of

interest, which in turn implies that she always operates under an environment of "risk" (known

probabilities) rather than "ambiguity" (unknown probabilities).

Ambiguity arises in the case that there are more than one experts, say n, who disagree with

each other about the chances of the events in �. Equivalently, one may assume that there are n
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competing statistical models for the same phenomenon. Each of these experts has his own view

about the "objective" probability function on � (his own model): Hence, DM is faced with n "ob-

jective" probability functions, PXi;t, instead of one, which in turn complicates her attempts to form

her subjective probability function PDMt : How can one interpret and model these complications?

To this end, there are two options. What distinguishes the one option from the other is the time

at which DM is assumed to form her prior probability function (or, her initial credence function).

The �rst option, hereafter referred to as Classical Bayesianism (CB) (see Meecham 2007), assumes

that DM forms her prior probability function at t. This assumption implies that DM�s current

probability function, PDMt is entitled to be treated as the "prior". In such a case, DM is allowed to

use all the information that is available to him at t, that is both background and speci�c informa-

tion, in setting her prior. The second option, hereafter referred to as Modern Bayesianism (MB)

(see Meecham 2007), insists that only background information is allowed to a¤ect the formation of

DM�s prior probability distribution. Speci�c information, such as information on objective chances

supplied by the experts, should be treated strictly as "conditioning information" that a¤ects DM�s

probabilistic beliefs at t strictly through BC. Easwaran and Fitelson (2011) de�ne such a prior

probability function (initial credence function) as one "...which would not be informed by speci�c

bodies of empirical knowledge regarding objective chances." (2011, pp. 4). This in turn implies

that DM�s current probability function, PDMt ; cannot be treated as prior; instead the prior, PDM0 ;

was determined at a time "prior" to t, say t = 0, in which only background information was

available.

It is worth noting that despite terminology that suggests otherwise, MB goes at least as far

back as Carnap (1950). Indeed, his monumental work on logical probability and induction is based

on the concept of hypothetical or counterfactual initial credence function that can be ascribed to

an agent, before the collection of any evidence (including information on objective probabilities).

According to Carnap, PDM0 re�ects the agent�s permanent dispositions for forming beliefs, as

opposed to PDMt which reveals merely her momentary inclinations at time t.

The aforementioned distinction between CB and MB has serious implications for the way in

which ambiguity is de�ned, accounted for and �nally modelled. The so-called "ambiguity aversion"

literature adopts the CB interpretation in the context of which DM, in the face of contradicting

(or ambiguous) information, cannot decide how to form a proper PDMt : As a result she may end

up adopting a set of priors (Gilboa and Schmeidler 1989), or alternatively, a single non-additive

prior (capacity) (Schmeidler 1989), thus being deprived of the virtue of probabilistic sophistication

and failing to satisfy Savage�s axioms. To this end, alternative, more permissive axiomatizations

have been suggested in an attempt to rationalize DM�s predicament (for a critical survey of this
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literature, see Al-Najjar and Weinstein 2009). A common feature of these alternative axiomatic

systems is that they all relax Savage�s sure thing principle, while at the same time introduce

axioms that represent some form of ambiguity-sensitive behaviour. The interesting aspect of these

systems from an empirical point of view is that they yield new criteria for decision making under

uncertainty (or, rather, under ambiguity), which are di¤erent from the classical "maximization of

subjective expected utility". Heel and Millner (2015) examine how the adoption of such criteria

(speci�cally, the MaxMin and Smooth Ambiguity ones put forward by Gilboa and Schmeidler 1989

and Klibano¤, Marinacci and Mukherji 2005, respectively) a¤ect decision making in the context

of climate policy.

Adopting the MB perspective o¤ers a radically di¤erent interpretation of DM�s ambiguity.

Here, the multiplicity of "objective" distributions (supplied by the experts at t) does not threat

the formation of DM�s prior. This is because, DM�s prior has already been formed at a period

prior to t (in our case at t=0) in which no speci�c information was available. Put di¤erently, at

the time that the n experts furnish their views, DM is already equipped with her prior PDM0 ; so

that this prior is immune to the ambiguity of information regarding objective probabilities. These

objective probabilities (or any other type of probabilistic information such as point forecasts) are

treated as "data" or "information", upon which DM conditionalizes (using PDM0 as vehicle) in

order to update her beliefs from PDM0 to PDMt . Despite its theoretical elegance this approach,

usually referred to as Supra Bayesian method (see, for example, French 1985, Lindley 1985, Jacobs

1995), is not easy to apply in some real-world situations (see Jacobs 1995 for a discussion of these

di¢ culties).

Another method for combining or aggregating experts�s probabilistic input is the so called

axiomatic method which does not make an explicit use of DM�s prior probability function. Instead,

this method is based on (i) setting a number of desirable axioms that the combined distribution

should satisfy and (ii) �nd the functional form that satis�es most (if not all) of these axioms. One

of the most widely used functional form is the so called linear opinion pool, according to which

PDMt =
nX
i=1

wiP
X
i;t; (1)

where the weights wi are non-negative and sum to one. As Clemen and Winkler (1999) remark, the

weights wi may be interpreted as representing the relative quality of the n experts. In the case that

all the experts are regarded as equivalent (by DM), (1) reduces to a simple arithmetic average. The

linear opinion pool satis�es the axioms of unanimity and marginalization (see, for example Clemen

and Winkler 1999). However, it fails to satisfy the principle of External Bayesianity, which is one
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of the reasons why an alternative combination scheme, the so-called logarithmic opinion pool, is

occasionally employed.

In all the cases presented above, there seems to be a common underlying assumption concerning

the relationship between (i) the probabilistic input about the phenomenon Y that DM receives

from the experts (ii) her actions based on this input and (iii) the actual probabilistic properties of

Y: In particular, it is tacitly assumed that DM�s actions (informed by the views of the experts) do

not a¤ect the actual probability distribution of Y , or put di¤erently, DM�s actions are exogenous

to Y: Instead, it is assumed that DM requires at t � 1 the experts�s probabilistic forecasts for Yt,

in order to form her own probabilistic assessment at t� 1 for Yt: Then, under the resulting set of

probabilistic beliefs, DM will take the (perceived as) optimal course of action at t-1 which, however,

does not a¤ect the generation of Yt at t. As a result, the experts do not have to anticipate the

DM�s actions before they elicit their probabilistic views on Yt because they do not have to account

for these actions in their models. In such a case, we have only one-way causality between the

probabilistic views of DM and those of the experts: Experts�views a¤ect DM�s views (via PP),

but not the other way round.

This assumption, however, does not seem to be a realistic one concerning issues of climate

change. For example, Heel and Millner (2015) comment on the endogeneity of emissions as follows:

"Emissions uncertainty arises because anthropogenic greenhouse gas emissions drive climate change

projections in all models, and future emissions pathways are unknown, as they depend on our own

future policy choices." (pp. 5). This is a case in which forecasts result in an adaptive change which

in turn a¤ects the forecasted quantity. Consequently, an expert who tries to produce a forecast for

the change, �Yt; in emissions between t� 1 and t is forced to consider, as one of the causal factor

in his model, the DM�s forecast for next period�s emissions. Why? Because these forecasts will

determine DM�s course of action, which in turn is likely to a¤ect the actual change of emissions.

This feature produces a two-way causality between the probabilistic views of DM and those of

the experts: Experts�forecasts of �Yt a¤ect DM�s forecasts of �Yt, but at the same time, DM�s

forecasts, being causal factors in experts�s models for �Yt, a¤ect experts�forecasts.

The main aim of the paper is to investigate the e¤ects from the interaction between DM�s and

experts� forecasts for �Yt on the actual (objective) distribution, DY ; of �Yt: Various forms of

such interactions are analyzed, with each one generating a di¤erent level of ambiguity in either

DM and/or the experts. The source of DM�s ambiguity is the potential disagreement among the

experts (from now one we assume that there are at most two experts). If such disagreement exists,

then DM is not certain to which expert should defer, or more generally, how she should combine

their views.
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Concerning experts� ambiguity, we investigate the following two sources: (i) One source of

experts� ambiguity is the aforementioned uncertain deferential attitude of DM. Speci�cally, at

each point in time, expert i; i = 1; 2 faces the following possibilities: (a) DM defers to his own

forecasts (forecasts of i). (b) DM defers to the forecasts of expert j 6= i (c) DM defers to a

combination (e.g. linear pooling) of the two experts�forecasts (d) DM defers to none of the two.

These possibilities raise for each of the experts the following "speci�cation issue": how should

DM�s deferential attitude be introduced in each of the experts�models? The way that each expert

answers this question bears di¤erent implication for the actual generation mechanism of �Yt.

Hereafter, we shall refer to this type of ambiguity as "deferential ambiguity". (ii) A second source

of experts�ambiguity (present even in the case of a single expert) stems from the potential inability

of DM to correctly discern the society�s preferences about the desired change of Yt at each point

in time. Hereafter, this type of ambiguity will be referred to as "preferential ambiguity". As

will be shown below, even a DM with "simulated attitude" (Tunney and Ziegler 2015) that, is

one who always tries to act according to society�s preferences, she has to identify correctly these

preferences, in order for her actions to be successful. Assume that the true preferences of society

formed at t � 1 for the value of Y at t are denoted by Y �(t�1);t: More speci�cally, assume that

the society determines Y �(t�1);t as the sum of the current value, Yt�1; of Y (limited degrees of

freedom due to physical constraints) plus a quantity Zt�1 which represents the desired change in

Y between t� 1 and t, that is Y �(t�1);t = Yt�1+Zt�1: This rule of dynamic determination of social

preferences may be justi�ed by assuming that in forming its desired level of Y for next period,

the society takes into account the current level of Y: Put di¤erently, tomorrow�s level of desired

Y is (physically) constrained by the current level of Y: Assume that the expert is able to identify

and measure correctly Zt�1, which means that the expert knows accurately society�s preferences at

t� 1. Let us further assume, that despite her best e¤orts, DM fails to diagnose Zt�1; but instead

she believes that society�s preferences are best captured by Wt�1: Alternatively, she might be able

to identify Zt�1; but she believes that society is currently wrong in focusing on Zt�1: In Tunney

and Ziegler�s (2015) taxonomy, such a DM exhibits "benevolent attitude", in the sense that her

actions are driven not by identifying "what the society would do" but rather by "what the society

should do". This possibility is akin to the so-called "centralism" thesis (Press 1994) according to

which "ecological problems can be solved only by strong centralized control of human behaviour,

thus making common resource decisions by central authorities and replacing democratic rule by

�ecological mandarins�with the �esoteric� knowledge and public spirit required" (Coenen et. al

1998, pp5)).

Irrespective of the reasons that make DM to adoptWt�1 instead of Zt�1, the crucial question is
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the following: Does the expert know that DM does not act upon Zt�1 but upon Wt�1? To this end

there are three possibilities: (1) The expert (being a true expert) knows DM�s preferential error

right from the start. In such a case, the e¤ects of DM�s error on the actual generation process

of �Yt are relatively simple to analyze: The probabilistic properties of �Yt do not depend on

the probabilistic properties of the stochastic process fZtg, but rather on those of fWtg : (2) The

expert never realizes DM�s error and erroneously believes that DM acts on Zt�1: In this case, the

actual distribution of �Yt will be di¤erent than the one in experts mind, which in turn implies

that the expert is never the bearer of objective chance. (3) The expert initially believes that DM

acts on Zt�1; but he endorses a learning process, in the context of which he repeatedly compares

the realized values of �Yt with those implied by his model. In general, the resulting asymptotic

distribution of �Yt does not coincide to that in the expert�s mind, since there is a non-zero bias

that survives even asymptotically. As expected, the probabilistic properties of �Yt in this case

di¤er signi�cantly from those of the previous case.

Next section, de�nes our basic model and examines the benchmark case which is de�ned by the

following assumptions: (i) DM is interested in experts�point forecasts (conditional expectations)

rather than their views about the conditional or unconditional distribution of �Yt. (ii) DM is

assumed to be a "projectivist" one, who always (i.e. for each t) complies with society�s preferences

by acting in such a way as to bring the actual Yt in line with the level Y �(t�1);t designating by

society at t-1 as optimal for t. (iii) DM acts upon Zt�1 rather than Wt�1; which means that

DM�s perception about the optimal change in Yt coincides with that of the society. In such a case,

her projectivist attitude can be ful�lled. (iv) there is only one expert who knows the structural

form of the statistical model describing the probabilistic properties of f�Ytg, as well as the true

values of the model�s structural parameters. As a by product of this assumption, the expert knows

that DM acts on the basis of Z (rather than W ): Obviously, in our benchmark case, there is

neither deferential not preferential ambiguity. As such, this case is equivalent to the basic case of

Baillon, Cabantous and Wakker (2012) (referred to as the "source risk") according to which "both

agents are Bayesian and agree with each other (and everyone else). This is the common case of

generally accepted objective probabilities, with no ambiguity involved" (pp.116). However, the

aforementioned authors do not allow for any interactions between DM and the expert: "We also

assume that there is no interaction between the agents themselves, or between the agents and the

decision maker, so that no group process is involved." (pp. 116). On the contrary, our study not

only allows for such interactions but makes them our central topic of research.

Section III introduces preferential ambiguity. This is carried out by retaining the �rst two

assumptions of the foregoing benchmark case, and replacing (iii) and (iv) by (iiia) and (iva) re-
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spectively: (iiia) DM acts upon Wt�1 rather than Zt�1: (iva) The unique expert knows all the

features the structural form of the model of f�Ytg, but one, namely the fact that DM employs

Wt�1 instead of Zt�1: This means that the expert will produce his forecasts of �Yt by means of

a misspeci�ed model which includes the wrong variable Zt�1 instead of the true one, Wt�1: In

this section we also assume that the expert never learns about his speci�cation error, (no learn-

ing mechanism is assumed to be in place), which in turn implies that the expert ends up having

a subjective probability of �Yt di¤erent than the objective one (the expert is not the bearer of

objective chance).

Section IV relaxes the no-learning assumption of Section III, and derives the asymptotic distri-

bution of �Yt under recursive OLS learning. An interesting feature of this case is that the forecast

error committed by the expert never goes to zero. However, even under the aforementioned as-

ymptotic bias, the stochastic process f�Ytg converges-in-law. Section V gives a brief description of

how deferential uncertainty can be introduced in the model, together with its potential interactions

with preferential uncertainty and their combined e¤ects on the probabilistic properties of f�Ytg :

Second VI summarizes the main �ndings, draws lines for future research and concludes the paper.

2 Basic Model and Assumptions (No Deferential Uncer-

tainty)

Let us begin with introducing some basic concepts and notation (with the risk of repeating some of

those already introduced in the previous section). Assume that Et�1(Yt) denotes the DM�s forecast

(made at t�1) for the actual level of Y at t, whereas Y �t�1 (a simpli�ed notation for Y �(t�1);t) stands

for the level of Y that the society at t � 1 thinks of as optimal (or desired) at t. To make things

more concrete, assume that Y represents the level of CO2 emissions. As already mentioned, DM

is supposed to act in line with society�s preferences. This implies that whenever Et�1(Yt) > Y �t�1,

(Et�1(Yt) < Y �t�1) DM acts in such a way as to produce a negative (positive) actual change �Yt:

As far as Y �t�1 is concerned, we assume that it is the sum of the actual Yt�1 and another variable

Zt�1, with the latter representing society�s preferences at t � 1 for the next period�s value of Y:

Speci�cally

Y �t�1 = Yt�1 + Zt�1 (2)

This means that at time t � 1; the society sets the desired level for Y at time t; as the sum

of the current level Yt�1 plus the adjustment factor Zt�1: If Zt�1 > 0 (Zt�1 < 0); the society

prefers (at t-1) a higher (lower) value of Yt than the one that currently prevails (namely Yt�1): Let
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�Z = E(Zt) and �
2
Z = V (Zt): The more the society�s targets change over time, the larger the value

of �2Z : What are the reasons that cause the society to change the desired level of Y over time?

One important such reason may be a change in the society�s perception about the sensitivity of the

climate to CO2 emissions. Indeed, sensitivity estimates exhibit signi�cant variability both within

the same period and across time. Changes in society�s perception about the sensitivity parameter

induce changes in society�s estimates about the economic costs of emissions. As McKitrick (2014)

remarks: "In a low-sensitivity model, GHG (greenhouse gases) emissions lead only to minor changes

in temperature, so the socioeconomic costs associated with the emissions are minimal. In a high-

sensitivity model, large temperature changes would occur, so marginal economic damages of CO2

emissions are larger." (pp. 1). For example, in a period t = t1 in which the economic cost of

emissions is estimated to be small, the society is likely to set Zt1 > 0:

Does DM adopt society�s target Zt�1 or deviates from that? As already mentioned, this section

assumes that the answer to this question is in the a¢ rmative. Moreover, since DM is supposed to

act in the best interests of the society, (Et�1(Yt)�Y �t�1) enters as a causal factor in the determination

of �Yt with a negative coe¢ cient. We may refer to this factor as the "human" factor. In addition,

there is a physical variable (assumed to be exogenous in the standard sense) Xt; a¤ecting �Yt;

which may be referred to as the "physical" factor. Bringing these two factors together results in

the following equation,

�Yt = Yt � Yt�1 = �(Et�1(Yt)� Y �t�1) + �Xt; (3)

The structural parameters � and � are assumed to be time invariant. With respect to � (key

parameter in the ensuing analysis) we assume �1 < � < 0 in order to capture DM�s socially-

sensitive behaviour. Concerning the exogenous variable, we assume for simplicity that Xt is a

Gaussian IID process with zero mean,

Xt � NIID(0; �2X): (4)

Under the assumptions made thus far, (3) becomes

�Yt = �(Et�1(�Yt)� Zt�1) + �Xt (5)

As far as the experts are concerned, we assume that there is only one expert who knows the

structural model given by equations, (2), (3) and (4) together with the value of the parameter

vector � = [�; �; �Z ; �
2
Z ; �

2
X ]. This means that the expert (at t � 1) speci�es in his model the
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same variable Zt�1 that DM adopts (no preferential ambiguity). Furthermore, we assume that

DM always defers to expert�s point forecast, Et�1(�Yt); and the expert is aware of this fact (no

deferential ambiguity).

Under the foregoing assumptions, the solution of the model is quite simple: Taking expectations

on both sides of (5), we get

Et�1(�Yt) = �
�

1� �Zt�1

and therefore:

�Yt = �
�

1� �Zt�1 + �Xt: (6)

The conditional distribution of �Yt is

�Yt j Ft�1 � N
�
� �

1� �Zt�1; �
2�2X

�
;

where Ft�1 represents the information until t� 1: The corresponding unconditional distribution is

�Yt � N
 
� �

1� ��Z ;
�

�

1� �

�2
�2Z + �

2�2X

!
: (7)

Comments

(i) Since the coe¢ cient � �
1�� is always positive, the unconditional mean of �Yt is positive

(negative) whenever the mean, �Z ; of Z is positive (negative). This means that if the society

desires, on average, a positive (negative) change in next period�s level of emissions, this desire will

be translated (via DM�s actions) into an actual average positive (change) change in emissions.

(ii) The results for the unconditional variance of �Yt bear di¤erent implications for the role of

the human factor than those for the unconditional mean, discussed above. More speci�cally, the

human involvement in the generation process of Yt always results in an increase in the variability of

�Yt, (compared to the case that the human intervention were completely absent, that is � = 0 by a

factor equal to
�

�
1��

�2
�2Z . Put di¤erently, even if the society (almost) always desires a lower level

of next period�s emissions (that is Zt�1 < 0); the DM�s actions to achieve this task will produce

an increase in the volatility of the actual changes in emissions, compared to the cases that (i) DM

is inactive (� = 0) or (ii) DM is active (� < 0) but the society does not change its preferences over

time (Zt�1 = 0).

(iii) Ceteris paribus, as the algebraic value of � decreases (becomes "more negative" so to

speak), or equivalently as DM becomes more active, the mean of �Yt increases for �Z > 0 and

decreases for �Z < 0: On the other hand, the e¤ect of such an decrease in � on the unconditional
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variance of �Yt is unambiguous: the lower the value of �, the higher the variance. This case bears

some interesting implications regarding a potential DM�s decision to become more active, that is

to decrease the value of � from �0 (say -0.2) to �1 (say -0.8) on "tail risks" (that is, the probability

of realization of a very large value of �Yt). Consider the case in which �Z < 0; that is the case in

which the society exhibits aversion to emissions. The rise in the degree of DM�s response (from �0

to �1), on the one hand decreases the mean of �Yt but on the other hand increases the variance

of �Yt, with the net e¤ect of these two opposite forces on the right tail of the distribution of �Yt

being ambiguous.

To put it di¤erently, the probability of observing larger values, given on the one hand, that

the mean of the distribution of �Yt is shifted to the left and on the other, that the variance

increases, could either increase or decrease depending on the distribution of �Yt. Under the

normality assumption, however, this ambiguity is eliminated: the probability of observing larger

values decreases as the degree of DM�s response increases (a decreases). The graph below, depicts

the probability of the event E = f�Yt > 0g as a function of �, assuming, without loss of generality,

that �Z = �0:5; �2Z = � = �2X = 1 :

Figure 1: P (E) as a function of �

3 Preferential Ambiguity with No Learning

Let us now relax the assumption that DM�s and society�s preferences are aligned. As mentioned

above, DM acts upon her own preference variableW rather than that of the society. Her incentives

of doing so may not be inferior. As Tunney and Ziegler (2015) remark, "surrogate decision makers

may not have as their goal to match the wishes of the recipient, but instead to make what they

perceive to be an optimal or benevolent decision." (2015, pp 884). ConcerningW , let �W = E(Wt),

10



�2W = V (Wt), corr(Wt; Zt) = �WZ and corr(Wt; Xt+1) = 0: As a result, (3) becomes

�Yt = �(Et�1(�Yt)�Wt�1) + �Xt (8)

The expert fails to recognize the discrepancy between DM�s and society�s preferences. Hence,

he believes that the law of motion of Yt is given by

�Yt = �(Et�1(�Yt)� Zt�1) + �Xt: (9)

He also believes (correctly) that Et�1(Yt) = Et�1(Yt) i.e. there is no deferential ambiguity. In this

case, the expert�s subjective conditional distribution (the one perceived by the expert as true) is

given by

�Yt j Ft�1 � N
�
� �

1� �Zt�1; �
2�2X

�
(10)

Since DM always defers to the expert, it follows that

�Yt = �
�2

1� �Zt�1 � �Wt�1 + �Xt:

The objective conditional distribution of �Yt is

�Yt j Ft�1 � N
�
�a
�

�

1� �Zt�1 +Wt�1

�
; �2�2X

�
; (11)

whereas, the corresponding objective unconditional distribution is

�Yt � N
 
��

�
�

1� ��Z + �W
�
;

�
�2

1� �

�2
�2Z + �

2�2W + �2�2X + 2
�3

1� ��WZ�W�Z

!
: (12)

Comments

(i) By comparing (10) with (11), we conclude that the variance of the expert�s subjective

distribution is equal to that of the objective conditional distribution, both being equal to �2�2X :

However, these two distributions are quite di¤erent with respect to their conditional means.

(ii) By comparing the unconditional mean in (12) with the corresponding one in (7), we observe

that there are cases in which DM�s focusing on W instead of Z; that is her "deviant behaviour",

results in signi�cant shifts in the unconditional distribution of Yt, which in turn may prove ben-

e�cial for the society in the future. Speci�cally, if �W < � �
1���Z , then DM�s actions shift the

unconditional distribution to the left, thus reducing the probability of an extremely large value of

�Yt (tail event) in the future. This may be interpreted as the result of DM�s benevolent behaviour

11



who acts on the basis of what the society should prefer at t � 1 (normative stance) rather than

what the society does prefer at t� 1 (descriptive stance).

(iii) A similar observation can be made with respect to the unconditional variance. In particular,

if �Z > �W and �WZ >
(1+�)�2Z�(1��)�

2
W

2��W�Z
,0 the variance in (12) is smaller than that in (7). As

expected, the human involvement in the generation process of Yt always results in an increase

in the variability of �Yt, compared to the case in which the human intervention was completely

absent.

(iv) It is easy to prove the following proposition (see Appendix): The case in which DM focuses

on W instead of Z with a time-invariant reaction parameter � is equivalent to the case of a DM

focusing on Z with a time-varying reaction parameter t: This means that DM does not have to

exhibit "deviant behaviour" in order to achieve her goals. The latter may be equivalently achieved

if DM exhibits "politically correct" behaviour combined with time-varying degree of reaction.

4 Preferential Ambiguity with Learning

Let us now assume that the expert, utilizes the information that is being accumulated over time,

to update his model by repeatedly by comparing the realized values of �Yt to those implied by

his model. Retaining the assumption that the expert fails to observe the discrepancy between

DM�s and society�s preferences, the only possible form of learning, is "parameter updating". More

speci�cally, let the perceived (by the expert) law of motion (PLM) be

�Yt = AZt�1 + ut (13)

where A is the parameter that the expert tries to estimate and ut is a Gaussian IID process with

zero mean. PLM is the reduced form model that the expert has in his mind when communicating his

forecasts of �Yt; i.e. Et�1(�Yt); to the expert: To update the parameter A, he applies the recursive

least squares (RLS) to (13). This methodology produces an estimate Ât for each time t; which

minimizes the mean squared error, namely E (�Yt � Et�1(�Yt))2 (For details see Appendix). It

is easy to show that

Ât
p! A� = � �

1� �
�WZ�W�Z + �Z�W

�2Z + �
2
Z

(14)

where "
p!" signi�es convergence-in-probability. Hence, asymptotically the expert�s view on A will

settle down on A� (which is di¤erent than � �
1�� ). Does the stochastic process �Yt converges-

in-distribution? The answer is a¢ rmative (see Appendix). Speci�cally, the asymptotic objective
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conditional distribution of �Yt is

�Yt j Ft�1 � N
�
a (A�Zt�1 �Wt�1) ; �

2�2X
�
; (15)

whereas, the corresponding objective unconditional distribution is

�Yt � N
�
a (A��Z � �W ) ; (�A�)

2
�2Z + �

2�2W + �2�2X � 2�2A��WZ�W�Z

�
: (16)

Comments

(i) The asymptotic parameter A� can be decomposed in two terms: � �
1�� and

�WZ�W�Z+�Z�W
�2Z+�

2
Z

:

The second term may be thought of as an "adjustment factor" that captures the e¤ects of learning.

Speci�callly, in the no-learning case the expert is always under the impression that the coe¢ cient

of Zt�1 is � �
1�� (10) whereas under learning he ends up believing that this coe¢ cient is A

�: As

expected, when Wt � Zt; the second term is equal to 1 and, A� collapses to � �
1�� , that is the

coe¢ cient of the benchmark case.

(ii) For each t; the objective distribution of �Yt does not coincide to the corresponding subjec-

tive distribution of the expert. More speci�cally, for each t; the di¤erence between the objective

conditional mean and the subjective conditional mean of �Yt is given by (a� 1)At�1Zt�1 �

�Wt�1; which, in general, is di¤erent from 0. As a result, there exists a non-zero bias at each

point t. The important question is whether this error asymptotically vanishes. The answer to

this question is, in general, negative. The corresponding di¤erence in the asymptotic means is

�
�
�WZ�W�Z+�Z�W

�2Z+�
2
Z

�Z � �W
�
; which is zero i¤ �WZ =

�W�Z
�Z�W

. This means that in spite of the

learning process, the expert never achieves a full understanding of the situation, thus commiting a

forecast error even asymptotically.

5 Comparison

The unconditional variance for all the above cases can be written as

�2

"�
�

1� �R�Z + �W
�2
� 2 �

1� �R (1� �WZ)�Z�W

#
+ �2�2X

To arrive at the �rst case, we have that R = �WZ = 1; �W = �Z : For the second case we need

R = 1 and the third R = �WZ�W�Z+�Z�W
�2Z+�

2
Z

: Note that the unconditional variance is increasing

(decreasing) in R if R > (<)� 1�a
�

�W
�Z
�WZ :
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6 Introducing Deferential Ambiguity

Let us now introduce a second expert who (initially or permanently) disagrees with the �rst re-

garding the values of the structural parameters, �; of the true model. More speci�cally, we assume

that both experts know the true structural form of the model (including the DM�s preference

variable Z) but take di¤erent views on the values of its parameters, with none of these experts

knowing the true value of �: This case corresponds to the so-called "con�ict ambiguity" in Bail-

lon, Cabantous and Wakker (2012): "For the second source of uncertainty, each agent alone fully

satis�es Bayesianism, with a precise probability judgment. However, the two agents give di¤erent

judgments, generating ambiguity for the decision maker aggregating their beliefs. This source of

uncertainty, which is characterized by between-agent ambiguity (heterogeneous beliefs), is called

con�ict (C-)ambiguity in this paper." (pp. 117). As already mentioned, this type of ambiguity

does not a¤ect exclusively DM; instead because of the endogeneity of DM�s forecasts, con�ict am-

biguity produces a "boomerang e¤ect" by injecting this ambiguity back into the process of forecast

formation of experts. This is what we call "deferential ambiguity". Each expert does not know

at each point in time whether DM will defer to him or his competitor. Hence each expert should

account for this uncertainty by introducing it explicitly into his model for the generation of Yt:

How this can be achieved and what are its e¤ects of this type of ambiguity on the distribution of

�Yt are brie�y analyzed below:

The assumptions that we make are the following: (i) DM adopts Zt�1 (rather than Wt�1) at

t-1 (there is no preferential ambiguity). (ii) There are two experts who believe that the structural

model is given by equations, (2), (3) and (4). The two experts agree on �Z ; �
2
Z ; �

2
X but disagree on

� and �: Hence, the agent i�s epistemic state is represented by �i = [�i; �i; �Z ; �
2
Z ; �

2
X ], i = 1; 2:

Without loss of generality, assume that �2 > �1: (iii) The objective probability that DM at t-

1 defers to expert�s i point forecast, Eit�1(�Yt); is pi. (iv) DM combines experts forecasts by

means of a linear pool using p1 and p2 as weights. (v) Both experts know the objective deferential

probabilities p1 and p2 as well as DM�s aggregation rule.

Under the foregoing assumptions, we get

Eit�1(�Yt) = �
�i

1� �i
Zt�1

Now the actual law of motion becomes

�Yt = ��(p
�1

1� �1
+ (1� p) �2

1� �2
+ 1)Zt�1 + �Xt:
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The conditional distribution is

�Yt j Ft�1 � N
�
��

�
p
�1

1� �1
+ (1� p) �2

1� �2
+ 1

�
Zt�1; �

2�2X

�
;

where Ft represents the information until t: The unconditional distribution is

�Yt � N
 
��

�
p
�1

1� �1
+ (1� p) �2

1� �2
+ 1

�
�Z ;

�
�

�
p
�1

1� �1
+ (1� p) �2

1� �2
+ 1

��2
�2Z + �

2�2X

!
:

Comments

(i) Since the coe¢ cient �� is always positive, the unconditional mean of �Yt will always be

positive (negative) whenever the mean, �Z ; of Z is positive (negative). This means that if the

society desires, on average, a positive (negative) change in next period�s level of emissions, this

desire will be translated (via DM�s actions) into an actual average positive (change) change in

emissions.

(ii) If �1; �2 < �; the unconditional variance is always smaller than in the case of one expert and

no deferential uncertainty. This case, corresponds to the case where both experts assume that the

DM�s actions will be more active than they actually are. As a result, their opinions will be closer

to the "no action" case. Speci�cally, the term Et�1(Yt)�Y �t�1 = Et�1(�Yt)�Zt�1 is closer to 0, i.e.

the "no action" case. As a result, the DM will take less actions, which reduces the unconditional

variance. If �1 < � < �2; i.e. the �rst (second) expert assumes that the DM�s actions will be more

(less) signi�cant, the unconditional variance will be larger when p < (�2��)(1��1)
(�2��1)(1��) : If � < �1 < �2,

then the unconditional variance in the case of two experts will always be larger.

7 Conclusions

In this paper, we approach the problem of ambiguity in climate change from a di¤erent angle than

the one adopted in the recent relevant literature. The salient features of our approach are the

following: (i) Ambiguity is an epistemic state which characterizes not only the decision maker but

the scienti�c experts as well. We distinguish between preferential ambiguity, which is de�ned as

the expert�s uncertainty about DM�s preference variables and deferential ambiguity, which arises

in the case of multiple experts. Deferential ambiguity may be born by both DM and the experts

and stems from the potential di¢ culty of DM to decide which of the experts should refer to.

(ii) DM�s ambiguity does not a¤ect the formation of her prior probability function (which is the

standard assumption in the ambiguity aversion literature). Instead, it a¤ects the formation of

DM�s posterior distribution, in the sense that DM is uncertain about the piece of information
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that she should condition upon. As a result, DM�s ambiguity is compatible with probabilistic

sophistication. (iii) Both types of ambiguity have signi�cant e¤ects on the probabilistic properties

of environmental policy variables. With respect to the policy relevant question of whether these

types of ambiguity increase the probability of a "tail event", we show that the answer to this

question depends on the probabilsitic properties of DM�s preference variable compared to that of

the society, on the extent to which DM learns from experience, on how DM combines experts�

information and on the pattern of interaction between preferential and deferential ambiguity.

8 Appendix

Proof of Proposition: We want to �nd a process ftg such that � (Et�1(�Yt)�Wt�1)+�Xt =

t�1 (Et�1(�Yt)� Zt�1) + �Xt: Solving for t�1; we get

t�1 =
� (Et�1(�Yt)�Wt�1)

Et�1(�Yt)� Zt�1

De�ne �t =
Wt

Zt
: Since Et�1(�Yt) = � �

1��Zt�1 the above equation becomes

t�1 =
�
�
� �
1��Zt�1 � �t�1Zt�1

�
� �
1��Zt�1 � Zt�1

and as a result, t = a
2 + �t (1� �) :

Recursive Least Squares: The least squares estimate is

At =

 
tX

s=1

Z2s�1

!�1 tX
s=1

Zs�1�Ys

!

More conveniently, the least squares estimates may be written in a recursive manner as

At = At�1 + t
�1R�1t Zt�1(�Yt �At�1Zt�1)

Rt = Rt�1 + t
�1(Z2t�1 �Rt�1)

where Rt = t�1
�Pt

s=1 Z
2
s�1

�
: The objective is to �nd the asymptotic value of At, denoted by A�;

and the conditions that lead to At ! A�?

The expert�s forecast of �Yt at time t� 1, is given by Et�1(�Yt) = At�1Zt�1; which under (8)

yields

�Yt = � (At�1Zt�1 �Wt�1) + �Xt:
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Hence, the RLS system can be written as

�t = �t�1 + t
�1R�1t Zt�1((�� 1)At�1Zt�1 � �Wt�1 + �Xt)

Rt = Rt�1 + t
�1(zt�1z

0
t�1 �Rt�1)

In order to apply the standard convergence results of stochastic recursive algorithms, we need to

set St�1 = Rt; in order for the term R�1t in the lhs of the �rst equation to be a lagged variable:

�t = �t�1 + t
�1S�1t�1Zt�1((�� 1)At�1Zt�1 � �Wt�1 + �Xt)

St = St�1 + t
�1
�

t

t+ 1

�
(Z2t � St�1):

The associated ordinary di¤erential equation (ODE) that governs stability of the system above is

d�

d�
= h(�) = lim

t!1
E (Q (t;�; zt))

where � = (A;S)
0
; zt = (Zt�1;Wt�1; Xt) and E denotes the expectation of Q (t;�; zt) taken over

the invariant distribution of zt, for �xed �:Q (t;�; zt) is derived by the RLS system and is de�ned

as

Q (t;�; zt) =

�
S�1Zt�1((�� 1)AZt�1 � �Wt�1 + �Xt)�

t
t+1

�
(Z2t � S)

�

It follows that

h�(�) = lim
t!1

E
�
S�1Zt�1((�� 1)AZt�1 � �Wt�1 + �Xt)

�
hS(�) = lim

t!1

�
t

t+ 1

�
E(Z2t � S) =

�
�2Z + �

2
Z

�
� S

The second relationship gives S !
�
�2Z + �

2
Z

�
; and therefore,

h�(�) = lim
t!1

E
��
�2Z + �

2
Z

��1
Zt�1((�� 1)AZt�1 � �Wt�1 + �Xt)

�
=

= (�� 1)A� �
�
�2Z + �

2
Z

��1
(�WZ�W�Z + �Z�W ) (17)

The ODE (17) gives the system

_A = (�� 1)A� �
�
�2Z + �

2
Z

��1
(�WZ�W�Z + �Z�W )
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whose solution is given by

A� = � �

1� �
�WZ�W�Z + �Z�W

�2Z + �
2
Z

The convergence to A� is convergence in probability, i.e. 8" > 0; limt!1 P (jAt �A�j � ") = 0.

The E-stability amounts to the condition � < 1; which holds by assumption. Therefore, with

probability 1, the system will converge to the equilibrium, irrespective of the initial estimations

A0.

18



References

Al-Najjar, N. and J. L. Weinstein, 2009, The Ambiguity Aversion Literature: A Critical Assess-

ment, Economics and Philosophy, 25: 249-284.

Baillon A, Cabantous L, Wakker P.P., 2012, Aggregating imprecise or con�icting beliefs: An ex-

perimental investigation using modern ambiguity theories, Journal of Risk and Uncertainty,

44:115�147.

Carnap, R., 1950, Logical Foundations of Probability, Chicago, IL: University of Chicago Press.

Clemen, R.T. and R. L. Winkler, 1999, Combining probability distributions from experts in risk

analysis, Risk Analysis, 19(2): 187�203.

Coenen, F., D. Huitema, and L. O�Toole, Jr., eds. 1998, Participation and the quality of environ-

mental decision making, Dordrecht, Netherlands: Kluwer.

French, S., 1981, Updating of belief in the light of someone else�s opinion, Journal of the Royal

Statistical Society, Ser. A 143 43-48.

Gilboa, I. and D. Schmeidler, 1989, Maxmin Expected Utility with a Non-Unique Prior, Journal

of Mathematical Economics, 18: 141-153.

Heal G. and A. Millner, 2014, Uncertainty and Decision Making in Climate Change Economics,

Review of Environmental Economics and Policy 8.1, 120�137.

Jacobs R. A., 1995, Methods for combining experts�probability assessments, Neural Computation,

vol. 7, pp. 867�888.

Klibano¤, P., M. Marinacci, and S. Mukerji, 2005, A Smooth Model of Decision Making under

Ambiguity, Econometrica, 73: 1849-1892.

Lewis, D., 1980, A Subjectivist Guide to Objective Chance, In Richard C. Je¤rey, ed., Studies in

Inductive Logic and Probability, vol. II. Berkeley: University of California Press. Reprinted

with postscripts in Lewis 1986, pp. 83�132.

Lindley, D. V., 1985, Reconciliation of discrete probability distributions, Bayesian Statistics 2,

North-Holland (Amsterdam).

McKitrick, Ross R., 2014, Climate Policy Implications of the Hiatus in Global Warming, Vancou-

ver: Fraser Institute, October 2, 2014.

Meacham, C., 2007, Chance and the Dynamics of De Se Beliefs, Doctoral Dissertation.

19



Press, D., 1994, Democratic dilemmas in the age of ecology. Trees and toxics in the American

West, Durham.

Schmeidler, D., 1989, Subjective Probability and Expected Utility without Additivity, Economet-

rica, 57: 571-587.

Tunney, R.J., and F.V. Ziegler, 2015, Surrogate utility estimation by long-term partners and

unfamiliar dyads, Frontiers in Psychology, 6. doi: 10.3389/fpsyg.2015.00315 .

20


	PAPER TITLE 3(1)
	2017.Uncertainty

