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Abstract

Scientific evidence suggests that anthropogenic impacts on the en-

vironment such as land use changes and climate change promote the

emergence of infectious diseases in humans. We develop a two-region

epidemic-economic model which unifies short-run disease containment

policies with long-run policies which could control the drivers and

the severity of infectious diseases. We structure our paper by link-

ing a susceptible-infected-susceptible model with an economic model

which includes land use choices for agriculture and climate change and

accumulation of knowledge that supports land augmenting technical

change. The contact number depends on short-run containment poli-

cies (e.g., lockdown, vaccination), and long-run policies affecting land

use, the natural world and climate change. Climate change and land

use changes have an additional cost in terms of infectious disease since

∗The authors are grateful for valuable comments and suggestions from Spyros Tsan-
garis, and from the participants of the 10th SURED Conference, ETH Zurich, June 2022,
the 27th EAERE Conference, University of Bologna, June 2022, and the 22nd ICABR
Conference, University of Bologna, July 2022, at which earlier versions of this paper were
presented.
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they might increase the contact number in the long run. We derive op-

timal short-run containment controls for a Nash equilibrium between

regions, and long-run controls for climate policy, land use and knowl-

edge at an open loop Nash equilibrium and the social optimum and

unify the short- and long-run controls. We explore the impact of am-

biguity aversion and model misspecification in the unified model and

provide simulations which support the theoretical model.

JELClassification: I18, Q54, D81

Keywords: infectious diseases, SIS model, natural world, climate

change, land use, containment, Nash equilibrium, OLNE, social opti-

mum, land augmenting technical change

1 Introduction

The COVID-19 crisis which emerged as both a serious human health emer-

gency and a severe economic and social threat brought to the forefront the

link between the anthropogenic impact on the natural world and the emer-

gence of infectious diseases (IDs). This link has been recognized in the

literature related to IDs but not as much in the economic literature prior to

the advent of COVID-19. In the convergence model (Institute of Medicine

2008) for example, social, political and economic factors, along with envi-

ronmental and genetic one, are leading factors in the emergence of IDs.

In exploring the mechanisms underlying the emergence of IDs and seek-

ing a basis for the design of efficient prevention policy, the anthropogenic

impact has been identified as an important factor by a number of researchers.

Scientific evidence suggests that the total number and diversity of outbreaks

and richness of IDs have increased significantly since 1980 (e.g., Smith et al.

2014). Jane Goodall (2020, p. 1):

“...blamed the emergence of Covid-19 on the over-exploitation

of the natural world, which has seen forests cut down, species

made extinct and natural habitats destroyed. The coronavirus

is thought to have made the jump from animals to humans late

last year, possibly originating in a meat market in Wuhan, China.

Intensive farming was also creating a reservoir of animal diseases

that would spill over and hurt human society ... .”

ENSIA (2020), in a recent report, attributes the emergence of IDs such
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as COVID-19 to the destruction of habitats and loss of biodiversity, while

Evans et al. (2020, p. 1) points out that:

“ecological degradation increases the overall risk of zoonotic dis-

ease outbreaks originating from wildlife. The key “ingredients”

that accentuate the risk of an emerging ID spillover event are

activities (e.g., land conversion, creation of new habitat edges,

wildlife trade and consumption, agricultural intensification) in

or linked to areas of high biodiversity that elevate contact rates

between humans and certain wildlife species.”

Almada et al. (2017) stress the need to recognize that the relationship

between humanity and natural systems is becoming an urgent global health

priority. Watts et al. (2021), in the 2020 report of the Lancet countdown on

health and climate change, emphasize that the changing climatic conditions

are increasingly suitable for the transmission of numerous IDs, while the

recent statement of the Lancet COVID-19 Commission (Lancet 2021, p. 21)

indicates that:

“...most known emerging diseases have originated in non-human

animals, usually wildlife, and have emerged due to environmental

and socioeconomic changes, such as land use change, agricultural

expansion, and the wildlife trade.”

In a more general context, Foley et al. (2005, p. 1 and Figure 3) point out

that:

“Global croplands, pastures, plantations, and urban areas have

expanded in recent decades, accompanied by large increases in

energy, water, and fertilizer consumption, along with consider-

able losses of biodiversity. Such changes in land use have en-

abled humans to appropriate an increasing share of the planet’s

resources, but they also potentially undermine the capacity of

ecosystems to sustain food production, maintain freshwater and

forest resources, regulate climate and air quality, and ameliorate

infectious diseases.”

A recent report on COVID-19 (The Independent Panel for Pandemic Pre-

paredness and Response 2021, p. 19) stresses that:
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“Most of the new pathogens are zoonotic in origin. Driving their

increasing emergence are land use and food production practices

and population pressure. ... Accelerating tropical deforestation

and incursion destroys wildlife health and habitat and speeds in-

terchange between humans, wildlife and domestic animals. The

threats to human, animal and environmental health are inextri-

cably linked, and instruments to address them need to include

climate change agreements and “30x30” global biodiversity tar-

gets.”

Marani et al. (2021), using recent estimates of the rate of increase in disease

emergence from zoonotic reservoirs associated with environmental change,

suggest that the yearly probability of occurrence of extreme epidemics may

increase due to deterioration of the natural world.

In the context of associating anthropogenic activities with the emer-

gence of IDs, the contribution of climate change is also significant. Scientific

evidence (e.g., Wyns 2020) suggests that infections which are transmitted

through water or food, or by vectors such as mosquitoes and ticks, are highly

sensitive to weather and climate conditions. The warmer, wetter and more

variable conditions resulting from climate change are therefore making it

easier to transmit diseases such as malaria, dengue fever, chikungunya, yel-

low fever, Zika virus, West Nile virus and Lyme disease in many parts of the

world. Furthermore, permafrost thaw, caused by climate change, also carries

consequences in terms of increased risks of ID outbreaks as a result of live

pathogens liberated from thawed permafrost (Walsh et al. 2018, Meredith

et al. 2019).

Nova et al. (2022, section 5) state that:

“The activities that lead to anthropogenic disturbances of the

environment – primarily, climate change, land-use change, ur-

banization, and global movement of humans, other organisms,

and goods – affect societies and ecosystems in ways that favor

the emergence of novel infectious diseases in human populations,

expansions or shifts of diseases to new geographic regions, or re-

emergence of diseases in various places”

and provide links between disease transmission and changes in temperature

and rainfall as well as between changes in land use and disease incidence. For
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example, intensification of agriculture and industrial agriculture promotes

Aedes-born viruses (e.g., dengue, Zika and yellow fever), Lyme disease and

the Hendra virus.

Mora et al. (2022) provide evidence of a large number of pathogenic

diseases and transmission pathways aggravated by climatic hazards, thus re-

vealing the magnitude of the human health threat posed by climate change

and the urgent need for aggressive actions to mitigate greenhouse gas (GHG)

emissions. More specifically it was demonstrated in this review that 277

human pathogenic diseases can be aggravated by the broad array of cli-

matic hazards triggered by ongoing emission of GHGs and include 58% of

all infectious diseases known to have impacted humanity in recorded history.

Furthermore, over 1,000 different pathways were identified in which the ar-

ray of climatic hazards, via different transmission types, resulted in disease

outbreaks by a taxonomic diversity of pathogens.

The discussion regarding the emergence of IDs suggests that the disease

reservoirs, or ID hot spots, are located mainly in the tropical-subtropical

climate zones in the Koepen-Geiger classification system (with the notable

exception of permafrost). These climate zones contain hot spots for the

natural world in terms of natural habitats, tropical forests and biodiversity.

A disease outbreak which might emerge from the anthropogenic pressure on

the disease reservoirs and the impact of climate change in these zones, if

it occurs, diffuses to the rest of the world through regular transportation

channels.

This discussion also suggests that the management of IDs can be ana-

lyzed in two time horizons. These are the short run, in which the ID has

emerged and so containments policies such as lockdowns or vaccinations are

in order, and the long run, in which policies focus on factors that affect the

emergence and the severity of IDs, such as climate change and changes in

land use.

In the present paper we set up a structure that incorporates the points

made above about spatial and time separation. Thus, we develop a two-

region model in which the tropical-subtropical zones are identified as region

1 and the temperate-snow zones as region 2. Sachs (2001) points out that

agricultural technologies and health conditions are weak in the tropical rel-

ative to temperate zone, inducing a development gap. Thus a distinction

between the two regions is relevant when land use and disease impacts are
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concerned.

To account for the time separation we consider two stages of analy-

sis. In the first stage, which we call the short run, the outbreak of the

ID has occurred. After the outbreak, both regions introduce policies to

contain/eliminate the epidemic. Throughout the paper we assume that con-

tainment policies in the short run are decided in each region in a noncoop-

erative way. This assumption draws on the fact that national health policies

during the COVID period are decided by an independent national health

system based on the specific characteristics of each country and not by a

supranational authority. In designing containment policies in the short run,

the regions do not consider any anthropogenic impacts (encroachment in

the natural world or climate change) on the specific characteristics of the

ongoing ID.

In the second stage, which we call the long run, the regions take into ac-

count the evolution of climate change and the encroachment on the natural

world by agricultural activities on the specific characteristics related to the

transmission of the ID. Changes in land use and encroachment in the natu-

ral world are induced mainly by industrial agriculture and by, for example,

the need to satisfy the demand in wet markets, or the clearing of tropical

forests to satisfy demands for products such as palm oil, meat or soybeans,

or the establishment of industrial concentrated animal feeding operations.

The long-run policies relate, therefore, to the regulation of land use which

directly affects disease reservoirs, as well as to the adequate control of tem-

perature increase relative to the preindustrial period through climate policy.

An additional long-run policy explored is innovation as “land augmenting

technical change” to show that costly innovation could help preserve the

natural world and act as a prevention policy. In the long run we assume

that the regions commit to decisions about land-use and climate policy that

maximize own welfare, but we also characterize socially optimal solutions.1

The economic aspect of the recent pandemic has been analyzed mainly

in terms of ways of controlling the pandemic – lockdowns, social distancing,

vaccine development – and the associated benefits and costs of these policies

(see, for example, Eichenbaum et al. 2020, Thunström et al. 2020, Berger

1Note that in the implementation of the Paris Accord, countries commit to carbon
emissions paths. It is reasonable to assume that these paths are decided with reference to
own welfare.
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et al. 2021). The arguments put forward above make clear that in order

to have efficient management of an emerging ID in both the short and the

long run, there is a need for the development of coupled models of the

economy and the natural world which include links associated with the ID

reservoirs. This approach parallels the development of coupled models of

the economy and climate through the appropriate integrated assessment

models (IAMs). Augeraud-Véron et al. (2020) develop such a model in

which the reduction of biodiversity increases the probability of emergence

of zoonotic IDs. Boppart et al. (2020) propose “epidemic-economic (epi-

econ) IAMs” and discuss economic instruments for controlling the epidemic

after its emergence.

The contribution of our paper is the development of an epi-econ IAM that

unifies disease containment policies which are appropriate when a disease has

already occurred, with long-run policies which could control the drivers and

the severity of IDs, land use and climate change, and agricultural innova-

tion in our case. We structure our paper by linking a susceptible-infected-

susceptible (SIS) model (e.g., Hethcote 1989, 2000) with an economic model

which includes land-use choices for agriculture, climate change and land

augmenting innovation.

In the SIS model, the contact number – which is the average number

of adequate contacts with susceptibles of an infective during the infectious

period – is not a fixed number as is standard in epidemiological models, but

rather depends on policy parameters. In the short run there are containment

policies (e.g., lockdown, social distancing, vaccination), while the long-run

policies affect land use and the preservation of the natural world, and climate

change. For the economy part, utility in each region is determined by a

composite consumption good produced by labor, land devoted to agriculture,

and energy. Climate change induced by energy use not only harms the

composite consumption good but has an additional cost in terms of IDs

since it might increase the contact number in the long run. Reduction of

the natural world through changes in land use to expand agriculture also

has a disease-cost in terms of the long-run contact number.

Given the high uncertainty associated with the structure and the parametriza-

tion of such a model, we provide a deterministic solution as a benchmark

and compare it with outcomes derived under ambiguity associated with im-

portant parameters of the epi-econ model and ambiguity aversion.
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Simulations of the model in both the short and the long run support our

theoretical results.

2 An SIS model with containment

We follow Hethcote (1989) in considering a simple two-region SIS model,

with regions indexed by i = 1, 2 for the tropical and temperate zones re-

spectively. In the SIS model, infection does not confer immunity and in-

dividuals return to the susceptible class when they recover from infection.

Since naturally-occurring births or deaths do not affect the behavior of the

solution, we exclude them from the model for the sake of simplicity. Let sus-

ceptibles be denoted by S and the infective by I. Then the simple SIS model

in terms of fractions of the total population can be written, in continuous

time, as:

Ṡi (t) = −λi (t) Ii (t)Si (t) + γiI (t) , S(0) > 0 (1)

İi (t) = λi (t) Ii (t)Si (t)− γiIi (t) , Ii(0) > 0 (2)

Ii (t) + Si (t) = 1 , i = 1, 2, (3)

where λi (t) is the regional contact rate, γi is the recovery or removal rate,

and zσi (t) = λi (t) /γi is the regional contact number. From (3), the dy-

namic system can be written as:

İi (t) = λi (t) Ii (t) [1− Ii (t)]− γiIi (t) = γiIi (t)

[
λi (t) (1− Ii (t))

γi
− 1

]
İi (t) = γiI (t) [σi (t) (1− Ii (t))− 1] . (4)

From Hethcote (1989, theorem 4.1) we know that the solution for Si (t)

approaches 1/σi (t) as t→∞ if σi > 1 and approaches 1 as t→∞ if σi ≤ 1.

In the context of an infinite-time planning horizon, the containment policy

for an emerging ID takes place within a relatively small period of time. This

implies that the SIS dynamics can be regarded as operating in fast time and

the SIS system relaxes to the steady state S = min {1, 1/σ} and I = 1− S
for any point in time. The contact number σi (t) is the threshold quantity

with the critical threshold value 1. We consider a time dependent contact

number σi (t) since it could refer to different emerging IDs at different points

in time, or change over time in response to policies.
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It is natural to assume that short-run containment and long-run pre-

vention policies will target the contact number σ. The containment policies

adopted for the COVID-19 pandemic included policies such as lockdowns,

social distancing, quarantine and vaccination. In further specifying the con-

tact number, we assume that costly containment such as vaccination will

reduce the contact number, and that the output-producing labor force in-

cludes workers who are asymptomatic in the sense that, although infected,

they do not have symptoms that require treatment, so they are neither in

the infected class nor in quarantine but they can spread the disease and in-

crease the contact number. The fraction of susceptible individuals should be

increasing both in short-run containment policies once the disease emerges,

but also in long-term prevention policies.

2.1 Coupling the epidemic model with the economy

Let R (t) represent the natural world. In the sense of Goodall (2020), the

natural world provides ecosystem services but also includes the viral-host

reservoir for IDs. Human encroachment and destruction of the natural

world emerges through changes in land use due mainly to land-intensive

agriculture.2 This introduces a trade-off between output production and

ID emergence. Land-intensive industrial agriculture will reduce the natural

world and facilitate the emergence of IDs. Let the natural world Ri in each

region i = 1, 2 be defined as:

Ri (t) = L̄i (t)− LA,i (t) , Ri (t) ≥ 0, (5)

where L̄i(t) represents aggregate land availability, and LA,i (t) land devoted

to agriculture in each region respectively. Reduction of R, as agricultural

activities expand, indicates a reduction in the “distance” between human

activities and disease reservoirs.3

In considering the impact of climate change, we assume that energy

production by fossil fuels generates emissions of GHGs. Let X (t) denote the

stock of GHGs at time t relative to the preindustrial period with temporal

2We do not consider urbanization as another source of encroaching in the natural world.
3Restoration activities, such as reforestation, REDD+ policies and payments for ecosys-

tem services, could increase R. In order to simplify the model, we do not include such
activities.
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evolution according to:

Ẋ (t) = E1 (t) + E2 (t)− dX (t) , X (0) = Xpreindustrial, (6)

where Ei(t) denotes emissions of GHGs from each region and d is a small

GHG depreciation parameter. The accumulation of GHGs increases global

average temperature relative to the preindustrial level (the temperature

anomaly).4 Using Matthews et al.’s (2009) approximation with Λi repre-

senting the regional transient climate response to cumulative carbon emis-

sions (RTCRE)(see Leduc et al. 2016), the temperature anomaly in each

region can be defined as

Ti (t) = ΛiX (t) . (7)

To incorporate the impacts of disease reservoirs and climate change in

the evolution of the ID, we assume that once the disease emerges, the speed

of the evolution of the infection could be variable, so we write (4) as:

˙εSi (t) = (1− Si (t)) [λi(t)Si(t)− γi] ,

where ε is a small positive parameter. To provide a clear picture of a short-

run containment policy, when both the land allocation and the regional

temperatures are for all practical purposes fixed, we assume that ε → 0 so

that when the infection emerges it relaxes fast to a steady state in which

the fraction of susceptibles is determined as:

Si (t) = min {1, 1/σi(t)} ,
1

σi (t)
= (8)

φ0i (R1(t), T1(t)) + φ1i [biv (t)−mas
i Si (t)− qj (1− Sjt)]

Ii(t) = 1− 1

σi(t)
, i, j = 1, 2, i 6= j. (9)

To simplify the mathematical exposition, when we write the optimality

conditions we assume solutions in the zone σ > 1, or equivalently S < 1. In

(8), φ0i is the part of the contact rate λi(t), or the fraction of susceptibles in

the population Si(t), which is exogenous relative to short-run containment

4The accumulation equation (6) can be augmented by allowing for an increase of the
natural world to slow down GHG accumulation in its capacity as a carbon sink. In this
case agricultural expansion would further increase GHG accumulation and induce another
positive feedback on the ID’s contact number. This feedback could be an interesting area
for further research.
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policies. Since region 1 – the tropical/subtropical region – is regarded as

containing the disease reservoirs, that is, the hot spot for the emergence of

IDs, it is assumed that the value of φ0i is determined by the current state of

the natural world, R1(t), along with the current temperature anomaly, T1(t),

in the region. In the long run, encroachment of the natural environment

due to changes in land use and agricultural expansion – which “reduces”

the natural world – along with global warming increase the contact number.

We assume, therefore,

φ0i (R1(t), T1(t)) = φ0iR(R1(t)) + φ0iT (T1(t)) ≥ 0, (10)

where φ0iR(R1(t)), φ0iT (T1(t)) are concave increasing, convex decreasing re-

spectively.

It should be noticed, however, that although in this paper we treat the

tropics as the main source of emergent IDs, the concentrated animal feeding

operations (CAFO) of the industrial agriculture in the temperate zones are

also breeding grounds for IDs. If the expansion rate of IDs from CAFO pro-

ceeded at a rate comparable to the expansion rate of IDs from encroachment

into the tropics (e.g., the deforestation rate of the Amazon for soybeans and

cattle), then R2(t), and potentially T2(t) should affect φ0i. Furthermore,

Mora et al. (2022) list 1,006 different pathways for infectious diseases and

around half of them are aggravated by climate change. Increasing tempera-

tures might increase IDs coming out of temperate zone CAFOs, with animals

being weakened by crowding and temperature stress, along with an increase

in IDs coming out of the tropics. In trying to keep the theoretical model as

tractable as possible, we do not take into account the impact of temperate

zones and consider only the tropics as a source of IDs.5 The function is de-

creasing in R1 since it is assumed that augmenting the natural world in the

South (i.e., reducing the relative size of the disease reservoirs and increasing

their distance from human activities) reduces the contact number in both

5Although the relevant part of the contact rate in both regions depends on (R1, T1),
the value of the contact rate need not be the same since it might depend on regional
characteristics. That is, in general we may expect φ01(·, ·) 6= φ02(·, ·). At this stage we
were not able to provide a quantitative indication of this distinction. In the simulation
part of the paper we make this distinction arbitrary since our objective is to validate
the theoretical model. Undoubtedly issues related to the exact source of ID and the
regional impacts of encroachments, CAFO, and increasing temperatures on the strength
of emerging IDs is an an important area of future interdisciplinary research which will
help to improve epi-econ models.
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regions for any specific epidemic. On the other hand, global warming in the

South increases the contact number for both regions, thus the function is

increasing in T1.

The term φ1i characterizes the effectiveness of the containment policy

in each region. In the short run, containment effort vi (t) reduces the con-

tact number λi (t) , with effectiveness bi and convex costs ci (vi (t)) . The

contact number increases by the potential spread of the disease by asymp-

tomatic susceptible workers at the rate mas
i ≥ 0. We assume no migration

between regions,6 but individuals from one region can make short visits to

the other by regular means of transportation (e.g., airplanes, ships). In-

fected individuals from region j traveling to region i infect individuals in

region i proportionally to those infected in region j and vice versa, with

proportionalities (qj , qi) respectively.

To link the economy with the epidemic model, we introduce a composite

good:

Zi(t) = Ci(t)
âiRi(t)

b̂i , âi > 0, b̂i > 0, âi + b̂i < 1, i = 1, 2, (11)

where C denotes material inputs in the composite good and R is “Nature’s”

input into the composite good, that is, ecosystem and biodiversity services.

We define utility in each region as:7

Ui (Zi(t)) = ln
(
Ci(t)

âiRi(t)
b̂i
)
. (12)

Material inputs are produced by labor, energy and land devoted to land-

intensive industrial agriculture.8 Labor is offered by susceptible individuals

– who are not contained because of lockdowns – and is allocated among

the non-agricultural part of the material inputs, lc,i, and the land-intensive

agriculture, LA,i, devoted to agriculture can be augmented by innovation

in agricultural technologies such as biotechnology. The accumulated stock

6Considering the possibility of infections from large scale migration flows between the
two regions is beyond the scope of this paper, but it is an interesting area for further
research.

7The log-linear utility function defined here can be regarded as a special case of a
more general CES utility function of the form Z = [aCτ + (1− a)Rτ ]1/τwith elasticity
of substitution between material inputs and Nature σe = 1/(1 − τ). This more general
formulation might be used to explore the impact of complementarities between material
inputs and Nature as measured by the inverse of the elasticity of substitution for σe < 1.

8To simplify the model, we do not include capital formation.
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of knowledge, denoted by N , acts as Harrod augmenting technical change

in the agricultural sector with innovation augmented land, or effective land

input, defined as (NLA,i).
9 Knowledge accumulates according to

Ṅ (t) = n2 (t)−mN (t) , N (0) = 1, (13)

where n2 (t) is the innovation flow undertaken by the developed North re-

gion 2 (e.g., R&D in bioengineering). The initial condition corresponds to

the no innovation case, and m is a rate at which accumulated knowledge

becomes obsolete. Innovation is costly and innovation costs cni fractionally

lowers the composite good. It is assumed that knowledge has public good

characteristics and, once accumulated in the North, it is freely available to

both regions.10

Furthermore, costs related to labor use, wl,h,i; land use, cL,i; energy,

ch,E,i; containment of the epidemic, cv,i; climate damages, ωi; and R&D

innovation in agriculture, cn,2, fractionally lower the material part of the

composite good.11 After dropping t to ease notation, the composite good

can be defined, for i = 1, 2, as:

Ci =
[(
l
βl,c,i
c,i E

βc,E,i
c,i

)αc,i]
×
[(
l
βl,A,i
A,i (NLA,i)

βL,A,i E
βE,A,i
A,i

)αA,i]
×

exp

[
−

(∑
h

wl,h,ilh,i

)
+ (−cL,iLA,i) +

(
−
∑
h

cE,h,iEh,i

)
+ (14)(

−cv,iv2
i

2

)
+

(
−ωiT 2

i

2

)
+

(
−cn,in2

2

2

)]
h = c, A, cn,1 = 0, cn,2 > 0 (15)

Si = lc,i + lA,i (16)

Ri = L̄i − LA,i. (17)

9Barrows et al. (2014) point out that genetically engineering seed adoption can produce
non-trivial savings of land from conversion to traditional agriculture as well as of emissions
of GHGs. Agricultural productivity could be also improved by automation and robotics
(e.g. Biswas and Aslekar 2022).

10An alternative assumption could be that knowledge is accumulated in both regions
since many research labs in agriculture also do R&D for agricultural efficiency in tropical
zones. In this case n2(t) in (13) should be replaced by (n1(t) + n2(t)). Another assumption
could be that knowledge is a private good to each sector with partial diffusion across
regions.

11REDD+ activities can be introduced by adding a term RD0 for REDD+ to the right
hand side of (17) below and including a cost for these activities which fractionally reduces
the composite good.
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We study the optimal management of the epi-econ model in the context

of two different time frames. In the first – the short-term management – the

epidemic has emerged and the objective is to choose containment control,

labor allocation and energy use to maximize utility. In this short time

horizon, the regional natural world, temperature anomaly, and knowledge

(Ri, Ti, N) are considered as fixed, since their evolution is slow relative to the

the evolution of the pandemic and the primary objective is the containment

of the pandemic. In this time frame, the short-term optimal controls depend

parametrically on (Ri, Ti, N).

In the second – the long-term management – it is assumed that the

emerged epidemic, which is the fast system, has been optimized and relaxed

to a steady state which depends parametrically on the natural world R1

and the evolution of regional temperature T1 which is slow relative to the

evolution of the epidemic and knowledge N . As (R1, T1, N) evolve, the

short-run optimal controls for the management of the epidemic system also

evolve. The relation between the epidemic system and the natural world

is reflected in (10), which is the policy-independent – in the short run –

component of the contact number.

For reasons explained in the introduction, we focus in the short run on

noncooperative solutions in which each region maximizes own welfare. For a

social optimization management problem, a social planner would maximize

the global welfare indicator which could be defined as:

W = log (Zz11 Z
z2
2 ). (18)

The social optimization problem is examined in the long-run analysis.

3 Short-run disease containment

We study the optimal containment problem in regions i = 1, 2 once the

epidemic has emerged. In this case the planners take the natural world

R1(t), the stock of knowledge N (t), and the temperature anomaly T1(t) as

exogenous, and decide about the containment policy vi(t), along with labor

allocation and energy use. Thus the controls for the short-run problem are

ui = (lc,i, Ec,i, lA,i, EA,i, vi). The solution concept for containment policy will

be a noncooperative Nash equilibrium solution in which the region’s planner
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maximizes own regional welfare, taking the actions of the other region as

given. Given that during the COVID pandemic countries have mainly been

designing containment policies unilaterally though their own health systems,

the Nash equilibrium concept might be a realistic representation.

3.1 Noncooperative solutions

Assuming that the objective is to contain and/or eliminate the epidemic,

then the short-run time problem with fixed R1, dropping t to ease notation,

is:

max
ui

lnZi (t) (19)

subject to

Si(t) = lc,i + lA,i (20)

Ŝi(t) = ϕ̄0i + ϕ1i [bivi − qj (1− Sj)] (21)

Si(t) = min
{
Ŝi, 1

}
(22)

ϕ̄0i =
φ̄0i

1 + ϕ1imas
i

, ϕ1i =
φ1i

1 + ϕ1imas
i

, (23)

with ϕ̄0i being the part of the contact number which is independent of short-

term policies.

The optimality conditions for problem (19), in which infections Ijt in

region j are taken as given, imply that:

v∗i = ζiϕ1ibi
âicvi

(24)

âiac,iβl,c,i
l∗c,i

=
âiaA,iβl,A,i

l∗A,i
= âiwl,i + ζi (25)

ac,iβc,E,i
E∗c,i

=
aA,iβE,A,i
E∗A,i

= cE,i, (26)

assuming that marginal labor costs and energy costs are the same in each

region for each use, and where ζi is the Lagrangian multiplier associated

with the constraints defined by combining (20)-(22). Containment policy

vi (e.g., vaccinations) is positive as long as its effectiveness is positive and

the multiplier is positive when the constraint holds as strict equality with

Ŝi(t) < 1. Condition (25) indicates that the optimal labor allocation across

the two possible land uses implies equalization of marginal products, while
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(26) indicates that, at the regional optimum, the marginal cost of energy

equals regional marginal costs. Combining (20), (21) and (25) and solving

for ζi, we can obtain the multiplier as a nonlinear function of Sj , or ζi =

ζi(Sj),i, j = 1, 2, i 6= j. Then the optimal containment policy can be written

as:

v∗i =

(
ϕ1ibi
âicvi

)
ζi(Sj) . (27)

Substituting conditions (27) into (21) we obtain the nonlinear best re-

sponse (or reaction) function of each region to the susceptibles of the other.

The best response functions are nonlinear of the form

Si = ϕ̄0i + ϕ1i

[
bi

(
ϕ1ibi
âicvi

)
ζi(Sj)− qj (1− Sj)

]
i, j = 1, 2, i 6= j. (28)

A solution for the nonlinear system (28), if it exists, will provide the

short-run optimal-containment Nash equilibrium. The system (28) is written

as

Si = gi(Sj) , Sj = gj(Si) (29)

Si = gi (gj(Si)) . (30)

Since Si ∈ [0,1] and the function gi (gj(Si)) takes values in [0, 1] , the

Nash equilibrium can be thought of as a fixed point of (30), since SNi : SNi =

gi
(
gj(S

N
i )
)
. At the Nash equilibrium solution the susceptibles (i.e., non-

infected in each region) act as strategic complements, so the containment

effect in one region will help the other region. This is shown more clearly in

the simulations presented in section 8. Once
(
SN1 , S

N
2

)
are obtained, then by

substitution into (27) the Nash equilibrium values for the regional optimal

containment policy are obtained.

Another way of looking at the short-run solution is to assume that both

regions’ objective is to eliminate the disease and seek control instruments

ûi such that Si(t) = Sj(t) = 1. The disease-eliminating instruments are

obtained using (27) for Si(t) = Sj(t) = 1.

Finally, we can explore the question of what the minimum size R̂1 is

for the natural world so that a disease, if it emerges in a virus reservoir

of region 1, will not spread because the contact number is below 1 (i.e.,

σi(t) < 1, i = 1, 2). In such a case, no containment is required and v∗it = 0.
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Using (21) and setting Si(t) = Sj(t) = 1, then R̂1 can be defined, for

any given temperature anomaly, as the minimum value of R1 such that

(ϕ̄0i (R1(t);T1(t))) ≥ 1, since in this case ϕ̄0i (R1(t);T1(t)) = 1/σi(t). We

will call this value the Goodall threshold. If R1(t) < R̂1 for some time t, an

emerging ID will spread in at least one of the two regions and may invade

the second region through transport. The containment of the disease in this

case requires costly interventions.

4 Containment policy in the short run under aver-

sion to ambiguity and model misspecification

A major issue in the design of containment policies is uncertainty regarding

certain crucial parameters of the epi-econ model and concerns about mis-

specification of the model. Following Hansen and Miao (2018), we explore

the implications of aversion to ambiguity and concerns regarding possible

misspecifications of the epi-econ model from the regulators’ point of view.

4.1 Robustness and entropy penalization

Assume that a parameter ν of the epi-econ model, such as bi, ui, ϕ0i, or ϕ1i,

i = 1, 2, has a prior density π, with ν ∈ V. In the context of Hansen and

Miao’s (2018) approach to ambiguity and model misspecification aversion,

the regulator solves the problem:

max
ui(t)

min
π

∫
V
Ui (Ci; ν)π (ν) dν + κi

∫
V

[log π (ν)− log π̂ (ν)]π (ν) dν, (31)

where ui = (lc,i, Ec,i, lA,iEA,i, vi). In (31), aversion to ambiguity and model

misspecification is modeled by introducing a fictitious adversarial or mini-

mizing agent (MA) who distorts the baseline prior density of an uncertain

parameter, in order to impose a cost on the regulator who is the maximizing

agent. This cost reflects the impact of aversion to uncertainty and model

misspecification. By designing regulation based on (31), the regulator de-

rives a decision rule which incorporates this aversion.

In (31), π̂ (ν) is the baseline density for the parameter ν, and κ > 0

is a parameter which penalizes deviations from the baseline density π̂ (ν)

with
∫
V [log π (ν)− log π̂ (ν)]π (ν) dν being the relative entropy discrepancy

17



from the baseline density. For κ → ∞, the regulator is committed to the

baseline density, which can be interpreted as the case in which – when the

cost of distorting the prior to the MA is infinite – the decision making

is using the baseline. As κ → 0, the distortion tends to the worst case

prior. In problem (31), the regulator maximizes utility using the controls of

the epi-econ model, while Nature, acting as the MA, distorts the baseline

prior density of parameters associated with the controls. The regulator is

concerned about the distortion of the prior of the epi-econ model parameters

and follows robust control regulation. The solution of the minimization part

of problem (31) is given (see Hansen and Miao 2018) as:

π∗ (ν) =
exp

[
− 1
κUi (Ci; ν)

]
π̂ (ν)∫

V exp
[
− 1
κUi (Ci; ν)

]
π̂ (ν) dν

. (32)

Substituting π∗ (ν) into (31), the objective to be maximized by the regulator

becomes

Ji = max
ui(t)

{
−κ log

∫
V

exp

[
−1

κ
Ui (Ci; ν)

]
π̂ (ν) dν

}
. (33)

We set θ = 1/κ and interpret θ as the robustness parameter. When θ → 0

(κ→∞), the regulator optimizes using the baseline prior; when θ → ∞
(κ→ 0), the regulator optimizes by taking into account the worst case prior.

Expanding (33) around θ = 0 and using the cumulant generating function,

we obtain the expansion

Ki (θ, ν) = Eπ̂ [Ui (Ci; ν)]− θ

2
Varπ̂ [Ui (Ci; ν)] . (34)

Assume for the stochastic parameter that ν ∈ V =
[
ν, ν̄
]

with mean µν

and variance σ2
ν in the baseline density. Expanding the Ki (θ, ν), we obtain:

Eπ̂ [Ui (Ci; ν)] ≈ Ui (Ci;µν) +
U ′′i (Ci;µν)

2
σ2
ν (35)

Varπ̂ [Ui (Ci; ν)] ≈
(
U ′i (Ci;µν)

)2
σ2
ν , (36)

where the derivatives of the utility function are taken with respect to the

stochastic parameter ν. Then the maximization problem for the regulator in
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region i becomes

Ji = max
ui(t)

{
Ui (Ci;µν) +

U ′′i (Ci;µν)

2
σ2
ν −

θ

2

(
U ′i (Ci;µν)

)2
σ2
ν

}
. (37)

If we disregard second-order terms, the optimization problem described

by (37) suggests that the utility of the decision maker is penalized by a

term defined by the marginal utility of a small change in the mean of the

ambiguous parameter by the variance of the baseline prior and the robust-

ness parameter θ. When θ → 0, the decision maker is an expected utility

maximizer and uses the baseline prior.

4.2 Regulation under aversion to ambiguity

Keeping regional T1 and R1 fixed, we study the impact of increasing the

robustness parameter θ on the optimal choice of controls by comparative

statics. Increasing the robustness parameter θ means that regulation takes

into account distorted priors which deviate from the baseline and, at the

limit as θ → ∞, they tend to the worst case scenario. Regulation under

aversion to ambiguity implies that after disregarding R1, T1 which are con-

stants in the short run, and then using (33) after replacing κ with 1/θ,

the objective of the regulator in region i = 1, 2 for the noncooperative case

becomes

Ji = max
ui(t)

{
âi logCi −

1

θ
ln (E exp [(−θ) ζiϕ1ibivi])

}
, (38)

subject the constraints of problem (19). The first-order conditions for the

optimal containment policy vi imply

v∗i =
1

âicvi

E exp [(−θ) ζi(Si)ϕ1ibivi] ζi(Si)ϕ1ibi
E exp [(−θ) ζi(Si)ϕ1ibivi]

= g (θ, vi; ζi) . (39)

Proposition 1. Consider the epi-econ model (19) and assume that the pa-

rameter bi, which reflects the effectiveness of the containment control, is

uncertain with a baseline prior π̂ (bi) . Then the Nash equilibrium under am-

biguity can be defined, while an increase in the robustness parameter θ will

reduce containment policy in region i.

For the proof, see Appendix.
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Since the ambiguous parameter is on the effectiveness of control efforts

against the emerging ID (that is, bi), if the worst case value of bi is zero, then

when it costs zero for the adversarial agent to harm the regulator through

the ambiguous parameter bi, the best reply of the regulator in the zero sum

game is to set v∗i = 0. The intuition is that as θ increases and the aversion

of the regulator induces him/her to consider distorted priors regarding the

effectiveness or the cost of the containment policy which are worse relative

to the baseline, less control is exercised, since its effectiveness tends to zero

in the worst case scenario. Since the setup can be generalized to a vector of

controls represented by a linear combination of specific controls determining

containment policy (that is, bivi =
∑J

j=1 bijvij , i = 1, 2), Proposition 1

suggests that high aversion to ambiguity regarding the effectiveness of a

specific control will reduce the use of this control and will potentially increase

the use of other controls which are less ambiguous.

4.3 Strong preferences for robustness and ambiguity-adjusted

Nash equilibrium

Optimal containment policies can be obtained by maximizing (94) and using

first-order condition (95) from the proof of Proposition 1 in section 9.1 of the

Appendix for the optimal choice of v. To simplify, assume that the baseline

prior for the effectiveness of parameter bi is a uniform distribution with

bi ∈ [mbi ,Mbi ] , 0 ≤ mbi ≤Mbi

µ̂bi =
mbi +Mbi

2
, σ̂2

bi
=

(Mbi −mbi)
2

12
.

Using this assumption in (94) and the moment-generating function of the

uniform distribution, we obtain

−1

θ
ln (E exp [(−θ)ϕ1ibivi]) =

−1

θ
log

(
exp [(−θ)ϕ1iζiMbivi]− exp [(−θ)ϕ1iζimbivi]

θϕ1iMbivi − θϕ1imbivi

)
= h (θ, vi)

with

lim
θ→∞

h (θ, vi) = ϕ1iζimbivi , lim
θ→0

h (θ, vi) = ϕ1iζiµ̂bivi.
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Thus when θ →∞, the regulator is infinitely robust and uses the worst case

scenario, while when θ → 0, the regulator uses the baseline prior. With

b-ambiguity, the optimal control for the worst case is

va,wi =

(
ϕ1imbi

cvi

)
ζi(Sj) . (40)

Considering the b-ambiguity case, the best response function at a fixed time

t is defined as:

Si = ϕ̄0i + ϕ1i

[
bi

(
ϕ1imbi
cvi

)
ζi(Sj)− qj (1− Sj)

]
i, j = 1, 2, i 6= j. (41)

Since mbi < µ̂bi , the worst case prior for the policy effectiveness implies less

control relative to the baseline prior at the Nash equilibrium. The impact of

increased aversion to ambiguity regarding the effectiveness of containment

policies is a shift of the best response functions towards the origin which im-

plies an increase in the Nash equilibrium share of infected. This is presented

and verified by the numerical simulations in section 7.1.

Thus ambiguity regarding the effectiveness of containment measures

leads, in a Nash equilibrium, to an increase in the share of infected. The

effectiveness of containment measures could be related to technical char-

acteristics such as weak effectiveness of vaccines but also to social charac-

teristics such as opposition to social distancing or vaccination. Reduced

vaccinations and opposition to containment measures in parts of the world

during the COVID pandemic could suggest increased ambiguity regarding

the vaccinations associated with the containment policy v.

Consider now the case where the regulator of a region expresses aversion

to ambiguity regarding ϕ̄0i, the part of the contact number that does not

depend on short-run policies. Then from (94) the regulator’s problem for

region i can be written as

Ji = max
ui(t)

{
logCi −

1

θ
ln (E exp [(−θiζiϕ̄0i)])

}
.

ζi = ζi(S
N
i ).

Assume that the baseline prior for the policy-independent part of the

contact number is a uniform distribution with the worst case being ϕ̄0i = 0,
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and parameters in the following intervals:

ϕ̄0i ∈ [0,Mi]

µ̂i =
Mi

2
, σ̂2

i =
(Mi)

2

12
.

Then, using the moment-generating function for the uniform distribution,

we obtain

hi (θ) = −1

θ
log (E exp [(−θϕ̄0i)]) = −1

θ
log

(
exp [(−θ) ζiMi]− 1

θζiMi

)
.

If the regulator in region i is infinitely robust, then limθ→∞ h (θ) = 0.

This means that if aversion to ambiguity regarding the effectiveness of the

short-run containment measures bi tends also to infinity and the worst case

is associated with mbi = 0, then as verified by our numerical simulations the

inverse of the contact number

Ŝi =
1

σi
= ϕ̄0i + ϕ1i

[
bi

(
ϕ1imbi

cvi

)
ζi(Sj)− qj (1− Sj)

]
→ 0,

which implies that at the limit the whole population will be infected in the

Nash equilibrium. This observation leads to the following claim:

Claim: When the ambiguity of the regulator about the policy-independent

parameter (which is uniformly distributed on [0,Mi]) in the short-run com-

ponent of the contact number is very high, that is, θ →∞, so the regulator

optimizes by taking into account the worst case prior, the only route for re-

ducing the contact number is to reduce ambiguity about the effectiveness of

the short-run containment policy, i.e., reduce ambiguity on ”b”. When this

short-run ambiguity cannot be reduced for voluntary-based containment poli-

cies, supplementary policies, such as for example fines for non-compliers,

might be necessary.

Consider now the case in which in region i, say i = 1, the worst cases

for ϕ̄01 and b1 imply at the limit that Ŝ1 → 0. In this case the optimizing

region j = 2 will not respond to region 2’s choices but will unilaterally adopt

containment control policies. The optimal containment policy for this region

will be:

va,w2 =
ϕ2jµ̂b2
cv2

ζ2(S2).

In this case the equilibrium susceptibles in region 2 will be the fixed point
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of

S2 =
1

σ2
= ϕ̄02 + ϕ12

[
bi

(
ϕ2jµ̂b2
cv2

ζ2(S2)

)
ζ2(S2)− qj

]
.

The result is confirmed by simulation which suggests zero susceptibles for

one region and a slight drop in the susceptibles of the other region relative to

the no-ambiguity Nash equilibrium. This result could explain differences in

infection and policy effectiveness across regions observed during the COVID-

19 pandemic.

4.3.1 A generalization

To more clearly provide a picture of the noncooperative equilibrium between

the two regions for more general baseline priors, we use approximations (34)-

(37) and consider ambiguity in the effectiveness of the containment policy,

bi, i = 1, 2. Applying (34)-(37), we consider the problem:

Ji = max
ui(t)

{
âi logCi −

θ

2
σ̂2
bi

(ζiϕ1ivi)
2

}
,

subject to the constraints of problem (19) where ζi is the Lagrangian mul-

tiplier of constraint (20). The optimality condition implies

v∗ai =
ζi(S

N
i )ϕ1iµ̂bi

ci + θbi
(
ζi(SNi )2σ̂biϕ1i

)2 , (42)

where µ̂bi , σ̂
2
bi

are the mean and variance of the baseline prior for ambiguous

parameters corresponding to the effectiveness of the containment policy. If

we assume that the baseline prior is uniform with bi ∈ [mbi ,Mbi ], 0 ≤ mbi ≤
Mbi , then (42) can be further simplified by setting µ̂bi =

mbi+Mbi
2 , σ̂2

bi
=

(Mbi
−mbi)

2

12 .

Along the lines of Proposition 1, differences across regions in concerns

regarding the effectiveness of instruments in reducing the contact number

differentiate the optimal values for the containment instruments. The re-

gion for which ambiguity about the effectiveness of a costly instrument is

stronger will use less of this instrument relative to a region in which am-

biguity about the effectiveness of the instrument is relatively smaller. This

result can differentiate between containment policies which are based on
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voluntary behavior only, versus menus of policies. If the introduction of

supplementary policies such as fines for non-compliers is characterized by

less ambiguity, it will be used along with voluntary containment policies.

Thus ambiguity differentials differentiate the optimal intensity of use of the

containment policies and introduce policy trade-offs. Furthermore, in line

with the theory, as θ → 0 the optimal controls are designed on the baseline

prior, while if regulation is designed on the basis of the worst case regarding

the effectiveness of the control and θ →∞, then no control is undertaken.

5 Disease prevention in the long run: climate change,

natural world preservation and innovation

In the previous section we studied disease containment in the short run

by assuming that the disease has already emerged and that the infected-

susceptible dynamics move fast towards their steady-state values. In the

short run, the allocation of the regional land between agriculture and preser-

vation, and the regional temperature anomalies, were treated as exogenous

parameters. In the long run, however, land use can change, while temper-

ature will evolve responding to the use of fossil fuels and climate policies.

Changes in land use which might reduce the natural world and bring hu-

man activities closer to disease reservoirs, along with an increase in regional

average temperatures, will affect the long-run path of the contact rate ϕ0i,

which is basically independent of short-term containment policies.

5.1 Noncooperative long-run prevention

To study noncooperative solutions in the long run, we assume that each

region takes as given the initial temperature anomaly and the initial stock of

knowledge and commits to the emission and innovation paths (region 2 only)

that optimize own welfare functions, given the best response of the other

region. The solution of this problem will characterize an open loop Nash

equilibrium (OLNE). The consumption flow for the slow time scale problem

is obtained by substituting the fast-time (short-run) optimal controls for

containment v∗i into Ŝi to obtain the short-run Nash equilibrium levels of

susceptibles SNi . Then the control problem for region i in the time scale of
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the climate change can be written as:

JNi = max
{ui(t),Ri(t),ni(t)}

∫ ∞
0

e−ρt
[
âi lnCi(t) + b̂i lnRi(t)

]
dt, (43)

subject to (5)-(7) and (20)-(23), with ρ > 0 the utility discount rate, with

controls

ui (t) = (lc,i(t), lA,i(t), LA,i(t), Ec,i(t), EA,i(t), n2(t)) ,

and states

x = (X,N) .

In this optimization problem, after dropping t to ease notation, the following

constraints apply:

Ŝi = ϕ0i (R1, T1) + ϕ1i

[
biv
∗
i

(
SNi
)
− qj

(
1− SNj (t)

)]
(44)

Si = min
{
Ŝi, 1

}
(45)

ϕ0i (R1, T1) =
φit (R1, T1)

1 + φ1imas
i

, ϕ1i =
φi

1 + ϕ1imas
i

(46)

Ri = L̄i − LA,i (47)

Si = lc,i + lA,i (48)

Ei = Ec,i + EA,i (49)

Ti (t) = ΛiX (t) , (50)

where ϕ1i

[
biv
∗
i

(
SNi
)
− qj

(
1− SNj

)]
= ϕ̄1i is fixed at the solution of the

short-run problem and aggregate regional energy or, equivalently, use of

GHGs is Ei = Ec,i + EA,i. Each region takes the action paths of the other

region as fixed and solves problem (43). The current value Lagrangians for

the problem of each region can be defined as:

L1 = H1 + κ1

[
ϕ01

(
L̄1 − LA,1, T1

)
+ ϕ̄11 − lc,1 − lA,1

]
(51)

H1 =
[
â1 lnC1 + b̂1 ln

(
L̄1 − LA,1

)]
+ λ1 [E1 (t) + E2 (t)− dX] (52)

and
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L2 = H2 + κ2

[
ϕ02

(
L̄1 − LA,1, T1

)
+ ϕ̄12 − lc,2 − lA,2

]
(53)

H2 =
[
â2 lnC2 + b̂2 ln

(
L̄2 − LA,2

)]
+ λ2 [E1 (t) + E2 (t)− dX]

+ ξ2 [n2 (t)−mN ] , (54)

where Hi are the regional current value Hamiltonians. The Lagrangian mul-

tipliers, κi, should be interpreted as the sensitivity of the optimal solution to

changes in the constrained constants. The costate variable λi has the usual

interpretation as the shadow cost of the GHGs accumulation or the regional

social cost of carbon (SCC), while the costate variable ξ2 has the interpreta-

tion of the shadow value of innovation in the industrial agricultural sector.

A solution of problem (43), if it exists, will characterize the OLNE.

The problem represented by (51)-(54) provides the link for the epi-econ

model. An increase in the use of agricultural land will have a positive impact

on regional welfare because it will increase the consumption aggregate and a

negative impact because it will increase the contact rate and reduce Nature’s

input through the reduction in Ri. In this model the impact of accumulated

land augmenting knowledge in, say bioengineering, can be understood in the

following way.

Remark 1. Consider a steady state of (43) without any agricultural land

augmenting innovation, or
(
L∗A,1, N

∗ = 1
)

and a steady state with land

augmenting innovation
(
L∗AA,1, N

∗A > 1
)

. If

(
N∗AL∗AA,1 ≥ L∗A,1, L∗AA,1 < L∗A,1

)
,

then at the “with innovation” steady state, Nature R1 increases in the re-

gion which is an ID hot spot. This could reduce Nature’s impact on long-run

ID intensity. Whether an overall reduction in the contact rate takes place

depends on the evolution of fossil fuel use and climate change. Knowledge

accumulation will be beneficial in each region if maxJNAi > max JNi ,i = 1, 2,

where max JNAi stands for maximized welfare under land augmenting inno-

vation. It should be noted that the assumption that knowledge is accumu-

lated in the North and diffuses freely to the tropics benefits both regions in

terms of ID.
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5.1.1 Optimality conditions

Problem (43) as represented by (51)-(54) is an optimal control problem with

mixed constraints. The optimality conditions (e.g., Seierstad and Sydsaeter

1986, chapter 4) can be written, under the assumption of interior solutions

for the controls to ease exposition, as:

âiac,iβl,c,i
lc,i

=
âiaA,iβl,A,i

lA,i
= κi + âiwl,i (55)

âiac,iβc,E,i
Ec,i

=
âiaA,iβA,E,i

EA,i
= âicEi − λi (56)

â1aA,1βL,A,1
LA,1

= â1cL,1 + κ1
∂ϕ01

∂(L̄1−LA,1)
+ b̂1

L̄1−LA,1
(57)

â2aA,2βL,A,2
LA,2

= â2cL,2 + b̂2
L̄2−LA,2

(58)

λ̇i = (ρ+ d)λi + âiωiΛ
2
iX + κi

∂ϕ0i(R1,T1)
∂T1

(59)

Ẋ = E∗1 + E∗2 − dX (60)

E∗i = Γi
âicEi−λi

(61)

Γi = âi (ac,iβc,E,i + aA,iβE,A,i) (62)

n∗2 = ξ2
â2cn2

(63)

ξ̇2 = (ρ+m) ξ2 −
â2aA,2βL,A,2

N (64)

Ṅ = n∗2 −mN. (65)

5.1.2 Discussion of the optimality conditions

Labor allocation conditions (55) indicate that the marginal product of labor

in all uses equals the shadow value of an additional non-infected labor unit

plus any marginal labor costs. Energy use in all uses equates the marginal

energy cost plus the regional SCC as shown in (56). The aggregate energy

flow from each region is given by (61). For land allocation, (57) indicates

that in region 1 – the ID hot spot – the marginal product of land allocated to

industrial agriculture, defined in terms of effective land (NLA,1), should be

equal to marginal land-use costs plus the shadow value of total available land

in the region weighted by the impact of increasing the use of agricultural

land by a small amount on the contact number, plus the marginal cost in

terms of reducing Nature’s services. Note that the stock of knowledge is

decided by the North through (63)-(65). The impact of land augmenting

knowledge can be further clarified with the help of figure 1.

27



Figure 1: The impact of land augmenting technology.

Point A corresponds to an agricultural land allocation without any knowl-

edge accumulation (N = 1). The line AC defines land use as

LA,1(N) =
LA,1(1)

N
, N ∈ [1, N̂ ].

Suppose that knowledge accumulation increases to N̄ . Then land use can be

reduced to LA,1(N̄) with an equivalent increase of land left to Nature, while

the effective land input is the same as LA,1(1). This reduces the contact rate

in both regions as indicated by (10) and increases ecosystems’ contribution

to the composite good.

Finally, the cost of climate change is governed by (59) which describes

the evolution of the SCC. It can be seen that this social cost in addition

to climate change damages includes which impact of temperature on the

contact number weighted by the regional TCRE.

5.1.3 Policy implications

Optimality condition (57) suggests that the cost of converting one unit of

Nature to industrial agriculture consists of two parts. The first is the loss in

ecosystem services b̂1
LA,1

which is the traditional concept used in cost-benefit

analysis of conversion vs preservation and in valuations studies such as con-

tingent valuation. The second represents a new type of cost emerging from
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the epi-econ model which reflects the cost in terms of emerging ID associ-

ated with the reduction of the natural world in order to increase industrial

agriculture, κ1
∂ϕ01

∂LA,1
.

Condition (59) suggests that SCC should include, in addition to the

standard concept of damages to the economy – âiωiΛiX, in this case – the

extra cost in terms of emerging IDs, κi
∂ϕ0i(R1,T1)

∂T1
ω1, induced by a unit of

GHG emissions. This extra cost should be taken into account in carbon

pricing.

5.1.4 The OLNE steady state: knowledge

The dynamics of the knowledge subsystem decouple from the dynamics of

the climate subsystem. This is because the structure of the problem – which

is logarithmic in (NL) along with linear dynamics for knowledge accumula-

tion – makes the optimal R&D flow depend on the shadow value of knowledge

only, as indicated by (63)-(65). Then, the steady state is defined as:

N =
ξ2

â2cn2m
(66)

ξ2 =
â2aA,2βL,A,2
(ρ+m)N

(67)

or

ξ∞2 =

(
â2

2aA,2βL,A,2cn2m

(ρ+m)

)1/2

N∞ =
ξ∗2

â2cn2m
.

(68)

Proposition 2. The steady state (ξ∗2 , N
∗) for knowledge accumulation ex-

ists, it is unique and a saddle point.

For the proof, see Appendix.

The convergence to the steady state is shown in figure 5.

5.1.5 The OLNE steady state: climate

To study the Hamiltonian system (59)-(61) which determines the OLNE for

climate, we need to define the optimal controls as functions of the state-

costate variables (Ti, λi). In order to provide a clear picture of the structure

and the properties of this steady steady state – given the nonlinearity of the
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optimality conditions for the controls (55)-(58) – we consider a linearization

of these conditions, say around the short-run Nash equilibrium, and we

assume a linear representation of the inverse of the contact number for the

part that depends on Nature and climate, or:

ϕ0i (R1, T1) = γ0i + γiRi
(
L̄1 − LA,1

)
− γiT1T1. (69)

Solving the linearized first-order conditions for the controls in terms of

the multipliers κi for (55) and (57) and the costate variables λi for (56);

substituting the solutions into the constraints associated with the multi-

pliers κi; solving for κi and substituting the solutions back into (55) and

(57), we obtain the land allocation as a function of temperature in region

1 and accumulated knowledge, while energy use is directly related to the

regional SCC through (56). These conditions represent the feedback con-

trols for land-labor allocation, energy use and natural world preservation as

functions of climate change, the productivity of the economy, the exogenous

land availability and the short-term disease-containment parameter. The

evolution of the OLNE potentially towards a steady state can be studied by

substituting the feedback controls into (59)-(60).

5.1.6 Open loop Nash equilibrium

Since the knowledge system decouples for the climate system, each region

replies optimally on the other region’s emissions as indicated by (61), and the

reply depends only on the region’s shadow cost of GHG λi(t). The regions

are not symmetric, therefore their corresponding shadow costs of GHG are

expected to be different, λ1(t) 6= λ2(t), while the state variable X(t) is

common for both regions. Therefore the OLNE for the climate subsystem

should be analyzed in the context of a three-dimensional Hamiltonian system

describing the evolution in time of (X(t), λ1(t), λ2(t)).

Proposition 3. There is a unique OLNE steady state x∞ = (λ∞1 , λ
∞
2 , X

∞)

for the two-region linearized system with the saddle point property.12

12We study the properties of the long-run open loop Nash equilibrium in the neigh-
borhood of the short-run “static” Nash equilibrium. This seems to be reasonable if an
emerging ID has been controlled and the regions or a social planner, as we shall see later,
after recognizing the importance of land-use and climate change in IDs, seeks long-run
optimal policies. The behavior of the full nonlinear system from any initial state and the
possibility of multiple steady states should be an area of further study.
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For the proof, see Appendix.

The OLNE steady state can be used to determine the corresponding

OLNE steady states for the controls for labor, land, energy and the natural

world. In particular the solutions (λ∞1 , λ
∞
2 ) can be used to determine energy

from the linearized version of (56). The solution for T∞i = ΛiX
∞ can be

used to determine (κ∗1, κ
∗
2) and then labor use and agricultural land use

through the linearized versions of (55), (57). Then the natural world can be

obtained as R∞i = L̄i − L∞i .

Proposition 3 suggests that the regional SCC, and therefore any climate

policy based on this concept, should include an additional component related

to the impact of climate change on the contact number of the emerging ID.

This component is reflected in the term κ∗i γ2T1Λ1. The positivity of the term

κ∗i is reasonable because it implies that optimal containment policy in the

very short run will improve the overall performance of the system, since this

term reflects the sensitivity of the optimal solution to a small change in the

short-run optimal containment parameter.

The saddle point stability implies that for any initial value of GHGs in

the neighborhood of the steady state, the OLNE paths converging to this

steady state can be approximated as:

X(t) = A1c11e
−%1t +X∞ , X(0) = X0 (70)

λ1(t) = A1c21e
−%1t + λ∞1 (71)

λ2(t) = A1c31e
−%1t + λ∞2 , (72)

where the parameters (A, c, %) are calculated at the solution using the ap-

propriate eigenvector and the initial value for the GHG stock, with −%1

the negative eigenvalue. Note that the system evolves in three-dimensional

state-costate space because the differential game is asymmetric. Substitu-

tion of the paths (70)-(72) into the corresponding optimality conditions for

the controls will determine the OLNE time paths for the controls which will

drive the system to the OLNE steady state. Convergence to the steady state

in the three-dimensional state-costate space is shown in figure 3.
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6 The long-run social optimum

To attain the social optimum a social planner maximizes a social welfare

function of the form log (Zz11 Z
z2
2 ) , subject to the relevant constraints. The

planner’s current value generalized Hamiltonian is:

H = z1

[
â1 lnC + b̂1 ln

(
L̄1 − LA,1

)]
+ z2

[
â2 lnC2 + b̂2 ln

(
L̄2 − LA,2

)]
+

λ [E1 (t) + E2 (t)− dX] + ξ2 [n2 (t)−mN ]+

κ1

[
ϕ01

(
L̄1 − LA,1, T1

)
+ ϕ̄11 − lc,1 − lA,1

]
+

κ2

[
ϕ02

(
L̄1 − LA,1, T1

)
+ ϕ̄12 − lc,2 − lA,2

]
,

(73)

with optimal conditions, assuming interior solutions for the controls:

ziâiac,iβl,c,i
lc,i

=
ziâiaA,iβl,A,i

lA,i
= κi + ziâiwl,i (74)

ziâiac,iβc,E,i
Ec,i

=
ziâiaA,iβA,E,i

EA,i
= ziâicEi − λ (75)

z1â1aA,1βL,A,1
LA,1

= ziâ1cL,1 +
κ1∂ϕ01

∂
(
L̄1 − LA,1

) +
z1b̂1(

L̄1 − L1A,1

) +
κ2∂ϕ02

∂
(
L̄1 − L1A,1

)
(76)

â2aA,2βL,A,2
LA,2

= â2cL,2 +
b̂2(

L̄2 − LA,2
) (77)

λ̇ = (ρ+ d)λ+
∑
i=1,2

ziâiωiΛ
2
iX +

∑
i=1,2

κi
∂ϕ0i(R1,Λ1X)

∂X
(78)

Ẋ = E∗1 + E∗2 − dX (79)

E∗i =
Γi

ziâicEi − λ
(80)

Γi = ziâi (ac,iβc,E,i + aA,iβA,E,i) (81)

n∗2 =
ξ2

â2z2cn2

(82)

ξ̇2 = (ρ+m) ξ2 −
∑
i=1,2

ziâiaA,iβL,A,i
N

(83)

Ṅ = n∗2 −mN. (84)
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6.1 Discussion of the optimal conditions and policy implica-

tions

Optimality conditions for labor allocation and energy use, (74) and (75) re-

spectively, have the same structure as the optimality conditions for the non-

cooperative solution but with an adjustment for the welfare weights (z1, z2),

while the shadow cost of GHGs in energy use is now the global SCC and

not the regional one. The socially optimal land allocation for agriculture in

region 1, (76), takes into account, relative to the noncooperative allocation

rule, the ID cost induced in region 2 by reducing the natural world in re-

gion 1 in order to increase agricultural land in region 1. This is represented

by the term κ2∂ϕ02

∂(L̄1−L1A,1)
. The SCC, which is the solution of (78), contains

two additional terms relative to the noncooperative solution. The term∑
i=1,2 ziâiωiΛiX represents global economic damages from GHGs. The

term
∑

i=1,2 κi
∂ϕ0i(R1,Λ1X)

∂X is the global ID cost attributed to the SCC since

an increase in the GHGs will have a positive effect on the contact number

of IDs emerging in region 1 and affecting region 2 as well. Finally, (83)

indicates that the shadow value of knowledge accumulation should take into

account the impact of knowledge in both regions.

These results suggest that in order to correct the distortions of the nonco-

operative solution and try to attain the global social optimum, three distor-

tions should be corrected: the land allocation, the SCC and the knowledge

accumulation distortions. Land allocation implies that region 1 which is an

ID hot spot should increase its natural world relative to the noncooperative

solution. Given that region 1 is expected to be the less developed region,

this realization would support a policy of compensation from the developed

region 2 to counterbalance losses in the production of the consumption com-

posite. This compensation could be in the form of payments for ecosystem

services, REDD+, or other policies which include transfer of resources from

the developed to the developing world as for example is stated in the Paris

Accord and subsequent Conferences of the Parties (COPs). The GHG dis-

tortion should be addressed by an appropriate increase in the SCC. Finally,

correcting for the knowledge distortion could imply subsidizing knowledge

accumulation in region 2 which would be reflected in the term
z1â1aA,1βL,A,1

N .
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6.1.1 The socially optimal steady state

The knowledge system is decoupled from the climate system so the steady

state can be characterized as in the noncooperative case. The steady state

exists, it is unique with the saddle point property and indicates a higher

level of knowledge at the steady state relative to the noncooperative steady

state. This follows directly by comparing (64) with (83).

For the climate steady state the following proposition can be stated.

Proposition 4. Assume that at the socially optimal solution,
{

(κ∗1(X), κ∗2(X)) ,
(
κ∗1(X)
∂X ,

κ∗2(X)
∂X

)}
are positive, then a socially optimal steady state exists and has the saddle

point property.

For the proof, see Appendix.

Convergence to the steady state is shown in figure 7.

6.2 Model misspecification in the long-run social optimum

and robust control

The impact of ambiguity in the short run was examined in section 4. In

this section we study the impact of model misspecification which affects the

evolution of the average temperature in each region which in turn affects the

contact number. Since the impact of climate change on the emergence of IDs

is an issue of current investigation, it is natural to associate misspecification

concerns with this impact. This argument suggests that the regulator in each

region is concerned about possible misspecification in the sense of Hansen

et al. (2006) and Hansen and Sargent (2008) in the dynamics of the system.

We choose to introduce misspecification concerns in the dynamics of cli-

mate change. These concerns are introduced by allowing for a family of

stochastic perturbations to a Brownian motion characterizing climate dy-

namics. The perturbations are defined in terms of measurable drift dis-

tortions. The misspecification error which expresses the decisions maker’s

concerns regarding departures from a benchmark model is reflected in an

entropic constraint (Hansen et al. 2006; Hansen and Sargent 2008). Ambi-

guity and concerns about the possibility that “an adversarial agent” – often

referred to as Nature – will choose not the benchmark model but another

one within an entropy ball, which will harm the decision maker’s objective,

are reflected in a quadratic penalty term which is added to the regulator’s
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objective. This type of ambiguity about the actual model versus the bench-

mark model has also been referred to as model uncertainty.

Hansen and Sargent call the decision maker’s optimization problem with

a quadratic penalty “the multiplier robust control problem”. A crucial pa-

rameter of the problem is the robustness parameter, which reflects the deci-

sion maker’s concerns about model uncertainty or his/her aversion to ambi-

guity. It has been shown that, as in the short-run model, as the robustness

parameter which is positive tends to the limiting value of zero or infinity,

the decision problem is reduced to the standard optimization problem under

risk – that is, a problem with no ambiguity aversion. When the robustness

parameter increases from zero, then concerns about model uncertainty in-

crease.

These concerns can be introduced by allowing additive distortions to the

GHG accumulation equation of the form

√
εσT0

(
ηT + z

)
,

where σ0 is volatility and ε is a small noise parameter, z is i.i.d and η rep-

resents distortions. These concerns will be translated into concerns about

temperature anomalies through the TCRE multipliers and finally to con-

cerns about the long-term part of contact number ϕ0i (R1, T1) . If we con-

sider a multiplier robust control problem (e.g., Hansen et al. 2006, Hansen

and Sargent 2011), the penalty associated with the distortion relative to the

benchmark model can be expressed as(
ηT
)2

2θTi (ε)
, j = R, T,

where θTi (ε) is the robustness parameter. It has been shown (Campi and

James 1996) that if θTi (ε) = θTi0ε, then as ε → 0, the stochastic robust

control problem is reduced to a simpler deterministic robust control problem.

Assume that GHG evolution for a social planner or global regulator with

misspecification concerns can be written as:

Ẋ = E1 + E2 − dX + σT0 η(t). (85)

Then the socially optimal management problem with concerns about model
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misspecification is:

J = max
{ui(t),Ri(t}

min
{ηT }

∫ ∞
0

e−ρt
∑
i=1,2

[
logCi(t) + ψi logRi(t) +

θTi
(
ηT
)2

2

]
dt,

subject to (85) and the rest of the constraints. Note that the social planner

may have different regional robustness parameters. This could reflect the

different impact in regional temperature and contact numbers when there

are deviations from the benchmark model. The first-order condition for the

choice of the distortion η by the fictitious adversarial (or minimizing) agent

is:

ηT =
−λσT0
θT1 + θT2

.

Then the evolution of the climate subsystem for (λ,X) under model mis-

specification concerns will be, after modifying (78) and (79),

λ̇ = (ρ+ d)λ+
∑
i=1,2

ziâiωiΛiX −
∑
i=1,2

κi
∂ϕ0i(R1,Λ1X)

∂X

Ẋ = E∗1 + E∗2 − dX + σT0
−λσT0
θT1 + θT2

.

For θTi <∞ and assuming that the conditions of Proposition 5 are satis-

fied, there will be convergence to the steady state along the stable manifold,

which will be different than the path and the steady state without mis-

specification concerns. Let the new path be X(t) + δT (t); this would imply

new paths for regional temperatures Λi
(
X(t) + δT (t)

)
. Then the impact on

the temperature-dependent contact number would be a new contact number

ϕT0i
(
L̄1 − LA,1,Λi

(
X(t) + δT (t)

))
. If misspecification concerns lead to more

conservative emissions policies, such policies would reduce the temperature-

dependent contact number.

6.3 A global social optimization problem

We consider a global social optimization problem without time separation,

which means that the regions are acting cooperatively at the containment

stage as well as at the climate-land use policy stage, or that some World

Authority implements policy. We seek to explore all the different externali-
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ties associated with the epi-econ model developed in this paper along with

possible policy instruments. The generalized Hamiltonian associated with

this optimization problem is:

H = z1

[
â1 lnC + b̂1 ln

(
L̄1 − LA,1

)]
+ z2

[
â2 lnC2 + b̂2 ln

(
L̄2 − LA,2

)]
+

λ [E1 (t) + E2 (t)− dX] + ξ2 [n2 (t)−mN ]+

κ1

[
ϕ01

(
L̄1 − LA,1, T1

)
+ ϕ̄11 − lc,1 − lA,1

]
+

κ2

[
ϕ02

(
L̄1 − LA,1, T1

)
+ ϕ̄12 − lc,2 − lA,2

]
,

(86)

where
ϕ̄11 =ϕ11 [b1v1 − q2(1− S2)]

ϕ̄12 =ϕ12 [b2v2 − q1(1− S1)]
(87)

and (S1, S2) are defined as:

S1 = ϕ11 [b1v1 − q2 (1− S2)] (88)

S2 = ϕ12 [b2v2 − q1 (1− S1)] , (89)

and the control vector includes the containment parameters, that is

ui (t) = (lc,i(t), lA,i(t), LA,i(t), Ec,i(t), EA,i(t), n2(t), v1(t), v2(t)) .

Then the socially optimal containment policy will be determined as

v∗1 =
κ1ϕ11b1 + κ2q1ϕ11b1

z1â1cv1
(90)

v∗2 =
κ2ϕ12b2 + κ1q2ϕ12b2

z2â2cv2
. (91)

The multipliers κ have the same interpretation as the multipliers ζ in

section 3. The term κ2q1ϕ11b1 captures the extra benefits that containment

policy in region 1 has on region 2, since reducing the infected in region 1

also generates benefits in region 2 because fewer infected are traveling to

from 1 to 2 as can be seen from (89). The interpretation is the same for

the term κ1q2ϕ12b2. The rest of the optimality conditions are the same as
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those corresponding to (73). The policy implications for the result indicated

by (90),(91) is that the World Authority implementing the solution could

subsidize for the extra cost associated with benefits (κ2q1ϕ11b1, κ1q2ϕ12b2) .

6.4 The full solution: linking the short run with the long

run

In the analysis of the optimal short-term disease containment in section

3, R1 and T1 were treated as fixed exogenous parameters. The solution

of the long-run problem implies that if the regions follow OLNE or social

optimization policies, then the fixed R1 and T1 in the short run will be

determined by the corresponding OLNE or socially optimal paths at each

point in time. Thus the short-run optimal containment policy v∗i will follow

a path v∗i (t) which will be determined by the long-run solution at the time

scale of the climate change and will eventually converge to the OLNE or the

socially optimal steady state. Assuming that in the short run containment

policies and susceptibles are determined by the Nash equilibrium, since each

region follows own health policies, the solution can be interpreted as the fast

time SIS system converging to the slow manifold of the climate system. The

path of the Nash equilibrium will be the solution, for i, j = 1, 2, i 6= j, of the

system

Si(t) = ϕ0i (R1(t), T1(t)) + ϕ1i

[
bi

(
ϕ1ibi
cvi

)
ζi(Sj(t))− qj (1− Sj(t))

]
(92)

in which the paths for R1(t), T1(t) are either the OLNE paths or the socially

optimal paths. Thus the full solution can be thought of as pasting two types

of solutions: (i) Long-run: OLNE in long-run control variables – Short-run:

Nash equilibrium in short-run control variables; or (ii) Long-run: Social

optimum in long-run control variables – Short-run: Nash equilibrium in

short-run control variables. In the simulations section of the paper, we

provide potential solution paths for these two solution concepts.

7 Numerical simulations

This paper builds a model that contains two interrelated – coupled – build-

ing blocks. The first embodies the ideas of epidemiologist, biologists and

ecologists about IDs and their relationship with climate change and land
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use. The second is an economic model which includes a traditional eco-

nomic optimization of an objective which incorporates controls which: (i) in

the short run, optimally contain emerged IDs; and (ii) in the long run, by

choosing optimal paths for GHG emissions, land use and R&D that supports

the bioeconomy, control the emergence and the severity of IDs.

We point out that this section does not provide a calibration but rather

a numerical simulation using what we consider as plausible values for the

parameters which are shown in the Appendix (section 9.2). The main rea-

son is that a full calibration would require, for example, parameter values

such as Nature and climate-dependent contact numbers or efficiency of vac-

cination policies in different regions which are areas of current research in

other scientific fields and whose estimation goes beyond the objectives of the

current paper. Our simulations looked at from this point of view provide

qualitative results which suggest that the theory developed in this paper is

worth further study.

7.1 Nash equilibrium

Figure 2 depicts the Nash equilibrium discussed in section 3.1. For our

parametrization, a Nash equilibrium exists and at the equilibrium solution

the susceptibles act as strategic complements, so the containment effect in

one region will help the other region.

Figure 2: Nash equilibrium.
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Nash equilibrium is at the intersection of lines 1 and 2 with S1 =

0.6, S2 = 0.724, which is the solution of the system of (29)-(30). Line 4

is the 45 degree line and its intersection with line 3 is the fixed point of

(30), since SN2 : SN2 = g1

(
g2(SN2 )

)
= 0.724, while line 5 with the vertical

at S2 = 1 defines the [0, 1]× [0, 1] space. The parametrization used implies

contact numbers (σ1, σ2) = (1.66, 1.28) at the Nash equilibrium solution.

The definition of ζi in (27) and (24), labor allocation and energy use in

the short run is a function of the equilibrium level of susceptibles
(
SN1 , S

N
2

)
and all constraints are satisfied. The Nash equilibrium value of suscepti-

bles in region 2 relative to 1 is due to the parametrization in which it was

assumed that the initial contact number was lower and the effectiveness

of containment policy was higher in region 2 relative to region 1. Differ-

ent parameterizations in the neighborhood of the benchmark one produced

qualitatively similar results without any large shifts.

7.2 OLNE

To provide a tractable model we linearize that first-order conditions for

OLNE around the Nash equilibrium and then we calibrate the constants of

the emission functions (56), so that the steady state accumulation of CO2

is approximately 3,300 GtCO2 which is the IPCC (2021) prediction for the

SSP1-6 scenario to be reached by around 2050. As mentioned earlier this

exercised is not meant to provide “realistic” paths but to serve as a vehicle

to clear up interrelated concepts and suggest that the model can provide

an adequate description of a complex problem that combines epidemiology,

climate science and economics. Figure 3 presents the OLNE steady state

that makes clear the saddle point structure with a one-dimensional stable

manifold in the three-dimensional state-costate space.
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Figure 3: The OLNE in the three-dimensional state-costate space.

The stable manifold is MM ′ and in our parametrization the system’s

initial state is M ′. This means that, given this initial state for the GHGs

state variable X, initial values for the costates can be chosen by projecting

M ′ on the (λ1, λ2) space such that the controlled system will converge along

MM ′ to the OLNE steady state S. This steady state is λ∗1 = −11.773, λ∗2 =

−1.51234, X∗ = 3.33054. The costates have the usual interpretation of

regional SCC and thus they take negative values as shadow costs. The SCC

in region 1, the South, is higher than in the North because the South contains

the ID reservoir and which could induce further costs as the temperature
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rises.13

Figure 4 presents the time paths for temperature and land use in region

1 along the stable manifold. The paths for region 2 have similar behavior

but we present region 1 only because this is the relevant region for the ID.

Figure 4: Time paths for temperature and land use in region 1 at the

OLNE.

7.3 Knowledge accumulation, effective land use and the nat-

ural world

Using the parametrization of the Appendix (section 9.2), the knowledge

steady state is N∞ = 1.285 and it is shown in figure 5 along with the saddle

point structure.

13All calculations and figures were produced using Mathematica 12. We are well aware
that most of the “extra” digits in the numerical values are not significant, but we report
them in the way the software reports numbers.

42



Figure 5: The saddle point steady state for knowledge.

The stable manifold is MM ′. Starting from the initial state N = 1, at

M ′, knowledge converges along the stable manifold to N∞ = 1.285, following

an optimal path N∗(t). This implies that at the OLNE steady state the

same agricultural output in the South can be produced with 22.2% less

land relative to the case where no knowledge was generated in the North.

This will reduce the severity of the epidemic in both the South and North.

Since the original Hamiltonian system for knowledge is nonlinear, the linear

manifold MM ′ should be regarded as the tangent to the nonlinear manifold

at the steady state S.

From the OLNE equilibrium the optimal path for land use in agriculture

in region 1 without R&D, (that is, N = 1 for all t ≥ 0) is linear and

declining in the temperature of region 1, since an increase in temperature

is costly in terms of ID. Then, along the OLNE time path for temperature,

the corresponding time path for land use is:

L∗1(t) = 0.496899 + 0.00310047e−0.0878197t. (93)
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If this path is combined with knowledge accumulation, then a new path

for effective land is determined as LEF1 (t) = N∗(t)L∗1(t). Assume that we

want to keep effective land use equal to L∗1(t) so that the same effective

land input is used but with less physical land, which will imply more land

available for Nature. In this case a new path is defined as:

LN1 (t) =
L∗1(t)

N∗(t)
with LN1 (t) < L∗1(t), t > 0.

The two paths
(
LN1 (t), L∗1(t)

)
are shown in figure 6. The difference be-

tween the two paths corresponds to the increase in the natural world made

possible due to knowledge accumulation.

Figure 6: Gains in the natural world due to R&D.

The use of the LN1 (t) is expected to increase utility in both regions since

it will reduce the ID cost without reducing land input.

7.4 The long-run social optimum

Using the linearization of the first order conditions and the same parametriza-

tion the socially optimal steady state with a clear the saddle point struc-

ture and an one-dimensional stable manifold in the two dimensional state-

costates space is shown in figure 7.
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Figure 7: The socially optimal steady state.

The socially optimal steady state is λ∗SO = −10.669, X∗SO = 2.76631.

The stable manifold starts from the initial state M ′ and converges to the

steady state S. The SCC is lower for region 1 and higher for region 2 since all

external costs have been internalized into the maximization of social welfare.

The convergence to S indicates that at the social optimum the stock of

GHG and regional temperatures are lower than at the OLNE steady state,

as expected by theory. Figure 8 presents the time paths for temperature

and land use in region 1 along the stable manifold.
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Figure 8: Time paths for temperature and land use in region 1 at the

social optimum.

The temperature path is uniformly below the corresponding path under

OLNE, shown in figure 4.

7.5 Linking the short run with the long run

We solve the system (92) for the short-run Nash equilibrium by using the

values for (L1(t), T1(t)) corresponding to t = {0, 10, 20, 30, 40, 50, 60} at the

social optimum with land augmenting knowledge accumulation, and the

OLNE with and without land augmenting knowledge accumulation, denoted

in figures 9 and 10 as “SocOpt with R&D”, “OLNE with R&D” and “OLNE”

respectively. Land use with and without knowledge accumulation is shown

in figure 6.
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Figure 9: Susceptibles paths in region 1 with and without land augment-

ing knowledge accumulation.

Figure 10: Susceptibles paths in region 2 with and without land aug-

menting knowledge accumulation.

The three lines represent the movement of the “fast” Nash equilibrium

of the SIS subsystem along the “slow” stable manifold of the climate sub-

system. The results suggest that land augmenting technical change helps

to reduce the infectives, or increase the susceptibles, relative to the absence

of such technical change, both at the OLNE and at the social optimum.

As expected, at the social optimum susceptibles are higher relative to the

OLNE. After the initial increase of the susceptibles because of the land-

saving technical change, there is a continuous decrease because increasing

temperatures increase the contact number, but susceptibles are always above

the no technical change case. The difference between susceptibles with and

without land augmenting knowledge accumulation shown in figures 9 and 10

persists until the climate subsystem reaches the steady-state OLNE or the

socially optimal steady state, as shown in figures 3 and 7 respectively. Sus-

ceptibles in region 2 are higher relative to region 1 because of the particular

parametrization as explained in section 7.1. Repeated runs with different

parameterizations did not produce any change in the basic qualitative result.

Land augmenting technical change increases the natural world and reduces

the contact number of IDs. The result is stronger, the slower the increase

in temperature.
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8 Concluding remarks

We developed a two-region epi-econ model with the objective of studying

short-term containment policy and long-term policies which focus on land-

use changes and climate change as drivers of the emergence of IDs. We model

noncooperation as short-run and long-run Nash equilibria. The short-run

and long-run Nash equilibrium outcomes are compared with short- and long-

run socially optimal policies for the world economy. The joint interaction

of short run and long run in this type of fast-slow dynamic model is seldom

studied, if at all, in the environmental management literature.

The insights emerging from this model suggest that noncooperative con-

tainment policies in the short run, during which land use and climate change

effects are considered as fixed, generate – under plausible sufficient condi-

tions – a Nash equilibrium outcome in the level of infections. Long-run

noncooperative choices in land use policy are usefully modeled as an OLNE.

An important agenda for future research is to compare optimal welfare

when controls and states at both time scales can be adjusted at the same

time scale. Welfare comparison should also be studied under OLNE and

feedback Nash equilibrium, when controls and states can be adjusted either

at separate or at the same time scale. We have assumed the two time scales,

fast and slow, are exogenously fixed. Both scales should be endogenous

where the slow time scale can be speeded up with more resources devoted

to that task. Some time scales of action are fixed by Nature, such as forest

restoration. Furthermore, there are limits regarding how application of more

costly effort can make trees of a given species, e.g., sequoias grow faster.

Ambiguity regarding the effectiveness of containment policies implies

that increased concerns about the effectiveness of containment policies lead

to weaker policies. The presence of strong ambiguity regarding the part of

the containment number that depends on land use and climate change, and

which is exogenous in the short run, could make necessary the introduction

of additional policies, such as fines to supplement containment policies which

are implemented on a voluntary basis.

The OLNE was characterized in the long run when the controls were

land-use allocation between agriculture and the natural world, and carbon

emissions in each region. In this equilibrium an additional positive exter-

nality, over and above existence values, emerges for the natural world while
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the SCC should be increased relative to the case when the emerging IDs

are not taken into account. These adjustments result from the link between

land use and climate change and the contact number of the emerging ID

and should be taken into account in cost-benefit analysis. Ambiguity and

concerns about model misspecification may lead to further increase in the

SCC.

It was also shown that land augmenting technical change increases the

land available to Nature and reduces the infectives relative to the case of no

technical change. These results suggest that this type of technical change

could be important in controlling infectious diseases, along with the other

potential benefits in terms of augmented ecosystem services.

Further elaboration of the model could analyze productivity differences

as well as differences in the quality of aggregate land endowments among

regions and the associated impacts on regional policies, while a calibration

of the model can be based on the parameters defined in Appendix 9.2.

In equations (8) and (9) which define the contact number as a function of

policy parameters, the underlying assumption is that X =φ0i (R1(t), T1(t)) ,

and Y = φ1i [biv (t))−mas
i Si (t))− qj (1− Sjt)] are perfect substitutes in

“producing” non-infected people S. If, however, X,Y are producing S through

a constant elasticity of substitution function with elasticity less than infin-

ity, then there might be an upper bound in how much policies can increase

S. Our conjecture is that this upper bound depends on Nature’s undis-

turbed viral reserves and putting a bound on climate change. This could

be an interesting area of further research. Introduction of accumulation of

produced capital into the economic model and human capital for knowledge

accumulation is another area of further research.

In summary, this paper makes a first attempt to create a formal quanti-

tative multi-time scale framework where the policies against ID in the short

run interact with long-run land use policies and human encroachment poli-

cies on areas of viral disease sources, as well as with human-induced climate

change with uncertainties at both time scales. Detailed references are given

to support the necessity of building this kind of “grand unified theory”. We

have only scratched the surface of this exciting, potentially important and

unexplored research area.
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9 Appendix

9.1 Proofs of Propositions

Proposition 1

The objective of the regulator in region i = 1, 2 for the noncooperative case

becomes

Ji = max
ui(t)

{
âi logCi −

1

θ
ln (E exp [(−θ) ζiϕ1ibivi])

}
, (94)

and the first-order conditions for the optimal containment policy vi imply

v∗i =
1

cvi

E exp [(−θ) ζi(Si)ϕ1ibivi] ζi(Si)ϕ1ibi
E exp [(−θ) ζi(Si)ϕ1ibivi]

= g (θ, vi; ζi) . (95)

Assume that a Nash equilibrium for a given value of the robustness param-

eter θ exists. Taking the total derivative of both sides of the first-order

conditions for the optimal containment policy vi (95) with respect to v and

θ, we obtain

cidvi = gθdθ + gvitdvi ⇒ (ci − gvit)
dvi
dθ

= gθ ,with

gθ =

∂

[
E exp[(−θ)ζi(SNi )ϕ1ibivi]ϕ1ibi

E exp[(−θ)ζi(SNi )ϕ1ibivi]

]
∂θ

= −ϕ1iζi(S
N
i )viσ̂

2
bi

gvi = −ϕ1iθσ̂
2
bi
.

Then it follows that

dvi
dθ

=
−ϕ1iviσ̂

2
bi(

ci + ϕ1iζi(SNi )θσ̂2
bi

) < 0.

Proposition 2

Conditions (66), (67) imply the isoclines N = ξ2
â2cn2m

, N =
â2aH,2βL,A,2

(ρ+m)ξ2
.

The first is a ray from the origin with positive slope, while the second is

a rectangular hyperbola in the positive quadrant. Both are continuous,

therefore they intersect once at the steady state (ξ∗2 , N
∗).

In system (63)-(65), let Â = 1
â2cn2

,
ˆ

B̂ = â2aA,2βL,A,2. The linearized Ja-
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cobian for the system is

J =

(
(ρ+m) B̂

(N∞)2

1
Â

−m

)
.

Since traceJ = ρ > 0 and detJ = −m(ρ + m) − 1
Â

B̂
N∗2 < 0, then the

steady state (ξ∞2 , N
∞) has the saddle point property.

Proposition 3

The linearized system can be written as:

Ẋ = θ0 + θ1λ1 + θ2λ2 − dX (96)

(θ0, θ1, θ2) > (0, 0, 0) (97)

λ̇1 = (ρ+ d)λ1 + ω1Λ1X + κ∗1γ1T1Λ1 (98)

κ∗1 = ψ11 + ψ12Λ1X , (ψ11, ψ12) > (0, 0) (99)

λ̇2 = (ρ+ d)λ2 + ω2Λ2X + κ∗2γ2T1Λ1 (100)

κ∗2 = ψ21 + ψ22Λ1X , (ψ21, ψ22) > (0, 0) . (101)

The Hamiltonian system at the steady state can be written as

Ax = b (102)

A =

 (ρ+ d) 0 JC13

0 (ρ+ d) JC23

θ1 θ2 −d

 ,x =

 λ1

λ2

X

 ,b =

 −θ0

ψ11γ1T1Λ1

ψ12γ1T1Λ1


JC13 = (ω1Λ1 + ψ12Λ2

1γ1T1) , JC23 = (ω2Λ2 + ψ22Λ2
1γ2T1).

The eigenvalues ofA are non-zero and real, two positive and one negative,

or

%1 = ρ+ d

%2,3 =
1

2

(
ρ±

√
4(θ1JC13 + θ2JC23) + (ρ+ 2d)2

)
.

The determinant of A is not zero because the product of eigenvalues of A

is not zero, therefore the unique steady state can be obtained as a solution
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of the linear system (102), or

x∞ = A−1b.

Since there are one negative and two positive eigenvalues, the OLNE

steady state has the saddle point property with a one-dimensional stable

manifold.

Proposition 4

Using the linear version for the converse of the contact number and follow-

ing the steps in the proof of Proposition 1, we solve (76) and (77) to obtain

(LA,1, LA,2) as functions of (κ1, κ2). Substituting back in the relevant con-

straints along with the labor allocation condition we obtain (κ∗1(X), κ∗2(X)) .

The isoclines are then defined as:

|λ λ̇=0 =
−
∑

i=1,2 ziâiωiΛiX −
∑

i=1,2 κ
∗
i (X)γiT1Λ1

(ρ+ d)
(103)

|λ Ẋ=0 =
(Γ1 + Γ2)− (χ1 + χ2)X +

√
−4 [χ1χ2 − (Γ1χ2 + Γ1χ2)] + [(χ1 + χ2)X − (Γ1 + Γ2)]2

2X
(104)

where χi = ziâicEi . If
κ∗i (X)
∂X > 0, then (103) has the regular for these

problems negative slope. If there is an interaction with a part of (104)

that has a positive slope, then a steady state exists with the saddle point

property. This can be shown by using the linearized, at this steady state,

Jacobean matrix of the system (78),(79) which can be written as:

JS =

(
(ρ+ d) JS12

JS21 −d

)
,

where JS12 =
(∑

i=1,2 ziâiωiΛi +
∑

i=1,2
κ∗i (X)
∂X γiT1Λ1

)
> 0, JS21 =

∂(|λ Ẋ=0)
∂X >

0. Then traceJS > 0, detJS < 0 and the steady state has the saddle point

property.

9.2 Model parameters

1. Consumption composite

Zi(t) = Ci(t)
âiRi(t)

b̂i , âi > 0, b̂i > 0, âi + b̂i < 1, i = 1, 2
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Ci =
[(
l
βl,c,i
c,i E

βc,E,i
c,i

)αc,i]
×
[(
l
βl,A,i
A,i (NLA,i)

βL,A,i E
βE,A,i
A,i

)αA,i]
×

exp

[
−

(∑
h

wl,h,ilh,i

)
+ (−cL,iLA,i) +

(
−
∑
h

cE,h,iEh,i

)
+(

−cv,iv2
i

2

)
+

(
−ωiT 2

i

2

)
+

(
−cn,in2

2

2

)]

Parameter Description Value Region 1 Value Region 2

âi Elasticities 0.7 0.8

b̂i Elasticities 0.25 0.15

αc,i Elasticities 0.7 0.9

βl,c,i Elasticities 0.95 0.8

βc,E,i Elasticities 0.05 0.2

αA,i Elasticities 0.3 0.1

βl,A,i Elasticities 0.6 0.6

βL,A,i Elasticities 0.35 0.2

βE,A,i Elasticities 0.05 0.2

ch,E,i cost of energy h = c, A ccE = 0.05, ccA = 0.02 ccE = ccA = 0.025

wl,i cost of labor use 0.3 0.78

cL,i cost of land use 0.1 0.2

cυi cost of containment 0.02 0.02

cni cost of knowledge - 0.45

m knowledge depreciation - 0.4

L̄ regional natural world 1 1

LA,1 natural world used* 0.5 0.5

(*) The values are fixed for short-run Nash.

2. The SIS model

Si (t)) ≡ 1
σi(t))

= φ0i (R(t), T (t))+φ1i [biv (t))−mas
i Si (t))− qj (1− Sjt)]

Parameter Description Value Region 1 Value Region 2

φ1 short-run impact on contact number 1 1

b effectiveness of containment policy 0.1 0.6

mas
i infected asymptomatic 0.2 0.1

q regional flow infected q2 = 0.001 q1 = 0.005
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R0 fixed in the short run: 3.28 for COVID.

ϕ0i (R1, T1) = γ0i + γiRi
(
L̄1 − LA,1

)
− γiT1T1

Parameter Description Value Region 1 Value Region 2

γ0i exogenous component 0.65 0.75

γiR1 natural world impact 0.1 0.05

γiT1 climate change impact 0.1 0.05

θi robustness parameter free free

The pre-containment σ are σ1 = 2.22, σ2 = 1.48 for temperature anomaly

T = 1 the same for both regions.

3. Climate model

Ẋ (t) = E1 (t) + E2 (t)− dX (t) , X (0) = Xpreindustrial

Ti = ΛiX

Parameter Description Value Region 1 Value Region 2

Λi Ti = ΛiCE Λ1 = 0.4 Λ2 = 0.54

d GHG depreciation2 0.00287 0.00287

With cumulative emissions CE2400GtCO2 (IPCC 2021) and T1 = 0.96

for the tropics and 1.031 for the Northern hemisphere (https://www.metoffce.gov.uk/hadobs/hadcrut4/index.htm).

4. Damage function: climate

Di(Ti) = exp
(
−ωiT 2

i
2

)
, T (0) = 0 Preindustrial temperature anomaly

Ti = ΛiX

Calibration for 3◦C temperature anomaly, GDP loss in region 1 (Tropics-

South) 15%, GDP loss in region 2 (North) 2% (Diffenbaugh and Burke 2019,

Brock and Xepapadeas 2020).

Parameter Description Value Region 1 Value Region 2

−ωiΛ2
i damage coefficient −0.0180577 −0.00338436
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