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Abstract

Ellsberg-type preferences violate one of the principles for Bayesian
rationality, namely Savage�s Sure Thing Principle, and are among the
main empirical results against Subjective Expected Utility theory. In this
paper, we propose a novel strategy for dealing with ambiguity aversion
and the resulting Ellsberg-type choices. First, we identify the presence
of "asymmetric information" as the main cause of ambiguity aversion.
Second, we develop a solution for Ellsberg�s paradox which emerges as a
direct application of counterfactual thinking, implemented to the speci�c
choice problem described by Ellsberg. Third we analyze the psychological,
methodological and logical merits of the developed counterfactual strat-
egy, and show that its application solves the problems of "error correc-
tion" and "unconceived alternatives", two of the main complaints about
Bayesian Con�rmation Theory.1
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1 Introduction

It is widely acknowledged that the so-called Ellsberg�s paradox poses one of the
most serious threats against the empirical validity of the "Subjective Expected
Utility Maximization" (SEUM) theory. It has long been recognized that such
choices violate one of Savage�s (1954) axioms for rational preferences, namely his
illustrious Sure Thing Principle (STP). As a consequence, the decision maker
(DM) who exhibits Ellsberg-type choices is not probabilistically sophisticated
and does not adhere to SEUM criterion of choice. This means that the degrees
of her probabilistic beliefs (or credences) are not coherent, that is they are not
represented by a unique subjective probability function that obeys the axioms of
Kolmogorov (one of which is the axiom of additivity - �nite or countable). Put
di¤erently, such a DM is unable to come up with a unique numerical probability
for each and every event/proposition of the relevant space.
What is the "degree of rationality" of such a probabilistically non-sophisticated

/ non SEU-maximizer DM? Should be DM condemned as "non-rational" when
she exhibits Ellsberg-type behaviour? Or alternatively, the requirement of prob-
abilistic sophistication is too strict to be treated as part of the relevant normative
ideal? Is it possible that DM�s inability to express probabilistically sophisticated
beliefs is (in some cases) justi�ed, and as such, it should not be interpreted as
evidence against DM�s rationality?
One interesting case, pertaining to the aforementioned distinction is that of

"ambiguity aversion" (AA). Roughly, a DM is ambiguity averse if she prefers
to bet on events/propositions with known probabilities than on those with un-
known ones. Is such a DM rational? In other words, does AA re�ect a patholog-
ical choice of a non-rational DM, or should AA be included in DM�s normative
system of preferences? In the latter case (as opposed to the former one), AA
may be thought of as an acceptable property of DM�s preferences, on a par with
other such properties, such as completeness and transitivity. Many authors
adopt this more tolerant de�nition of rationality and proceed in developing a
system of preferences in which AA plays a prominent role. Such axiomatic
systems have been proposed (among many others) by Schmeidler (1989) and
Gilboa and Schmidler (1989). A common element of these systems is the aboli-
tion of STP and the addition of alternative axioms which state explicitly what
it means for DM�s preferences to display ambiguity aversion. Each of these sys-
tems explains Ellsberg�s paradox in the sense that within the system, Ellsberg�s
choices become predictable. Moreover, each system spells out the type of (non-
sophisticated) probabilistic beliefs that an ambiguity averse DM possesses. In
Schmeidler (1989) and Gilboa and Schmeidler (1989), for example, these beliefs
are represented by a convex (non-additive) probability function and by multiple
probability functions, respectively. It is important to note that although such
probabilistic beliefs are technically referred to as non-sophisticated, they are not
irrational. Indeed, as Levi (1985) puts it, DM�s refusal to make a determinate
probability judgment "may derive from a very clear and cool judgment that on
the basis of the available evidence, making a numerically determinate judgment
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would be unwarranted and arbitrary." (1985, pp. 396).
Contrary to the aforementioned interpretation, another strand of the lit-

erature (mostly strict Bayesians) views AA as unambiguous evidence of non-
rationality (see, for example, Rai¤a 1961, Savage 1974). This literature identi-
�es the origins of AA, not in DM�s careful deliberation on the co-existence of
clear and vague alternatives, but rather in her instinctive psychological reaction
towards avoiding the ambiguous option: "In expressing a preference for the less
ambiguous option, subjects are making a nonconscious, systematic error which,
if su¢ ciently understood, they would correct." (Curley et. al 1986, pp. 233).
This part of the literature views AA as a pathological symptom of DM�s psy-
chology, and as such it cannot be reconciled with DM�s rationality. Why is AA
supposed to be inconsistent with rationality? The authors who express such
an opinion claim that DM�s ambiguity aversion along with the resulting inco-
herence of her subjective probability function make her vulnerable to a Dutch
book. The latter is a series of bets (o¤ered to DM by a cunning bettor, not
better informed than DM) that DM is willing to accept individually, but which
jointly in�ict upon her a sure loss. A rational DM, so the argument goes, would
never accept a set of bets that deterministically lead to her losing money. Hence,
if DM does so, she is not rational and needs probabilistic education.
What is the cause of AA? One of the most prominent psychological explana-

tions for AA is the so-called "comparative ignorance hypothesis", put forward
by Heath and Tversky (1991) and Fox and Tversky (1995). The main tenet of
this hypothesis is that AA is caused by DM�s spontaneous disposition towards
preferring acts about which she feels to be more knowledgeable, rather than
those for which she feels to be ignorant: "Thus, ambiguity aversion represents a
reluctance to act on inferior knowledge, and this inferiority is brought to mind
only through a comparison with superior knowledge about other domains or of
other people." (Fox and Tversky 1995 pp. 599). What generates the distinction
between "superior" and "inferior" knowledge? We argue that this distinction is
caused by asymmetric information about DM�s events of interest. One type of
asymmetric information is probabilistic asymmetric information and this is the
kind of asymmetry that gives rise to Ellsberg-type choices. In particular, the
speci�c information, IS ; that DM possesses induces a partition fFk;F 0kg of the
space of events/propositions F , with Fk and F 0k being the subspaces with the
known and unknown objective probabilities, respectively. 2

The aforementioned problem of DM�s comparative ignorance may be reit-
erated in terms of the manner in which DM chooses to process the speci�c
information IS : We must �rst recognize that Ellsberg-type choices correspond
to a speci�c epistemic state for DM: Her epistemic life, that is her deliberations
about the phenomenon of interest, begins at the same time, say t = 1; that she
learns about the truth of IS : This means that any time point prior to t = 1, for
example t = 0; is devoid of any epistemic activity on the part of DM, including

2There are other types of asymmetric information that may cause AA which are not prob-
abilistic. For example, the aforementioned authors show that DM is likely to experience
comparative ignorance if she feels to be more knowledgeable about the events of Fk than
those of F 0k:
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her constructing a prior probability function P0: As a result, the time point
t = 1 �nds DM "probabilistically unprepared", in the sense that she does not
possess a pre-existing prior probability function P0, which she could have used
as a vehicle for updating her prior beliefs in the light of IS at t = 1. Hence, at
t = 1; DM has to accomplish two epistemic tasks simultaneously: First to form
(for the �rst time) her probabilistic beliefs, P1; about the elements of F and
second to process the information content of IS : These two tasks, however, are
not independent but instead they interact with each other. Comparative igno-
rance may be thought of as the result of this interaction, that is DM�s attempt
to come up with her probabilistic assessments for the elements of F under the
in�uence of her knowing that IS is true. The result of DM�s attempt to ac-
complish the aforementioned dual task is to form incoherent degrees of belief,
hereafter referred to as P IS1 :
The last point generates the following question: In the presence of the spe-

ci�c asymmetric information IS , what can DM do in order to avoid forming
probabilistic beliefs under the state of comparative ignorance? One possible
strategy for DM would be to seek the "missing information", that is to �nd
the speci�c probabilistic information IS0 pertaining to F 0k: If such an option is
feasible, then IS [ IS0 is no longer asymmetric and DM will e¤ectively move
from the state of ambiguity to that of risk. If, however, the acquisition of IS0
is not possible, then DM is left with only one alternative option that may drive
her out of ambiguity, namely the following two-step counterfactual strategy: In
the �rst step, DM temporarily "deletes" IS from her total corpus of available
information and evaluates her subjective probability function by asking herself
the following question: "what would my subjective probability function P c0 be,
had I not known that IS is true?" By making this counterfactual move, DM
brings herself in an epistemic state in which she is unsure of the truth of IS : In
other words, DM�s turn to counterfactual thinking aims at changing temporarily
the modal status of IS from "certainty" to "possibility". In the next sections,
we argue that this speci�c epistemic state, in which IS is not treated by DM
as certainty, but as one of the many yet unrealized possibilities, or as one of
the many alternative pieces of information that DM will eventually receive in
the "future", is the only legitimate state for DM to identify her genuine prob-
abilistic beliefs. Once the aforementioned counterfactual question is answered
and DM�s prior "IS�free" probability function P c0 is built, DM proceeds to the
second step in which she brings IS back to the picture by updating her prior
beliefs via Bayesian conditionalization on IS ; using P c0 as the relevant vehicle of
conditionalization. These two steps form the proposed two-step, indirect coun-
terfactual strategy, hereafter referred to as ICIS : The key element of ICIS is
that in forming her probabilistic beliefs of F , DM has (counterfactually) brought
herself in the epistemic state of uniform rather than comparative ignorance, in
which DM is not susceptible to ambiguity aversion. Note that the term "indi-
rect" in ICIS refers to the manner in which DM chooses to process IS : Instead
of allowing IS to directly a¤ect her probabilistic beliefs at the time of their for-
mation, DM permits IS to a¤ect them indirectly via conditionalization, that is
P1(A) = P

c
0 (A j IS); A 2 F with P c0 (IS) < 1:
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The rest of the paper is organized as follows: Section 2 analyzes the psycho-
logical causes of AA that have been proposed in the literature, paying special
emphasis to the one that best captures the spirit of Ellsberg�s paradox, namely
comparative ignorance caused by asymmetric probabilistic information. It also
shows how the proposed counterfactual strategy ICIS may drive DM out of
comparative ignorance, thus eliminating AA and restoring DM�s probabilistic
sophistication. Section 3 presents several psychological arguments supporting
the formation of counterfactual priors. We also argue that the merits of counter-
factual priors were already identi�ed in 1961 by the great philosopher of science
Rudolph Carnap. Section 4 contains the main results of the paper. In particu-
lar, it revisits Ellsberg�s paradox and demonstrates how this paradox is resolved
by means of the proposed counterfactual strategy ICIS .
The rest of the paper attempts to answer the following question: "Is ICIS a

procedure especially designed to solve Ellsberg�s paradox? Or is it possible that
ICIS exhibits some virtues that extend well beyond the narrow scope of solving
this particular paradox?" To this end, we distinguish two types of reasons that
make ICIS attractive, namely methodological and logical. Section 5 presents
our methodological arguments in favor of ICIS by showing how the adoption
of this strategy addresses two of the main pitfalls of the Bayesian Con�rmation
Theory, namely the problems of "error correction" and "unconceived alterna-
tives". In Section 6, we o¤er our logical arguments for ICIS by analyzing the
logical structure of the concept of "information processing" and showing that
counterfactual probabilistic reasoning is an indispensable part of it. Section 7
concludes the paper.

2 Psychological Origins of Ambiguity Aversion:
Epistemic Reliability and Second-order Prob-
abilities

This section analyzes the potential sources of AA. In particular, it focuses on the
characteristics of DM�s epistemic conditions that drive her into the psychological
state of ambiguity.
Using the Knightian distinction between "risk" and "uncertainty", DM faces

a risky situation (known probabilities supplied by IS) with respect to Fk,
whereas she operates in an environment of uncertainty (unknown probabili-
ties) with respect to F 0k. Should DM distinguish between risk and uncertainty
and especially should she prefer the former over the latter? According to strict
Bayesians, the answer is negative: DM is always able to ascertain her own sub-
jective probabilities of F 0k which in combination with the known probabilities
of Fk yield a proper subjective probability function over the whole of F : In the
same spirit, Levi (1985) remarks: "A rational agent is committed to recognizing
a single probability function for use in computing expected utilities in any given
context of deliberation" (1985, pp. 391). 3 This means that AA sets in when

3 In fact in some forms of radical subjectivism, DM is allowed to ignore the furnished
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DM does not treat risk and uncertainty symmetrically; instead she prefers the
former epistemic state over the latter.
Why does DM exhibit such a non-Bayesian preference pattern? One an-

swer to this question may be given by the comparative ignorance hypothesis.
Comparative ignorance arises when DM believes that the degree of epistemic
reliability that she assigns to the known probabilities of Fk (furnished by IS) is
much greater than the one she assigns to the unknown probabilities of F 0k. Put
di¤erently, comparative ignorance demands DM to trust the exogenously given
probabilities of Fk to a greater extent than her own probabilistic judgments of
F 0k. This di¤erence in reliability may be expressed as follows: Let IS be the
proposition: "There are 30 red balls in the Ellsberg urn", with the latter being
an urn that contains 90 red, black and yellow balls in unknown proportions.
Let us further assume that DM fully trusts the source that provides her with
IS : This latter assumption is translated into P1(IS) = 1; that is her subjective
probability of the truth of IS is equal to unity: Let A 2 Fk: Based on IS and
under the additional assumption that DM obeys the Principal Principle, DM�s
subjective probability of A is equal to

P1(A j IS) = pA:

For example, if A is the proposition "the next draw is a red ball", pA = 1=3: How
�rmly does DM believe the proposition "P1(A j IS) = pA"? This question brings
us to the realm of "probabilities of probabilities", or second-order probabilities.
If DM fully trusts IS ; in the sense P1(IS) = 1; then her subjective (second-order)
probability, Q1; for "P1(A j IS) = pA" at t = 1 is equal to one. Speci�cally,

Q1 (P1(A j IS) = pA j IS) = 1; A 2 Fk: (1)

Note that DM conditionalizes on the speci�c information IS twice. First, with
respect to P1; so that P1(A j IS) = pA and second with respect to Q1; so that
Q1 (P1(A j IS) = pA j IS) = 1: The last equation allows us to say that all the
propositions in Fk are characterized by the same degree of epistemic reliability,
with this degree being equal to unity.
Next, let B 2 F 0k for which no speci�c information is available. For example,

B is the proposition "the next draw is a black ball". What is DM�s subjective
probability of B? There are two answers to this question, depending on whether
DM is a strict Bayesian or not. First, a strict Bayesian is not a¤ected by the
fact that there is no information on B: She is fully con�dent in her own ability
to judge the likelihood of B: Hence, she ends up with

P1(B) = pB :

with
Q1 (P1(B) = pB) = 1; B 2 F 0k: (2)

objective probabilities for Fk; stick to her own probabilistic judgments for Fk, and still be
rational. Of course, such a DM violates the Probabilities Coordination Principle, one form of
which is Principal Principle.
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For a less dedicated Bayesian (moderate Bayesian), however, the situation is
di¤erent. Such a DM is a¤ected by the fact that she is less informed for B 2 F 0k
than for A 2 Fk: She argues that beliefs need to be justi�ed, and such a jus-
ti�cation is missing in the case of B 2 F 0k as opposed to that of A 2 Fk:
Hence, she �nds a claim such as (2) absurd. Instead, she thinks that her sub-
jective probability, P1(B); of B can take on any of the following n values, pB;1,
pB;2; :::; pB;n: How "probable" does she �nd each of these values? This question
is answered by the second-order probabilities, qB;1, qB;2; :::; qB;n; corresponding
to pB;1, pB;2; :::; pB;n; respectively, with

Pn
i=1 qB;i = 1: Speci�cally,

Q1 (P1(B) = pB;1) = qB;1 (3)

Q1 (P1(B) = pB;2) = qB;2

�
�
�

Q1 (P1(B) = pB;n) = qB;n:

For example, if DM is informed that "the coin is fair" then she thinks that she is
justi�ed to believe that her probability of "heads" is equal to 1/2, with (second-
order) probability one. If, however, such information is missing, then she might
�nd two probabilities of "heads" plausible, for example 0.5 or 0.6. Now, if she
believes that her �rst probabilistic assignment is more probable than the second,
she may express this additional belief by setting her second-order probabilities
equal to (say) 0.9 and 0.1, respectively.
The strict Bayesian may reply that the aforementioned second-order prob-

abilities are redundant (or even meaningless), in the sense that they do not
enhance DM�s credal structure in any meaningful way. This is due to the fol-
lowing two reasons: First, DM can always calculate a single probability of B;
simply by taking the average of �rst-order probabilities weighted by the corre-
sponding second-order probabilities,

P 1(B) =
nX
i=1

qB;ipB;i: (4)

The last relationship shows that DM can, in principle, calculate a single proba-
bility for both A 2 Fk and B 2 F 0k, namely P1(A j IS) and P 1(B); respectively.
Second, there is a considerable di¤erence between the objects on which �rst-

order probabilities are attached, e.g. the proposition B and those on which
second-order probabilities are attached, e.g. the proposition "P1(B) = pB;1":
The basic di¤erence is that B represents a proposition that assumes truth values
(it can be true or false) or, equivalently, an empirical event, whereas "P1(B) =
pB;1" does not. This is due to the fact that a proposition assumes truth values
if and only if its veracity can be established by comparison with reality (or
at least, experience). This is the case only if the proposition is factual. For
example, the proposition "the next draw is red" is either true or false. Why
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is that? Because whether this proposition is true or false can be decided by
observing the outcome of the next draw. If the next draw is actually red, then B
"corresponds to reality" and, hence, it is true. If it does not, then it is false. The
truth or falsity of B is decidable. On the contrary, the truth of the proposition
"DM�s probability of B is equal to 0.4" cannot be decided by means of an
empirical procedure. No experiment that allows comparison of this statement
with objective reality is feasible. Hence, "P1(B) = pB;1" cannot be either true
or false. But if a "proposition" does not assume truth values, then it cannot
carry a probability. The probability of a proposition is the probability that this
proposition is true or, equivalently, the probability of an event is the probability
that the event occurs. These remarks lead to the following conclusion. The
�rst-order probability P1(B) is meaningful, since it represents "the probability
that B is true" or "the probability that B occurs". On the other hand, the
second-order probability Q1 (P1(B) = pB;1) cannot be interpreted as the "the
probability that P1(B) = pB;1 is true" since the argument in the Q(�) function
(as opposed to that in the P (�) function) does not assume truth values (in the
sense analyzed above).
The foregoing discussion suggests that the strict Bayesian insists that a ra-

tional DM should always be able to form coherent probabilistic beliefs even in
the absence of any speci�c information. The strict Bayesian emphasizes that
the essential requirement of rationality is that DM starts her epistemic life with
an intrinsically consistent set of beliefs. Coherence is the minimal requirement
for rationality. On the other hand, rationality does not require DM�s subjective
probabilities to be equal to the corresponding objective ones, at least at the early
phase of DM�s epistemic life. If speci�c information about objective probabili-
ties is missing, then there is no Bayesian demand for DM to form accurate or
realistic probabilistic beliefs. At the beginning of DM�s epistemic life (that is at
t = 0), all that Bayesianism requires is coherence not realism. Realism will come
later with the aid of empirical data and using conditionalization as the proper
learning protocol. Hence, all that the strict Bayesian requires is with respect
to F 0k is that DM has coherent probabilistic beliefs, regardless of whether these
beliefs are inaccurate with respect to objective chances. The strict Bayesian has
no problem of accepting that Fk and F 0k are, indeed, characterized by di¤erent
degrees of epistemic reliability. She is also probably willing to consent that DM
is comparatively more knowledgeable for Fk than F 0k. She takes issue however,
with what epistemic reliability and comparative ignorance are supposed to en-
tail, namely ambiguity aversion and non-sophisticated probabilistic beliefs. She
emphasizes that comparative ignorance may a¤ect the realism of probabilistic
beliefs but not their coherence.
Despite the normative force of the strict Bayesian�s arguments, a moderate

Bayesian �nds comparative ignorance to be a perfectly good reason (or excuse)
for forming incoherent beliefs. She would also add that what makes her incoher-
ent is not the mere fact that the probability of A 2 Fk is single-valued, whereas
the probability of B 2 F 0k is multi-valued. Instead, the origins of the problem
are traced somewhere else, namely in that DM�s probability of A takes on a sin-
gle value with certainty, whereas her probability of B is itself a random variable,
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whose values are DM�s �rst-order probabilities. When the two options A and
B are o¤ered to DM simultaneously, that is when DM is given the opportunity
to compare the two options, she is inclined to choose the certain one, that is
the option with the maximum degree of epistemic reliability. Needless to say, a
moderate Bayesian �nds such a behaviour to be quite rational.
We have been led to the following conclusions: When DM has to choose

among bets of the same kind, that is among propositions with the same degree
of epistemic reliability, DM is not psychologically inclined to favor some propo-
sitions over the others. She treats them all symmetrically. The Ellsberg-type
choices arise only when DM has to choose among a set of propositions with
di¤erent degrees of epistemic reliability. In other words, DM exhibits AA only
when she contrasts options of di¤erent kinds (or options belonging to di¤er-
ent classes), for example propositions with known probabilities to propositions
whose probabilities are random variables. Hence, the moderate Bayesian is
likely to consent that if she were in the epistemic state of uniform rather than
comparative ignorance, that is if she were equally uninformed about Fk and
F 0k; then she would exhibit no ambiguity aversion.
The preceding discussion highlights the instrumental role of the asymmetric

speci�c information IS for AA. To this end, the causal chain of events that leads
to AA is the following: First, the speci�c information IS , which informs DM
about the probabilities of Fk alone, becomes available at t = 1. Second, DM�s
con�dence on the truth of IS is absolute, that is P1(IS) = 1. As a result, her
degree of epistemic reliability for the probabilities of Fk; furnished by IS ; is
maximum, as stated by (1). On the other hand, DM feels much less con�dent
about her own probabilistic judgments for the elements of F 0k, as stated by (3).
At this point, DM experiences the feeling of comparative ignorance. Third, as
a reaction to comparative ignorance, DM exhibits AA.
The preceding discussion reveals what the proposed counterfactual strategy

ICIS is designed to accomplish: It aims at bringing DM in an epistemic state
in which she does not (actually) believe that IS is true with probability one,
but rather she thinks of it (counterfactually) as one of many alternative even-
tualities that may come to be true "in the future". Speci�cally, ICIS aims at
replacing P1(IS) = 1 with P c0 (IS) = p0 < 1 in DM�s mind. By making this
counterfactual move, DM brings herself in an epistemic state in which she is
equally uninformed about the probabilities of Fk and F 0k, that is she restores
her "uniform ignorance" over F . In this state, all her probabilistic assignments
on F exhibit the same degree of epistemic reliability, and because of this, DM
is guarded against entering the cognitive state of comparative ignorance.
It must be emphasized at this point that DM�s shift from the epistemic state

of comparative ignorance to that of uniform ignorance aims at achieving one task
only: To drive DM out of the comparative mode of probabilistic thinking, that
is to make her think not in relative terms (Fk relative to F 0k) but in absolute
terms (treating the elements of F uniformly). Is it certain that DM will prove
to be probabilistically sophisticated in the new epistemic environment of uni-
form ignorance? De�nitely not. In the absence of any speci�c information, DM
�nds herself in the epistemic state of Knightian uncertainty and because of this,
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she may �nd it hard to come up with a precise numerical assignment for each
proposition of F . However, this type of probabilistic predicament is a general
challenge for Bayesianism and not the reason that gives rise to Ellsberg�s para-
dox. The type of uncertainty that characterizes Ellsberg�s paradox is a special
type of uncertainty (referred to as ambiguity) arising from DM�s simultaneous
comparison of bets with known probabilities to bets with unknown ones. ICIS
aims at driving DM out of ambiguity and bringing her back in the epistemic
context of classical uncertainty. What are the gains from such a maneuver? DM
is back to the uncertainty environment, which is encoded by Savage�s axioms.
In the absence of comparative ignorance, DM has one less reason to violate
STP. This implies that the probability of DM being probabilistically coherent is
higher in the epistemic state of uncertainty, than it is in the state of ambiguity.
Put di¤erently, a DM who under uncertainty has succeeded in forming coher-
ent probabilistic beliefs may fail to do so if she moves to the state of ambiguity.
Comparative ignorance is an additional reason for causing incoherence, over and
above the reasons that are present under the state of uniform ignorance.
To further elaborate the point made in the last paragraph, let us consider a

DM who is about to draw a ball from Ellsberg�s urn. Let us compare the way
she forms her subjective probabilities under uncertainty, to that under ambigu-
ity. Under uncertainty, she has no information about the relative frequencies
of the three colors. This knowledge environment provides DM with a "nat-
ural symmetry", namely three possible colours for which no speci�c information
is available. As a result, DM is likely to �nd Laplace�s "principle of indi¤er-
ence" quite �tting, thus assigning equal probabilities to the three colors, namely
P (R) = P (Y ) = P (B) = 1=3: Moreover, DM�s degree of epistemic reliability for
these three probabilities is the same, which in turn implies that DM�s betting
propensity is uniformly distributed among the three colors. Under ambiguity,
however, the situation is likely to change drastically. Now, DM is assumed to
possess the information IS that 30 of the 90 balls are red. Hence, she sets her
subjective probability, P IS (R); of "red" equal to the corresponding objective
probability, namely 1=3: What is the di¤erence between DM�s probability of
"red" under uncertainty and the corresponding probability under ambiguity,
that is between P (R) and P IS (R)? Note, that these two probabilities are both
equal to 1/3. Does this mean that DM�s credal state about "red" under un-
certainty is identical to that under ambiguity? The answer is negative. DM
has a good reason to trust the proposition P IS (R) = 1=3 much more than the
proposition P (R) = 1=3; with this reason being no other than the presence of
the reliable IS . Despite their equality, P (R) and P IS (R) do not re�ect identical
probabilistic attitudes for "red". How does DM�s increased con�dence for "red"
a¤ect her probabilistic assignments for "yellow" and "black"? One might argue
that DM is still free to set P IS (Y ) = P IS (B) = 1=3: However, if she does so her
betting behaviour towards the three colors has to be symmetric, that is she must
not prefer to bet on any one color over another. As already mentioned, there
is signi�cant empirical evidence against the aforementioned symmetry hypoth-
esis; people tend to prefer to bet on "red" rather than "yellow" or "black". In
such a case, DM�s implicit probabilities for "yellow" and "black" do not cohere
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with P IS (R) = 1=3. Hence, DM ends up being probabilistically incoherent. To
conclude, the arrival of IS brings about two distinct and interdependent e¤ects
on DM�s credal state: On the one hand, it increases DM�s corpus of knowledge
about the objective probabilities of the events of interest. On the other hand,
it demolishes the "natural symmetry" feature of the phenomenon at hand, thus
causing DM�s incoherence. The question which naturally arises at this point is
the following: How should DM process IS so that she combines the best of both
worlds, namely increased knowledge of objective probabilities with coherence of
subjective ones? As already argued, ICIS is an information-processing strategy,
precisely designed to accomplish the aforementioned dual task:
Our main thesis of the present paper is that a DM who adopts the proposed

counterfactual strategy ICIS does not exhibit AA, thus escaping Ellsberg�s para-
dox. The main results of this paper may now be stated as follows: a) For every
coherent (additive) counterfactual prior probability function P c0 ; the posterior
probability function P1; which is generated from P c0 via Bayesian condition-
alization on IS ; is coherent. b) If DM�s probability function P1 is coherent,
and her utility function is increasing, then it is impossible for DM to exhibit
Ellsberg-type behaviour.

3 Ellsberg�s Paradox

Although Ellsberg�s paradox is very well known, let us brie�y recast it in our
own notation. Consider an urn that contains 90 balls with three di¤erent colors.
Suppose also, that DM is given the speci�c information IS : "30 balls are red and
the remaining 60 balls are either black or yellow in unknown proportion". DM
will draw a ball at random, which means that each ball has an equal probability
of being drawn.
DM is o¤ered two pairs of choices/actions: (a) Choose between f and g;

where

f : "a bet on red"

g: "a bet on black".

(b) Choose between f� and g�; where:

f�: "a bet on red or yellow"

g�: "a bet on black or yellow".

The following table contains the outcomes for each action and state of nature:

Outcomes266664
red is drawn black is drawn yellow is drawn

f 100 0 0
g 0 100 0
f� 100 0 100
g� 0 100 100

377775
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In the framework of SEUM, the choice between actions f and g (as well as
between f� and g�), is based on the calculation of the expected utility of the two
actions. Since the prizes are exactly the same, it follows that DM prefers f to g
(f � g) if and only if she believes that drawing a red ball is more probable than
drawing a black ball and vice versa. If DM believes that drawing a red ball is
more probable than drawing a black ball, then DM�s probabilistic sophistication
requires her to believe that drawing a red or yellow ball is more probable than
drawing a black or yellow ball. Therefore, SEUM theory entails the following
conditional proposition: "if DM prefers f to g, then she prefers f� to g�" (and
vice versa).
When surveyed, however, most people strictly prefer f to g and g� to f�,

thus violating the aforementioned prediction of SEUM theory. Moreover, such
a pair of choices imply that DM�s subjective probability function is not additive
which means that DM is not probabilistically sophisticated.
Our main aim in the present section is to demonstrate the following: If

DM adopts the counterfactual strategy ICIS described in Introduction, then
her current probabilistic beliefs, that is, those that have taken into account
the speci�c information IS , are coherent. This in turn implies that whether
DM turns out to be probabilistically sophisticated or not, depends entirely on
whether she decides to process IS in the indirect way outlined in the previous
section or not.
We assume that DM�s epistemic life begins at t = 1: At this time DM receives

the speci�c information IS : "30 of 90 balls in the urn are red". This means
that DM�s interest in the phenomenon under study, coincides with the time at
which she came to know IS . This information provides DM with the objective
probabilities of some (but not all) the elements of the relevant space F , thus
inducing the following partition (Fk;F 0k) of the algebra of propositions F :

Fk = fsR; sBY ; sRBY ;?g;

F 0k = fsB ; sY ; sRB ; sRY g;
where

sR : "a red ball is drawn" (5)

sB : "a black ball is drawn"

sY : "a yellow ball is drawn"

sRB : "a red or a black ball is drawn"

sRY : "a red or a yellow ball is drawn"

sBY : "a black or a yellow ball is drawn"

sRBY : "a red or a yellow or a black ball is drawn"

? : "no ball is drawn".

The probabilistic content of IS takes the form of the following objective proba-
bilities,

Ch(sR) =
1

3
;
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Ch(sBY ) =
2

3
;

Ch(sRBY ) = 1

Ch(?) = 0;
where Ch(A) denotes the objective probability (chance) of proposition A:

Remark 1 It is important to note that the information IS refers to the objective
probabilities of the elements of Fk: Whether DM endorses these objective proba-
bilities as her own subjective probabilities is another question. Most philosophers
agree that rationality dictates that DM should conform to a "probability coordi-
nation principle", according to which DM adopts as her own subjective proba-
bilities the corresponding objective ones, provided that the latter are known (see,
for example, Strevens 2017). The most important of such principles is David
Lewi�s "Principal Principle" (PP, Lewis 1976). In the analysis that follows we
tacitly assume that the DM adheres to PP.

Given that the DM receives the speci�c information IS at time t = 1, which
coincides with the beginning of DM�s epistemic life, suggests that DM does not
possess an actual prior probability function P a0 , formed at some previous time,
(say) t = 0. In the absence of P a0 ; DM is assumed to make the counterfactual
move and "mentally go back" to t = 0, in which IS was not certain, but instead
it was one of the many alternative pieces of information (information propo-
sitions) that DM could receive at t = 1: At that hypothetical moment, DM
deliberates her probabilistic assignments on F relativized only with respect to
the background information, IB ; available at that moment. In other words, DM
asks herself the question "what would my prior probability function P c0 be, had
I only known IB?". By asking herself this question, DM is e¤ectively searching
her Carnapian prior, or as Meacham more recently called it, "Ur-Prior". This
is de�ned as "the credences a subject should have if she had no evidence, a
subject�s initial credences, a subject�s evidential standards, and any function
that plays the right diachronic role." (2016, pp. 1). The important thing to
note is that at that hypothetical moment, DM is "uniformly ignorant" about
the objective probabilities of F . Hence, in contemplating P c0 , DM does not en-
ter the cognitive state of comparative ignorance, which as already mentioned,
is considered to be the main cause of ambiguity aversion.
Before we proceed any further, the following clari�cation is in order: When

DM is instructed "to ignore IS", she is advised to do so only temporarily. No
canon of rationality would tell DM to discard useful information. Indeed, failure
to take IS into account means that DM is doomed to "commit the most obvious
inconsistency of reasoning." (Jaynes 1968, pp. 227). What we emphatically
suggest is that the proper e¤ect of IS on DM�s probabilistic beliefs at t = 1; be
elicited via Bayesian conditionalization.
What kind of information does IB consist of? Let us answer this question

by �rst clarifying what kind on information is not allowed to be part of IB :
This is any kind of probabilistic information, namely either direct information
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on the probabilities of F , such as "the number of red balls in the urn is 30", or
indirect information of those probabilities, such as "in a long series of trials, the
relative frequency of red draws is 30 percent". If such probabilistic information
is excluded from IB (being the content of IS), then IB is allowed to contain
information about the broad features of the chance mechanism at hand. For
example, part of IB is the proposition that "there is an urn containing 90 balls",
as well as the proposition that "the balls in the urn are red, yellow and black
only" and also that "a ball will be drawn at random".
Let us now assume that DM has moved back to time t = 0; in which she

counterfactually possesses only IB : This means that at that moment, DM has
decided to (temporarily) ignore the speci�c information IS : "30 of 90 balls
in the urn are red". Under this epistemic state, DM is judging her subjective
probability function P c0 that is about to assign on F . Part of the background
information IB ; with respect to which P c0 is relativized, is the proposition that
"the number of all possible color combinations that may be accommodated in
the urn is 4,186". Speci�cally, based on IB alone, DM knows that the urn
may contain 0 red, 0 black and 90 yellow balls, or 0 red, 1 black and 89 yellow
balls, etc. In other words, at t = 0 the agent knows that one of the following
"theoretical propositions" is true:

H(0;0;90) : "The urn contains 0 red, 0 black and 90 yellow balls" (6)

H(0;1;89) : "The urn contains 0 red, 1 black and 89 yellow balls"

H(0;2;88) : "The urn contains 0 red, 2 black and 88 yellow balls"

�
�
�

H(0;90;0) : "The urn contains 0 red, 90 black and 0 yellow balls"

�
�
�

H(90;0;0) : "The urn contains 90 red, 0 black and 0 yellow balls":

Note that each of these theoretical propositions gives rise to a certain probability
distribution of the three colors. Let H denote the set of all the aforementioned
propositions. It is obvious that at t = 0; DM does not know which proposition
of H is the true one. As a result, she treats the elements of H as part of the
domain of P c0 : This in turn implies that DM�s relevant algebra of propositions
is not F , but rather the extended space F0ext; that includes, apart from the
empirical propositions de�ned in (5) the theoretical propositions Hi; Hi 2 H;
i 2 I (together with their conjunctions, disjunctions and negations) as well,
where I = fi 2 N3 : 0 � i � 1�90 and 10�i = 90g � N3; i = (iR; iB ; iY )0 which
denotes the 3�1 vector that contains the numbers of red, black and yellow balls
in the urn, respectively and 1 = (1; 1; 1)

0 . The resulting propositional space
F0ext is a Boolean algebra. It must be noted that although DM is interested in
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the propositions of F0ext; the space that contains the propositions of "betting
interest" for DM remains F , F � F0ext:
Let us now examine the question of whether DM�s counterfactual epistemic

condition, assumed at t = 0; is conducive to DM�s forming a coherent coun-
terfactual subjective probability function P c0 ; de�ned on F0ext. The important
thing to note is that at time t = 0, DM is in a state of uniform rather than
comparative ignorance. In other words, at time t = 0 she is equally uninformed
about the elements of F0ext: This means that all the elements of F0ext are equally
"vague" or equally "ambiguous", meaning that DM�s epistemic reliability is dis-
tributed uniformly over them. But if there is no "comparative ambiguity" in
DM�s mind, concerning the elements of F0ext; there are no grounds for assuming
that DM is compelled to exhibit ambiguity aversion. Equivalently, there is no
basis for assuming that DM will prove to be probabilistically non-sophisticated.
Of course, even in this counterfactual environment, DM might still be unable to
express precise probabilities for each and every element of F0ext: Uniform ambi-
guity can also be harmful as far as DM�s ability to judge her own probabilities is
concerned. However, this is a di¤erent source of probabilistic de�ciency, which
falls outside the scope and spirit of Ellsberg�s paradox.2 Indeed, in the context
of the Ellsberg paradox, DM�s behaviour is studied under the assumption that
DM knows the asymmetric information IS all along, that is, she is always under
the state of comparative ignorance. If this assumption is withdrawn, and DM
is assumed to have no probabilistic information whatsoever, then DM is trans-
ferred into the state of uniform ignorance. In this state it is not unrealistic to
claim that DM would adopt the non-informative prior P c0 , according to which
each color has equal probability of being drawn. This means that Ellsberg�s
paradox may be thought of as a case in which DM�s probabilistic sophistication
is easier to achieve under uniform ignorance rather than comparative ignorance.
Since P c0 obeys the rules of probability calculus, it also satis�es the law of

total probability, according to which 8a 2 fR;B; Y g;

P c0 (sa) =
X
i2I

P c0 (sa j Hi)P0(Hi): (7)

To calculate P c0 (sa j Hi); i.e. the probability of drawing a a�colored ball
conditional on the hypothesis Hi, it is convenient to de�ne I

k
a � I; to be the

subset of vectors for which the number of a�colored balls in the urn, is exactly k;
where a 2 fR;B; Y g; and 0 � k � 90. Clearly, P c0 (sa j Hi) is non-zero if i 2 Ika:
Moreover, P c0 (sa j Hi) =

k
90 ; if i 2 I

k
a and card(I

k
a) = 91� k; 8k = 0; :::; 90 and

2The question of whether DM�s probabilistic beliefs are or have to be rational (in the sense
that they obey the rules of mathematical probability) has always been at the heart of the
(still ongoing) debate between Bayesianists and their critics.
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8a 2 fR;B; Y g. As a result,

P c0 (sa) =
X
i2I

P c0 (sa j Hi)P0(Hi) =

=
90X
k=0

X
i2Ika

P c0 (sa j Hi)P0(Hi) =

=
90X
k=0

k

90
(91� k) 1

4; 186
=
1

3
;8a 2 fR;B; Y g:

Speci�cally,

P c0 (sR) = P
c
0 (sB) =

1

3
and P c0 (sRY ) = P

c
0 (sBY ) =

2

3
:

At time t = 0 DM assesses not only her unconditional subjective probabili-
ties, P c0 (sa); but the conditional ones P

c
0 (sa j Is) as well. Is denotes the speci�c

information that DM may receive in the future. As already mentioned, this
information might take the form of direct or indirect probabilistic information.
Note that Is 2 H; which contains all the alternative "information scenarios"
that may turn out to be the case. In our case, Is = IS = I30R ; with IS being
the information that "30 of the 90 balls are red".3 Another example of Is = I

40
B

could be the information that "40 of the 90 balls are black". The important
thing to note is that in order for DM to complete the process of calculating P c0
at t = 0; she has to judge all the conditional probabilities P c0 (sa j Is) ; Is 2 H
rather than only the speci�c conditional probability P c0 (sa j IS) : This is because
in the context of her counterfactual reasoning, the factual proposition IS must
be treated on a par with any other possible, (but hypothetical) information
scenario Is 2 H� fISg:

Let us now calculate DM�s conditional probabilities P c0 (sa j IS) :4 Using (??)
we have that 8a 2 fR;B; Y g:

P c0 (sa j IS) =
X
i2I

P c0 (sa j Hi ^ IS)P c0 (Hi j IS) ; (8)

where

P c0 (sa j Hi ^ IS) =
�
P c0 (sa j Hi); i 2 I30R

0; i =2 I30R
and

P c0 (Hi j IS) =
� 1
61 ; i 2 I

30
R

0; i =2 I30R
:

3Formally, IS may be expressed as the disjunction of a subset of Hi; namely IS =
fH(30;0;60) _H(30;1;59) _ ::: _H(30;59;1) _H(30;60;0)g:

4The procedure for calculating any other conditional probability P c0 (sa j Is) ; Is 2 H is
entirely similar.
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Therefore,

P c0 (sa j IS) =
X
i2I

P c0 (sa j Hi ^ IS)P c0 (Hi j IS) =
X
i2I30R

P c0 (sa j Hi)
1

61
;8a 2 fR;B; Y g:

(9)
For a = R; the last equation becomes,

P c0 (sR j IS) =
X
i2IlR

P c0 (sR j Hi)
1

61
=
1

3
:

Similarly, for the other two values of a we have, P c0 (sB j Hi) =
k
90 ; if i 2I

30
R \IkB

and P c0 (sY j Hi) =
k
90 ; if i 2I

30
R \IkY and card(I30R \IkB) = card(I30R \IkY ) = 1;

8k = 0; :::; 60. As a result, (9) takes the form,

P c0 (sa j IS) =
60X
k=0

X
i2I30R \Ika

P c0 (sa j Hi)
1

61
=

60X
k=0

k

90

1

61
=
1

3
; a 2 fB; Y g: (10)

It follows that,

P c0 (sR j IS) = P c0 (sB j IS) = P c0 (sY j IS) =
1

3
(11)

and
P c0 (sRY j IS) = P c0 (sBY j IS) = P c0 (sRB j IS) =

2

3
: (12)

At this point, DM concludes the calculations for her subjective probabilities
of the propositions of betting interest, namely those in F , conditional on IS :
As already mentioned, DM is supposed to repeat the procedure outlined above
in order to calculate her subjective conditional probabilities for the remaining
information scenarios, Is 2 H� fISg: Once this is done, DM�s formation of her
own counterfactual prior P c0 is completed.
Now it is time for DM to exit the counterfactual mode of probabilistic think-

ing and mentally return to the actual time point t = 1: In other words, she is
ready to implement the second step of ICIS : This step is particularly simple.
All that DM has to do is merely to adopt the counterfactual conditional proba-
bilities, given in (11) and (12), as her current subjective probabilities for t = 1:
By doing so, DM ends up with the following additive subjective probability
function P1; de�ned on F :

P1(sR) = P1(sB) = P1(sY ) =
1

3
and P1(sRY ) = P1(sBY ) = P1(sRB) =

2

3
:

The detailed analysis of the counterfactual strategy ICIS ; presented above,
might have made clear the two-step character of this strategy. The �rst step is
the "information processing" one, whereas the second is the step of "commit-
ment". Indeed, all that IS has to say about the propositions in F is analyzed by
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DM in the �rst step, and is captured by her conditional probabilities P c0 (sa j IS),
a 2 fR;B; Y g. In the second step, there is no information processing activity
involved. Instead, all that DM is asked to do is to abide by her subjective
conditional probabilities P c0 (sa j IS), a 2 fR;B; Y g calculated in the �rst step,
thus adopting them as her current probabilities P1(sa) for t = 1:
It must be noted that the fact that new probability of sR is equal to the cor-

responding old probability (equal to 1/3) is purely coincidental. If, for example,
instead of IS the actual information were IS0 : "40 balls are red", then P c0 (sR)
would still be (under the uniform prior) equal to 1/3, but the new probability
P1(sR) = P

c
0 (sR j IS) would now be equal to 4/9.

In fact, the results presented above can be easily generalized for any speci�c
information Is and any initial counterfactual prior, P c0 : This generalized result
is stated in the form of the following proposition:

Proposition 2 (??) For any coherent (i.e. additive) counterfactual initial sub-
jective probability function P c0 , which assigns non-zero prior probabilities to each
of the "theoretical propositions" in H; and for any speci�c information Is, the
subjective probability function P1 of time t = 1, generated by P1(A) = P c0 (A j Is);
A 2 F is coherent (i.e. additive).

Proof. See Appendix.
The above Proposition demonstrates the following: If DM follows the two-

step, indirect, counterfactual way of processing any speci�c information that
may come to know t = 1 then her subjective probability function at t = 1
is additive. This means that DM is probabilistically sophisticated. As such,
she does not exhibit Ellsberg-type choices. To this end, we prove the following
proposition:

Proposition 3 (??) If DM at t = 1 is probabilistically sophisticated (that is,
for any coherent subjective probability function P1) and her utility function is
increasing, then it is impossible for her to exhibit Ellsberg-type choices.

Proof. See Appendix.
The two propositions, presented above, comprise a potential solution to Ells-

berg�s paradox. The question which arises at this point is what is the normative
and the descriptive status of the counterfactual strategy ICIS upon which the
resolution of the paradox is based. The normative appeal of ICIS is supported
by the arguments presented in Sections 2 and 3. Additional reasons for adopting
ICIS will be furnished in Sections 5 and 6. As far as the descriptive validity
of ICIS is concerned, the question is whether normal (rather than ideal) people
would be willing to implement it, after they were presented with its normative
virtues. Answering this question requires the design and implementation of a
relevant empirical study, in which subjects will be asked whether, under the
proper guidance, �nd ICIS appealing.
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4 Arguments in Support of Counterfactual Pri-
ors

Even if one accepts the main result of the present paper, namely that ICIS elim-
inates DM�s ambiguity; (and hence Ellsberg�s paradox) the question remains:
why is it normatively appealing to adopt ICIS? Is ICIS exhausted in solving
Ellsberg�s paradox alone, or are there more fundamental reasons which dictate
the adoption of such a strategy? Below we identify psychological, methodologi-
cal and logical reasons for the adoption of counterfactual probabilistic reasoning.

4.1 Psychological Arguments for ICIS
The �rst psychological argument was o¤ered, surprisingly, not by a psycholo-
gist but a philosopher, namely Rudolph Carnap, admittedly one of the greatest
philosophers of science of the twentieth century. Carnap (1962, 1971) argues
that DM�s pure or genuine probabilistic beliefs are expressed by what he calls
"permanent dispositions to believe", which are identi�ed with DM�s initial cre-
dence function Cr0. The latter is de�ned as the singular subjective probability
function that DM has (or would have) prior to the acquisition of any evidence
(that is at the beginning of DM�s epistemic life). This initial credence func-
tion stands in sharp contrast with the current probabilistic beliefs, CPBn; that
DM happens to have at some point in time n. CPBn do not capture the true
probabilistic dispositions of DM, but instead they codify DM�s "momentary in-
clinations to believe" at time n. How do DM�s current probabilistic beliefs, Crn;
at time n inherit the "trait of DM�s underlying permanent intellectual charac-
ter"? This can only be achieved if DM conditionalizes on all the information
accumulated between t = 0 and t = n; using Cr0 as the relevant vehicle (see
Carnap 1971, pp. 18-19).5 The main message from Carnap�s suggestion is the
following: If DM wishes to uncover her true belief dispositions at any point in
time, then her prior probability function must be relativized only with respect
to the background (non-speci�c) information IB . If DM does so, then her cur-
rent beliefs, Crn will re�ect her permanent belief dispositions as well. On the
contrary, if her current probabilistic beliefs are relativized to the total amount
of information available at time n; namely IB [ IS ; then these beliefs (CPBn)
are temperamental or capricious and almost surely di¤erent than Crn:
Apart from Carnap, there are many other philosophers who have suggested

DM�s endorsement of an initial subjective probability function, that has to be
formulated without the direct in�uence of any speci�c information IS , even if
DM actually knows IS ; (see Lewis 1980, Levi 1980, Skyrms 1983, and more
recently Meacham 2008 and Titelbaum 2013). Howson (1991) in particular,
strongly recommends the deletion of any speci�c information IS from the body

5Carnap�s Cr0; CPBn and Crn correspond to P c0 , P
IS
1 ; and P1; respectively as de�ned in

previous sections of the present paper..
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of information, upon which DM�s prior probability is based, as an answer to
"the problem of old evidence". The latter was introduced by Glymour (1980)
and Gardner (1982) and was initially interpreted as a serious pitfall of Bayesian
Con�rmation Theory (BCT). In line with Carnap, Howson argues that in order
for BCT to get o¤ the ground, "the dispositional properties of the agent�s belief
structure", as re�ected in P c0 ; must be identi�ed (Howson 1984, pp. 246).
At the heart of the Carnapian argument lies the view that in order for DM

to identify her true probabilistic dispositions, she must bring herself in a psycho-
logical state in which IS is not treated as certainty (even if DM actually knows
IS), but rather as one of the many alternative, yet unrealized, possibilities.
Put di¤erently, the appropriate psychological state, which DM should pursue,
in order to evaluate her prior probability function is the one in which none of
the aforementioned possibilities has been realized. This, of course, raises the
question of why such a state is the appropriate one. An answer to this question
may be given by the following example: Suppose that DM, being at t = 1;
contemplates her probability of the event A : "I will live for another �ve years".
At that time, DM learns the information IS : "I am just diagnosed with lung
cancer". To this end, DM has two options: (a) DM attempts to evaluate her
subjective probability of A; under the psychological burden provoked by her
viewing IS as certain. In this case, she comes up with P

IS
1 (A) = p1: (b) DM

evaluates her probability of A counterfactually by asking herself the question
"what would my probability of A be, were I to know that IS is true?" In this
case, DM treats IS as an unrealized event, which secures her a more relaxed or
neutral psychological background for the evaluation of her probability of A than
that of the �rst case: DM�s probability of A in this environment is represented
by P c0 (A j IS) = p2: It seems reasonable to assume that p1 > p2:
Another example of how DM�s actual encounter with IS might a¤ect her abil-

ity to judge her own probabilities objectively is o¤ered by Gul and Pesendorfer
(2001): "Consider an individual who must decide what to eat for lunch. She
may choose a vegetarian dish or a hamburger. In the morning, when no hunger
is felt, she prefers the healthy, vegetarian dish. At lunchtime, the hungry indi-
vidual experiences a craving for the hamburger." Hence, DM faces a "con�ict
between her ex ante ranking of options and her short-run cravings" (2001, pp.
1403).
A third example of this kind comes from Greek mythodology.6 Ulysses knows

already from t = 0 that when he will listen to sirens�song at t = 1; he will be so
enchanted by it that he will under-estimate the probability of su¤ering a lethal
encounter with them. In an attempt to secure that at t = 1 he will not succumb
to siren�s temptation, but instead he will act according to his emotionally neutral
probabilistic beliefs, made at t = 0, the Greek hero asked his comrades to tie
him up to the mast of his ship.
These examples may be thought of as a special case of a more general phe-

nomenon pertaining to how emotional distortions impair DM�s overall ability

6This example is usually referred to the philosophical literature as the problem of "Ulysses
and the Sirens" (see, for example, Elster 1979).
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to think objectively. Indeed, there is a plethora of empirical studies that docu-
ment a negative relationship between DM�s level of anxiety (which in our case is
caused by DM�s perception of IS as non-contingent) and her ability to perform
abstract reasoning tasks (see, for example, Leon and Revelle 1985). On another
interpretation, the psychological e¤ect of IS may be thought of as a "situational
moderator", which negatively a¤ects DM�s information processing skills (see
Humphreys and Revelle 1984). A common implication of both interpretations
is the following: if DM treats IS as certain (that is when P1(IS) = 1), then she
may experience emotional biases, which in turn impair her ability to uncover
her genuine probabilistic dispositions.
Additional evidence, dictating the necessity of temporarily removing IS from

the corpus of (certain) knowledge with respect to which DM�s prior is relativized,
is o¤ered by studies that examine whether DM alters her behavior when she is
presented with convincing counterarguments highlighting her "mistakes" (see
MacCrimmon and Larsson 1979, Slovic and Tversky 1974). These studies �nd
that DM continues to prefer risk over uncertainty (that is continues to exhibit
AA) even when the associated inconsistencies are revealed to her. This in turn
implies that as long as DM treats IS as "certain", she does not think of her AA
preferences as a "mistake" that should be corrected under the proper guidance.
Instead, she appears to be defending her initial choices, which means that if DM
is irrational, she is persistently (or stubbornly) so.7

4.2 Methodological Arguments for ICIS
Before we develop our methodological arguments in favor of ICIS ; let us begin
with those related to the less controversial case in which DM processes IS by
means of a pre-existing actual prior probability function P a0 . Hereafter, this
strategy will be referred to as IAIS . In this setup, DM�s epistemic life covers
two periods, namely t = 0 and t = 1: As already mentioned, the speci�c informa-
tion IS becomes available at t = 1: This implies that of the two aforementioned
periods, only the second one, t = 1; is characterized by information asymmetry
between Fk and F 0k. Hence, only at t = 1; the conditions are conducive for
DM to experience ambiguity and develop ambiguity aversion. On the contrary,
at t = 0 DM is equally ignorant about the probabilities of Fk and F 0k: Due to
this informational symmetry at t = 0, DM is not prone to entering the state of
ambiguity. In the absence of ambiguity, we may assume (in a standard Bayesian
fashion) that at t = 0, DM possesses an actual prior probability function P a0 .
This in turn implies that the subjective conditional probabilities P a0 (A j IS);
A 2 F are all determined at t = 0. Moving to t = 1; DM faces two options:
Either she forms her new probabilistic beliefs via Bayesian conditionalization,
P1(A) = P

a
0 (A j IS); A 2 F , or forgoes her previous probabilistic commitments,

thus embodying the newly acquired IS into her current subjective probabili-
ties P IS1 (A); A 2 F in a discretionary and probably nebulous manner. The

7Of course, the question of whether DM successfully implements ICIS when she is in-
structed to do so is an empirical one. What we stress in this paper is the normative force of
the proposed counterfactual strategy.
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advantages of the �rst over the second option are well known: Bayesian con-
ditionalization ensures that (a) DM remains probabilistically sophisticated at
t = 1, and thus not vulnerable to a static Dutch book, (b) DM is dynamically
consistent and thus not vulnerable to a diachronic Dutch book. Hence, in the
presence of P a0 ; the only way for DM to exhibit ambiguity aversion (at t = 1)
is to abstain from her probabilistic commitments made at t = 0; that is to be
dynamically inconsistent.8

The best strategy for the identi�cation of the methodological merits of ICIS
is to compare it with IAIS :The question to be answered is whether, even in the
presence of an actual P a0 ; there is still scope for DM to employ a counterfactual
prior P c0 as the suitable vehicle for her probabilistic updating.
This question may seem bizare at �rst sight. Why should DM eschew her

own readily available P a0 and reconstruct counterfactually another prior prob-
ability function? Besides, the best cognitive state for DM to form her prior
probability is the state in which IS is actually rather than counterfactually
contingent. Admittedly, this is the major advantage of IAIS over ICIS : This
advantage notwithstanding, there are cases in which ICIS may serve DM�s pur-
pose of updating her probabilistic beliefs better than IAIS : More speci�cally,
the potential preference of ICIS over IAIS may be grounded on the following
arguments:
(i) Error Correction
Assume that at t = 0, DM constructs her actual prior P a0 : This means that

part of her probabilistic assessments at this point are the conditional probabil-
ities P a0 (A j IS); A 2 F . Assume further that DM is a committed Bayesian,
which means that at t = 1; when she learns that IS is true, she updates her
beliefs according to the Bayesian rule, P1(A) = P a0 (A j IS); A 2 F . Now assume
that at t = 1; DM comes to believe that some of her conditional probabilities,
P a0 (A j IS) formed at t = 0 are mistaken. What should she do? Bayesian con-
ditionalization is a rule that implies DM�s perpetual commitment to her initial
probabilistic assessments, thus allowing for no error correction at any time in
the future. Prior conditional probabilities are rigid, which means that the prob-
abilistic impact of IS on A is determined once and for all at t = 0. Regardless
of whether DM changes her mind, at t = 1; about some of her prior condi-
tional probabilities, strict adherence to the Bayesian rule compels her to update
according to P1(A) = P a0 (A j IS), thus allowing her initial error to contami-
nate her current probabilistic beliefs. In their criticism of conditionalization,
Bacchus, Kyburg and Thalos (1990) remark: "We cannot assign coherent prob-
abilities to all statements at the drop of a hat; it requires some re�ection, some
computation, and even then we must be prepared to have made a mistake. We
must be able to back up and reconsider." (1990, pp 484, emphasis added).
At the heart of the aforementioned criticism lies the elapsed time between

8 In the case of ICIS , there is only one epistemic time point for DM, namely t = 1: As a
result, the issue of dynamic consistency does not arise in the �rst place: there are no DM�s
probabilistic commitments at t = 0 (since there is no epistemic t = 0) to be maintained or
violated at t = 1: This means that ICIS cannot be defended on the grounds of standard
diachronic Dutch book arguments, such as the ones available for IAIS :
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the period t = 0 at which DM�s prior probability is formed and the period
t = 1 at which the decision is made. DM�s cognitive state at t = 0 may be
di¤erent than that at t = 1, with this di¤erence being uncorrelated with the
arrival of IS : Put di¤erently, at t = 1; DM may �nd herself compelled to state
that P1(A) 6= P a0 (A j IS) not because of the arrival of IS , but rather because
between t = 0 and t = 1 she had the opportunity to further re�ect on her
prior beliefs and decide that these beliefs are represented not by P a0 (A j IS)
but rather by P a00(A j IS), with P a0 (A j IS) 6= P a00(A j IS) for some A 2 F . In
such a case, DM does not abandon Bayesian conditionalization altogether, but
rather she changes her mind about her prior probability function. When does
this change of opinion occur? Obviously, at t = 1: But then the switch from
P a0 to P

a
00 is tantamount to the switch from P a0 to P

c
0 : In other words, P

a
00 can

be nothing else but DM�s counterfactual prior P c0 : Hence, we have identi�ed a
reason for which P c0 is superior to P

a
0 , namely the property that P

c
0 as opposed

to P a0 allows for "error correction".
The preceding discussion gives rise to the following question: Is a rational

DM allowed to change her mind? More speci�cally, what is DM�s rationality
status if at t = 1 she relinquishes P a0 in favor of P

a
00 (or, equivalently P

c
0 )? Is it

possible that this dynamic inconsistency between ex-ante planning and ex-post
decision has some adverse pragmatic consequences for DM? In particular, is
such a DM vulnerable to a dynamic Dutch book? The answer to this question
is negative. In order for a cunning bookie to be able to construct a diachronic
Dutch book against DM, he must know in advance, i.e. from t = 0; DM�s
probabilities at t = 1: This of course implies that DM herself must know at
t = 0 her future probabilities for t = 1; and, in addition, to be willing to
announce these probabilities at t = 0: Obviously, this is not the case when DM
changes her probabilistic beliefs between t = 0 and t = 1: In other words, at
t = 0 DM believes that her future probabilities will be P1(A) = P a0 (A j IS) but
at t = 1; these initial beliefs are falsi�ed ex post and her current probabilities
turn out to be P1(A) = P a00(A j IS):
Of course, such a change of opinion raises questions about DM�s rationality

which are grounded on another aspect of her probabilistic behaviour, namely
her inability to accomplish an "ex ante probabilistic plan" and execute it. To
this end, Lewis (1997) remarks: "If you can�t tell in advance how your beliefs
would be modi�ed by a certain course of experience, that also is a kind - a
di¤erent kind - of irrationality on your part". (1997, pp 407).
(ii) Unconceived Alternatives
Another case in which ICIS displays a vital advantage over IAIS is that of

"unconceived alternatives". The Problem of Unconceived Alternatives (PUA),
which is considered to be a serious challenge to Bayesian epistemology, was ini-
tially put forward by Duhem (1954), and revived more recently by Stanford
(2006). PUA may be thought of as a special case of a more general epistemolog-
ical problem, namely the underdetermination of scienti�c theories by empirical
data. As such, it contributed to a pre-existing skepticism about the "realism of
scienti�c theories", namely that our best current theories are (at least) approx-
imately true.
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Stanford introduces PUA as follows: "I propose what I will call the new
induction over the history of science: that we have, throughout the history of
scienti�c inquiry and in virtually every scienti�c �eld, repeatedly occupied an
epistemic position in which we could conceive of only one or a few theories
that were well con�rmed by the available evidence, while subsequent inquiry
would routinely (if not invariably) reveal further, radically distinct alternatives
as well con�rmed by the previously available evidence as those we were inclined
to accept on the strength of that evidence." (2006, pp. 19). Stanford presents
a number of distinct examples for the history of Physics and Biology, which
exhibit the pattern of PUA: "These prominent examples at least suggest a ro-
bust, distinctive pattern, in which the available evidence cited in support of
each earlier theory ultimately turned out to support one or more competitors
unimagined at the time just as well." (2006, pp. 20, emphasis added).
How does PUA a¤ect the comparison between ICIS and IAIS? As will be

shown below, under PUA, ICIS is not only a better option than IAIS ; it is
the only option. Let us again consider two time periods, t = 0 and t = 1:
Assume that at t = 0; DM possesses an actual prior probability function, P a0 ;
de�ned on F0ext. The space F0ext contains all the theoretical propositions Hi;
i = 1; 2; :::;m that DM has conceived as possible explanations of her empirical
data as well as all the relevant empirical propositions (alternative courses of
experience), Ej ; j = 1; 2; :::; k that may come to be true in the future. However,
when t = 1 comes, DM�s realizes that the space of epistemic possibilities is
larger than she originally perceived at t = 0: In particular, at this time point,
DM becomes aware of an additional theoretical proposition, Hm+1; or/and a
new empirical proposition Ek+1, which were ignored (by DM) at t = 0:9 This
means that the "unconceived alternatives" Hm+1 and/or Ek+1 do not belong
to the original propositional space F0ext, which implies that these propositions
(together with all the compound propositions in which they participate) do
not carry prior actual probabilities P a0 (Hm+1) and/or P

a
0 (Ek+1); respectively.

As a result, at t = 1 DM feels compelled to replace F0ext with the extended
space F1ext, F0ext � F1ext and de�ne a new prior P c0 on F1ext: Since the speci�c
information IS becomes known at t = 1, it follows that DM�s new prior has
to be a counterfactual one. It is important to note that under the present
scenario of PUA, DM cannot, at t = 1, employ her old actual prior P a0 as her
vehicle of conditionalization, even if she wanted to do so. The emergence of
the new alternatives (unimagined at t = 0) results in P a0 (A) 6= P c0 (A) even for
propositions that belong to the original space F0ext: This means that DM �nds
at t = 1 her original probabilities of the "conceived propositions", namely the
elements of F0ext to be entirely di¤erent. For example, assume that at t = 1, DM
realizes that the Ellsberg urn contains apart from red, black and yellow balls,
(say) green balls as well, with the total number of balls in the urn now being
equal to 100. As a result, DM realizes that she has to expand her original space
of possibilities from F0ext to F1ext, with the di¤erence F1ext � F0ext containing

9Rowbottom (2019) answers the question of why the empirical proposition Ek+1 might
be unconceived as follows: "The observations in question are theory-laden, and the necessary
theory (or set of theories) to conceive of them is itself unconceived." (2019, pp. 3950)
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all the "green-related" propositions. This expansion, however, does not leave
the original probabilities de�ned on F0ext una¤ected. For example, the original
probability of drawing a red ball conditional on IS is equal to 1/3, whereas
the corresponding probability with respect to F1ext is 3/10. This means that
PUA makes the original P a0 entirely obsolete. Hence, the construction of a new
P c0 is the only viable option for DM, if she wishes to accommodate the newly
conceived alternative.
PUA-type instances in economic decision making is abundant. The adoption

of quantitative easing programs by the major central banks, following the Great
Financial Crisis of 2008-09 and the introduction of a negative deposit facility
interest rate by the European Central Bank in 2014, are cases that were not
conceived as possible little time before their occurrence.

5 The Logical Structure of Counterfactual Prob-
abilistic Reasoning

It must have been clear by now that the main normative recommendation of
the present paper is that any speci�c information IS must be processed coun-
terfactually, as outlined by the ICIS strategy. In this section, we analyze the
logical structure of the concept of "information processing" in general, showing
that counterfactual reasoning is in fact the main element of this structure.
Let us assume that DM wishes to analyze the e¤ect of the event I on the

event A, that is to deduce the implications of the information I for the event of
interest A. These implications depend on the "connection" between the events I
and A: Hence, DM is primarily interested in identifying the connection (causal,
statistical or logical) between the event I (the information bearer) and the event
A that she is ultimately interested in. In trying to identify this connection, DM
asks herself the question: "What does it mean for A if I occurs?". Alternatively,
stated in propositional language, the previous question may take the form: "If
the proposition I is true, then is the proposition A true as well?". This means
that the connection between I and A takes the form of the conditional "if I
then A" or "I �! A", where "�!" is a conditional connective (for more on the
exact nature of this connective, see below). In this context, DM has to decide
about her own subjective probability P (I �! A) of the conditional I �! A:
Assume that DM knows that there is a universal law stating that whenever an
event of type I occurs, an event of type A follows. In this case, DM is entitled
to set P (I �! A) equal to unity. In such a case, the connection between I and
A is deterministic or the strength of the connection is complete. Alternatively,
assume that no such universal law exists. Instead, there is a statistical (or
probabilistic) law, stating that whenever an event of type I occurs, an event
of type A usually follows. Moreover, assume that the statistical law is precise
enough to enable quanti�cation of the term "usually". For example, "whenever
an event of type I occurs an event of type A follows in 70 percent of the cases"
(frequency interpretation) or "whenever an event of type I occurs an event of

24



type A has propensity equal to 0.7 to follow" (propensity interpretation). In
this case, DM guided by the Principal Principle, defers to the relevant objective
probability, thus setting P (I �! A) equal to 0.7. Again, DM is entitled to
believe that there is some connection between I and A, which although not
deterministic, is probabilistically strong.
Let us analyze in more detail the structure of the conditional proposition

I �! A: As already mentioned, the interpretation of I �! A in the natural
language takes the form of "if...then". Within the compound proposition I is
not known to be true, even if I �! A were known to be true. Indeed, in order
for DM to deduce the truth of A; apart from the truth of I �! A, she is also
required to know the truth of I: That is, she needs another proposition stating
that I is true: Then, I �! A and I can be conjoined to form the premises of
a valid argument (modus ponens) whose conclusion is the proposition A: This
means that within the context of I �! A; I is not treated as certainty but rather
as contingency, which in turn implies that the investigation of the connection
between I and A structurally involves counterfactual or hypothetical thinking.
In other words, DM�s counterfactual mode of reasoning is mandatory rather than
optional, dictated by the logical structure of the problem at hand. As Evans
et. al. (2007) remarks: "�If� is used to initiate the imagination and simulation
of possibilities, a process that we term hypothetical thinking" (2007, pp. 1772).
In a similar vein, Edgington (1986) emphasizes the hypothetical status of I in
the analysis of I �! A : "It is necessary to suppose (or assume) that some
epistemic possibility is true, and to consider what else would be the case, or
would be likely to be the case, given this supposition. The conditional expresses
the outcome of such thought processes." (1986, pp. 4, emphasis added).
The preceding analysis implies that DM�s problem of identifying the "strength

of the connection" between I and A is reduced to the assessment of her sub-
jective probability P (I �! A) of the conditional I �! A: This in turn raises
the following question: How should DM determine P (I �! A)? To this end,
DM may feel tempted to equate this probability with the conditional probabil-
ity P (A j I) of the consequent A given the antecedent I. Such a disposition
seems to be supported by the so-called Ramsey�s test. Ramsey (1929) suggests
the following rule of evaluating an indicative conditional: "If two people are
arguing �If p will q?� and are both in doubt as to p, they are adding p hypotheti-
cally to their stock of knowledge and arguing on that basis about q:" (1929, pp.
155, emphasis added). Further support for equating P (I �! A) with P (A j I)
is o¤ered by many empirical psychological studies, suggesting that this is in
fact the manner in which most people evaluate the probability of a conditional
proposition. Evans et. al. (2007) summarizes these �ndings as follows (where
their propositions p and q correspond to our I and A; respectively): "They (the
subjects under examination) do this by hypothetically supposing p and then
running a mental simulation in which they evaluate q" (2007, pp. 1772).
However, despite its descriptive validity, the question whether, from a log-

ical point of view, this is the correct way of evaluating the probability of the
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conditional I �! A remains. To put it succinctly, does the equality

P (I �! A) = P (A j I); P (I) > 0 (13)

always hold? That is, does (13) hold for any coherent P and any proposi-
tions I and A in the domain of P? This question has been a central theme in
the "philosophy of the conditionals" literature since the early 1960s, causing
a lot of debate up to the present time. The current consensus seems to sug-
gest that although (13) does not always hold (in fact, it holds only in some
"trivial" cases), a variation of (13) is the most satisfactory account of the logic
of conditionals. This variation, usually referred to as Adams�Thesis (Adams
1965, 1970, 1990), was o¤ered by Adams as a reaction to Lewis�s "triviality
results" (see Lewis 1976). At the heart of Adams� Thesis lies the assump-
tion that the conditional connective "�!" is not truth-functional. This means
that I �! A is not a truth-functional proposition and as such it cannot be
"probability bearer". In other words, P (I �! A) is meaningless just because
I �! A is not a proposition. This however, generates the following question.
If P (I �! A) is meaningless, then what happens to the left-hand side of (13)?
Adams�answer to this question is the following: Although we cannot talk about
the probability of I �! A; that is we cannot talk about the probability that the
proposition I �! A is true, nevertheless we can meaningfully speak about the
assertability As(I �! A) of the conditional I �! A:10 How may As(I �! A)
be interpreted? It is de�nitely not probability, but it is not entirely alien to it.
Although As(�) is not P (�); which immediately means that Lewis�s assumption
(L-i) is relaxed, it nevertheless retains some of the features of P (�): Before, we
discuss the properties of As(�); let us formally state Adams�Thesis:

As(I �! A) = P (A j I); P (I) > 0: (14)

(14) reads as "the assertability of the indicative conditional I �! A always
goes by the conditional probability of the consequent given the antecedent": By
depriving As(�) of the formal properties of P (�); Adams makes (14) immune to
Lewis�s triviality results.
However, so far we have said what As(�) is not, namely that it is not a proper

probability. Now it is time to say what As(�) actually is or at least what As(�)
looks like. Unfortunately, Adams has not given a clear answer to this question.
Hajek (2011) informs us (based on his private communication with Adams) that
what Adams had in mind when he introduced the term was "reasonableness of
belief" rather than "appropriateness of utterance". This means that although
I �! A lacks truth values, it nevertheless has assertabilities (or degrees of
assertability) which, though not formal probabilities, are something similar to
them. It must be emphasized that the right hand-side of (14) continues to
represent formal probabilities, albeit conditional ones. This in turn implies
that DM�s system of beliefs for non-conditional propositions is still represented

10Jackson (1987) suggested that "assertibility" (with an "i") is a better term than "asserta-
bility" (with an "a") and Hayek (2012) proposed the term "acceptability".
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by a coherent subjective probability function. When it comes to conditionals,
however, DM invokes a di¤erent representation of beliefs, namely assertabilities
rather than probabilities. Yet, the values of these assertabilities are determined
- according to Adams�Thesis - by the corresponding conditional probabilities.
As a result, the known properties of the term in the right-hand side of (14) may
illuminate us about the unknown properties of the term in the left-hand side of
this equation (for example, we may deduce that As(I �! A) 2 [0; 1]):
What are the implications of the preceding analysis for the normative status

of the counterfactual strategy ICIS proposed in this paper? The most impor-
tant element of the foregoing discussion is the following: Even if the speci�c
information IS is a certain event (that is an event that has already occurred or
a proposition that is known to be true) at the time of DM�s decision making (in
our framework at t = 1); DM has to counterfactually treat IS as a contingency
rather than an actuality. This is because, DM is not interested in the event
IS per se, but rather in the implications of IS for the event(s) of interest A:
In order to judge these implications, DM has to determine the probability or
the assertability of the conditional IS �! A: By its very logical structure, the
information proposition IS (the antecedent) in the conditional IS �! A is "only
supposed not accepted" (see Arlo-Costa 1999, Raidl 2019). Hence, DM has to
decide about the asertability of IS �! A on the supposition that the truth
value of IS is not yet determined. In the context of Adams�Thesis, this means
that the status of IS in the left-hand side of (14) is hypothetical. An immedi-
ate implication of this is that IS is also hypothetical in the right-hand side of
(14). Hence, the right-hand side of (14) represents a counterfactual conditional
probability.

6 Conclusions

In this paper, we proposed a novel strategy for dealing with ambiguity aversion
(AA) and the resulting Ellsberg-type choices. We �rst identi�ed the presence of
"asymmetric information" as the main cause of ambiguity aversion. In particu-
lar, we have emphasized the fact that in order for DM to exhibit AA, a speci�c
piece of probabilistic information IS ; must be present, which in turn induces
a partition fFk;F 0kg of the relevant space F in DM�s mind. Speci�cally, IS
informs DM about the objective probabilities of Fk only. Hence, DM enters the
cognitive state of comparative ignorance, in which she feels more competent to
bet on events/propositions of Fk than on those of F 0k. This analysis has estab-
lished the following causal chain: The asymmetric information IS causes DM to
feel ignorant of the events in F 0k compared to those in Fk, which in turn triggers
the feeling of ambiguity, thus causing DM to exhibit ambiguity aversion.
Based on the identi�cation of the aforementioned causal chain, we focused

on the modal status of IS and especially on DM�s epistemic attitude towards
it. There, we put forward the idea that the way in which IS is allowed to
a¤ect DM�s probabilistic beliefs depends on whether DM thinks of IS as cer-
tainty or contingency. To this end, we argued that in order for DM to identify
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her true "dispositions to believe", that is her genuine credence function, she
must treat IS not as a validated true proposition (even if it is actually such
one), but rather (counterfactually) as an uncertain one on a par with any other
information proposition that carries (in DM�s own standards) a non zero prob-
ability of being true. This mode of information processing was coined "indirect
counterfactual" way of processing IS ; (symbolized as ICIS ) and constitutes the
main proposal of this paper. ICIS is a two-step procedure: In the �rst step,
DM judges her prior probability function P c0 without the direct in�uence of
IS , whereas in the second step she utilizes IS by conditionalizing on it, using
P c0 as the required vehicle. This means that ICIS combines "the best of both
worlds": it allows DM to exploit the information content of IS , while at the
same time, prevents the process of information extraction to contaminate her
true probabilistic dispositions.
Once comparative ignorance and the associated ambiguity aversion have

been removed, the road towards solving Ellsberg�s paradox is open. In fact,
the solution of Ellsberg�s paradox, produced in this paper, emerges as a direct
application of the proposed counterfactual strategy ICIS to the speci�c choice
problem described by Ellsberg. The fact that such a simple solution of Ellsberg�s
paradox has eluded the large literature on ambiguity aversion is, in and of itself,
another paradox.
A great deal of the paper has been devoted in analyzing the psychological,

methodological and logical merits of ICIS : Is ICIS a procedure that is "tai-
lor made" for solving Ellsberg�s paradox? Or are there any reasons, over and
above its e¢ cacy in solving Ellsberg�s paradox, that make ICIS normatively
appealing? The answers to these questions o¤er an unequivocal support for the
implementation of ICIS not only in the narrow case of Ellsberg�s paradox, but
in any case in which DM attempts to ascertain her probabilistic beliefs in the
presence of both background and speci�c information. The psychological argu-
ments in favor of ICIS have already been spelled out: As Carnap realized more
than seventy years ago, processing IS counterfactually enables DM to identify
her true probabilistic dispositions rather than her whimsical, momentary incli-
nations. Treating IS as one of the many alternative information scenarios that
may come true "in the future", DM brings herself in a neutral psychological state
in which her probabilistic judgments are not a¤ected by either the positive or
the negative emotions that the inevitability of IS is likely to generate.
As far as the methodological advantages of ICIS are concerned, we showed

that ICIS may be employed to solve two of the main complaints about Bayesian
Con�rmation Theory, namely the problems of "error correction" and "uncon-
ceived alternatives". These advantages were unearthed by comparing ICIS with
IAIS ; with the latter being referred to the probabilistic processing of IS in the
case that DM already possesses an actual prior at the time that she learns the
truth of IS . We argued that IAIS does not work in the case that DM realizes
that her actual prior probabilistic assessments were wrong and/or, that an al-
ternative theoretical or empirical proposition was not conceived at the time that
she was forming her actual prior. In such case, DM is advised to answer the
following question: "What would have been my prior, had I known the error
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or had I conceived the alternative?" This type of counterfactual thinking may
drive DM out of her predicament and provide her with a new "corrected" prior,
albeit a counterfactual one.
Finally, we put forward a logical argument for ICIS and especially for the

counterfactual status of the conditional probability that looms in ICIS : This
argument is based on the analysis of the logical structure of the concept of
"information processing". The latter amounts to deriving the implications of the
proposition IS for the proposition of interest A: These implications are captured
by the connection between IS and A, with the latter being summarized by the
conditional IS ! A: The strength of this connection (as evaluated by DM) is
quanti�ed by the subjective probability P (IS ! A), or in a less strict form
by the assertability As(IS ! A): Assuming the soundness of Adams�Thesis,
the assertability of IS ! A is equal to the probability of A conditional on IS :
Given that IS in IS ! A is de�nitely in hypothetical mood, the corresponding
conditional probability P (A j IS); whose nature is determined by the modal
status of IS ; can be no other than a counterfactual one.
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7 Appendix

Proof of Proposition (??):
Let us �rst describe the agent�s epistemic background at t = 0: Denote by

i = (iR; iB ; iY )
0 2 I the 3 � 1 vector that contains the numbers of red, black

and yellow balls in the urn, respectively, where I = fi 2 N3 : 0 � i � 1�90 and
10�i = 90g � N3; and 1 = (1; 1; 1)0 : For convenience, we also de�ne Ika � I; to
be the subset of vectors for which the number of a�colored balls in the urn, is
exactly k; where a 2 fR;B; Y g; and 0 � k � 90.
First of all, the agent has to decide about her prior probabilities of the

hypotheses in H. The agent, having no reason to consider one proposition more
likely than another, adopts the principle of indi¤erence, which for the present
case (in which the number of propositions is �nite) is identical to both Leibnitz�s
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"principle of insu¢ cient reason" and Jaynes�"principle of maximum entropy".
Therefore, she equates equal probabilities among Hi 2 H and in particular,

P c0 (Hi) =
1

4; 186
; i 2 I:

The important thing to notice is that there is no speci�c information at t = 0;
hence there is no informational asymmetry between the hypotheses Hi; i 2 I.
Using the law of total probability, the agent gets:

P c0 (sa) =
X
i2I

P c0 (sa j Hi)P0(Hi):

It is easy to show that, P c0 (sa j Hi) =
k
90 ; if i 2 I

k
a and card(I

k
a) = 91 � k;

8k = 0; :::; 90 and 8a 2 fR;B; Y g. As a result,

P c0 (sa) =
X
i2I

P c0 (sa j Hi)P0(Hi) =

=

90X
k=0

X
i2Ika

P c0 (sa j Hi)P0(Hi) =

=

90X
k=0

k

90
(91� k) 1

4; 186
=
1

3
;8c 2 fR;B; Y g:

Therefore,

P c0 (sR) = P
c
0 (sB) =

1

3
and P c0 (sRY ) = P

c
0 (sBY ) =

2

3
:

Clearly, the agent will be indi¤erent between actions f and g and between
actions f� and g� in the absence of any speci�c information.
At time t = 1 the agent acquires an important piece of speci�c information

for the problem at hand. In particular she is given the information that the
number of red balls in the urn is l, i.e. she �nds out IS = I lR = "the urn
contains l red balls"; where 0 � l � 90. Note that in the standard version of
Ellsberg paradox, l = 30:
Bayesian conditionalization implies that 8a 2 fR;B; Y g:

P1(sa) = P
c
0 (sa j IS) =

X
i2I

P c0 (sa j Hi ^ IS)P c0 (Hi j IS) ; (15)

where

P c0 (sa j Hi ^ IS) =
�
P c0 (sa j Hi); i 2 I lR

0; i =2 I lR
and

P c0 (Hi j IS) =
� 1
91�l ; i 2 I

l
R

0; i =2 I lR
:
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Therefore,

P1(sa) =
X
i2I

P c0 (sa j Hi ^ IS)P c0 (Hi j IS) =
X
i2IlR

P c0 (sa j Hi)
1

91� l ;8a 2 fR;B; Y g:

Clearly,

P1(sR) =
X
i2IlR

P c0 (sR j Hi)
1

91� l =
90�lX
k=0

l

90

1

91� l =
l

90
:

Moreover; P c0 (sB j Hi) =
k
90 ; if i 2 I

l
R \ IkB ; P c0 (sY j Hi) =

k
90 ; if i 2 I

l
R \ IkY

and card(I lR \ IkB) = card(I lR \ IkY ) = 1; 8k = 0; :::; 90� l. As a result,

P1(sa) =
90�lX
k=0

X
i2IlR\Ika

P c0 (sa j Hi)
1

91� l =
90�lX
k=0

k

90

1

91� l =
90� l
180

; a 2 fB; Y g:

Finally,

P1(sR) =
l

90
; P1(sB) =

90� l
180

and P1(sRY ) =
90 + l

180
; P1(sBY ) =

90� l
90

:

From the last equations it follows that P1 de�ned on F is additive (and
therefore adequate).
The previous analysis shows that P1(sB) = P1(sY ) =

90�l
180 ; i.e. the agent,

at time t; is indi¤erent between the propositions for which she has no speci�c
information. A question that naturally arises, is whether this indi¤erence is the
reason why there is no contradiction. To see whether this is the case, we assume
that

P c0 (Hi) = pi;

where pi > 0 and
P

i2I pi = 1: In this case,

P c0 (Hi j IS) =
� piP

j2Il
R
pj
; i 2 I lR

0; i =2 I lR
:

Therefore,

P1(sa) =
90�lX
k=0

X
i2IlR\Ika

P c0 (sa j Hi)P
c
0 (Hi j IS) =

=
90�lX
k=0

k

90

X
i2IlR\Ika

piP
j2IlR

pj
; a 2 fB; Y g:
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As a result,

P1(sR) =
l

90
;

P1(sB) =
90�lX
k=0

k

90

X
i2IlR\IkB

piP
j2IlR

pj
=
E0(sB j IS)

90
and

P1(sRY ) =
l

90
+
90�lX
k=0

k

90

X
i2IlR\IkY

piP
j2IlR

pj
=
l + E0(sY j IS)

90
;

P1(sBY ) =
(90� l)
90

:

Again, P1 de�ned on F is additive (and therefore adequate).
Proof of Proposition (??):
The expected utility of f and g is given by:

Y AX(f) = E(U(f)) = P1(sR)� U(100) + P1(sBY )� U(0)
Y AX(g) = E(U(g)) = P1(sRY )� U(0) + P1(sB)� U(100):

Similarly, the expected utility of f� and g� is given by:

Y AX(f�) = E(U(f�)) = P1(sRY )� U(100) + P1(sB)� U(0)
Y AX(g�) = E(U(g�)) = P1(sR)� U(0) + P1(sBY )� U(100)

We have already proved that, under Laplace�s "principle of indi¤erence",

P1(sR) =
l

90
; P1(sB) =

90� l
180

and P1(sRY ) =
90 + l

180
; P1(sBY ) =

90� l
90

:

Therefore, for any increasing utility function U; an agent will choose f over g
and f� over g� i¤

l > 30:

Similarly, she will choose g over f and g� over f� i¤

l < 30:

Finally, she will be indi¤erent between f and g and between f� and g� i¤

l = 30:

Hence, there is no case under which a paradox emerges.
Similarly, for the general case where

P0(Hi) = pi;
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where pi > 0 and
P

i2I pi = 1; we have proved that

P1(sR) =
l

90
;

P1(sB) =
90�lX
k=0

k

90

X
i2IlR\IkB

piP
j2IlR

pj
=
E0(sB j IS)

90
and

P1(sRY ) =
l

90
+
90�lX
k=0

k

90

X
i2IlR\IkY

piP
j2IlR

pj
=
l + E0(sY j IS)

90
;

P1(sBY ) =
90� l
90

:

Note that P1(sRY ) =
l+E0(sY jIS)

90 = 90�E0(sB jIS)
90 : Again, for any increasing

utility function U; an agent chooses f to g and f� to g� i¤

l > E0(sB j IS):

Similarly, she will choose g to f and g� to f� i¤

l < E0(sB j IS):

Finally, she will be indi¤erent between f and g and between f� and g� i¤

l = E0(sB j IS):

Hence, there is no case under which a paradox emerges, even if the priors are
not formed under the "principle of indi¤erence".
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