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Abstract

The paper attacks the central policy evaluation question of forecasting the

impact of interventions never previously experienced. It introduces treatment

effects approach into a cognitive domain not currently spanned by its methodological

arsenal. Existing causal effects bounding analysis is adjusted to the ex-ante

program evaluation setting. A Monte Carlo experiment is conducted to test

how severe the estimates of the proposed approach deviate from the ”real” causal

effect in the presence of selection and unobserved heterogeneity. The simulation

shows that the approach is valid regarding the formulation of the counterfactual

states given previous knowledge of the program rules and a sufficiently informative

treatment probability. It also demonstrates that the width of the bounds are

resilient to several deviations from the conditional independence assumption.

Keywords : Policy evaluation, forecasting, treatment effects, hypothetical treatment

group, bounding and sensitivity analysis.
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1 Introduction

The objective of the paper is to nonparametrically recover ex-ante causal effects of

interest. It contributes to the econometric program evaluation literature in the following

ways: introducing the treatment effects methodological platform into a problem that

currently lies beyond its spectrum, that is, forecasting the effects of a policy never

previously implemented; making explicit the economic rationale behind the analysis,

which is generally absent in the treatment effects approach; adjusting treatment effects

bounding analysis to ex-ante policy evaluation settings and modeling uncertainty with

respect to both treatment assignment and outcome realization; testing empirically the

ability of the approach to address the evaluation problem, or else to define treatment and

control groups; and conducting sensitivity analysis to test the resilience of the proposed

bounds to different specifications of the model’s uncertainty factors.

Policy evaluation literature is mainly concentrated on estimating causal effects of

programs already being implemented. Concisely, the problem under consideration is

that of evaluating the effect of the exposure of a set of units to a program or policy on

some outcome of interest. Reviews of the program evaluation literature can be found

in Angrist and Krueger (1999), Wooldridge (2002), Imbens (2004), Angrist and Pischke

(2009), Imbens and Wooldridge (2009), and more recently in Athey and Imbens (2017)

and Abadie and Cattaneo (2018). A thorough analysis of the theoretical background is

provided in Heckman and Vytlacil (1999), Heckman et al. (1999), Heckman and Vytlacil

(2007a,b) and Abbring and Heckman (2007).

Ex-ante policy evaluation is part of the more general problem of studying the effects of

policy changes prior to their implementation. In the early discrete choice literature, the

problem was about predicting the demand for a new good, prior to its being introduced

in the market (for one of the earliest applications, see McFadden (1977)). A key question

in the literature is how can the performance, or else the predictive ability of the models

be validated. One of the most common but not always feasible paths is to compare

models’ forecasts of treatment effects to those obtained from randomized experiments.

An early expression of this approach is the study of Moffitt (1979). Other applications
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can be found in Lumsdaine et al. (1992), Lise et al. (2004), Todd and Wolpin (2006),

Attanasio et al. (2012) and more recently in Gechter et al. (2018).

This study is triggered by a key finding emphasized in early papers by Marschak (1953)

and Hurwicz (1966) and in the more recent work of Heckman (2000, 2001), Ichimura and

Taber (2002) and Carneiro et al. (2002); that is, estimating the effect of a new policy

does not necessarily require specifying the complete structure of the model governing

decisions.

The proposed approach can be used for ex-ante policy evaluation in observational

settings. Two methodological tools are employed: microsimulation, to estimate the

effects of the intervention on the distribution of the policy variables, namely the variables

affected by the policy under examination, and matching, to process the simulated data

and address the evaluation problem; that is, identify treatment and control groups in

the pre-treatment period.

Matching methods (Rubin, 1973; Rosenbaum and Rubin, 1983) are developed on the

basis of hypothetical control groups, allowing for causal effects inference when their

outcomes are compared to those of the actual treatment groups. This rationale is hereby

inversed with the introduction of hypothetical treatment groups. This is what justifies

the provocative title of the essay.

Given the extended degrees of uncertainty embedded in the ex-ante nature of the

study, point estimation is highly improbable to produce accuracy. Existing treatment

effects’ bounding analysis is adjusted to take into account uncertainty on both treatment

assignment and outcome realization.

A Monte Carlo experiment is provided to explore the properties of the proposed

approach, to assess, computationally wise, its correctness, and to test if it provides

an estimation that complies with the ”real” treatment effect, given the data generating

process. Put differently, the aim of the experiment is to test empirically the ability of the

approach to address the evaluation problem. Moreover, the resilience of the proposed

bounds is tested through calibration of the model’s uncertainty factors.

What is crucial for the feasibility of the analysis that follows is its ability to identify
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variation in the policy variables. The proposed method is applicable to interventions

the impact of which can be ”translated” in monetary terms. Policies or programs

deprived from quantitative characteristics cannot produce identifiable variation in the

policy variables. The proposed approach is not applicable to this type of cases.

Before proceeding, it should be noted that the terms policy, program and intervention

are used interchangeably throughout the paper.

2 Set-up

The analysis follows a nonparametric representation of the econometric program

evaluation set-up in order to reduce model dependence, avoid functional form

specification and impose weaker identification restrictions.

2.1 The model

The treatment effects approach infers causality ex-post, by comparing the observed

differences in outcomes, Y , given variation in treatment status, T . The collection of

potential responses is Y = {Y (t, q) : t ∈ T , q ∈ Q}, where Y (t, q) denotes the observed

outcome if treatment t were assigned to agent q.

Following Heckman (2001), Heckman and Vytlacil (2007b), and Todd and Wolpin (2008),

we show that causal effect parameters can also be recovered ex-ante, for interventions

never previously implemented. Given the absence of any actually imposed treatment, it

is the variation in the policy variables that allows inference on the expected treatment

effects.

In contrast to the treatment effects’ methodological approach, it is economic theory that

dictates the analytical steps in what follows. Treatment assignment is considered to be

an agent’s choice and the analysis is unfolded in a principal - agent setting. In our case,

the principal is the authority (state, local government etc.) that introduces a new policy,

p ∈ P , never previously implemented, or amends an existing one, and the agents are the
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units (individual, family, household) being affected by the policy. The principal ”offers”

a policy (tax, benefit, subsidy), that induces agents’ participation decisions by changing

their incentives.

The mechanism that affects agents’ incentives can be written as

κ : Q → I

where κ ∈ K defines the rule that maps agents into incentive constraints, I, and I
includes parameters of tax and benefit schedules.

Given the change in incentives induced by the policy, the agents decide upon

their participation (or even their participation level). The mechanism that defines

participation, or else the treatment assignment mechanism can be described by the

rule

σ : Q×K × I → T

where σ ∈ Σ maps the agent q ∈ Q who faces the incentive constraint i ∈ I assigned by

mechanism κ ∈ K into a treatment t ∈ T .

The decision rule for program participation is characterized by a binary choice model

analyzed by Matzkin (2008), where the unobservables enter the utility function in

non-additive ways (for identification of similar models see Matzkin (1992, 1993, 1994)

and Lewbel (2000))

T =

tp′ , if hp′(S,Zp′ , v) > hp(S,Zp, v) for all p′ 6= p

tp, otherwise
(1)

where h is a nonparametric utility function of the two alternatives, the existing policy

regime, p, and the new intervention, p′. Agents choose to participate when their utility

increases, given potential eligibility rules, so that T = tp′ , otherwise the current policy

schedule applies, in which case T = tp. Policies are characterized by a random vector

Z, which includes the policy variables that affect agents’ choice decision. S represents

a vector of agents’ policy invariant observable characteristics, and v, an unobservable

random vector. Note that S can include all the observed elements of the outcome

4



Reverse matching for ex-ante policy evaluation G. Planiteros

equation as well as others unique to the choice equation.

The outcome equations are described by (for identification see Matzkin (2003); Blundell

and Powell (2003); Imbens and Newey (2009))

Ytp′ = µp′(X,Zp′ , ε) (2)

Ytp = µp(X,Zp, ε) (3)

where Ytp is the outcome of the agent under the no-treatment status and Ytp′ the outcome

if the treatment is received (the treatment in this case is the policy under analysis). The

outcome is represented by µ, a non-linear, non-separable function of policy invariant

observables, X, policy variables, Z, and unobservables ε. Note that ε is a random

variable and both the distributions of ε and the function µ are unknown.

The following restrictions are imposed on the choice and outcome equations

Assumption 1. The nonparametric function h belongs to a set of functions that are

continuous in (S,Zp′ , v) and strictly increasing in v. Likewise, µ belongs to a set of

functions that are continuous in (X,Zp′ , ε) and strictly increasing in ε.

Assumption 2. The cumulative distribution function of the policy variable, FZp′ |S,X ,

is absolutely continuous with respect to a Lebesgue measure with a nondegenerate

conditional density f(zp′|s, x).

Assumption 3. The support of the conditional distribution of the policy variable given

the observables, i.e. Supp(FZp′ |S,X) exists, is bounded and finite.

Assumption 4. Sp = S and Xp = X, ∀ p, i.e. S and X are external variables

determined outside the model and invariant to counterfactual manipulations of T .

Assumption 5. The cumulative distribution functions of the unobservables given the

observables and the policy variable, i.e.Fv|S,Zp′
and Fε|X,Zp′

are both strictly increasing.

Assumption 6. The unobservables are distributed independently from the policy

variables conditional on the policy invariant variables, that is, (ε, v) ⊥⊥ Zp′ |S,X.

Assumption 7. The propensity score is defined as E(T |S,Z) = Pt(Z). Moreover,

Pr(T = tp′|S,Z) = Pr({v|hp′(S,Zp′ , v) > hp(S,Zp, v)}), for all p′ 6= p
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Assumption 8. The probability of outcome realization conditional on the treatment

status, the observables and the policy variable is Pr(Ytp′ |X,Zp′ , T = tp′) =

Pr(Ytp′ |Ptp′
(Z), T = tp′).

Assumptions [1] - [4] are critical for identifying the functions h and µ. Matzkin (1994,

2003) establishes that in nonadditive models two different continuous functions should

be restricted to belong to a set of functions so as not to be observationally equivalent.

That is, it should be guaranteed that their corresponding inverse functions are not

strictly increasing transformations of each other [1]. In addition, it is implied that

there is a neighborhood with positive probability, within which each function can attain

different values from the other [2] and [3]. Finally, the observables in both functions

are not affected by the policy, i.e. they are policy invariant [4]. Assumptions [5] and

[6] guarantee that the cumulative distributions of the unobservables, Fv|· and Fε|·, are

identified whenever h and µ are identified. They also guarantee that, controlling for

heterogeneity and selection, variation in h and µ is translated into variation in the values

of T |S,Zp′ and Y |X,Zp′ , respectively. Assumption [7] implies that the conditional choice

probability depends only on the differences between the utilities of the alternatives p

and p′ and it is employed to encounter the evaluation problem. Finally, assumption [8]

ensures that Z|X enters the model through the propensity score Ptp′
(z).

Next, the analytical steps for the generation of the counterfactual states and the

estimation of the expected causal effects are determined.

2.2 The method

The analysis is unfolded in three stages. The first stage considers simulating the

introduction of the new intervention and how the latter transforms the distribution

of the variables that affect agents’ choices. We assume that the new policy, p′, expressed

in terms of the existing policy variables, Zp, can be defined for some agents qj′ ∈ Q,

notationally reduced to j′ from now on, as

Zp′,j′ = Mp′(Zp,j′)
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where Mp′ is assumed to be a known deterministic transformation of Zp, given that the

rules of the new policy belong to the information set of the analyst and that Zp contains

the same list of variables as Zp′ .

The above along with the assumptions imposed on the choice equation imply that

if Zp′,j′ ≥ Zp,j′ ⇒ hp′(S,Zp′,j′ , v) ≥ hp(S,Zp,j′ , v) for all p′ 6= p, then T = tp′

which means that variation in the policy variables determines treatment status. Further

elaborated, the new policy induces changes in the agents’ incentives through its

anticipated impact on the policy variables, which increases agents’ expected utility and

affects their participation decision.

The second stage includes constructing counterfactuals to deal with the evaluation

problem. Let Zp,j denote the policy variables for the agents qj ∈ Q (for all j 6= j′)

who remain unaffected by the treatment and assume common support conditions hold,

so that

Assumption 9. Supp(Zp,j|S) ∩ Supp(Zp′,j′|S) = z 6= ∅

To construct counterfactuals the following rather strong assumption is invoked

Assumption 10. Ptp′
(z) = Pr(T = tp′|Zp′,j′ = z, S)

= Pr(T = tp|Zp,j = z, S) = Ptp(z)

Assumptions [9] and [10] ensure that over the common support of the policy variables,

Z, the treatment probability of the expected-to-be-treated, Ptp′
(z), is equal to that of

those agents that are not eligible to participate but having the same values of Z after the

policy is being implemented. That is, the known conditional probability of treatment is

the same with the estimated one for the non-eligible, for the same values of the policy

variables.

Given the above, potential outcomes are being transformed accordingly

Assumption 11. (Ytp′ ,j′ |X,Zp′,j′ = z, ε)︸ ︷︷ ︸
unobserved

= (Ytp′ ,j′ |X,Mp′(Zp,j′) = z, ε)
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= (Ytp,j|X,Zp,j = z, ε) = (Ytp,j|X,Ptp(z), ε)︸ ︷︷ ︸
observed

Hence, the after-policy response is assumed to be equal to the historical outcome at the

after-policy level.

Assumptions [9] - [11] together with the identification assumptions [1] - [8] allow the

outcome equations to be written as

Ytp′ = µp′(X,Zp′ , ε) = Ytp,j|X,Ptp(z), ε

Ytp = µp(X,Zp, ε) = Ytp,j′ |X,Ptp′
(z), ε

The transformation implies that the potential outcome for the hypothetical treatment

group is assumed to be equal to that of the expected non-to-be-treated agents, Ytp,j,

whereas the potential outcome for the control group is assumed to be equal to that of the

expected participants, Ytp,j′ , given the conditional choice probability at the after-policy

level.

This takes us to the third stage which deals with the estimation of the treatment effects

of interest. For example, the Average Treatment Effect (ATE) can be written as

ATE(tp′ , q|X,Z, ε) = E(Ytp,j|X,Z, ε)− E(Ytp,j′|X,Z, ε)

= E(Ytp,j|X,Zp,j, ε)− E(Ytp,j′|X,Zp′,j′ , ε)

= E(Ytp,j|X,Ptp(z), ε)− E(Ytp,j′|X,Ptp′
(z), ε)

Table 1 summarizes the three stages of the analysis.

2.3 The bounds

In the ex-ante policy evaluation setting neither treatment assignment nor outcome

realization are actually observed. Given the above and taking as a starting point

the general bounds of Manski (1989), Heckman and Vytlacil (1999) and Heckman and

Vytlacil (2001), bounding analysis is adjusted to settings where treatment effects can

8



Reverse matching for ex-ante policy evaluation G. Planiteros

Table 1: The three-stage analysis for ex-ante policy evaluation

Stages Assumptions

Simulation Zp′,j′ = Mp′(Zp,j′)
Counterfactuals (i) Supp(Zp,j|S) ∩ Supp(Zp′,j′ |S) = z 6= ∅;

(ii) Ptp′
(z) = Ptp(z); (iii) (Ytp′ ,j′ |X,Zp′,j′ = z, ε) = (Ytp,j|X,Ptp(z), ε)

Estimation ATE(tp′ , q|X,Z, ε) = E(Ytp,j|X,Zp,j, ε)− E(Ytp,j′|X,Zp′,j′ , ε)

Note: Ex-ante policy evaluation can be analyzed in three stages: (i) Simulation of the policy
variables’ distribution; (ii) Construction of the counterfactuals, given that common support
conditions hold, (iii) Estimation of the treatment effect of interest.

be recovered ex-ante; the bounds are defined by taking into account both sources of

uncertainty.

The more general case where both treatment and outcome variables are continuous is

examined. The results can be easily transformed into the binary case. A detailed proof of

the analysis is provided in Appendix A. The resulting bounds on E(Ytp′ ,q−Ytp,q|X,Zp′ , ε)

are BL ≤ E(Ytp′ ,q − Ytp,q|·) ≤ BU where

BL = psupt psupy [E(Ytp′ |·)] + (1− psupt psupy )yl − (1− pinft pinfy )[E(Ytp |·)]− p
inf
t pinfy yu,

BU = psupt psupy [E(Ytp′ |·)] + (1− psupt psupy )yu − (1− pinft pinfy )[E(Ytp |·)]− p
inf
t pinfy yl

The width of the bounds is

W = BU −BL =
(

(1− psupt psupy ) + (pinft pinfy )
)(
yu − yl

)
and does not necessarily include zero.

The width of the bounds is determined to a great extent by the magnitude of pt and

py. The former denotes the value at which the participation probability, Pt(Z) =

Pr(T = tp′|S,Zp′), is evaluated, whereas the latter is the value of the outcome realization

probability, Py(Z) = Pr(Y = Ytp′ |X,Zp′ , T = tp′).
1 Intuitively, the case where pt = 1

is that of full compliance with the treatment assignment mechanism; all eligible agents

1The outcome realization probability can be interpreted as the prognostic score of outcome. For a
thoroghough analysis see Hansen (2008).
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choose to participate in the program. Given the above limiting case, when in addition

py = 1, i.e. the probability that the realized outcome in the after policy period is

identical to the ex-ante estimated one equals to 1, which implies that the unobserved

characteristics between the two groups are alike, the above bounds are reduced to the

point estimation of ATE. The width is also determined by the deviation between yu and

yl, the greatest and least element of the outcome variable, respectively.

The added value of the proposed bounding analysis is that it decomposes the stochastic

elements of the model, allowing for different weights’ assignment to different types of

decisions. Furthermore, it can be used to examine the sensitivity of the estimation to

different values of the unobserved factors, accounting for ranging magnitude and opposite

direction effects.

3 The experiment

Monte Carlo simulation is used to assess the validity of the approach in addressing

the evaluation problem and its resilience to different deviations from the conditional

independence assumption. The experimental setting mimics the introduction of a cash

transfer conditional on an income threshold and the number of children in the family, and

examines its effect on some behavioral response of interest. For simplicity, we disregard

any potential policies’ cross effects.

In the context of the simulation exercise it is not feasible to assume a nonparametric

outcome representation. Assuming that the common support condition holds, this does

not affect the essence of the approach.

3.1 Data-generating process and simulated cases

The data-generating process (DGP) is described by the following set of equations

Zp′ = Mp′(Zp) = Zp + 3K if T = tp′ , Zp otherwise (4)
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T = tp′ ≡ hp′(S,Zp′ , v) = 1[S(X,K ≥ 1), Zp ≤ 6, v] (5)

T = tp ≡ hp(S,Zp′ , v) = 1[S(X,K), Zp′|T = tp′ , v] (6)

Ytp′ = 0.3 + 0.4Zp′ + 0.4X + e1 (7)

Ytp = 0.1 + 0.2Zp′ + 0.3X + e0 (8)

Equation 4 represents the deterministic transformation of the policy variable given

program rules: participants increase their income, Zp, by 3 units times the number

of kids, K, in the family. Equations 5 and 6 represent the main idea behind the

proposed approach, or else how the evaluation problem is addressed. Equation 5 denotes

participation for those agents that according to the program rules are eligible and

expected to participate in the program; that is, families with children and income below

a specified threshold (Zp ≤ 6). Equation 6 represents the hypothetical treatment group.

The latter consists of families whose income is at the same level with that of the first

group after the simulation of the policy intervention. The outcome equations, 7 and 8

are chosen arbitrarily and constitute slightly modified versions of those used in Cerulli

(2014). They are characterized by additive separability in variables and errors.

Population values of X generated as independent draws from a chi-squared distribution

as X ∼ χ2(3)+2. Population values of K generated as independent draws from a Poisson

distribution as K ∼ Pois(2). Population values of the policy variable generated as

independent draws from a left truncated at zero normal distrobution as Zp ∼ trN(6, 4).

Finally, the error terms in the choice and outcome equations are distributed as v ∼
Unif[0, 1], e0 ∼ N(0, 3), and e1 ∼ N(0, 6.5).

The DGP is simulated 1.000 times and a sample size of 5.000 units is used. Each

simulation provides an estimation of the ATE and the Average Treatment Effect on the

Treated (ATET).

The severity and type of potential bias is investigated through the simulation of

six different cases. Case 1a assumes full compliance with the treatment assignment

mechanism and unobservable homogeneity, such that Y ⊥⊥ T |X,Zp′ , e and ρv,e0 =

0, ρv,e1 = 0, ρe0,e1 = 0. Case 1b is same as 1a but K ∼ Pois(1) and is exposed
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to illustrate the relationship between the strength of the instrument and the value of

the propensity score and consequently between the strength of the instrument and the

width of the bounds. While preserving the assumption of unobservable homogeneity,

in case 2a the assumption of full treatment compliance is dropped, so that T = tp ≡
1[S(X,K), Z∗p′|T = tp′ , v], where Z∗p′ = (i∗v)∗Zp′ , i = 2, ρv,e0 = 0.5, ρv,e1 = 0.3, ρe0,e1 =

0, and v ∼ Unif[], e ∼ N(). ”Endogeneity” invades the model through an unobservable

term v that affects the policy variable and is correlated with the outcome equations’

error terms.2 Case 2b is same as 2a but for trivariate normality of the error terms, so

that v ∼ N(0,1) and e ∼ N(). In case 3a, heterogeneity also enters the model through

an unobservable term u that affects the ”endogenous” policy variable solely through the

outcome equation, so that Z∗∗p′ = Z∗p′ + i ∗u = (i ∗ v) ∗Zp′ + i ∗u, where i = 1, u ∼ χ2(3),

e∗ = e + u, and correlation between the unobservables is the same as in 2a and 2b.

Finally, case 3b is same as 3a but i = 2. The latter case increases the magnitude of

unobservable heterogeneity that is present in the model and consequently the potential

for bias

3.2 Results

Tables 2 and 3 in Appendix B provide detailed results on the simulated ATE and ATET

respectively, as well as on the mean standard errors (columns 2 and 3). They also

demonstrate the proportional bias of the point estimates for cases 2 and 3 when compared

to the baseline (column 4). Finally, they report the constructed upper and lower

bounds for cases 1a and 1b (columns 5 and 6). The reported bounds are constructed

by estimating the propensity score, E(T |S, Z) = Pt(Z), and evaluating psupt and pinft

according to the treatment status, at the maximum value of the treatment probability

for the expected-to-be-treated and at the minimum for the non-eligible, respectively;

2Given the ex-ante nature of the experiment we cannot actually detect or correct for the presence
of treatment endogeneity. Yet, its consequences on the composition of the hypothetical treatment and
control groups approximate the distortions produced by Type I - Type II errors in statistical hypotheis
testing. The distribution of participants is composed not only by eligible participants but also by units
that do not participate in the program while eligible (Type I error - false positives) and by units that
participate in the program while not eligible (Type II error - false negatives). Different specifications of
the error terms’ distribution and the degree of their correlation changes the composition of participants
in comparison to the baseline case and allows for testing the resilience of the approach.
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that is, psupt = max{Pr(T |T = tp′)} and pinft = min{Pr(T |T = tp)}. At this point, it

is also assumed that py = 1, i.e. that the after policy response is equal to the historical

outcome at the after policy level.

When calculated by hand and evaluated at the means of the variables included in the

model, the ATE is 2.50. The simulated ATE in the baseline case, 1a, is quite close,

at 2.59. The ATET in the baseline case is 2.48. In 1b, K preserves the type of the

distribution but not its shape. K’s probability mass function is concentrated around

unity, increasing the range of the estimated participation probability and narrowing the

width of the bounds in comparison to 1a. This comes to verify the anticipated inverse

relationship between the range of values of the treatment probability and the width of

the bounds. When treatment ”endogeneity” is introduced in the model, the constructed

bounds for both ATE and ATET in cases 2a and 2b are proven resilient and informative

The existence of unobservable heterogeneity, along with treatment ”endogeneity”, in

cases 3a and 3b, increases further the bias of the estimates and questions the resilience

of the bounds. It is worth noting that the standard error means in all cases are very

close to the standard deviations of the estimators. This means that, in the context of the

simulation exercise, the asymptotic distribution of the ATE and ATET approximates

their finite-sample distribution well.

Next, sensitivity analysis is used to examine the extent to which uncertainty affects

the model. Different values are assigned to the bearers of uncertainty, pt and py,

and their impact on the width of the bounds is assessed. In contrast to the previous

analysis and the way the bounds were constructed, uncertainty is introduced in the

outcome realization as well. Put differently, py captures various specifications of the

probability the realized outcome in the after policy period to be identical to the ex-ante

estimated one. Similarly, the different values assigned on the propensity score represent

corresponding deviations from the baseline treatment probability estimate. The outcome

of the analysis is presented in detail in Appendix C. Tables 4 and 6 provide the results

of the sensitivity analysis for the ATE and ATET lower bound whereas tables 5 and

7 those for the upper bound respectively. We restrict analysis within a specific range

of values, that is, the product (psupt psupy ) takes values between 1 and 0.9 whereas the

product (pinft pinfy ) between 0 and 0.1.
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4 Discussion - Concluding remarks

The paper complements the discussion on ex-ante recovering causal effects of a policy

intervention under a nonparametric technique, namely without relying on functional

form or distributional assumptions. This does not mean that the proposed approach

proceeds without any restrictions; on the contrary, some of the latter are rather strong.

The decision on the method to be followed lies on the plausibility assessment of the

assumptions invoked. The underlying perception is that prior knowledge of functional

forms or distributions is rare and the consequences of parametric misspecification are

serious and difficult to mitigate.

Reverse matching provides a natural way to conduct ex-ante policy evaluation. To

overcome the impossibility to observe the composition of the actual treatment group in

the pre-treatment period, a hypothetical treatment group needs to be constructed. A

simulation experiment explores how severe the model estimates deviate from the ”real”

causal effect under different variations of selection and unobserved heterogeneity. The

experiment shows that: (i) The approach can be valid regarding the formulation of

the treatment and control groups given previous knowledge of the program rules and

a sufficiently informative propensity score; (ii) Not surprisingly, the overall resilience

of the bounds depends on the magnitude of the correlation between the unobservables

in the choice and in the outcome equation. When both selection and unobservable

heterogeneity are present, the estimated treatment effects reach the extreme values of

the bounds; (iii) Finally, sensitivity analysis based on assigning different values on the

uncertainty parameters of the choice and outcome equations can provide a useful insight

on the scale of deviation from the point estimation and the corresponding change in the

width of the bounds.

It is worth mentioning that the results of the experiment are not indicative of the

predictive ability of the model. The latter depends on the degree of coincidence of the

actual participants’ distribution with that predicted by the chosen selection mechanism

and on the realization of outcomes in the after-policy period. The predictive ability can

be empirically tested by comparing the models’ estimates with the ex-post evaluated
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results of the policy under analysis; this validity test constitutes breeding grounds for

future analysis.
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A Bounds for ex-ante treatment effects

We can express the expected outcome after the policy intervention, E(Ytp′ ), in

probabilistic terms as follows (for notational simplicity, we keep q implicit)

E
[
TY |S = s,X = x, Z = z

]
= E

[
Ytp′ |Pt(Z) = pv, T = 1, Py(Z) = pε, Y = Ytp′

]
p(v, ε)

= E
[
Ytp′ |Pt(Z) = pv, hp′(s, zp′ , v) > hp(s, zp, v),

Py(Z) = pε, Ytp′ = µp′(x, zp′ , ε) ≥ ε
]
pvpε|v

= E
[
Ytp′ |Pt(Z) = pv, Pt(Z) ≥ v,

Py(Z) = pε, Py(Z) ≥ ε)
]
pvpε|v

= E
[
Ytp′ |pv ≥ v, pε ≥ ε

]
pvpε|v

=

∫ pε|v

0

∫ pv

0

E
[
Ytp′ |V = v, E = ε

]
dFv|S=s,Z=z(pv)dFε|T=1,X=x,Z=z(pε|v)

where we use the fact that the cumulative distribution functions of the unobservables v

and ε are identified when the unknown functions h and µ, respectively, are identified.

The double integral on E(Ytp′ ) provides no information on the distribution of

(T, Y, S,X, Z) regarding the ”counterfactual” probabilities∫ pε|v

0

∫ 1

pv

E(Ytp′ |·)dFv|S,Z(·)dFε|T,X,Z(·)

∫ 1

pε|v

∫ pv

0

E(Ytp′ |·)dFv|S,Z(·)dFε|T,X,Z(·)

∫ 1

pε|v

∫ 1

pv

E(Ytp′ |·)dFv|S,Z(·)dFε|T,X,Z(·)

Assuming that the outcomes are bounded within a specific interval as [BL, BU ] = [yl, yu]

and that we can evaluate the double integral on E(Ytp′ ) at pv = p
sup(s,z)
t and pε|v =
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p
sup(x,z)
y the above expressions can be bounded as

psupy (1− psupt )yl ≤
∫ psupy

0

∫ 1

psupt

E(Ytp′ |·)dFv|S,Z(·)dFε|X,Z(·) ≤ psupy (1− psupt )yu

(1− psupy )psupt yl ≤
∫ 1

psupy

∫ psupt

0

E(Ytp′ |·)dFv|S,Z(·)dFε|X,Z(·) ≤ (1− psupy )psupt yu

(1− psupy )(1− psupt )yl ≤
∫ 1

psupy

∫ 1

psupt

E(Ytp′ |·)dFv|S,Z(·)dFε|X,Z(·) ≤ (1− psupy )(1− psupt )yu

Following the same pattern, the expected outcome for the control group, E(Ytp), can be

expressed as

E[(1− T )Y |S = s,X = x, Z = z] =∫ 1

pε

∫ 1

pv

E[Ytp |V = v, E = ε]dFv|S=s,Z=z(pv)dFε|X=x,Z=z(pε)

which can be bounded accordingly as

(1− pinfy )pinft yl ≤
∫ 1

pinf
y

∫ pinf
t

0

E(Ytp |·)dFv|S(·)dFε|X(·) ≤ (1− pinfy )pinft yu

pinfy (1− pinft )yl ≤
∫ pinf

y

0

∫ 1

pinf
t

E(Ytp |·)dFv|S(·)dFε|X(·) ≤ pinfy (1− pinft )yu

pinft pinfy yl ≤
∫ pinf

y

0

∫ pinf
t

0

E(Ytp|·)dFv|S(·)dFε|X(·) ≤ pinft pinfy yu

Thus E(Ytp′ − Ytp |S,X,Z) can be bounded as BL ≤ E(Ytp′ − Ytp|·) ≤ BU where

BL = psupt psupy [E(Ytp′ |·)] + (1− psupt psupy )yl − (1− pinft pinfy )[E(Ytp|·)]− p
inf
t pinfy yu,

BU = psupt psupy [E(Ytp′ |·)] + (1− psupt psupy )yu − (1− pinft pinfy )[E(Ytp |·)]− p
inf
t pinfy yl
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and the width of the bounds is

(
(1− psupt psupy ) + (pinft pinfy )

)(
yu − yl

)
and does not necessarily include zero. Heckman and Vytlacil (2001) show that the

bounds on the ATE given a nonparametric selection model are tight.

B Monte Carlo simulation output

Table 2: Monte Carlo simulation output: ATE

Mean Mean SE Bias LB UB

1a 2.59 0.23 - 1.12 3.39
(0.24) (0.06) (0.31) (0.29)

1b 2.37 0.35 - 1.69 2.92
(0.41) (0.20) (0.43) (0.44)

2a 2.68 0.25 0.03 - -
(0.25) (0.07) (0.10)

2b 2.22 0.30 −0.14 - -
(0.33) (0.12) (0.13)

3a 2.95 0.19 0.14 - -
(0.17) (0.02) (0.06)

3b 4.25 0.17 0.64 - -
(0.15) (0.01) (0.06)

Note: The table provides the results on the simulated ATE and on the mean standard errors
(columns 2 and 3). It also demonstrates the proportional bias of the point estimates of cases
2 and 3 when compared to 1a, which serves as the baseline (column 4). Finally, it reports the
constructed lower and upper bounds for cases 1a and 1b (columns 5 and 6). The ATE when
calculated by hand and evaluated at the means of the variables, given the DGP, is 2.50. The
reported bounds are constructed by assuming pt = Pr(T = tp′ |·), i.e. uncertainty in the choice
equation equals the treatment probability and py = 1, i.e. the after policy response is equal to
the historical outcome at the after policy level.

22



Reverse matching for ex-ante policy evaluation G. Planiteros

Table 3: Monte Carlo simulation output: ATET

Mean Mean SE Bias LB UB

1a 2.48 0.16 - 1.01 3.27
(0.16) (0.01) (0.26) (0.23)

1b 2.39 0.16 - 1.70 2.93
(0.16) (0.01) (0.23) (0.26)

2a 2.63 0.17 0.06 - -
(0.13) (0.01) (0.05)

2b 2.12 0.17 −0.14 - -
(0.15) (0.01) (0.06)

3a 2.91 0.18 0.18 - -
(0.15) (0.01) (0.06)

3b 4.07 0.17 0.64 - -
(0.14) (0.01) (0.06)

Note: The table provides the results on the simulated ATET and on the mean standard errors
(columns 2 and 3). It also demonstrates the proportional bias of the point estimates of cases
2 and 3 when compared to 1a, which serves as the baseline (column 4). Finally, it reports the
constructed lower and upper bounds for cases 1a and 1b (columns 5 and 6) and their bias, i.e.
how much do they proportionally deviate from the respective point estimate (columns 7 and
8). The reported bounds are constructed by assuming pt = Pr(T = tp′ |·), i.e. uncertainty in
the choice equation equals the treatment probability and py = 1, i.e. the after policy response
is equal to the historical outcome at the after policy level.

23



Reverse matching for ex-ante policy evaluation G. Planiteros

C
B

o
u
n
d
s

fo
r

th
e

si
m

u
la

te
d

tr
e
a
tm

e
n
t

e
ff

e
ct

s

T
ab

le
4:

S
e
n
si
ti
v
it
y
A
n
a
ly
si
s:

A
T
E

L
o
w
e
r
B
o
u
n
d

(C
a
se

1
a
)

(p
in

f
t

p
in

f
y

)

0.
00

0.
01

0.
0
2

0.
0
3

0.
0
4

0.
0
5

0.
0
6

0.
0
7

0.
0
8

0.
0
9

0.
1
0

1
.0

0
2.

59
2.

50
2.

4
1

2.
3
2

2.
2
3

2.
1
4

2.
0
6

1.
9
7

1.
8
8

1.
7
9

1.
7
0

(0
.0

0)
(−

0.
39

)
(−

0
.7

7
)

(−
1.

1
6
)

(−
1
.5

4
)

(−
1.

9
3
)

(−
2.

3
1
)

(−
2.

7
0
)

(−
3.

0
9
)

(−
3
.4

7
)

(−
3.

8
6
)

0.
99

2.
53

2.
44

2.
3
5

2.
2
6

2.
1
7

2.
0
8

1.
9
9

1.
9
0

1.
8
1

1.
7
3

1.
6
4

(−
0.

27
)

(−
0.

65
)

(−
1
.0

4
)

(−
1.

4
2
)

(−
1
.8

1
)

(−
2.

2
0
)

(−
2.

5
8
)

(−
2.

9
7
)

(−
3.

3
5
)

(−
3
.7

4
)

(−
4.

1
2
)

0.
98

2.
47

2.
38

2.
2
9

2.
2
0

2.
1
1

2.
0
2

1.
9
3

1.
8
4

1.
7
5

1.
6
6

1.
5
7

(−
0.

54
)

(−
0.

92
)

(−
1
.3

1
)

(−
1.

6
9
)

(−
2
.0

8
)

(−
2.

4
6
)

(−
2.

8
5
)

(−
3.

2
4
)

(−
3.

6
2
)

(−
4
.0

1
)

(−
4.

3
9
)

0.
97

2.
41

2.
32

2.
2
3

2.
1
4

2.
0
5

1.
9
6

1.
8
7

1.
7
8

1.
6
9

1.
6
0

1.
5
1

(−
0.

80
)

(−
1.

19
)

(−
1
.5

7
)

(−
1.

9
6
)

(−
2
.3

5
)

(−
2.

7
3
)

(−
3.

1
2
)

(−
3.

5
0
)

(−
3.

8
9
)

(−
4
.2

7
)

(−
4.

6
6
)

0.
96

2.
34

2.
25

2.
1
6

2.
0
8

1.
9
9

1.
9
0

1.
8
1

1.
7
2

1.
6
3

1.
5
4

1.
4
5

(−
1.

07
)

(−
1.

46
)

(−
1
.8

4
)

(−
2.

2
3
)

(−
2
.6

1
)

(−
3.

0
0
)

(−
3.

3
9
)

(−
3.

7
7
)

(−
4.

1
6
)

(−
4
.5

4
)

(−
4.

9
3
)

(p
sup
tp

sup
y)

0
.9

5
2.

28
2.

19
2.

1
0

2.
0
1

1.
9
2

1.
8
3

1.
7
5

1.
6
6

1.
5
7

1.
4
8

1.
3
9

(−
1.

34
)

(−
1.

72
)

(−
2
.1

1
)

(−
2.

5
0
)

(−
2
.8

8
)

(−
3.

2
7
)

(−
3.

6
5
)

(−
4.

0
4
)

(−
4.

4
2
)

(−
4
.8

1
)

(−
5.

2
0
)

0.
94

2.
22

2.
13

2.
0
4

1.
9
5

1.
8
6

1.
7
7

1.
6
8

1.
5
9

1.
5
0

1.
4
2

1.
3
3

(−
1.

61
)

(−
1.

99
)

(−
2
.3

8
)

(−
2.

7
6
)

(−
3
.1

5
)

(−
3.

5
3
)

(−
3.

9
2
)

(−
4.

3
1
)

(−
4.

6
9
)

(−
5
.0

8
)

(−
5.

4
6
)

0.
93

2.
16

2.
07

1.
9
8

1.
8
9

1.
8
0

1.
7
1

1.
6
2

1.
5
3

1.
4
4

1.
3
5

1.
2
6

(−
1.

87
)

(−
2.

26
)

(−
2
.6

5
)

(−
3.

0
3
)

(−
3
.4

2
)

(−
3.

8
0
)

(−
4.

1
9
)

(−
4.

5
7
)

(−
4.

9
6
)

(−
5
.3

5
)

(−
5.

7
3
)

0.
92

2.
10

2.
01

1.
9
2

1.
8
3

1.
7
4

1.
6
5

1.
5
6

1.
4
7

1.
3
8

1.
2
9

1.
2
0

(−
2.

14
)

(−
2.

53
)

(−
2
.9

1
)

(−
3.

3
0
)

(−
3
.6

8
)

(−
4.

0
7
)

(−
4.

4
6
)

(−
4.

8
4
)

(−
5.

2
3
)

(−
5
.6

1
)

(−
6.

0
0
)

0.
91

2.
03

1.
94

1.
8
5

1.
7
7

1.
6
8

1.
5
9

1.
5
0

1.
4
1

1.
3
2

1.
2
3

1.
1
4

(−
2.

41
)

(−
2.

80
)

(−
3
.1

8
)

(−
3.

5
7
)

(−
3
.9

5
)

(−
4.

3
4
)

(−
4.

7
2
)

(−
5.

1
1
)

(−
5.

5
0
)

(−
5
.8

8
)

(−
6.

2
7
)

0.
90

1.
97

1.
88

1.
7
9

1.
7
0

1.
6
1

1.
5
2

1.
4
4

1.
3
5

1.
2
6

1.
1
7

1.
0
8

(−
2.

68
)

(−
3.

06
)

(−
3
.4

5
)

(−
3.

8
3
)

(−
4
.2

2
)

(−
4.

6
1
)

(−
4.

9
9
)

(−
5.

3
8
)

(−
5.

7
6
)

(−
6
.1

5
)

(−
6.

5
3
)

N
o
te

:
T

h
e

ta
b

le
p

ro
v
id

es
th

e
re

su
lt

s
o
f

th
e

se
n

si
ti

v
it

y
a
n

a
ly

si
s

fo
r

th
e

A
T

E
lo

w
er

b
o
u

n
d

in
th

e
b

a
se

li
n

e
ca

se
.

A
n

a
ly

si
s

is
re

st
ri

ct
ed

w
it

h
in

a
sp

ec
ifi

c
ra

n
g
e

o
f

va
lu

es
fo

r
th

e
u

n
ce

rt
a
in

ty
p

a
ra

m
et

er
s,
p
t

a
n

d
p
y
;

th
a
t

is
,

th
e

p
ro

d
u

ct
(p

s
u
p

t
p
s
u
p

y
)

ta
ke

s
va

lu
es

b
et

w
ee

n
1

an
d

0.
9

w
h

er
ea

s
th

e
p

ro
d

u
ct

(p
in

f
t

p
in

f
y

)
b

et
w

ee
n

0
a
n

d
0
.1

.
T

h
e

u
p

p
er

-l
ef

t
ca

se
,
w

h
er

e
(p

s
u
p

t
p
s
u
p

y
)

ge
ts

it
s

la
rg

es
t

va
lu

e
w

h
il

e
(p

in
f

t
p
in

f
y

)
it

s
lo

w
es

t,
is

th
a
t

o
f

n
o

u
n

ce
rt

a
in

ty
.

T
h

e
b

o
u

n
d

is
re

d
u

ce
d

to
th

e
b

a
se

li
n

e
p

o
in

t
es

ti
m

at
e.

24



Reverse matching for ex-ante policy evaluation G. Planiteros

T
ab

le
5:

S
e
n
si
ti
v
it
y
A
n
a
ly
si
s:

A
T
E

U
p
p
e
r
B
o
u
n
d

(C
a
se

1
a
)

(p
in

f
t

p
in

f
y

)

0.
00

0.
01

0.
0
2

0.
0
3

0.
0
4

0.
0
5

0.
0
6

0.
0
7

0.
0
8

0.
0
9

0.
1
0

1
.0

0
2.

59
2.

63
2.

6
6

2.
7
0

2.
7
4

2.
7
7

2.
8
1

2.
8
4

2.
8
8

2.
9
2

2.
9
5

(0
.0

0)
(0
.1

6)
(0
.3

1
)

(0
.4

7
)

(0
.6

2
)

(0
.7

8
)

(0
.9

4
)

(1
.0

9
)

(1
.2

5
)

(1
.4

0
)

(1
.5

6
)

0
.9

9
2.

66
2.

69
2.

7
3

2.
7
6

2.
8
0

2.
8
4

2.
8
7

2.
9
1

2.
9
4

2.
9
8

3.
0
2

(0
.2

7)
(0
.4

3)
(0
.5

9
)

(0
.7

4
)

(0
.9

0
)

(1
.0

5
)

(1
.2

1
)

(1
.3

7
)

(1
.5

2
)

(1
.6

8
)

(1
.8

3
)

0
.9

8
2.

72
2.

75
2.

7
9

2.
8
3

2.
8
6

2.
9
0

2.
9
4

2.
9
7

3.
0
1

3.
0
4

3.
0
8

(0
.5

5)
(0
.7

0)
(0
.8

6
)

(1
.0

2
)

(1
.1

7
)

(1
.3

3
)

(1
.4

8
)

(1
.6

4
)

(1
.7

9
)

(1
.9

5
)

(2
.1

1
)

0
.9

7
2.

78
2.

82
2.

8
5

2.
8
9

2.
9
3

2.
9
6

3.
0
0

3.
0
3

3.
0
7

3.
1
1

3.
1
4

(0
.8

2)
(0
.9

8)
(1
.1

3
)

(1
.2

9
)

(1
.4

5
)

(1
.6

0
)

(1
.7

6
)

(1
.9

1
)

(2
.0

7
)

(2
.2

2
)

(2
.3

8
)

0
.9

6
2.

85
2.

88
2.

9
2

2.
9
5

2.
9
9

3.
0
3

3.
0
6

3.
1
0

3.
1
3

3.
1
7

3.
2
1

(1
.1

0)
(1
.2

5)
(1
.4

1
)

(1
.5

6
)

(1
.7

2
)

(1
.8

7
)

(2
.0

3
)

(2
.1

9
)

(2
.3

4
)

(2
.5

0
)

(2
.6

5
)

(p
sup
tp

sup
y)

0
.9

5
2.

91
2.

94
2.

9
8

3.
0
2

3.
0
5

3.
0
9

3.
1
3

3.
1
6

3.
2
0

3.
2
3

3.
2
7

(1
.3

7)
(1
.5

2)
(1
.6

8
)

(1
.8

4
)

(1
.9

9
)

(2
.1

5
)

(2
.3

0
)

(2
.4

6
)

(2
.6

2
)

(2
.7

7
)

(2
.9

3
)

0
.9

4
2.

97
3.

01
3.

0
4

3.
0
8

3.
1
2

3.
1
5

3.
1
9

3.
2
3

3.
2
6

3.
3
0

3.
3
3

(1
.6

4)
(1
.8

0)
(1
.9

5
)

(2
.1

1
)

(2
.2

7
)

(2
.4

2
)

(2
.5

8
)

(2
.7

3
)

(2
.8

9
)

(3
.0

5
)

(3
.2

0
)

0
.9

3
3.

04
3.

07
3.

1
1

3.
1
4

3.
1
8

3.
2
2

3.
2
5

3.
2
9

3.
3
2

3.
3
6

3.
4
0

(1
.9

2)
(2
.0

7)
(2
.2

3
)

(2
.3

8
)

(2
.5

4
)

(2
.7

0
)

(2
.8

5
)

(3
.0

1
)

(3
.1

6
)

(3
.3

2
)

(3
.4

8
)

0
.9

2
3.

10
3.

14
3.

1
7

3.
2
1

3.
2
4

3.
2
8

3.
3
2

3.
3
5

3.
3
9

3.
4
2

3.
4
6

(2
.1

9)
(2
.3

5)
(2
.5

0
)

(2
.6

6
)

(2
.8

1
)

(2
.9

7
)

(3
.1

3
)

(3
.2

8
)

(3
.4

4
)

(3
.5

9
)

(3
.7

5
)

0
.9

1
3.

16
3.

20
3.

2
3

3.
2
7

3.
3
1

3.
3
4

3.
3
8

3.
4
2

3.
4
5

3.
4
9

3.
5
2

(2
.4

6)
(2
.6

2)
(2
.7

8
)

(2
.9

3
)

(3
.0

9
)

(3
.2

4
)

(3
.4

0
)

(3
.5

6
)

(3
.7

1
)

(3
.8

7
)

(4
.0

2
)

0
.9

0
3.

23
3.

26
3.

3
0

3.
3
3

3.
3
7

3.
4
1

3.
4
4

3.
4
8

3.
5
1

3.
5
5

3.
5
9

(2
.7

4)
(2
.8

9)
(3
.0

5
)

(3
.2

1
)

(3
.3

6
)

(3
.5

2
)

(3
.6

7
)

(3
.8

3
)

(3
.9

9
)

(4
.1

4
)

(4
.3

0
)

N
o
te

:
T

h
e

ta
b

le
p
ro

v
id

es
th

e
re

su
lt

s
o
f

th
e

se
n

si
ti

v
it

y
a
n

a
ly

si
s

fo
r

th
e

A
T

E
u

p
p

er
b

o
u
n

d
in

th
e

b
a
se

li
n

e
ca

se
.

A
n

a
ly

si
s

is
re

st
ri

ct
ed

w
it

h
in

a
sp

ec
ifi

c
ra

n
g
e

o
f

va
lu

es
fo

r
th

e
u

n
ce

rt
a
in

ty
p

a
ra

m
et

er
s,
p
t

a
n

d
p
y
;

th
a
t

is
,

th
e

p
ro

d
u

ct
(p

s
u
p

t
p
s
u
p

y
)

ta
ke

s
va

lu
es

b
et

w
ee

n
1

an
d

0.
9

w
h

er
ea

s
th

e
p

ro
d

u
ct

(p
in

f
t

p
in

f
y

)
b

et
w

ee
n

0
a
n

d
0
.1

.
T

h
e

u
p

p
er

-l
ef

t
ca

se
,
w

h
er

e
(p

s
u
p

t
p
s
u
p

y
)

ge
ts

it
s

la
rg

es
t

va
lu

e
w

h
il

e
(p

in
f

t
p
in

f
y

)
it

s
lo

w
es

t,
is

th
a
t

o
f

n
o

u
n

ce
rt

a
in

ty
.

T
h

e
b

o
u

n
d

is
re

d
u

ce
d

to
th

e
b

a
se

li
n

e
p

o
in

t
es

ti
m

at
e.

25



Reverse matching for ex-ante policy evaluation G. Planiteros

T
ab

le
6:

S
e
n
si
ti
v
it
y
A
n
a
ly
si
s:

A
T
E
T

L
o
w
e
r
B
o
u
n
d

(C
a
se

1
a
)

(p
in

f
t

p
in

f
y

)

0.
00

0.
01

0.
0
2

0.
0
3

0.
0
4

0.
0
5

0.
0
6

0.
0
7

0.
0
8

0.
0
9

0.
1
0

0
.1

0
2.

48
2.

39
2.

3
0

2.
2
1

2.
1
2

2.
0
3

1.
9
3

1.
8
4

1.
7
5

1.
6
6

1.
5
7

(0
.0

0)
(−

0.
55

)
(−

1
.1

0
)

(−
1.

6
4
)

(−
2
.1

9
)

(−
2.

7
4
)

(−
3.

2
9
)

(−
3.

8
3
)

(−
4.

3
8
)

(−
4
.9

3
)

(−
5.

4
8
)

0.
99

2.
42

2.
33

2.
2
4

2.
1
5

2.
0
6

1.
9
7

1.
8
7

1.
7
8

1.
6
9

1.
6
0

1.
5
1

(−
0.

36
)

(−
0.

91
)

(−
1
.4

6
)

(−
2.

0
1
)

(−
2
.5

5
)

(−
3.

1
0
)

(−
3.

6
5
)

(−
4.

2
0
)

(−
4.

7
4
)

(−
5
.2

9
)

(−
5.

8
4
)

0.
98

2.
36

2.
27

2.
1
8

2.
0
9

2.
0
0

1.
9
1

1.
8
2

1.
7
2

1.
6
3

1.
5
4

1.
4
5

(−
0.

73
)

(−
1.

27
)

(−
1
.8

2
)

(−
2.

3
7
)

(−
2
.9

2
)

(−
3.

4
7
)

(−
4.

0
1
)

(−
4.

5
6
)

(−
5.

1
1
)

(−
5
.6

6
)

(−
6.

2
0
)

0.
97

2.
30

2.
21

2.
1
2

2.
0
3

1.
9
4

1.
8
5

1.
7
6

1.
6
6

1.
5
7

1.
4
8

1.
3
9

(−
1.

09
)

(−
1.

64
)

(−
2
.1

9
)

(−
2.

7
3
)

(−
3
.2

8
)

(−
3.

8
3
)

(−
4.

3
8
)

(−
4.

9
2
)

(−
5.

4
7
)

(−
6
.0

2
)

(−
6.

5
7
)

0.
96

2.
24

2.
15

2.
0
6

1.
9
7

1.
8
8

1.
7
9

1.
7
0

1.
6
0

1.
5
1

1.
4
2

1.
3
3

(−
1.

45
)

(−
2.

00
)

(−
2
.5

5
)

(−
3.

1
0
)

(−
3
.6

4
)

(−
4.

1
9
)

(−
4.

7
4
)

(−
5.

2
9
)

(−
5.

8
4
)

(−
6
.3

8
)

(−
6.

9
3
)

(p
sup
tp

sup
y)

0
.9

5
2.

18
2.

09
2.

0
0

1.
9
1

1.
8
2

1.
7
3

1.
6
4

1.
5
4

1.
4
5

1.
3
6

1.
2
7

(−
1.

82
)

(−
2.

37
)

(−
2
.9

1
)

(−
3.

4
6
)

(−
4
.0

1
)

(−
4.

5
6
)

(−
5.

1
0
)

(−
5.

6
5
)

(−
6.

2
0
)

(−
6
.7

5
)

(−
7.

2
9
)

0.
94

2.
12

2.
03

1.
9
4

1.
8
5

1.
7
6

1.
6
7

1.
5
8

1.
4
8

1.
3
9

1.
3
0

1.
2
1

(−
2.

18
)

(−
2.

73
)

(−
3
.2

8
)

(−
3.

8
2
)

(−
4
.3

7
)

(−
4.

9
2
)

(−
5.

4
7
)

(−
6.

0
1
)

(−
6.

5
6
)

(−
7
.1

1
)

(−
7.

6
6
)

0.
93

2.
06

1.
97

1.
8
8

1.
7
9

1.
7
0

1.
6
1

1.
5
2

1.
4
2

1.
3
3

1.
2
4

1.
1
5

(−
2.

54
)

(−
3.

09
)

(−
3
.6

4
)

(−
4.

1
9
)

(−
4
.7

4
)

(−
5.

2
8
)

(−
5.

8
3
)

(−
6.

3
8
)

(−
6.

9
3
)

(−
7
.4

7
)

(−
8.

0
2
)

0.
92

2.
00

1.
91

1.
8
2

1.
7
3

1.
6
4

1.
5
5

1.
4
6

1.
3
7

1.
2
7

1.
1
8

1.
0
9

(−
2.

91
)

(−
3.

46
)

(−
4
.0

0
)

(−
4.

5
5
)

(−
5
.1

0
)

(−
5.

6
5
)

(−
6.

1
9
)

(−
6.

7
4
)

(−
7.

2
9
)

(−
7
.8

4
)

(−
8.

3
8
)

0.
91

1.
94

1.
85

1.
7
6

1.
6
7

1.
5
8

1.
4
9

1.
4
0

1.
3
1

1.
2
1

1.
1
2

1.
0
3

(−
3.

27
)

(−
3.

82
)

(−
4
.3

7
)

(−
4.

9
1
)

(−
5
.4

6
)

(−
6.

0
1
)

(−
6.

5
6
)

(−
7.

1
1
)

(−
7.

6
5
)

(−
8
.2

0
)

(−
8.

7
5
)

0.
90

1.
88

1.
79

1.
7
0

1.
6
1

1.
5
2

1.
4
3

1.
3
4

1.
2
5

1.
1
5

1.
0
6

0.
9
7

(−
3.

64
)

(−
4.

18
)

(−
4
.7

3
)

(−
5.

2
8
)

(−
5
.8

3
)

(−
6.

3
7
)

(−
6.

9
2
)

(−
7.

4
7
)

(−
8.

0
2
)

(−
8
.5

6
)

(−
9.

1
1
)

N
o
te

:
T

h
e

ta
b

le
p

ro
v
id

es
th

e
re

su
lt

s
o
f

th
e

se
n

si
ti

v
it

y
a
n

a
ly

si
s

fo
r

th
e

A
T

E
T

lo
w

er
b

o
u

n
d

in
th

e
b

a
se

li
n

e
ca

se
.

A
n

a
ly

si
s

is
re

st
ri

ct
ed

w
it

h
in

a
sp

ec
ifi

c
ra

n
g
e

o
f

va
lu

es
fo

r
th

e
u

n
ce

rt
a
in

ty
p

a
ra

m
et

er
s,
p
t

a
n

d
p
y
;

th
a
t

is
,

th
e

p
ro

d
u

ct
(p

s
u
p

t
p
s
u
p

y
)

ta
ke

s
va

lu
es

b
et

w
ee

n
1

an
d

0.
9

w
h

er
ea

s
th

e
p

ro
d

u
ct

(p
in

f
t

p
in

f
y

)
b

et
w

ee
n

0
a
n

d
0
.1

.
T

h
e

u
p

p
er

-l
ef

t
ca

se
,
w

h
er

e
(p

s
u
p

t
p
s
u
p

y
)

ge
ts

it
s

la
rg

es
t

va
lu

e
w

h
il

e
(p

in
f

t
p
in

f
y

)
it

s
lo

w
es

t,
is

th
a
t

o
f

n
o

u
n

ce
rt

a
in

ty
.

T
h

e
b

o
u

n
d

is
re

d
u

ce
d

to
th

e
b

a
se

li
n

e
p

o
in

t
es

ti
m

at
e.

26



Reverse matching for ex-ante policy evaluation G. Planiteros

T
ab

le
7:

S
e
n
si
ti
v
it
y
A
n
a
ly
si
s:

A
T
E
T

U
p
p
e
r
B
o
u
n
d

(C
a
se

1
a
)

(p
in

f
t

p
in

f
y

)

0.
00

0.
01

0.
0
2

0.
0
3

0.
0
4

0.
0
5

0.
0
6

0.
0
7

0.
0
8

0.
0
9

0.
1
0

0
.1

0
2.

48
2.

51
2.

5
5

2.
5
8

2.
6
2

2.
6
5

2.
6
9

2.
7
2

2.
7
6

2.
7
9

2.
8
3

(0
.0

0)
(0
.2

1)
(0
.4

3
)

(0
.6

4
)

(0
.8

5
)

(1
.0

7
)

(1
.2

8
)

(1
.4

9
)

(1
.7

1
)

(1
.9

2
)

(2
.1

3
)

0
.9

9
2.

54
2.

58
2.

6
1

2.
6
5

2.
6
8

2.
7
2

2.
7
5

2.
7
9

2.
8
2

2.
8
6

2.
8
9

(0
.4

0)
(0
.6

1)
(0
.8

2
)

(1
.0

4
)

(1
.2

5
)

(1
.4

6
)

(1
.6

8
)

(1
.8

9
)

(2
.1

0
)

(2
.3

2
)

(2
.5

3
)

0
.9

8
2.

61
2.

64
2.

6
8

2.
7
1

2.
7
5

2.
7
8

2.
8
2

2.
8
5

2.
8
9

2.
9
2

2.
9
6

(0
.7

9)
(1
.0

1)
(1
.2

2
)

(1
.4

3
)

(1
.6

5
)

(1
.8

6
)

(2
.0

7
)

(2
.2

9
)

(2
.5

0
)

(2
.7

1
)

(2
.9

3
)

0
.9

7
2.

67
2.

71
2.

7
4

2.
7
8

2.
8
1

2.
8
5

2.
8
8

2.
9
2

2.
9
5

2.
9
9

3.
0
3

(1
.1

9)
(1
.4

1)
(1
.6

2
)

(1
.8

3
)

(2
.0

5
)

(2
.2

6
)

(2
.4

7
)

(2
.6

9
)

(2
.9

0
)

(3
.1

1
)

(3
.3

3
)

0
.9

6
2.

74
2.

77
2.

8
1

2.
8
4

2.
8
8

2.
9
1

2.
9
5

2.
9
9

3.
0
2

3.
0
6

3.
0
9

(1
.5

9)
(1
.8

0)
(2
.0

2
)

(2
.2

3
)

(2
.4

4
)

(2
.6

6
)

(2
.8

7
)

(3
.0

8
)

(3
.3

0
)

(3
.5

1
)

(3
.7

2
)

(p
sup
tp

sup
y)

0
.9

5
2.

80
2.

84
2.

8
7

2.
9
1

2.
9
5

2.
9
8

3.
0
2

3.
0
5

3.
0
9

3.
1
2

3.
1
6

(1
.9

9)
(2
.2

0)
(2
.4

1
)

(2
.6

3
)

(2
.8

4
)

(3
.0

5
)

(3
.2

7
)

(3
.4

8
)

(3
.6

9
)

(3
.9

1
)

(4
.1

2
)

0
.9

4
2.

87
2.

91
2.

9
4

2.
9
8

3.
0
1

3.
0
5

3.
0
8

3.
1
2

3.
1
5

3.
1
9

3.
2
2

(2
.3

8)
(2
.6

0)
(2
.8

1
)

(3
.0

2
)

(3
.2

4
)

(3
.4

5
)

(3
.6

6
)

(3
.8

8
)

(4
.0

9
)

(4
.3

0
)

(4
.5

2
)

0
.9

3
2.

94
2.

97
3.

0
1

3.
0
4

3.
0
8

3.
1
1

3.
1
5

3.
1
8

3.
2
2

3.
2
5

3.
2
9

(2
.7

8)
(3
.0

0)
(3
.2

1
)

(3
.4

2
)

(3
.6

4
)

(3
.8

5
)

(4
.0

6
)

(4
.2

8
)

(4
.4

9
)

(4
.7

0
)

(4
.9

2
)

0
.9

2
3.

00
3.

04
3.

0
7

3.
1
1

3.
1
4

3.
1
8

3.
2
1

3.
2
5

3.
2
8

3.
3
2

3.
3
5

(3
.1

8)
(3
.3

9)
(3
.6

1
)

(3
.8

2
)

(4
.0

3
)

(4
.2

5
)

(4
.4

6
)

(4
.6

7
)

(4
.8

9
)

(5
.1

0
)

(5
.3

1
)

0
.9

1
3.

07
3.

10
3.

1
4

3.
1
7

3.
2
1

3.
2
4

3.
2
8

3.
3
1

3.
3
5

3.
3
8

3.
4
2

(3
.5

8)
(3
.7

9)
(4
.0

0
)

(4
.2

2
)

(4
.4

3
)

(4
.6

4
)

(4
.8

6
)

(5
.0

7
)

(5
.2

8
)

(5
.5

0
)

(5
.7

1
)

0
.9

0
3.

13
3.

17
3.

2
0

3.
2
4

3.
2
7

3.
3
1

3.
3
4

3.
3
8

3.
4
1

3.
4
5

3.
4
8

(3
.9

7)
(4
.1

9)
(4
.4

0
)

(4
.6

1
)

(4
.8

3
)

(5
.0

4
)

(5
.2

5
)

(5
.4

7
)

(5
.6

8
)

(5
.8

9
)

(6
.1

1
)

N
o
te

:
T

h
e

ta
b

le
p

ro
v
id

es
th

e
re

su
lt

s
o
f

th
e

se
n

si
ti

v
it

y
a
n

a
ly

si
s

fo
r

th
e

A
T

E
T

u
p

p
er

b
o
u

n
d

in
th

e
b

a
se

li
n

e
ca

se
.

A
n

al
y
si

s
is

re
st

ri
ct

ed
w

it
h

in
a

sp
ec

ifi
c

ra
n
g
e

o
f

va
lu

es
fo

r
th

e
u

n
ce

rt
a
in

ty
p

a
ra

m
et

er
s,

p
t

a
n

d
p
y
;

th
a
t

is
,

th
e

p
ro

d
u

ct

(p
s
u
p

t
p
s
u
p

y
)

ta
ke

s
va

lu
es

b
et

w
ee

n
1

a
n
d

0
.9

w
h

er
ea

s
th

e
p

ro
d

u
ct

(p
in

f
t

p
in

f
y

)
b

et
w

ee
n

0
a
n

d
0
.1

.
T

h
e

u
p

p
er

-l
ef

t
ca

se
,

w
h

er
e

(p
s
u
p

t
p
s
u
p

y
)

ge
ts

it
s

la
rg

es
t

va
lu

e
w

h
il

e
(p

in
f

t
p
in

f
y

)
it

s
lo

w
es

t,
is

th
a
t

o
f

n
o

u
n

ce
rt

a
in

ty
.

T
h

e
b

o
u

n
d

is
re

d
u
ce

d
to

th
e

b
as

el
in

e
p

oi
n
t

es
ti

m
at

e.

27


	Cover
	reverse matching

