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ABSTRACT 
Most policy bodies involved with water management issues are facing new challenges: more evident 
climate change impacts, Covid-19, recession, wars, population movements, increased energy and 
resources demand. These challenges affect water resources management, as they impact several 
related sectors such as energy, fuels, industry, agriculture, international relations and trade, 
economy, resources, including water, human and natural capital. This situation creates an ambiguous 
context (deep uncertainty) that suggests reconsidering the traditional management approaches, and 
leaves limited space for management failures and delays. We discuss three research questions/areas 
of focus for the future: 1) Redefining multi-disciplinary science and innovative collaborations to 
analyze and solve complex problems; 2) Efficient communication and continuous engagement to 
create the culture for science-supported policies, and speed up the response of policy-makers to 
grasp and adopt research and technological advances; 3) Deciding under deep uncertainty. 

 
KEYWORDS: Water Resources Management; Systems analysis; Future research; Inter-
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EMERGING CHALLENGES AND CONNECTION WITH WATER RESOURCES MANAGEMENT 
Most policy bodies and stakeholders involved with water management issues have started to face 
new challenges, increasingly associated with complex problems, that suggest reconsidering the 
traditional management approaches.  

The increasing needs accompanied by resources overexploitation and the intensification of production 
have created conditions of scarcity, environmental degradation, and increased emissions of 
Greenhouse Gases (GHGs) that enhanced climate change (Li et al., 2021). The rapid expansion of 
various human activities that rely on energy also contributed to an increased energy demand. Among 
the multiple consequences of climate change, there were observed winds of lower intensity that 
prevailed in regions of north Europe – which have invested a lot in renewable (wind) energy systems, 
but do not have the respective energy storage capacity (Akhtar et al., 2021; Laurila et al., 2020). The 
global alterations in energy supply and demand pattern brought us before a big increment of demand, 
a reduction of supply and available stocks, thus an overall increase of prices (e.g. electricity, natural 
gas, etc.), and inflation (Cook, 2021). The ‘aggressive’ macroeconomic policies of the past were further 
intensified during Covid-19, while the subsequent war in Ukraine made those effects more evident and 
much more stressed, initially in Europe (Quitzow et al., 2021). 

This situation constitutes an unprecedented phenomenon of diverse challenges that interact, are 
extremely difficult to predict (know their probabilities distributions), so they create a context of deep 
uncertainty (ambiguity). This affects systems that are interconnected with water resources, and the 
respective decisions on management, infrastructure, and investments. The water management 
sector has to cope with these challenges, additionally to any existing issues of infrastructure, water 
scarcity, water quality deterioration, and mismanagement in human, economic, institutional terms 
(Loucks, 2022). Table 1 shows some indicative areas within the water management field that are 



affected from the various challenges mentioned above. 

 

Table 1. Indicative fields of water management facing increasing challenges. 
Fields Description 

Disaster Management (floods, droughts, 
pollution, pollution events, peaks) 

Forecast, protection, warning, prevention, evaluation, restoration, 
awareness, under changing conditions and behaviours (Sudmeier-Rieux 

et al., 2021; Papaioannou et al., 2021; Alamanos and Linnane, 2021a) 

Transboundary waters and water rights 
Control and fair management of different demands and pressures, 

under changing conditions and conflicts (Deribe and Berhanu, 2021; 
Englezos et al., 2021) 

Resources Allocation Covering competitive demands with limited and deteriorating available 
surface and groundwater resources (Naghdi et al., 2021) 

Water Infrastructure (storage, 
distribution, land reclamation works, 

hydropower, etc.) 

Different strategies considering different objectives and investments 
for design, operation, performance and efficiency of infrastructure 

(Mala-Jetmarova et al., 2018; Alamanos, 2021) 

Water quality 
Planning, decision-making, management, performance, protection, 

warning, prevention, restoration, control of point and non-point 
pollution sources from all uses (Baghapour et al., 2020) 

Interconnected physical systems with 
water resources (soil, land, landscape, 

air, atmosphere, climate, oceans, 
biodiversity, ecology, etc.) 

Monitoring, forecast, protection, warning, prevention, evaluation, 
restoration etc. management actions considering multiple effects, 

costs and benefits (Grafton et al., 2019; Huang et al., 2021) 

Social and Economic aspects, 
(behavioural dynamics, environmental 
economics, investment decisions, etc.) 

Different policies, ways, decision strategies, methods and applications 
to cope with changing objectives of rights and shares, distribution of 
costs and benefits, social acceptance (Pulido-Velazquez et al., 2016) 

Other cross-disciplinary, interconnected 
dynamic systems (Ecohydrology, Socio-
hydrology, Water- Energy-Food Nexus, 

Water Ethics, etc.) 

Identification – implementation of ‘best’ management practices, 
optimizing efficiency and performance under specific criteria (Pande et 

al., 2020; Pastor et al., 2022; Alamanos and Linanne, 2021b) 

Policy and Governance 
Combining all the above into strategies, education, Public Participation 

and stakeholder engagement, strong institutional and financing 
mechanisms and regulations (Lubell and Morrison, 2021) 

 
The danger of complex crises is the creation of conflicts and dichotomies – thus any opportunities for 
improvements can be missed (Schulte et al., 2022). By seeing the short-term benefits of satisfying 
certain needs, makes many people, including policymakers see dichotomies, and treat the different 
systems (water-food-energy-fuel resources-economy) as competitive.  

From the perspective of water management, this complex situation must be seen as an opportunity 
to improve the perception of systems, build inter-disciplinary innovative collaborations, and put more 
emphasis on the communication of these ideas. Below, we discuss some research areas/ questions 
for future research. 

 
1. Redefining multi-disciplinary science and innovative collaborations to analyze and solve 

complex problems 
During the last years the transition to a multi-disciplinary world is evident; consolidating scholarship 
under one umbrella is gathering momentum, and an inter-disciplinary space for water management is 
now being materialized (Pande et al., 2022). Loucks (2017) raised questions on how water systems 
analysts and planners can analyze and managing water in a changing world, where sustainable 
development must be seen as a system science problem, and suggests inter-disciplinary approaches.  
Redefining multi-disciplinarity should be built on the equal contribution of the different disciplines, 
their harmonization into modelling and implementation (coupled scientific areas rather than just add-



ons to a main body of work based on a single discipline). Such an approach could bring fundamental 
advances in practice.  
The knowledge base has been developing, preparing the ground for this transition, and this is justified 
by several examples: 
Sophisticated integrated models representing system dynamics have been increasingly developed, 
highlighting the complexity of the interacting factors involved (Purkey et al., 2018). Besides the 
progress in the relevant fields of socio-hydrology, hydro-economics, and the modelling and conceptual 
advances they can provide in water management, there have been many more examples and 
applications. Porse et al. (2018) and Pincetl et al. (2019) presented a holistic representation of coupled 
hydrologic, social, economic, stakeholder, historical and institutional sub-systems aiming to covert a 
water-scarce to water self-sufficient system. The provision of open, freely accessible tools is also 
important for mainstreaming and the reproducibility of those approaches. Lund (2020) described the 
“systems engineering knowledge and skills for water and environmental problems”, illustrating the 
need for systemic multi-disciplinary approaches, and providing valuable lessons and insights. The 
technical, social, educational, communicational, diplomatic, problem-solving, analytical, and 
organizational skills are necessary conditions to successfully address complex challenges, and the 
failures of the past should be studied as lessons for improvement. The connection with real-life 
situations makes the above more tangible, and we see social and political aspects having a central role. 
This last statement is also noted from Pande et al. (2020): Socio-hydrological models are an example 
of coupling disciplines in integrated assessments, as they represent the hydrological-social-economic-
management dynamics; However, culture is seen as a missing and emergent property of such 
dynamics, with institutions being the substance of that culture. The best way to build this culture for 
all actors involved is by learning, from their discipline and others’ disciplines. Van Mierlo et al. (2020) 
highlighted the importance of “learning about learning in sustainability transitions”, as a means to 
enhance the capacity of water governance to deal with complex management challenges. This is also 
an important way to overcome the multiple weaknesses accompanying the integration of multiple 
disciplines. 
 

 

Figure 1: Sustainability and resilience through balancing supply and demand and addressing various 
challenges in integrated systems (Alamanos et al., 2022). 



 
Analyzing the natural, human (social and behavioural), and economic sub-systems requires the 
consideration of all their supply and demand components, in order to develop and/or modify the 
institutional /policy-regulatory sub-system appropriately and proactively. A high-level example is 
presented in Figure 1: The supply side includes environmental, social, and economic factors that need 
to be analysed, and assessed as assets, either to the degree that we can control or better manage. 
Supply can be increased sustainably through more efficient and smarter use of our assets. The demand 
side includes also multiple parameters and disciplines (environmental, social, economic) that can be 
optimized and used efficiently. The institutional /policy-regulatory sub-system aims to (and is 
required to) balance supply and demand in order to make systems operate sustainably (both 
environmentally and economically). Thus, the ground is prepared and more solutions can be provided 
to address the various challenges, and thus achieve resilience. 
 
 

2. Efficient communication and continuous engagement to create the culture for science-
supported policies 

The whole process described cannot operate in a healthy and integrated way without the necessary 
involvement from policy-makers. Like the other actors, they should be part of a two-way informational 
process towards the development and the implementation of solutions.  
By informing researchers and being informed, the policy-makers could develop the necessary culture 
for seeing tangible actions and steps towards an improved management of human-environmental 
systems. This culture is often a missing element of the current management (Pande et al., 2020).  
The pace of the technological and scientific advance is much faster than the pace managers need to 
grasp that information, adopt the appropriate advances and solutions, and develop flexible regulatory 
frameworks to support them.  
A simple example of this pace-difference phenomenon is Digital Water Management, where the policy-
makers’ response has been slow compared to the private sector, and still, the solutions provided have 
not been fully exploited (e.g. remote sensing, inexpensive sensors, monitoring networks, smart 
devices, machine learning, artificial intelligence, virtual reality, etc.) (Doorn, 2021). Such solutions can 
be highly valuable for real-time water quantity and quality monitoring, improved management of 
infrastructure assets, direct public engagement and facilitation of localized management, improved 
and transparent water services, etc. (Li et al., 2014). 
Efficient communication by both researchers and policy-makers would be key to create that culture, 
ensure the proper interpretation of the new technological and scientific advances, and use them 
properly. As researchers are making efforts to provide scientific results, similarly, policy-makers should 
make respective efforts to efficiently exploit those outcomes, and overcome any socio-political 
barriers. Their response to the new challenges, information, and available solutions and technologies 
should be an area of focus in the future in order to place our societies ahead of the challenges. 
 

3. How to decide under deep uncertainty?  
The combination of challenges and crises described from the beginning makes the work of decision-
makers more complex, since it is difficult to predict changes, how long they are going to last, how they 
interact, and successfully explore the trade-offs of many factors in future scenarios. Moreover, there 
is another factor that adds further uncertainties, and that is the (unknown) way that policy-makers will 
respond, both to the new challenges and the new information, as mentioned above. Future research 
could provide more ideas on how to endogenize the reactions to new information, when analyzing 
complex systems.  
As mentioned in the introductory section, such conditions create a context of deep uncertainty – or 
ambiguity according to the economics terminology (Li et al., 2019). In general, uncertainty can be 
defined as limited knowledge (inadequate information) about something that has or is going to 
happen, but its probabilities or an expected range of outcomes is known (Walker et al., 2013). In the 
case where unexpected situations, the way they interact, or even new information creates more 



uncertainties, and the probability distributions to represent uncertainty and its key parameters are 
unknown, then we have a situation of deep uncertainty (van Asselt and Rotmans, 2002). This context 
of deep uncertainty directly affects water resources decisions (management, investments and 
policies), because the standard engineering design and the decision-making approaches we follow are 
built on the assumption of rationality. Rationality in decision-making assumes that actors decide in 
dispassionate, consistent and purely self-interested ways (Klotz et al., 2018).  
The issue of how to decide under deep uncertainty is a topic of broader concern based on the decision 
theory and economics field, that is related to numerous applications (Koundouri et al., 2022). The roots 
of this problem can be found in the (already proven) weaknesses of the existing approaches to 
understand problems and designs where the rationality of the decision-maker cannot be justified. 
Bossaerts et al. (2019) reflected an increasing number of concerns regarding the use of standard 
techniques — originally developed to deal with risk — in problems involving uncertainty. The classical 
framework of expected utility theory by von Neumann, Morgenstern and Savage (typically used to 
explore rational decision making), or Social Cost Benefit Analysis (SCBA - welfare-maximizing 
sustainable investment allocation decisions), and other optimization approaches are not adequate 
(Machina and Siniscalchi, 2014; Baillon and Bleichrodt, 2015; Apesteguia and Ballester, 2015). Simply 
because the complex challenges we are facing can make people perceiving risk and certainty in 
different ways that deviate from the ‘rational’ assumptions. Most models of classic decision-theory, 
economics, and engineering design are based on assumptions of perfect rationality (Friedman, 1953; 
Simon, 1957; Hazelrigg, 1998; Bromiley and Papenhausen, 2003; Gigerenzer, 2006), which have been 
characterized as incomplete and flawed (Klotz et al., 2018). This is being observed in real-life 
applications, where policy-making does not always act as a clear mechanism or process where 
researchers know in what stage of the process can step in with the scientific evidence to influence 
decisions. Policy is more complex, and considers more ‘hidden’ elements, so among other policy-
relevant issues, this questions the rationality assumption in decision-making. An idea would be to 
simulate this as a machine learning problem that would explore possible futures (rather than predict 
them). The new technologies, such as machine learning can provide some answers also in the way that 
policy-makers respond to the new information (e.g. as input of the process). 
Braun et al. (2021) raises a general concern that such questions cannot be solved only by relying on 
new technologies and computing advances (Editorial, 2018), but we must achieve a human-
technological efficient cooperative intelligence. The same applies for water management issues, with 
governance and policy extents. Yung et al. (2019) explains how this concern affects significant issues 
of water management (e.g. Water-Energy-Food nexus) or climate (Roelich and Giesekam, 2019). The 
authors analyze approaches to nexus research and how they manage uncertainty. They find that the 
current approaches are still inadequate to address deep uncertainty (decision-makers with unclear 
objectives), it is difficult to identify short-term actions that connect to future benefits, and underline 
the need for complementary use of current approaches and critical thinking for policy flexibility and 
adaptiveness to uncertain paths. In the same context, the research of Pot (2019) presents another 
example on water research (investment decisions and long-term strategic visions on urban water 
supply and treatment services), that indicates the need of having clearer answers on how to decide 
under deep uncertainty, and incorporating it in the future planning (Trindade et al., 2019). 
 
 
CONCUSIONS 
In this research, we tried to point out the situation of the complex challenges that societies are facing 
and will be facing in the near future, and explain how these can affect water resources management. 
Our role is to understand the ways they function and interact, and adapt our approach to analyze and 
address them. Just knowing our future challenges does not tell us how to meet them in ways that will 
change for the better how we plan, manage, and model. 
It is difficult to have these answers, and it is naïve to believe that they are simple and can work for 
every case. Maybe we will always have such challenges and as science and technology evolve to help 



us meet them, we (perhaps in response to world events or other externalities) will be introducing and 
facing new sets of challenges.  
In an attempt to shed light on the future pathways of research areas that could help finding more 
answers, we discussed: a) the role of multi-disciplinary science and innovative collaborations, b) the 
importance of communication and continuous engagement to create the culture for science-
supported policies, and c) the need to further explore how we decide under deep uncertainty 
conditions. All these three areas are complementary, and their future findings would be useful for each 
one of them to proceed and further grow.   
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