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Abstract

Optimal sustainable management of natural resources has been one of the major

lines of research in environmental economics at least for the last two decades. Several

attempts have been made in order to describe in a quantitative fashion the notion

of sustainability and distinguish management policies between sustainable and non

sustainable ones. Important aspects of this task are (a) appropriate modeling of

the spatio-temporal dynamics of the state of the system, including the sources of

uncertainty affecting either directly or indirectly the problem at hand (e.g. climate

conditions, population growth, biological evolution, etc), and (b) the development of

appropriate criteria for evaluating the welfare of the system under study that guar-

antee sustainability and viability. In this chapter, we present and discuss popular

and established optimization approaches for investigating policy selection problems

within the sustainability framework, from the perspective of viability and optimal

control theory.

Keywords: Model Uncertainty; Optimal Control; Robust Optimal Control; Sustain-

ability; Viability Theory;

1 Introduction to Sustainability Concepts

Sustainability has appeared in the literature with various definitions throughout the

years. Probably, the most intuitive definition is provided by Asheim [9] through the

notion of sustainable development. Sustainable development is defined in [76] as the

development that meets the needs of the present without compromising the ability of

future generations to meet their own needs. Based on this, [9] characterized as sus-

tainable the management of the resource base by a particular generation at some point

in time, if it constitutes the first part of a feasible sustainable development. Then, a

stream of well-being develops in a sustainable manner if each generation’s management

of the resource base is sustainable according to this perspective.
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However, during the last decades, a discrimination between two different kinds or

approaches in sustainability has been made: weak sustainability vs strong sustainability

(see e.g. [46, 47] and references therein). The first one is more economy-oriented in terms

of industrial operations and concerns more the well-being of the human community. The

second one concerns the environment in which the economic operations take place and

especially the abiotic and biotic (ecological) system and the renewal processes that

support the resources needed by the economy to progress.

The necessary condition to achieve weak sustainability is to preserve over time a

certain amount of capital (including man-made capital and initial endowment of certain

natural resources). Depending on the operation under study, different perspectives may

be derived, e.g. the so called Solow sustainability [71] or in modern terms the very weak

sustainability, in which is required to maintain intact the generalized production capacity

of an economy. The later will enable a constant consumption per capita through time

on the infinite horizon, to be in line with the inter-generation equity working hypothesis

[71, 72]. In a broader perspective, the definition of weak sustainability [43, 69] refers

to the preservation over time of the welfare potential of the overall capital base. In

this view, the sustainable policy is not restricted to sustain a certain material/source or

consumption level, but includes values that are related to nonconsumptive uses and the

public good character of the environment (please see [46, 47] and references therein).

On a different pathway, the term strong sustainability usually refers to sustaining

certain properties of the physical environment as time evolves. The environment’s prop-

erties, and why it is needed to be sustained, depends on the problem and the operation

setting. From an ecological perspective, minimum requirements of the strong sustain-

ability are to choose policies that keep the total stock of the natural capital constant over

time; therefore, this requires assessing the natural capital in terms of the ecosystem’s

viability. This approach leads to what is referred to as environmental quality which can

be represented in terms of a function that includes the stocks of biological resources,

the ecosystem’s space and all those environmental assets which are essential for the

integrity of the ecosystem. However, in order to translate this principle in practical

terms, some ecological criteria have been defined - such as safe, minimum sustainability

standards (SMSS) and safe minimum standard of conservation (SMC) or else Ciriacy-

Wantrup’s principle [24]. The first one (SMSS) contains a number of ecological-type

criteria that have to be met, provided by the physical laws of the environment (e.g.,

rate of regeneration, assimilative capacity, etc) if not human-interfered with, and is

more compactly referred to as the very strong sustainability. The second one (SMC), is

more on the pathway of defining a safe minimum standard of conservation that allows a

relative flexibility in consumption policies without entering the critical zone concerning

to the ecosystem’s viability. This in general does not coincide with SMSS approach,

and is therefore defining less strictly the viable standards for the preservation of the

ecosystem.

We summarize the following concepts of sustainability:

Very Weak Sustainability (VWS): The overall stock of capital assets should remain

constant over time. The reduction of an asset is allowed, provided that another

capital asset is increased to compensate for such a reduction.
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Weak Sustainability (WS): A slight modification of very weak sustainability. This

is a formulation of sustainability constraints that will impose some degree of re-

striction on resource-using economic activities. Such restrictions would not result

from concerns for the ecosystems themselves, but rather would result from con-

cerns for the ecosystems’ ability to meet human needs.

Strong Sustainability (SS): The assumption here is that protecting the overall

amount of capital is insufficient; natural capital must also be protected because

some critical natural capitals cannot be replaced by other forms of capital.

Very Strong Sustainability (VSS): This concentrates on the scale of human devel-

opment relative to global carrying capacity. In particular, it follows the axiom

that when human development reaches the global carrying capacity, no forms of

natural capital are substitutable.

In what follows, policy selection problems under sustainability conditions are dis-

cussed and several results concerning the aforementioned sustainability kinds are pre-

sented.

2 Optimization, Sustainability and Uncertainty

2.1 Towards a quantitative view of sustainability

Discussing sustainability issues in a quantitative manner requires the introduction of a

model connecting the evolution of the stock of a resource(s), whether renewable or not,

with its consumption or exploitation. Then, we may quantify sustainability in terms of

the long run behaviour of the state of the resource or the consumption level. While this

model can be as involved and realistic as desired, for the sake of illustration of the key

ideas and methodologies in this chapter we will focus on a rather schematic evolution

model. Of course, the concepts and methods presented here are extensible to any real-

istic model, at the cost of increasing mathematical and computational complexity.

These models will be largely divided into two main categories:

Deterministic, in which the evolution law governing the relationship between the

economic variables (such as the stock of resources) and consumption is known.

Probabilistic, in which this evolution law is not known but depends on unpre-

dictable factors governed by the laws of probability. Depending on whether the

probability law is known and universally accepted or not, we have two subcate-

gories

– Stochastic models, in which the probability law governing the evolution of

the system is known (a case which corresponds to the concept of risk in the

economics of uncertainty) and

– Uncertainty models, in which there is not a unique acceptable (by all con-

cerned agents) probability law for the evolution, and multiple probability
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models have to be considered in the analysis (a case which corresponds to

the concept of Knightian uncertainty [44, 51, 56]).

Clearly, stochastic and primarily uncertain models are an important step towards in-

troducing realistic effects into the models. Moreover, the above modeling frameworks,

(either deterministic or stochastic/uncertain) can be extended to include effects of spatial

heterogeneity in the distribution of the resources, introducing interesting implications.

2.2 A gallery of models

Typically, the optimal control formulation of policy selection problems in economics (in-

cluding every perspective, e.g. environmental economics, ecological economics, indus-

trial economics, etc) consists of three basic components: (a) the welfare criterion under

which the policy (control/stimulus) is assessed, (b) the dynamical system describing the

environment of the economy under study, and (c) a set of constraints which typically

represent physical or human-made regulations, economic and sustainability/viability

targets and assumptions.

The chosen welfare criterion, under which the feasible policies are assessed, retains an

important and major role in the decision process, since its nature significantly affects the

perspective under which the economy is examined (please see Section 2.3 for the relevant

discussion) and the optimal decisions that are derived. In modern approaches, multi-

criteria objectives are employed in order to take into account various perspectives of well

being (both on the economy and environment) on the determination of optimal policies.

However, the derivation of solutions for the latter case could be quite challenging since,

depending on the nature of the criteria that are required and the set of feasible solutions,

stochastic numerical approaches may be required which in the continuous-time case may

lead to computational complexity issues.

The underlying dynamics of the economy, under which each policy selection problem

is examined, in general are assumed to obey well known laws (of deterministic type);

however, there is always room to include uncertainty in various aspects of the system

which increases the degree of realism, especially in cases when natural resources are

involved in the system. In order to address this issue, several authors (see e.g. [3,

15, 60, 61]) adopt stochastic formulations for the underlying system; it is evident that

this dramatically alternates the status of the whole optimization problem to one of

stochastic nature. This fact, does not allow for closed-form solutions in general, and

even the characterization of the possible solutions for the problem under study could be

a quite challenging task in most cases.

The set of constraints is usually comprised of target inequalities which refer either to

critical thresholds for the levels of certain natural quantities (imposed by sustainability

and viability assumptions corresponding to the minimum or maximal allowed levels to

keep the environment at a certain quality level) usually set by experts or by biological

mechanisms, e.g. regeneration rates, or to certain well being assumptions for the com-

munity, e.g. minimum social welfare standards, irreversibility of operations concerning

resources extraction or capital production (see e.g. [28, 29, 47, 57]). A situation that

may occur when including on the constrained set diverging requirements, e.g. guaran-

teed level of consumption and simultaneously guaranteed levels for the natural resources
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that are used in the production process, is that the final set of feasible solutions could

be empty.

Let us now describe in mathematical formulation a quite general and flexible enough

framework for the representation of policy selection problems. Assume that x(t) ∈
X ⊂ Rn denotes the states of an economy at time t ∈ R+, e.g. the states of labour,

manufactured capital, population, renewable and/or exhaustible resources, etc. To pro-

vide a coinsize formulation, assume that the evolution of the states is described by the

dynamics {
d
dtx(t) = F (x(t), u(t))

u(t) ∈ U(x(t)) ⊂ Rm
(1)

or (if more appropriate for the application in mind) its discrete time version{
x(t+ 1) = x(t) + F (x(t), u(t)), t ∈ N,
u(t) ∈ U(x(t)) ⊂ Rm

(2)

where F is the generator function for the states of the economy (comprising technology,

production functions, consumption effects, renewal mechanisms of resources, etc), u(·)
denotes the control variables (e.g. consumption, harvest rates, resources extraction

rates, etc) and U(x(t)) is the set of admissible controls at time t which depends on

the states of the economy x(t). The system formulation stated in (1) is a very general

representation of the mechanism that produces the states of an economy depending on

the chosen controls u(·) (or policies in more economical terms); for example consumption

c or harvesting rules, and other parameters that affect the generating mechanism F :

Rn ×Rm → Rn. All these possibilities, given an initial state x(0) = x0 at the time that

is considered as the starting point t = 0, can be described by the set

S(x0) = {(x(·), u(·)) | x(0) = x0, x(t) satisfying (1) ∀t ∈ R+} (3)

which from now on will be referred to as the set of admissible states or admissible

trajectories of the economy. Clearly, these states can also be considered as stochastic

ones since uncertainty appears on certain aspects of the system (1) e.g., environmental

conditions and effects by climate change, parameters affecting biological mechanisms, ef-

fects of possible diseases/pandemics, etc. In general, policies and states are constrained

to satisfy certain well-being or viability/sustainability requirements either for the com-

munity or the environment, for instance, positivity of consumption, irreversibility of

investments/resource extractions, availability of labour, scarcity of resources, etc. In

this case, the states and controls (x(·), u(·)) should be admissible if satisfy a number of

inequalities, let us say q in number, which comprise the set

K = {(x(·), u(·)) | gi(x(t), u(t)) ≥ ηi, i = 1, 2, ..., q, ∀t ∈ R+} (4)

where ηi for i = 1, 2, ..., q denote the critical thresholds which have been set for via-

bility/sustainability reasons or physical meaning. In the simplest case, the inequalities

gi(x(t), u(t)) ≥ ηi could represent critical levels of consumption, resource extraction or
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natural resources states which if exceeded, either the environment or the community

well-being will be seriously disturbed. Of course, these constraints could also be of a

more complex form if they represent critical thresholds for biological processes that are

conducted in the physical environment or they can even be subject to uncertainty due

to exogenous factors effects.

Example 1 (The Ramsey model). Possibly the simplest model we may assume is that

of an economy whose state is characterized by a single capital stock K, driven by the

dynamical equation

d

dt
K(t) = f(K(t))− c(t)− λK(t), (5)

where f is a production function (often the Cobb-Douglas production function f(K) =

AKγ , with A representing the effects of technological progress and γ < 1), c is consump-

tion which is to be determined optimally so as to maximize some intertemporal utility

criterion on consumption and λ > 0 denotes the capital depreciation rate. This problem,

first proposed in the 1920’s by Frank Ramsey as a simple example of how the problem of

“how much of its output should a nation consume” has initiated a long lasting discussion,

with many variants to include effects such as resources and their effects in production,

labour, spatial heterogeneity, stochasticity etc. The special case of a linear production

function f(K) = AK where A corresponds to the so called AK model [20] that has

also been used a lot in modelling, especially due to the fact that it can lead to analytic

solutions. This model falls into the general framework of (1) setting X = K and u = c,

with admissible controls being specified by the constraints K, c ≥ 0. Note that model

(5) may also be derived if we assume a production function F (K,L) = f
(
K
L

)
, where

L is labour, and then work in terms of per capita capital k = K
L . Moreover, discrete

time versions of the Ramsey model are also popular (where each time corresponds to a

generation), for example

K(t+ 1) = K(t) + f(K(t))− c(t)− λK(t), t ∈ N, (6)

with appropriate reformulations of the interemporal utility of consumption.

We close this section by collecting several variants of the Ramsey problem, including

stochastic and spatio-temporal versions.

Example 2 (Sustainability of an economy with an exhaustible resource). We consider

the model examined in [57], where a consumption-production type economy with a non-

renewable resource following the model of Dasgupta-Heal-Solow is investigated. The

current economy dynamics are represented by the system{
d
dtK(t) = f(K(t), r(t))− c(t)− λK(t)
d
dtS(t) = −r(t)

(7)

where S(t) is the exhaustible resource stock and r(t) the related extraction rate, K(t) is

the manufactured capital, f the production function, c(t) the consumption rate of the

manufactured capital and λ the capital’s depreciation rate. This model falls into the
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general framework of (1) setting X = (K,S) and u = (c, r), with admissible controls

being specified by the constraints K,S, c, r ≥ 0. Note the similarity with the standard

Ramsey model.

Example 3 (Sustainability of an economy with exhaustible and renewable resources).

As a second example consider the model examined in [47] with an economy including

both an exhaustible and renewable resources. The states of this economy are described

by the dynamics
d
dtK(t) = f(K(t), L(t), R(t), S(t), h(t), r(t))− c(t)− λK(t)
d
dtR(t) = g(t, R(t))− h(t)
d
dtS(t) = −r(t)

(8)

where the states x(t) = (K(t), L(t), R(t), S(t))′ represent the manufactured capital,

the labour, the renewable and exhaustible resource stocks, f denotes the production

function for K which is assumed to be increasing and concave with respect to each

input, g represents the biological mechanism related to the regeneration of the renewable

resource R, λ > 0 stands for the capital K depreciation rate and the controls u(t) =

(c(t), h(t), r(t))′ correspond to the consumption of the capital K and the extraction rates

of the renewable and exhaustible resources, respectively.

Example 4 (Stochastic Ramsey problem and model uncertainty). Various elements in

the Ramsey model (see Example 1) are not fully known and as subject to randomness.

Possible candidates can be the technological factors, modelled by A, or the fluctuations

of the labour force due for example to demographics, is per capita capital is to be

considered. Such fluctuations can be introduced into the model in terms of a stochastic

factor process. For example, in the time discrete case one may replace (6) by

K(t+ 1) = K(t) + f(K(t), ω(t))− c(t)− λ(ω(t))K(t), t ∈ N, (9)

where {ω(t) : t ∈ N} are i.i.d. random variables, introducing stochastic shocks in this

model economy. On the other hand, in the continuous time version, a popular choice for

the stochastic factor process (mainly on account of central limit theorem considerations)

is the Wiener process 1 {W (t) : t ≥ 0}, and a possible generalization of (5) may be

dk(t) = [f(k(t))− (n(t)− σ2(t) + λ)k(t)− c(t)]dt− σ(t)k(t)dW (t), (10)

where n(t) is the mean rate of growth of labour supply (subject to the demographics,

hence subject to random fluctuations modelled in terms of W (t) where σ(t) is a measure

of the variance of these fluctuations), and k = K
L is the per capita capital. Model (10) is

a stochastic differential equation (in Itô form) and for each t generates a state k(t) which

is a random variable, whose distribution can be obtained by solving (10), based on the

provided dynamics and the knowledge of the probability distribution of the stochastic

factor {W (t) : t ≥ 0}. In (10), the first contribution provides information concerning

the mean behaviour of k, whereas the second contribution models fluctuations (of zero

mean) around the mean behaviour.

1The Wiener process {W (t) : t ≥ 0} displays independent increments, continuous paths and satisfies
W (t + h)−W (t) ∼ N(0, h) for every t, h > 0.
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However, even that situation is too ideal in certain cases. For example, on account of

incomplete information, there may only be postulates concerning the probabilistic law

governing the fluctuations W (t) around the mean behaviour, i.e., W (t) ∼ N(v(t), t) for

some unknown drift v(t). This essentially means that there is not a single acceptable

probability law for the distribution of the stochastic factor W , but several plausible

models Pv (around a central model P0) are possible, meaning that if one decides to

choose the probability model Pv for W (t), then she assumes that W (t) ∼ N(v(t), t),

with the consequent implications on the law of the state variable k through (10). In

fact, tools from stochastic analysis and in particular Girsanov’s theorem, can be used to

show that the implication of choosing Pv as the relevant model for the stochastic factor

W , is to affect the dynamics of the state in (10) by modifying it as

dk(t) = [f(k(t))− (n(t)− σ2(t) + λ)k(t)− c(t) + v(t)σ(t)]dt− σ(t)k(t)dW (t), (11)

where now W follows the law P0. Now, there are two choice variables (control variables)

in (11), consumption c and the probability law i.e. the information drift v, and of course

the state of the system depends on both. Model uncertainty consists in the fact that

eventhough there is a true probability law for W , corresponding to some v0, this is not

known to the decision maker, so as far as she is concerned there are more than one

plausible choices for v. Borrowing the terminology from game theory, a non benevolent

player (Nature) chooses the control v and decides on the true model v0, while the decision

maker plays against nature in an attempt to make a decision on c that will cause her the

minimum possible damage (appropriately defined). This leads to robust decision making

schemes such as for example worst-case scenarios decisions or precautionary decisions

using tools from differential game theory or from robust control.

Example 5 (Spatial models). Many important problems in economics and sustainability

have a natural spatial dependence (for example resources are not uniformly allocated

in space, externalities such as pollution or its effects vary from one location in space

to another etc). Such dependences can be modelled by appropriate modifications of

(1) or (2). We only focus on a renewable resource harvesting model for brevity in

this example, however, the same generalization can be obtained for any of the models

provided above. Assuming that y models the spatiotemporal distribution of biomass

and the u is a harvesting function we may consider transport mechanisms for biomass

in space. For example, if the density of biomass is too high in some location in space z,

then biomass may tend to migrate to other locations in space z′ where density is lower

as a strategy for better survival opportunities (availability of nutrient). On the other

hand, biomass is reproduced locally in terms of a reproduction function F , so that the

book balancing for biomass reduces to the partial differential equation

∂y

∂t
(t, z) = D

∂2y

∂z2
y(t, z) + F (y(t, z))− u(t, z), (12)

with the first term on the right hand side modelling the spatial transport of biomass

from regions of high density to regions of lower density. If for any reason we are uneasy

considering physical space as a continuum, we may consider it as a union of certain

regions Di, i = 1, . . . ,M , and assume that biomass is more or less uniform in each one
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of them and equal to its average value over this region, yi. Biomass can be transferred

from one region to the other, resulting in modifications in the average, leading to a

simplified spatial model in the place of (12), and of the form

dyi
dt

(t) =

M∑
j=1

Lijyj(t) + F (yi(t))− ui(t), i = 1, . . . ,M, (13)

where the coefficients Lij provide information on the connectivity structure between the

regions Di and the propensity of biomass to transfer from one region to the other.

If required, model (12) or (13) can be extended to include stochastic fluctuations

around a mean behaviour. To keep technicalities to the minimum, we consider only (13)

and its stochastic version

dyi(t) =

 M∑
j=1

Lijyj(t) + F (yi(t))− ui(t)

 dt+
N∑
j=1

σij(t)dWj(t), (14)

where now the stochastic factors are modelled as a multidimensional Wiener process,

that affect different spatial locations through the correlation coefficients σij . Model

uncertainty may further be introduced by allowing different models for the stochastic

factors Wj , i.e. Pvj according to which Wj(t) ∼ N(vj(t), t), and using similar arguments

as in Example 4 this leads to model

dyi(t) =

 M∑
j=1

Lijyj(t) + F (yi(t))− ui(t) +
N∑
j=1

σij(t)vj(t)

 dt+
N∑
j=1

σij(t)dWj(t), (15)

with the vi (or rather
∑N

j=1 σij(t)vj) interpreted as spatially dependent information

drifts due to model uncertainty which turn the decision making problem to a spatially

dependent stochastic differential game against nature (in the same spirit as in Example

4).

The above spatial extension of the Ramsey or of biomass models is only provided

here for the sake of example. Models displaying spatial effects are becoming increasingly

important in sustainability science, see for example [37] for an interesting application in

irrigation technology.

2.3 Social Welfare Criteria, Criticism and Uncertainty for the Future

A social welfare criterion represents the aggregate well-being instrument, in terms of

the human community, and can be considered as the major factor according to which is

introduced the dominant optic on a policy selection problem. In particular, the welfare

function can be thought in general as an aggregate utility of all parties that constitute

the human community that will be affected by the policy. As an aggregate index of the

well being of the community it combines several aspects like: the population figures,

utility functions that should sufficiently capture the behaviour of the community under

study, time effects which are typically introduced by discounting approaches, and others.

Below we discuss several important social welfare criteria highlighting important issues

like the effect of discounting in the decision.
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Criterion 1 (Discounted Utilitarian Criteria). The time-discounting criterion is the

most classical welfare function which first appeared in Ramsey’s model [68] and adopted

by many authors in the following years. Under this approach, given a common for

each part in the community utility function U , depending on the consumption control

variables (however in some works the authors [25, 47] consider utility to depend also on

some states of the economy) the welfare function to be maximized is constructed as the

discounted average over time of this utility and in particular

WDU (c) =

∫ ∞
0

e−ρtU(c(t))dt, ρ > 0 (16)

where ρ denotes the discounting parameter. There has been a debate the last two decades

if one should use the exponential factor δexp(t) = e−ρt as a discounting mechanism for the

future generations and of course its meaning. The welfare criterion in its current form

seems to cause the dictatorship of the present effect, since generations in the distant

future are not taken properly into account which is like ignoring the very distant to

future generations well-being. Therefore, the criticism in this approach is more on the

case where t → ∞ and not for more short-term planning and policy selection. The

last decade, several attempts were made in the direction of improving (or making more

fair) the effect of discounting either by ranking the generations with respect to their

well-being and then performing the discounting (see e.g. the rank-discounted utilitarian

approach proposed in [81]) or by changing the discounting nature (see e.g. [10] where the

sustainable discounted utilitarian criterion is introduced and [62, 73] where hyperbolic

discounting criteria are considered).

Criterion 2 (Rawlsian Welfare). Another school of thought in welfare criteria is that

Rawls’ [70] where the welfare function is derived under the perspective of inter-generation

fairness i.e., to choose the greatest possible and simultaneously constant consumption for

all generations (leading to constant utility for all generations in the planning horizon).

Clearly, this approach does not discount anything to present values and the Rawlsian

welfare function is defined as

WR(c) = inf
s≥0

U(c(s)) (17)

Due to its “fairness” assumption regarding the equally treatment of the current and all

forthcoming generations, this criterion is preferred in modern approaches by a lot of

authors leading to interesting maximin problems. The main drawback of this approach

is caused again in the case that t→∞, causing the dictatorship of the future effect where

the current generation should sacrifice too much in order to act fairly with respect to

the forthcoming generations. However, since the level of ignorance for the very distant

future is too high (climate change, technological progress, substitutions between different

natural resources, etc) the very long-term policy selection with such criteria could be

quite problematic.

Criterion 3 (Mixed Bentham-Rawls Criterion). An alternative criterion that mixes

both types of dictatorships is presented by mixing the classical discounted utilitarian

criterion and the Rawlsian [2]. In particular, mixing both welfare functions by a factor
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θ ∈ (0, 1) provides a hybrid criterion that combines characteristics from both perspec-

tives however in a manner that is more plausible than other attempts that have tried

to avoid both types of dictatorships. The welfare function is defined as the convex

combination of the discounted utilities criterion and the Rawlsian perspective:

WMBR(c) = θ

∫ ∞
0

e−ρtU(c(t))dt+ (1− θ) inf
t≥0

U(c(t)), θ ∈ (0, 1) (18)

Criterion 4 (Chichilnisky’s Criterion). An attempt to avoid both dictatorship types

was first conducted by Chichilnisky [23] by formulating a welfare function which takes

into account both the discounted utilities welfare and the infinitesimal utility, the so

called C-criterion. The resulting welfare function is

WC(c) = θ

∫ ∞
0

δ(t)U(c(t))dt+ (1− θ) lim
t→∞

U(c(t)) (19)

where θ > 0 is the mixing factor and δ(t) represents the discounting factor that is

employed (e.g. exponential, hyperbolic, etc).

The possibility of choosing discount functions t 7→ δ(t) different from the exponential

discount function t 7→ δ(t) = e−ρt, stems from the fact that, as also indicated by

empirical evidence (see e.g. [36]), there is no reason why the discount factor should be

constant across generations; in fact there is strong evidence that individuals use higher

discount rates for the near future than for the long term. Moreover, such effects may also

appear in the aggregation of time preferences for example individuals may use constant

but different discount rates but the collective discount rate may be non-constant or as

an effect of stochastic fluctuations (see e.g. [30], [40], [41] for an explanation of term

structure of preferences driven by stochastic fluctuations, see also [65] and references

therein for relevant phenomena in aggregation of time preferences in the presence of

model uncertainty). The effects of discounting the future are crucial in economic policy

and sustainability considerations (see for example [38], [39] or [48] and references therein)

as well as for ethical considerations concerning intergenerational justice (see e.g. [67]),

hence the appropriate modelling of the discount factor is of outmost importance both

in theoretical or applied studies. The above considerations concerning varying discount

rates led to the introduction of the concept of hyperbolic discounting (see e.g. [26] or

[55] or the review [36] containing the state of the art in the field up to 2002 or [42] and

references there in for more recent advances). Such notions can be covered by choosing

δ(t) ≥ 0 to be a general function satisfying certain generic properties, for example δ

being decreasing in t. However, such considerations, although they may bring more

realism into the model, at the same time introduce complications, as for example the

problem of time inconsistency. This is an important issue which loosely speaking (see

e.g. [11] or [31] for more concrete statements) implies that if δ(t) 6= e−ρt then the time

when the agent decide to assess a consumption stream may affect her decisions, for

example if two consumption streams c1(·), c2(·) are to be compared and assessed it may

be that c1(·) � c2(·) if the assessment is done by discounting everything to time t1 but

c2(·) � c1(·) is the assessment is done by discounting everything to time t2. That creates

rationality problems that need to be seriously addressed. An interesting viewpoint on
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such problems is to consider them from a game theoretic point of view, looking for a

subgame perfect equilibrium of the leader-follower game played by successive generations

(see e.g. [30], [31] or [49]).

2.4 The viability approach to sustainability

2.4.1 Fundamental concepts in the deterministic case

Viability theory is the standard approach in economics for studying the set of admissible

controls and ensure that the problem at hand has a non-empty set of solutions. It was

introduced by Aubin [6], however many authors have contributed to this direction and

provided several extensions to the stochastic framework and the multi-criteria setting

(see e.g. [28, 29, 57, 58]). This approach relies on the notion of the so called viability

kernel which is the set that contains all the initial states for the economy/system under

study for which there exist controls that lead to state trajectories that satisfy all viability

conditions that are taken into account into K for the selected time horizon (typically the

horizon is considered infinite). Since the constraints refer to sustainability thresholds

and requirements, the viability kernel contains all the initial states of the economy

from which start viable economic trajectories in the sense that these trajectories that

satisfy all the sustainability criteria under consideration at all times. A more formal

mathematical definition of the viability kernel follows.

Definition 2.1 (Viability Kernel). The viability kernel of K for the economy which

dynamics are described in (1) is defined as the set

V iab(F,K) = {x0 | ∃(x(·), u(·)) ∈ S(x0) ∩ K, ∀t ∈ R+}

where F refers to the special characteristics of the economy, and K to the conditions

that have to be satisfied both by states and controls in order to consider the resulting

trajectories as viable.

We present the role of the viability kernel by providing some results by examining

an economy of the type discussed in Example 2 which investigated in [57]. Under the

sustainability and economy viability framework, typical conditions that may be required

are illustrated in Table 1.

Sustainability/Viability Constraint Interpretation

(a) r(t) ≥ 0 resource extraction irreversibility
(b) S(t) ≥ 0 resource scarcity
(c) S(t) ≥ Sb ≥ 0 exhaustible resource conservation threshold
(d) f(K(t), r(t))− c(t) ≥ 0 production ≥ consumption
(e) K(t) ≥ 0 production irreversibility
(f) c(t) ≥ cb > 0 minimum guaranteed consumption level

Table 1: Sustainability constraints for the economy (7)

In this case, the viability kernel is defined as

V iab(f, cb, Sb) = {(S0,K0) | ∃(c(·), r(·)) s. t. (S(t),K(t)) satisfy (7) and (a)-(f)}
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According to the standard approach of a Cobb-Douglas type technology of the form

f(K, r) = Kαrβ, β < α < 1 the viability kernel with respect to the aforementioned

conditions (Proposition 3, [57]) is determined as

V iab(f, cb, Sb) =

{
∅, α ≤ β
{(S,K) : S ≥ V (K, cb, Sb)}, α > β

where V (K, cb, Sb) = 1
α−β

(
cb

1−β

)(1−β)/β
K(β−α)/β + Sb. It is interesting to remark some

effects related to the technological parameters and in particular the elasticities α (cap-

ital) and β (resource). The above result, states that the examined economy would be

sustainable only in the case when resource elasticity is smaller than capital elasticity

(α > β), otherwise the viability kernel is empty and no feasible paths exist (see [71]).

This relation indicates also the situation when a crisis is unavoidable leading to non

sustainability of the economy since, even if in the initial times the trajectories lie in the

viability kernel, it is certain that in a finite time instant the trajectories will exit this set

leading to no sustainability. However, if a trajectory lies in the interior of the viability

kernel and sometimes reaches the boundary, then specific paths must be followed to

remain the economy to sustainable states, and in particular for the case under study the

viable decisions (controls) coincide to

r∗K =

(
cb

1− β

)1/β

K−α/β, c∗(K) = cb. (20)

It is also very interesting to examine the evolution of the viability kernel with respect

to the parameters of interest. In particular, the following comparisons can be obtained:

� Effect of production elasticity: α1 < α2 ⇒ V iab(f1, cb, Sb) ⊂ V iab(f2, cb, Sb)

� Effect of minimum consumption required level: c1b > c2b ⇒ V iab(f, c1b , Sb) ⊂
V iab(f, c2b , Sb)

� Effect of the minimum guaranteed resource stock: S1
b > S2

b ⇒ V iab(f, cb, S
1
b ) ⊂

V iab(f, cb, S
2
b )

An important role is also played by the depreciation rate λ concerning the existence of

viable solutions in this case, since based to Solow [71] if α < 1 and λ > 0 the viability

kernel is empty.

2.4.2 Sustainability, viability and maximin approaches

For a general abstract economic model of the form (1), and given a utility function

U(x(t), u(t)) which may depend both on the states x(t) and the controls of the economy

u(t), a maximin approach under the viability theory framework is considered in [28].

The maximin approach is in line with the Rawlsian perspective (please see Criterion 2)

in policy selection which refers to the maximization of the minimal level of utility for all

generations over time. In this case, the respective value function V : Rn → R is defined

as

V (x0) = sup
(x(·),u(·))∈S(x0)

(
inf
t∈R+

U(x(t), u(t))

)
. (21)
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An interesting result related to the above maximin problem, is that when a regular

maximin path exists then utility remains constant over time, i.e. U(x∗(t), u∗(t)) = V (x0)

for all t ∈ R+, which can be interpreted as inter-generational equity from a sustainability

point of view. Blending the above problem with sustainability constraints on states and

controls as the ones comprising the set K, then under the framework of viability theory,

one needs to properly define the viability kernel. Given that a maximin approach is

discussed, an extra condition that will be required is that

U(x(t), u(t)) ≥ Ub, ∀t ∈ R+ (22)

which refers to the minimum guaranteed utility level for all generations (corresponding

to certain policies in order to guarantee that by choosing appropriately the consumption

rates). The resulting viability kernel should depend on Ub, i.e.

V iab(Ub) =
{
x0 | ∃(x(·), u(·)) ∈ S(x0) ∩ K, U(x(t), u(t)) ≥ Ub, ∀t ∈ R+

}
. (23)

From the above definition it can be proven that if a maximin optimal solution (x∗(t), u∗(t))

exists starting from x0, then x∗(t) ∈ V iab(V (x0)) for all t ∈ R+ (Proposition 3, [28]).

This result states that the maximin trajectory remains within the viability kernel as

defined in (23) and can be further characterized using the properties of the viable tra-

jectories. What is of importance in the study of maximin problems form the viability

theory perspective (or reverse) is that conditions for sustainability can be provided. In

particular, a global-type condition for an economy to be sustainable is to satisfy that

x0 ∈ V iab(U(x0, u0)) while a more local condition (equiv. to the weak Hartwick’s rule)

is that H(x0, u0, Vx(x0)) ≥ 0 where H denotes the associated Hamiltonian to the opti-

mization problem. Then, a distinction among the various states of sustainability can be

done according to the following principle:

� U(x0, u0) > V (x0): this is a strong indication of non sustainability of the economy.

It holds that x0 /∈ V iab(U(x0, u0)), therefore the global condition is not satisfied.

In terms of economy that means that the current economy states do not make

possible to maintain the current utility.

� U(x0, u0) = V (x0): this translates to x0 ∈ V iab(V (x0)) = V iab(U(x0, u0)) i.e.

the global condition is satisfied. However, the local condition may not hold and

depends on the decisions u0, whether this is a part of an optimal maximin feedback

u∗(x0) or not. So, if the local condition is satisfied, sustainability holds since the

trajectories are at most on the boundary of the Viability kernel. In the case where

the local condition is not satisfied, the trajectories will leave the viability kernel

so the sustainability characterization does not hold.

� U(x0, u0) < V (x0): the global condition is satisfied since x0 ∈ V iab(V (x0)) ⊂
V iab(U(x0, u0)) and the current utility can be sustained for sure since it is lower

than the maximin value. However, depending on the controls u0 (if there are a

part of a maximin feedback) which should be checked by the local condition, the

trajectories may remain (sustainability) or may leave the kernel (unsustainability).
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2.4.3 Viability Theory in a Stochastic Framework

A stochastic extension of the notion of viability kernel was first introduced in [59] in a

discrete setting and for given terminal horizon T <∞. The framework of system (1) is

expanded by substituting the generator mechanism F with G and allowing the latter to

depend on some ω(·) which represents contingencies that affects the economical system

dynamics. This is a very plausible assumption since there is a variety of parameters

that cannot be precisely modeled, like climate and environmental conditions, random

events that affect the system, natural hazards, etc. In this perspective, system (1) is

now extended to {
d
dtx(t) = G(x(t), u(t), ω(t)), ω(t) ∈ Ω

u(t) ∈ U(x(t)) ⊂ Rm
(24)

where ω(·) will be hereafter referred to as scenario and Ω denotes the set with all possi-

ble scenarios. Consider a number of sustainability criteria that are measured instanta-

neously by a set of certain indicators (measuring economical or ecological quantities):

Ik(t, x(t), u(t)) ≥ ηk, k = 1, 2, ..., q (25)

whose outputs depend on the scenario that is realized through the states x(t). These

random constraints can be conceived as a generalization of the set of constraints K
discussed in the deterministic setting. In this framework, it is meaningless to define

a viable trajectory but rather we must introduce the notion of a viable scenario. In

particular, for a given control û (feedback control), and initial states x0 at time t = 0,

the set of viable scenarios is defined as

Ωû,x0 =

ω(·) ∈ Ω

d
dtx(t) = G(x(t), u(t), ω(t)), x(0) = x0

u(t) = û(t, x(t))

Ik(t, x(t), u(t)) ≥ ηk, k = 1, 2, ..., q

t ∈ R+

 (26)

In this stochastic framework, an appropriate metric tool to assess the viability of

the control û is to measure the likelihood that this particular strategy will meet its

sustainability objectives as determined in (25) by estimating the probability of the set

with the associated successful scenarios. This measure will be called viability probability,

it depends on the strategy û that needs to be assessed and of course to the thresholds

η = (η1, ..., ηq)
′ that have been set in (25). Introducing this quantity in mathematical

formulation is defined as

Π(û,η) = P({ω(·) ∈ Ωû,x0}) (27)

The optimal strategy (control) given the thresholds η, should be obtained through the

solution of the maximization problem Π∗(η) := maxû Π(û,η) where Π∗(η) denotes the

maximal viability probability characterizing the optimal strategy (the strategy that

is more likely to meet the viability targets comparing to the other strategies in the

set of admissible controls). Clearly, the described optimization problem’s complexity
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depends on several aspects like the number of the states, the number of controls, the

time discretization size (in case that the problem’s solution is approximated through

a proper discretization scheme), etc. For the successful treatment of such problems,

advanced and effective numerical approaches (e.g. stochastic optimization approaches

[66], robust optimization approaches [14]) should be employed.

2.4.4 Characterization of Sustainability through Indicators

A very interesting approach in characterizing sustainability through some appropriately

selected threshold values related to certain sustainability (or viability) issues is intro-

duced in [58]. This work shares the perspective of the policy-makers, introducing criteria

characterizing sustainability through indicators. For instance, the set of sustainability

constraints defined in (25), and in particular the choice of the thresholds (minimal lev-

els) η ∈ Rq upon which depends the fulfillment of each requirement, are derived through

the solution of a maximization problem. The objective of the associated problem is a

function Φ(η1, η2, ..., ηq) called preferences function, which has similar properties with

a utility function and through this function can be introduced possible dependencies

between the various sustainability requirements represented by the vector η. The value

of function Φ at a certain point η ∈ Rq can be considered as the aggregate level of

satisfaction concerning all the sustainability issues that are taken into account, if the

minimal requirements represented by η are met. However, we should make clear that

the output of this function is not time-dependent, e.g. it cannot be interpreted as a

type of instantaneous utility, but rather as the total satisfaction if the requirements η

are met in the whole planning horizon (finite or infinite). An important advantage of

this approach is that it can be implemented in both sustainability frameworks (weak or

strong) since the preference functions allow for this kind of flexibility.

Let us define the set of achievable thresholds as

A(x0) =

{
η = (η1, η2, ..., ηq)

′ ∃(x(·), u(·)) s.t. d
dtx(t) = F (x(t), u(t)), x(0) = x0

Ik(x(t), u(t)) ≥ ηk, k = 1, 2, ..., q, ∀t ∈ R+

}
(28)

which is the set of thresholds η for which there exist state trajectories and policies

satisfying the dynamics of the economy. The resulting optimization problem, which can

also be realised as a generalized maximin criterion, can be written as

max
η∈A(x0)

Φ(η). (29)

Notice that the formulation above contains as a special case if q = 1 and I1(x, u) =

U(x, u) ≥ η1 the standard maximin utilitarian problem (Rawlsian criterion) since the

preferences function is reduced to Φ(η) = η1 coinciding with the problem examined in

[28]. Problem (29) is a static optimization problem which can be treated by the typical

Karush-Kuhn-Tucker conditions given that the preferences function Φ is concave and

the set A(x0) convex.

As a particular example, consider problem 7 under the assumption of zero depreci-

ation rate for the manufactured capital (λ = 0). Then, for a given conservation level

Sb of the exhaustible resource, the maximal sustainable consumption is derived as the

16



solution to the optimization problem

c+(K0, S0, Sb) = max

{
cb

(K0, S0) : ∃(c(·), r(·)) such that

∀t ∈ R+, c(t) ≥ cb, S(t) ≥ Sb

}
(30)

which for the Cobb-Douglas technology case is derived as

c+(K0, S0, Sb) = (1− β)(S0 − Sb)(α− β)
β

1−βK
α−β
1−β
0 (31)

being the upper bound for consumption. As a result, any chosen pair (cb, Sb) that

satisfies cb ≤ c+(K0, S0, Sb) guarantees the sustainability of the economy.

The discussed framework is also extended to the stochastic case, as discussed in

2.4.3, where the states x(t) are provided by a generating mechanism G which is subject

to uncertainty. For given thresholds η, we are interested in calculating the probability of

the set of scenarios ω(·) that the underlying economy can be characterized as sustainable

in the sense that all the requirements of the form (25) are met, i.e.

Π(x0; η) = P


ω(·) ∈ Ω

d
dtx(t) = G(x(t), u(t), ω(t)), x(0) = x0

u(t) = û(t, x(t))

Ik(t, x(t), u(t)) ≥ ηk, k = 1, 2, ..., q

t ∈ [0, T ]


 . (32)

Clearly, in the deterministic case the investigated thresholds are either achievable (i.e.

Π(x0; η) = 1) or not (i.e. Π(x0; η) = 0). Moreover, in this weaker viability framework,

it is possible one to determine the set of achievable thresholds by requiring a certain

probability level of occurence for the sustainability scenario. For instance, if τ ∈ (0, 1)

denotes the confidence level, then the set which contains the thresholds η for which the

sustainability scenario is possible with probability at least τ is determined as

A(x0, τ) = {η | Π(x0; η) ≥ τ}. (33)

2.5 Optimal control approaches

An alternative (and possibly complementary approach) to viability is the optimal con-

trol approach to sustainability problems. The philosophy behind the optimal control

approach is to define a criterion to be optimized (in principle an intertemporal utility

criterion) and then choose the optimal policy in such a way so as to achieve the optimal

value of this criterion. While the viability approach focuses on the initial conditions of

the system such that a final target (which is sustainability compatible) is reached, the

optimal control approach focuses on deriving the optimal policy that allows the decision

maker to reach this target in the best possible way. Optimal control theory is a mature

mathematical field, and there are established methods for the treatment of such prob-

lems ([27, 77]). In this section, we focus on rephrasing certain of the problems presented

in section 2.2 into optimal control problems and the methodological framework for their

treatment.
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2.5.1 Deterministic optimal control

The deterministic control framework consists in choosing a general evolution model for

the state of the system (either on the continuous time setting or on the discrete one) for

example in the general framework of Examples 1, 2, 3 etc. and then select the optimal

policy in such a way as to maximize a welfare criterion that accounts for sustainability

considerations, for example one of the welfare criteria considered in Section 2.3. While

any of the above models in the general formulation (2) supplemented with any of the

sustainability criteria in Section 2.3 can be considered, here for the sake of brevity we

contain ourselves to the simple Ramsey model (see Example 1) in order to fix ideas.

Let us therefore consider the problem of maximizing a consumption welfare criterion

of the types considered in Section (2.3) for the state equation

dk

dt
= f̄(k)− c, k(0) = k0 ≥ 0, c ≥ 0. (34)

As shown in [11] the behaviour of the system largely depends on the choice of perfor-

mance function to be maximized. For example if the standard welfare criterion

sup
c≥0

ρ

∫ ∞
0

e−ρtU(c(t))dt (35)

is chosen (see Proposition 1 in [11]), then the associated optimal control of maximizing

(35) under the state equation (34) has a unique solution for every initial stock k0 > 0

with the optimal path in both k and c being monotonic in t, and such that

lim
t→∞

k∗(t) = K̄, lim
t→∞

c∗(t) = f̄(k̄).

The optimal path can be characterized in terms of the Pontryagin maximum principle,

with the use of a shadow price for k (adjoint variable) leading to the Hamiltonian

formulation

dk

dt
=
∂H

∂p
(t, k, p),

dp

dt
= −∂H

∂k
(t, k, p),

H(k, p) = max
c≥0

e−ρtU(c) + p(f(k)− c),

which (upon choosing p̂(t) = p(t)e−ρt ) leads to the optimality system

dk

dt
= f(k)− c,

dp̂

dt
= (ρ− f̄ ′(k))p,

p̂ = U ′(c),

which when endowed with an appropriate limiting condition at infinity (often called the

transversality condition) characterizes the optimal path. The choice of the transver-

sality condition has been a subject of heated discussion, however, a common choice is

limT→∞ p̂(T )k(T ) = 0. This characterizes the optimal path in a nice geometric way,
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in the phase plane of the Hamiltonian system (k, p̂), as the unique path that drives

the system to its equilibrium state, satisfying f(k) = c and ρ− f ′(k) = 0, which in the

terminology of dynamical systems corresponds to the stable manifold of the steady state

(which is a saddle point). Moreover, if f̄(k) = Af(k)− λk, with A modelling the effect

of technological progress in the production and λ modelling the deterioration of capital,

the optimality system yields

Af ′(k) = ρ+ λ,

c = Af(k)− λk,

with the first equation, known as the Ramsey golden rule characterizing the optimal

capital level at equilibrium and the second characterizing the optimal consumption at

equilibrium in terms of k. Moreover, the asymptotic level is a strictly decreasing function

of ρ. Generalizations of this approach to more involved models, as for example in the

case of multiple assets and multiple policy instrument, are also possible, leading to

interesting generalization of the golden rule, such as for example the Hartwick rule (see

e.g. [8], [12], [22], [74], [75]).

However, this nice geometrical intuition which derives in this simple model, is difficult

to turn into a strict mathematical formulation in the infinite horizon, especially because

of the need of an appropriate transversality condition. Moreover, complications arise

for more general discounting functions, where for example more than one candidates

for optimal paths may appear (see e.g., the case of a Chichlinisky like criterion where a

continuum of equilibrium strategies may be obtained [30], [31]).

An interesting way out, which in fact can turn into an alternative and very versatile

methodology is the methodology of dynamic programming, which uses instead the value

function for the problem, defined as

V (k0) = sup
c≥0

∫ ∞
0

e−ρtU(c(t), k(t))dt, subject to (34),

(where now we may consider a more general utility function depending on the state of

the system as well as on consumption) considered as a function of the initial condition

of the problem. Based on the principle of dynamic programming it can be shown (see

e.g. [31]) that the value function V (if it is C1) satisfies the so called Hamilton-Jacobi

equation

ρV (k) = max
c≥0
{U(c, k) + (f(k)− c)V ′(k)}, (36)

and that (conversely) if V ∈ C2 is a solution of (36), then the optimal strategy c = σ(k)

can be obtained in terms of V by

∂U

∂c
(σ(k), k) = V ′(k).

The optimal policy c = σ(k) is called either a feedback control or a Markov policy and

it characterizes the optimal consumption in terms of the state of the system. Based

on this approach Ekeland et al [31] recover the solution of the standard Ramsey prob-
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lem with exponential time discounting, but also manage to go further in treating the

same problem under alternative time preferences, including the preferences displaying

hyperbolic discounting or the Chichilnisky criterion [23].

Importantly, this methodology allows one to tackle the issue of time inconsistency

(see Section 2.3) or the fact that the transversality condition at infinity required by

the Pontryagin principle may not be very straightforward to be determined for more

involved models. For example, in [31] a generalized Hamilton-Jacobi equation has been

derived for the corresponding leader-follower game relevant for the time inconsistent

problem (see Section 2.3) of maximizing

J(c, k) =

∫ ∞
0

[δ(t)u(c(t), k(t)) + ∆(t)U(c(t), k(t))]dt,

where δ,∆ are two different discount factors and u, U are two different utility functions.

Note that the above model may also have important implications where considering the

problem of decision making for agents with inhomogeneous preferences. Moreover, in the

same paper [31] connections with an alternative formulation of the time inconsistent case

in terms of another Hamilton-Jacobi equation (proposed in [49]) for the value function,

of the form

−
∫ ∞
0

δ′(t)u(σ(k(t)), k(t))dt−
∫ ∞
0

∆′(t)U(σ(k(t)), k(t))dt

= max
c≥0
{u(c, k0) + U(c, k0) + V ′(k0)(f(k0)− c)},

where σ(·) characterizes the equilibium strategy and its equivalence to the approach pro-

posed in [31] were established. Through the qualitative study of the relevant Hamilton-

Jacobi equation, interesting results concerning equilibria are obtained for a number of

alternative time discounting models such as for example the bi-exponential case or the

Chichilnisky case [23], and the analysis was extended focusing on economic intuition of

these results in [11].

2.5.2 Stochastic optimal control

The above considerations can be in the case where there are unknown factors in the

models, as a result of incomplete knowledge. Such unknown factors can be attributed to

a number of factors, for example changing environmental conditions, population growth,

unpredictable events related to e.g. technological progress or natural disasters etc. In

this case the above models can be extended to stochastic models for example in the

same spirit as in Example 4. Under the effects of stochasticity, the appropriate utility

functional to be maximized must be replaced by an expected value; for example one may

consider the maximization of an expected intertemporal utility function of the general

form

J(c, k) = EP
[∫ T

0
U(t, k(t), c(t))dt+ Φ(k(T ))

]
, (37)

where here we switch to a finite horizon problem, which perhaps simplifies sustainability

concerns further, and assume that the state equation is of the general form (in the spirit
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of e.g. (10))

dk(t) = b(t, k(t), c(t))dt+ σ(t, k(t), c(t))dW (t), (38)

for suitable functions b, σ. Solving the optimization problem under a stochastic evolution

law of the above form requires tools from the theory of stochastic optimal control.

While the extension of the Pontryagin principle is feasible, it is technically involved as

it requires the development of a concept called forward-backward stochastic differential

equations (see e.g. [50], [79], [80]), and therefore the dynamic programming approach, in

terms of the so called Hamilton-Jacobi-Bellman equation (which is an extension of the

Hamilton-Jacobi equation mentioned in the previous section), is more straightforward.

According to this approach, under certain technical conditions (see e.g. [80]) the value

function (considered as a function of the initial time t0 and initial state k0) for the above

problem satisfies the equation

∂V
∂t0

+ supcG(t0, k0, V,
∂V
∂k0

, ∂
2V
∂k20

) = 0,

V (T, k0) = Φ(k0),
(39)

where

G(t0, k0, V, p, P ) =
1

2
σ2(t0, k0, c)P

2 + b(t0, k0, c)p+ U(t, k0, c),

with the optimal policy being determined in terms of the derivatives of the value function

if a suitably smooth solution of this equation exists. If not, then useful information for

the value function can be obtained in terms of the notion of viscosity solutions (see e.g.

[80]). Note that the effect of stochasticity is to introduce second order terms in the

Hamilton-Jacobi equation introduced in the previous section.

2.5.3 Uncertainty and Space

The effects of model uncertainty can be introduced into the framework of Section 2.5.2

in the same spirit as mentioned in Example 4. Introducing uncertainty in terms of an

information drift v which allows for alternative probability models for the factor process

W , we may enhance model (38) to the generalized form

dk(t) = [b(t, k(t), c(t)) + σ(t, k(t), c(t))v(t)] dt+ σ(t, k(t), c(t))dW (t),

k(t0) = k0.
(40)

Then, the performance criterion (37) is no longer applicable as it corresponds to the

case where a single probability model for the stochastic factor P applies, whereas model

uncertainty (as mentioned in Example 4) corresponds to the case where more than one

possible models for W apply. In this case, we may impose a penalization on certain mod-

els. Following the suggestion of Hansen and Sargent (see e.g. [45]) we may consider the

Kuhlback-Leibler divergence (entropy) between possible models Qv (parameterized in

terms of the drift v) and the reference model P and consider the alternative performance
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criterion

Ĵ(k, c, v) = J(k, c)− EP
[
θ

2

∫ T

0
v(t)2dt

]
,

with the extra term corresponding to the penalty term (see [45] for details) and the

parameter θ > 0 corresponding to the agent’s uncertainty aversion. Then, the optimal

control problem takes the form of a differential game with the decision maker selecting

the optimal policy c and a non benevolent agent (nature) selecting the model in terms

of v, thus leading to a Nash equilibrium of the form

min
v

max
c
Ĵ(k, c, v), subject to (40).

The dynamic programming framework and the Hamilton-Jacobi-Bellman equation can

be extended to treat the above problem and derive robust policies c under model uncer-

tainty, in terms of the solution of the so called Hamilton-Jacobi-Bellman-Isaacs equation.

Uncertainty introduces new interesting effects, such as for example the breakdown of

control policies in the limit of deep uncertainty (θ →∞) or the excessive cost of optimal

control for large uncertainty (see e.g. [5]).

Moreover, the effects of spatial heterogeneities can be taken into account in the

spirit introduced in Example 5. In the absence of stochasticity one may consider gener-

alizations of the Pontryagin maximum principle in terms of forward-backward coupled

partial differential equations, or if an expansion in terms of eigenfunctions is applicable

in term of countable systems of ordinary differential equations (see e.g. [17] and refer-

ences therein). The introduction of spatial effects introduces interesting effects such as

for instance the generation of spatial patterns for optimal consumption (see e.g. [16] or

the generation of depletion patterns for the resource see e.g. [78]). The Hamilton-Jacobi-

Bellman framework still applies (see e.g. [20]), however, now it it is a partial differential

equation on a function space, a fact that creates considerable technical difficulties (see

e.g. [35]). However, explicit solutions are possible for certain special cases, a fact that

sheds important light on the spatiotemporal dynamics of the controlled system. These

special cases are essentially centered around the AK spatial system (see e.g. [20] or

[21]) with the results providing interesting insight as to the conditions connecting the

discount factor and the spatial variability of the system (in terms of the spatial trans-

port processes involved) for spatial patterns to emerge and persist. Similar results can

be obtained for more general systems, in terms of a linearized analysis around selected

spatially homogeneous optimal states (see e.g. [16] or [17]). Interesting effects arise

when model uncertainty is combined with spatial effects. A preliminary analysis of the

corresponding differential game can be found in [13], providing existence of solutions

for the corresponding Hamilton-Jacobi-Bellman-Isaacs equation in the case of moderate

uncertainty and insights towards possible pathologies in the case of deep uncertainty.

More progress concerning exact solutions can be obtained for a linear quadratic stochas-

tic differential game modelling deviations from a desired optimal target, in terms of a

stochastic target following optimal control problem under uncertainty. In such cases

exact solutions can be obtained in terms of a Riccatti equation with the solution re-

vealing interesting behaviour concerning the spatial structure of the deviations from the
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target, pattern formation or breakdown of solutions for the deep uncertainty regime [18].

Finally, an interesting recent contribution is the study of uncertainty in the initial con-

ditions of a spatially dependent AK model, using an alternative penalization scheme for

plausible models in terms of the Wasserstein metric (rather than the Kullback-Leibler

entropy, see [63], [65]) was introduced by Papayiannis in [64]. There the effect of spatial

inhomogeneity is taken into account in terms the graph Laplacian and an explicit solu-

tion of the relevant Hamilton-Jacobi equation is provided for a power utility function

for a finite horizon problem which allows for quantification and allocation of risk and

uncertainty into the various spatial domains [64].

The introduction of uncertainty in sustainability modeling is expected to bring in-

teresting phenomena into the picture and to provide interesting policy implications. For

a number of interesting applications in water management we refer to [32], [52], [53]

and [54]. Moreover, an interesting analysis of second best environmental policies under

uncertainty can be found in [4].
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