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Here we investigate the estimation of asymmetric Autoregressive Stochas-
tic Volatility models with possibly time varying risk premia. We employ the
Indirect Inference estimation developed in Gallant and Tauchen (1996), with
a �rst step estimator either the Generalized Quadratic ARCH or the Expo-
nential GARCH. We employ Monte-Carlo simulations to compare the two
�rst step models in terms of bias and root Mean Squared Error. We apply
the developed methods for the estimation of an asymmetric autoregressive
SV-M model to international stock markets excess returns.

1 Introduction

In economic and �nancial data there are some well documented statistical
facts, the so-called stylized facts. The most important of these is perhaps
the volatility clustering, i.e. that, on average, periods of high (low) volatility
are followed period with high (low) volatility. However, volatility clustering
is also observed in data from physics and speci�cally from turbulence, called
intermittency in turbulence terminology (see Barndor�-Nielsen 1997 [8])1.
This has led to modi�cations and extensions of the original ARCH (Autore-
gressive Conditional Heteroskedasticity) model of Engle (1982) [27] and its
generalization by Bollerslev (1986) [12], so that now there is a plethora of
dynamic heteroskedasticity models (see e.g. Bollerslev, Chou, and Kroner,

1For a comparison between the stylized facts of the temporal behavior of asset returns,
and di�erences in velocity of the mean wind direction of a large Reynolds number wind
�eld see Barndor�-Nielsen and Shephard (2001) [9], and Mantegna and Stanley (1996)
[48].
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1992 [13], Bera and Higgins, 1993 [10], Bollerslev, Engle and Nelson 1994
[14], and Francq and Zakoian, 2010 [30] for a book).

Furthermore, economic theory, and speci�cally �nancial theory, often pos-
tulates speci�c relationships between �rst and second conditional moments.
For instance, in the stock market context, the �rst conditional moment of
stock market excess returns, say µt, is a function of volatility, say σ2

t , (see
e.g. Merton, 1980 [50], and Glosten, Jagannathan and Runkle, 1993 [35]). In
fact, rational risk averse investor require higher expected returns during high
volatility periods, implying a positive relationship between expected returns
and volatility, something which is supported by e.g. French et al. (1987) [31]
and Campbell and Hentschel (1992) [19] and Poon and Taylor (1992) [57].
Consequently, Engle, Lilien and Robins (1987) [28] introduced the so called
ARCH in Mean model (ARCH-M), which was a �rst attempt to capture this
relationship.

Glosten, Jagannathan and Runkle (1993) [35] and Nelson (1991) [54],
among others, give support to a negative relationship between unexpected
part of returns volatility. French et al. (1987) [31] interpret it as indirect
evidence of a positive correlation between the expected risk premium and ex
ante volatility. They suggest that unanticipated large shocks to the return
process induce higher expected volatility. If expected volatility and returns
are positively related, the current stock price should fall. This is known as
the volatility feedback theory (see e.g. Campbell and Hentschel (1992) [19]).

Finally, it has been observed that volatility is higher after the stock mar-
ket has a fall than after a rise of the same size, meaning that stock returns
are negatively correlated with future volatility. This phenomenon was �rst
discussed by Black (1976) [11], who suggested that it could be due to the
increase in leverage that occurs when the market of a �rm falls. However, it
seems that the leverage e�ect is too small to completely explain this asymmet-
ric response of volatility (see e.g. Christie (1982) [21], Figlewski and Wang
(2000) [29], and Schwert (1989) [59], Hasanhodzic and Lo [42], and Boller-
slev, Sizova, and Tauchen (2012) [15]). This e�ect can be accommodated
within asymmetric GARCH setup such as the Exponential GARCH of Nel-
son (1991) [54], the Quadratic GARCH of Sentana (1995) [60] or the model of
Glosten, Jagannathan and Runkle (1993) [35]. Hence, and especially in the
area of empirical �nance, a literature �eld emerged, where researchers tried
to quantify and estimate these relationships using mainly the GARCH-M
speci�cation, either symmetric or asymmetric, especially due to its inference
tractability (see among others Gonzales-Rivera 1996 [36], Choudhry 1996

2



[20], Dunne 1999 [26], Tai 2000 [62] and 2001 [63] , Ortiz and Arjona 2001
[56], Arvanitis and Demos 2004 [6] and 2004a [7]).

All the above mentioned conditional heteroskedastic models are charac-
terized by the fact that the mean error �moves� the next period conditional
variance. However, there is another class of conditionally heteroskedastic
processes where a second error processes, possibly correlated with the mean
error, �drives� the conditional variance, the so-called stochastic variance pro-
cesses (see e.g. Andersen 1996 [1]). The most popular of the stochastic
variance models de�nes volatility as a logarithmic �rst-order autoregres-
sive, known as the �rst-order autoregressive Stochastic Volatility (SV(1))
model. Even thought SV models are considered as competitive alternatives
to GARCH ones their application has been limited.

One of the reasons is that in the SV setting volatility is not measurable
with respect to observable past information. Hence, volatility estimation
involves not only �ltering but smoothing techniques, as well, making the es-
timation of the parameters cumbersome (see e.g. Andersen and Benzoni 2009
[3], and Broto and Ruiz 2004). Furthermore, classical parameter estimation
for this model is extremely di�cult, because of the non-analytic form of the
likelihood function. In other hand, the conditional variance in GARCH is ob-
servable given past information, which makes (quasi-) maximum likelihood
estimation quite straightforward. The estimation methods that have been
proposed for SV models can be divided into two main groups; those that try
to construct the full likelihood function and those that approximate it (see
e.g. Taylor 1986 [64], and Harvey, Ruiz and Shephard 1994 [40]). The estima-
tion method based on evaluating the full likelihood function can be found in,
for example, Jacquier et al. (1994) [43], Kim, Shephard and Chib (1998) [45],
Sandmann and Koopman (1998) [58], Fridman and Harris (1998) [32], and
Koopman and Uspensky (2002) [47]. Several method of moment approaches
have also been employed to estimate the SV model parameters such as the,
so called, e�cient method of moments (Gallant and Tauchen 1996 [34]), the
Indirect Inference (Smith (1993) [61] and Gourieroux, Monfort and Renault
(1993) [38]), the spectral method of moments (Singleton 2001; Chacko and
Viceira 2003; Knight, Satchell, and Yu 2002), the simulated method of mo-
ments (Du�e and Singleton 1993) and the generalized method of moments
(Melino and Turnbull 1990, Andersen and Sorensen 1996) .

Here we investigate the estimation of asymmetric SV models with possi-
bly time varying risk premia, i.e. the standard deviation could appear as an
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explanatory variable in the mean equation (SV-M).2 In such a way we model
simultaneously the �rst two moments of the observed process, with errors
that can be correlated. We employ the Indirect Inference estimation fro the
parameters of the models (see e.g. Gourieroux et al. (1993), Andersen and
Sorensen (1996), Gourieroux and Monfort (1996)). In fact, we employ the
method developed in Gallant and Tauchen (1996) [34], with a �rst step esti-
mator either the Generalized Quadratic ARCH (GQARCH) model of Sentana
(1995) [60] or the Exponential GARCH (EGARCH) of Nelson (1991) [54].
We employ Monte-Carlo simulations to compare the two �rst step models
in terms of bias and Mean Squared Error (MSE), contributing in this way
to the question of the �rst step estimator. Finally, we apply the developed
methods for the estimation of an SVM model to international stock markets
excess returns.

In the nest section we present the model. The estimation method is
presented in the following, Section 3. In Section 4 we present the simulation
results and compare the two �rst step estimators in terms of bias and root
MSE. In Section 4 we estimate the SVM employing real data. We conclude
in section 5.

2 The SVM Model

The normal Autoregressive Stochastic Volatility in Mean models are given
by:

yt = ct + ε∗t = c+ λσt + εtσt where, (2.1)

lnσ2
t = ω + ψ lnσ2

t−1 + ηt−1 and (2.2)(
εt
ηt

)
iid∼ N

((
0
0

)
,

(
1 ρση
ρση σ2

η

))
.

The above model, with c = λ = 0, has been estimated by quasi maximum
likelihood in Harvey and Shephard (1996) [41] and by MCMC in Meyer and
Yu (2000) [51]. A similar model, with c = ρ = 0, has been estimated in
Koopman and Uspensky (2002) [47] by simulated maximum likelihood, and,
with c = λ = 0 but with non-normal error distribution, in Jacquier, Polson
and Ross (2004) [44] by MCMC. However, there is an important di�erence

2For a linear, in standard deviation, in-mean model but with EGARCH errors see
Hafner and Kyriakopoulou (2021) [39].
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between the models considered in Jacquier et al. (1994)[43], (2004)[44] (JPR)
and Koopman and Uspensky (2002) [47] and the one considered here. Specif-
ically, instead of the above conditional variance speci�cation 2.2 they employ
the following one:

lnσ2
t = ω + ψ lnσ2

t−1 + ηt. (2.3)

However, Yu (2002) [67] proved that the partial derivative of future volatility
with respect to the error is not necessarily negative when ρ < 0, i.e. it
could be the case that even if ρ < 0 future volatility could decrease with
a negative error, claiming the the variance speci�cation in 2.2 is a more
�natural� one (see details in Yu 2002 [67]). Demos (2023) [23] presents the
statistical properties of the two models.

It is worth noticing that the SV-M model has a relative advantage as
compared to GARCH-M type of models. Let us denote by σt|t−1 the condi-
tional expectation of the standard deviation on the σ − field generated by
the observed variables yt up to time t− 1, i.e.

σt|t−1 = E (σt|σ {yt−1, yt−2, . . . , y1}) .

Then adding and subtracting λσt|t−1 in equation 2.1 we get:

yt = c+ λσt|t−1 + λ
(
σt − σt|t−1

)
+ εtσt,

i.e. the �rst two terms on the right-hand side of the equation represents the
risk premium, implying a positive λ, whereas the third terms represents the
volatility feed-back term implying a negative λ (see Koopman and Uspensky
(2002) [47], as well). On the other hand, for any GARCH-type speci�cation
σt = σt|t−1 and the two e�ects can not be separated. Of course, one could
add to a GARCH-M model an extra term representing the volatility surprise,
as in Campbell and Hentschel (1992) [19], i.e. add (ε2t − 1)σ2

t a martingale
sequence for most GARCH-type models (see Wu 2001 [66], as well). However,
in our case σt|t−1 is far more complicated.

Let us concentrate now to the estimation procedure.
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3 Estimation

The Gallant and Tauchen (1996) [34] estimator is de�ned as, for the vector
of parameters ξ′ = (c, λ, ω, ψ, ρ, ση),

ξ̂ = argmin
ξ

 S∑
s=1

T∑
t=1

∂lt

(
yst (ξ) , β̂

)
∂β

′

Σ

 S∑
s=1

T∑
t=1

∂lt

(
yst (ξ) , β̂

)
∂β

 ,

where ζ̂ =
(
µ̂, φ̂, α̂, θ̂, γ̂, β̂

)′
is the �rst step estimator, i.e. the maximiser of

the approximate conditional Gaussian quasi log-likelihood function

lT (ζ) = −T
2
ln 2π − 1

2

T∑
t=1

(
lnht +

(
yt − µ− φ

√
ht
)2

ht

)
=

T∑
t=1

lt (ζ) (3.1)

where

lt (ζ) = −1

2
ln 2π − 1

2

(
lnht +

(
yt − µ− φ

√
ht
)2

ht

)
,

and

lnht = α + θzt−1 + γ |zt−1|+ β lnht−1

for the EGARCH-M auxiliary or

ht = α + γz2t−1ht−1 + θzt−1

√
ht−1 + βht−1

for GQARCH-M one.
Notice that as the number of auxiliary parameters is the same as the

number of parameters, six, Σ is irrelevant, at least asymptotically, and con-
sequently it is set to the Identity matrix (see e.g. Gourieroux and Monfort
(1996) [37]).

3.1 EGARCH(1, 1)−M Auxiliary

The EGARCH(1, 1)−M class of models of Nelson (1991)) [54] is given by:

yt = µ+ φ
√
ht + zt

√
ht, t = 1, . . . , n, where zt

iid∼ (0, 1) and

lnht = α + θzt−1 + γ |zt−1|+ β lnht−1
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with

lnh0 = E (lnht) =
α + γE |z|

1− β
,

for |β| < 1, and

lnh1 = α + θz0 + γ |z0|+ β lnh0 = α + β lnh0 =
α + βγE |z|

1− β

assuming that z0 = 0.
The Quasi normal log-likelihood is given by:

l (α, θ, γ, β) = −T
2
ln 2π−1

2

T∑
t=1

(
lnht +

(
yt − µ− φ

√
ht
)2

ht

)
= −T

2
ln 2π−1

2

T∑
t=1

(
lnht + z2t

)
.

Now for ◦ = {µ, φ, α, θ, γ, β} we have that (see Demos and Kyriakopoulou
(2013) [24] for the EGARCH model) :

l◦ =
∂l

∂◦
= −1

2

T∑
t=1

∂ lnht
∂◦

− 1

2

T∑
t=1

∂z2t
∂◦

= −1

2

T∑
t=1

ht;◦ −
T∑
t=1

zt
∂zt
∂◦

,

where

∂zt
∂µ

=
∂
(
yt − µ− φe

1
2
lnht

)
e−

1
2
lnht

∂µ
= −1

2
ztht;µ −

1

2
φht;µ − e−

1
2
lnht = −1

2
(zt + φ)ht;µ −

1√
ht
,

∂zt
∂φ

=
∂
(
yt − µ− φe

1
2
lnht

)
e−

1
2
lnht

∂φ
= −1

2

(
yt − µ− φe

1
2
lnht

)
e−

1
2
lnhtht;φ − 1

2
φht;φ − 1

= −1

2
(zt + φ)ht;φ − 1,

and for @ = {α, θ, γ, β}, the conditional variance parameters

∂zt
∂@

=
∂
(
yt − µ− φe

1
2
lnht

)
e−

1
2
lnht

∂@
=
∂ (yt − µ) e−

1
2
lnht − φ

∂@

= −1

2
(yt − µ) e−

1
2
lnhtht;@ = −1

2
(zt + φ)ht;@.
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Now the derivative of the conditional variance with respect to the param-
eters are given:

ht;µ =
∂ (α + θzt−1 + γ |zt−1|+ β lnht−1)

∂µ

=
∂ (θzt−1 + γ (I (zt−1 ≥ 0)− I (zt−1 < 0)) zt−1 + β lnht−1)

∂µ

= (θ + γ (I (zt−1 ≥ 0)− I (zt−1 < 0)))
∂ (zt−1)

∂µ
+ βht−1;µ =

= (θ + γ (I (zt−1 ≥ 0)− I (zt−1 < 0)))

(
−1

2
(zt−1 + φ)ht−1;µ −

1√
ht−1

)
+ βht−1;µ

= −{θ + γ [I (zt−1 ≥ 0)− I (zt−1 < 0)]} 1√
ht−1

+

[
β − 1

2
(θzt−1 + γ |zt−1|)−

1

2
φ [θ + γ (I (zt−1 ≥ 0)− I (zt−1 < 0))]

]
ht−1;µ

with

h1;µ = 0,

as

lnh1 =
α + βγE |z|

1− β
.

ht;φ =
∂ (α + θzt−1 + γ |zt−1|+ β lnht−1)

∂φ

= θ
∂zt−1

∂φ
+ γ [I (zt−1 ≥ 0)− I (zt−1 < 0)]

∂zt−1

∂φ
+ βht−1;φ

= {θ + γ [I (zt−1 ≥ 0)− I (zt−1 < 0)]}
(
−1

2
(zt−1 + φ)ht−1;φ − 1

)
+ βht−1;φ

= − [θ + γI (zt−1 ≥ 0)− γI (zt−1 < 0)]

+

[
β − 1

2
θzt−1 −

1

2
γ |zt−1| −

1

2
φ [θ + γI (zt−1 ≥ 0)− γI (zt−1 < 0)]

]
ht−1;φ

with

h1;φ = 0.
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ht;α = 1 + θ
∂zt−1

∂α
+ γ

∂zt−1

∂α
[I (zt−1 ≥ 0)− I (zt−1 < 0)] + βht−1;α

= 1 + θ

(
−1

2
(zt−1 + φ)ht−1;α

)
+ [γI (zt−1 ≥ 0)− γI (zt−1 < 0)]

(
−1

2
(zt−1 + φ)ht−1;α

)
+ βht−1;α

= 1 +

(
β − 1

2
θzt−1 −

1

2
γ |zt−1| −

1

2
φ [θ + γI (zt−1 ≥ 0)− γI (zt−1 < 0)]

)
ht−1;α

h1;α =
1

1− β
.

as

lnh1 =
α + βγE |z|

1− β
.

Now for ◦ = {γ} the derivatives are:

ht;γ =
∂ (α + θzt−1 + γ |zt−1|+ β lnht−1)

∂γ

= |zt−1|+ [θ + γI (zt−1 ≥ 0)− γI (zt−1 < 0)]
∂ (zt−1)

∂γ
+ βht−1;γ

= |zt−1|+ [θ + γI (zt−1 ≥ 0)− γI (zt−1 < 0)]

(
−1

2
(zt−1 + φ)ht−1;γ

)
+ βht−1;γ

= |zt−1|+
{
β − 1

2
θzt−1 −

1

2
γ |zt−1| −

1

2
φ [θ + γI (zt−1 ≥ 0)− γI (zt−1 < 0)]

}
ht−1;γ

with

h1;γ =
βE |z|
1− β

.

Now for ◦ = {θ} the derivatives are:
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ht;θ =
∂ (α + θzt−1 + γ |zt−1|+ β lnht−1)

∂θ

= zt−1 + [θ + γ (I (zt−1 ≥ 0)− I (zt−1 < 0))]
∂ (zt−1)

∂θ
+ βht−1;θ

= zt−1 −
1

2
(zt−1 + φ)ht−1;θ [θ + γ (I (zt−1 ≥ 0)− I (zt−1 < 0))] + βht−1;θ

= zt−1 +

[
β − 1

2
(θzt−1 + γ |zt−1|)−

1

2
φ [θ + γI (zt−1 ≥ 0)− γI (zt−1 < 0)]

]
ht−1;θ

with

h1;θ = 0.

Now for ◦ = {β} the derivatives are:

ht;β =
∂ (α + θzt−1 + γ |zt−1|+ β lnht−1)

∂β

= θ
∂ (zt−1)

∂β
+ (γI (zt−1 ≥ 0)− γI (zt−1 < 0))

∂ (zt−1)

∂β
+ lnht−1 + βht−1;β

= lnht−1 + θ

(
−1

2
(zt−1 + φ)ht−1;β

)
+(γI (zt−1 ≥ 0)− γI (zt−1 < 0))

(
−1

2
(zt−1 + φ)ht−1;β

)
+ βht−1;β

= lnht−1 +

[
β − 1

2
θzt−1 −

1

2
γ |zt−1| −

1

2
φ (θ + γI (zt−1 ≥ 0)− γI (zt−1 < 0))

]
ht−1;β

with

h1;β =
α + γE |z|
(1− β)2

.

3.2 The GQARCH(1, 1)−M Auxiliary

The GQARCH(1, 1) process of Sentana is given by:

yt = µ+ φ
√
ht +

√
htzt, zt =

iid∼ N(0, 1)

ht = α + γz2t−1ht−1 + θzt−1

√
ht−1 + βht−1
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with

h0 =
α

1− (γ + β)
and h1 =

α (1− γ)

1− (γ + β)
OK.

Then for ◦ = {µ, φ, α, θ, γ, β} we have that :

l◦ =
∂l

∂◦
= −1

2

T∑
t=1

∂ lnht
∂◦

− 1

2

T∑
t=1

∂z2t
∂◦

= −1

2

T∑
t=1

ht;◦ −
T∑
t=1

zt
∂zt
∂◦

,

as with the EGARCH-M auxiliary, where

∂zt
∂µ

=
∂
(
yt − µ− φ

√
ht
) (√

ht
)−1

∂µ
= yt

∂
(
e−

1
2
lnht

)
∂µ

−
∂
(
µe−

1
2
lnht

)
∂µ

= −1

2
yte

− 1
2
lnhtht;µ − e−

1
2
lnht +

1

2
µe−

1
2
lnhtht;µ = −1

2
(yt − µ)

1√
ht
ht;µ −

1√
ht

= −1

2
(zt + φ)ht;µ −

1√
ht
,

∂zt
∂φ

=
∂
(
yt − µ− φ

√
ht
) (√

ht
)−1

∂φ
=
∂ (yt − µ) e−

1
2
lnht − φ

∂φ

= −1

2
(yt − µ)

1√
ht
ht;φ − 1 = −1

2
(zt + φ)ht;φ − 1,

and for ◦ = {α, θ, γ, β} we have that :

∂zt
∂◦

=
∂
(
yt − µ− φ

√
ht
) (√

ht
)−1

∂◦
=
∂ (yt − µ)

(√
ht
)−1

∂◦
= −1

2
(yt − µ)

1√
ht
ht;◦ = −1

2
(zt + φ)ht;◦. OK
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The conditional variance derivatives, for ◦ = {µ, φ, α, θ, γ, β} , are:

ht;◦ =
∂ lnht
∂◦

=
1

ht

∂ht
∂◦

=
1

ht

∂
(
α + γz2t−1h

2
t−1 + θzt−1

√
ht−1 + βh2t−1

)
∂◦

=
1

ht

[
∂α

∂◦
+
∂γ

∂◦
z2t−1h

2
t−1 + 2γzt−1

∂ (zt−1)

∂◦
ht−1 + γz2t−1

∂ht−1

∂◦

]
+

1

ht

[
θ
∂ (zt−1)

∂◦
√
ht−1 + θzt−1

∂
√
ht−1

∂◦
+
∂θ

∂◦
zt−1

√
ht−1 + β

∂ht−1

∂◦
+
∂β

∂◦
h2t−1

]

=
1

ht

[
∂α

∂◦
+
∂γ

∂◦
z2t−1h

2
t−1 + 2γzt−1

∂ (zt−1)

∂◦
ht−1 + γz2t−1ht−1ht−1;◦

]
+

1

ht

[
θ
∂ (zt−1)

∂◦
√
ht−1 +

1

2
θzt−1

√
ht−1ht−1;◦ +

∂θ

∂◦
zt−1

√
ht−1 + βht−1ht−1;◦ +

∂β

∂◦
h2t−1

]
It follows that for ◦ = µ we get

ht;µ =
1

ht

[
βht−1ht−1;µ −

(
2γzt−1

√
ht−1 + θ

)(1

2
φ
√
ht−1ht−1;µ + 1

)]
,

with

h1;µ = 0.

For ◦ = φ

ht;φ =
1

ht

[
βht−1ht−1;φ −

(
2γzt−1ht−1 + θ

√
ht−1

)(1

2
φht−1;φ + 1

)]
with

h1;φ = 0.

Now for ◦ = α the derivatives are:

ht;α =
1

ht

{
1 +

[
βht−1 −

1

2
φ
(
2γzt−1ht−1 + θ

√
ht−1

)]
ht−1;α

}
with

h1;α =
1

α
.
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For ◦ = γ the derivative is:

ht;γ =
1

ht

[
z2t−1h

2
t−1 +

(
βht−1 − γzt−1φht−1 −

1

2
θφ
√
ht−1

)
ht−1;γ

]
with

h1;γ =
β

(1− (γ + β)) (1− γ)
.

For ◦ = θ the derivatives are:

ht;◦ =
1

ht

[
zt−1

√
ht−1 +

(
βht−1 − γzt−1φht−1 −

1

2
θφ
√
ht−1

)
ht−1;θ

]
with

h1;θ = 0,

and for ◦ = β the derivatives are:

ht;β =
1

ht

[
h2t−1 +

(
βht−1 − γzt−1φht−1 −

1

2
θφ
√
ht−1

)
ht−1;β

]
with

h1;β ==
1

1− (γ + β)
.

It follows that

lµ =
1

2

T∑
t=1

((
z2t − 1 + ztφ

)
ht;µ + 2zte

− 1
2
lnht

)
=

1

2

T∑
t=1

((
z2t − 1 + ztφ

)
ht;µ + 2

zt√
ht

)
with

h1;µ = 0.

4 Monte Carlo Simulations

4.1 EGARCH and GQARCH

To compare the properties in terms of bias and Mean Squared Error for the
two estimators we perform a Monte Carlo exercise. The results in Jacquier,
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Polson and Rossi (1994) (JPR94) and in Calzolari, Fiorentini and Sentana
(2004) imply that the most most important determinant of the performance
of the di�erent estimators is the unconditional coe�cient of variation of the
unobserved volatility level σ2

t , say CV , where

CV 2 =
V ar (σ2

t )

E2 (σ2
t )

= exp

(
σ2
η

1− ψ2

)
− 1.

Notice that when CV 2 is low, the observed process is close to Gaussian white
noise, and consequently the estimation of the stochastic volatility parameters
is di�cult. Furthermore, CV is independent of ρ.

The simulated data were generated employing 3 sets of parameter values.
For the the �rst one we set ω0 = −0.1, ψ0 = 0.9, ρ0 = −0.8, and ση0 =
0.3629 getting CV 2 = 1.0, for the second one we chose ω0 = 0.0, ψ0 =
0.9, ρ0 = −0.95 and ση0 = 0.31623 with CV 2 = 0.693 as in Monfardini
(1998) [53], and for the third one we chose ω0 = −0.736, ψ0 = 0.9, ρ0 =
−0.95 and ση0 = 0.363 with CV 2 = 1.0 as in JPR94. Notice that the third
set of parameters has been employed by Andersen, Chung and Sorensen
(1999) [4] and Andersen and Sorensen (1996) [5] , as well. However, the
previous articles are dealing with symmetric SV models, i.e. ρ = 0.

In all simulations we choose S = 200 for T = 1000, 2000 and 3000,
and S = 150 for T = 5000, 7500 and 10000, and perform 500 Monte Carlo
simulations for each score generator. The choice of S is based mainly in time
considerations, as higher value of S results in smaller asymptotic variance of
the estimators and consequently increases the stability of the estimation (see
below on this) but increases the time needed for the program to converge.
These values of S are far smaller than the ones employed in the application
with real data section.

In Figure 4.1 we present the norm of the estimated biases of the four
parameters for the �rst parameter set for T=1000, 2000, 3000, 5000 7500
and 10000, and a measure of root MSE, as well. In fact, For T=1000, 2000
and 3000 the estimated bias for the GQARCH score generator is less the the
EGARCH one, whereas the opposite is true for T=5000, 7500 and 10000. As
a measure of root MSE we employ the Frobenius norm of the MSE matrix.
It is obvious that the root MSE of the EGARCH generator is by far smaller
the the GQARCH one for all Ts under consideration.

It is worth mentioning that in some cases the estimation routine did not
converge, because either the program broke due to the fact that the values
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Figure 4.1: Parameter Set 1, ω0 = −0.1, ψ0 = 0.9, ρ0 = −0.8, and ση0 =
0.3629.

of the estimated parameters where far out of the plausible parameter range,
or the program stuck for ever in a speci�c set of estimates (see also Ander-
sen, Chung and Sorensen 1999). There are three possible ways to remade
this phenomenon. First, we could increase S, the number of replications to
estimate the expected value of the score generator, or to initialize the esti-
mation procedure from a di�erent point of starting values, or to discard the
speci�c set of random numbers and replace it by another. We have chosen
the third alternative. For the �rst set of parameters the EGARCH score
generator routine failed in 31 cases for T=1000, in 12 for T=2000, and in 7
for T=3000. The GQARCH score generator routine did not failed in any of
the considered sample sizes.

In Figure 4.2 presents the norm of the estimated biases and the root MSEs
for the second set of parameters. In apparent that the EGARCH generator
outperforms the GQARCH one, for all Ts considered. For this parameter
set it is obvious that the EGARCH score generator is uniformly superior in
terms of bias and root MSE.

In terms of routine failures, the GQARCH score generator failed in 22
cases for T = 1000, in 36 for T = 2000, in 25 for T = 3000, in 31 for
T = 5000, in 28 for T = 7500, and in 21 for T = 10000. On the other hand,
the EGARCH score generator failed in only 8 cases for T = 3000.

Monfardini (1998) [53] employed an Indirect Inference estimator using as
�rst step estimators AR and ARMA models, capitalizing the autocorrelation
function of the squared residuals of a symmetric SV(1) model. In Tables 1
and 2 we present the biases and the root MSE's of the two estimators of
Monfardini (1998) together with ours. Of course in our case we estimate,

15



Figure 4.2: Parameter Set 2,ω0 = 0.0, ψ0 = 0.9, ρ0 = −0.95 and ση0 =
0.31623.

apart from the presented parameters, the dynamic asymmetry parameter
ρ, as well. For the two sample sizes considered in that Monfardini (1998),
T = 1000 and T = 2000 it is obvious that the EGARCH score generator is
less biased and has smaller root MSE.

Table 1: Biases and Root MSE's (in parenthesis) of the 2 II Estimators in
Monfardini (1998), and EGARCH and GQARCH score generators T=1000

Method/param. ω0 = 0.0 ψ0 = 0.9 ση0 = 0.31623
Ind. Inf. 1− AR 0.0014 (0.0197) −0.0314 (0.1036) 0.0170 (0.1557)

Ind. Inf. 2− ARMA −0.0055 (0.0239) −0.0363 (0.1013) 0.0496 (0.160)
QML − −0.0327 (0.1047) 0.0319 (0.1577)
BAY ES − −0.0213 (0.0540) 0.0194 (0.0941)
SEM − −0.0010 (0.0400) −0.0129 (0.0570)

GQARCH 0.0351 (0.12098) 0.0185 (0.0518) −0.0289 (0.1116)
EGARCH 0.0002 (0.0063) 0.0010 (0.0143) −0.0004 (0.0357)

Monfardini (1998)

Let us turn our attention to the third parameter set. From Figure 4.3 it
is obvious that the EGARCH score generator is uniformly, over all examined
sample sizes, superior to the GQARCH one in terms of bias and root MSE.

In terms of routine failures, it seems that, for this parameter set, the
number of failures is quite higher than the other two, which is an indication
that S=200 is not enough for the programs to converge. In the that EGARCH
auxiliary we have 219 failures T = 1000, 151 T = 2000, 139 T = 3000, 87
T = 1000, 56 T = 7500, and 47 T = 10000. For the GQARCH auxiliary
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Table 2: Biases and Root MSE's (in parenthesis) of the 2 II Estimators in
Monfardini (1998), and EGARCH and GQARCH score generators T=2000

Method/param. ω0 = 0.0 ψ0 = 0.9 ση0 = 0.31623
Ind. Inf. 1− AR 0.0006 (0.0108) −0.0124 (0.0598) 0.0029 (0.1090)

Ind. Inf. 2− ARMA 0.0021 (0.0112) −0.0133 (0.0600) 0.0194 (0.1104)
SEM − −0.0009 (0.02407) −0.0168 (0.0438)

GQARCH 0.0133 (0.0712) 0.0027 (0.0415) −0.0241 (0.1059)
EGARCH 0.0003 (0.0042) 0.0002 (0.0103) 0.0012 (0.0243)

Figure 4.3: ω0 = −0.736, ψ0 = 0.9, ρ0 = −0.95 and ση0 = 0.363.
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Table 3: Bias and Root MSE (in parenthesis) of MM, QML, Bayes, GQARCH
and EGARCH score Generators, T=2000
Method/param. ω0 = −0.736 ψ0 = 0.9 ση0 = 0.363

MM1) 0.124 (0.420) 0.020 (0.060) 0.053 (0.100)
QML1) 0.117 (0.460) 0.020 (0.060) −0.020 (0.110)
Bayes1) −0.026 (0.150) −0.004 (0.020) −0.004 (0.034)
QML2) 0.000 (0.010) −0.012 (0.050) 0.018 (0.100)
MCL2) −0.009 (0.010) 0.013 (0.020) −0.046 (0.030)
GMM3) 0.151 (0.311) 0.020 (0.043) −0.086 (0.117)
EMM4) −0.057 (0.224) −0.007 (0.030) −0.004 (0.049)
GQARCH 0.003 (0.110) −0.033 (0.057) −0.026 (0.191)
EGARCH −0.001 (0.038) 0.000 (0.005) −0.003 (0.022)

1) Jacquier, Polson and Rossi (1994) Table 9, 2) Sandmann and Koopman
(1998) Table 3, 3) Andersen and Sorensen (1996) Table 5, 4) Andersen,
Chung and Sorensen (1999) Table 5

things are a bit worse, i.e. there are 186 failures T = 1000, 327 T = 2000, 320
T = 3000, 306 T = 5000, 350 T = 7500, and 337 T = 10000. We would like
to repeat that for the Monte Carlo experiments that the routines failed can
be eliminated if we increase S or choose di�erent starting values. Increasing
S is not time feasible in a simulations setup, where as changes the starting
values would make inaccurate the comparisons between simulations.

For this parameter set it is fruitful to compare our results with the ones
in articles where symmetric SV(1) models have been estimated. In Table 3
we compare, in terms of bias and root MSE, various estimators for only the
three parameters, i.e. ω, ψ and ση.

It seems that the EGARCH auxiliary II estimation is performing quite
well, at least for the ση and ση parameters. Notice that in our case the
estimated biases and root MSEs are the ones when at the same time we
estimated the ρ parameter, i.e. our third parameter set.

To further check our routines we repeated the Monte Carlo experiment
of Harvey and Shephard (1996), and Yu (2005). For T=1000 and T=3000
the two Indirect estimators we consider are performing quite well, whereas
for T=6000 the EGARCH auxiliary outperforms the other two estimators.

Finally, we repeat the simulations in Jacquier, Polson and Rossi (2004)
(JPR04). However, notice that in JPR04 a fat tailed distribution is chosen,
and the tail thickness is estimated, as opposed to our normal one. Again the
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Table 4: Bias and Root MSE (in parenthesis) of QML, GQARCH and
EGARCH score Generators
Method/param. ψ0 = 0.975 ρ0 = −0.9 ln

(
σ2
η0

)
= −4.605

T = 1000
QML∗ −0.007 (0.034) −0.009 (0.132) 0.045 (0.708)

GQARCH −0.006 (0.000) 0.024 (0.022) 0.135 (0.783)
EGARCH −0.002 (0.009) −0.029 (0.075) −0.025 (0.390)

T = 3000
QML∗ −0.001 (0.007) −0.011 (0.079) −0.012 (0.353)

MCMC∗∗ 0.002 (0.005) 0.019 (0.045) −0.010 (0.209)
GQARCH 0.000 (0.005) −0.010 (0.480) −0.048 (0.280)
EGARCH 0.000 (0.004) −0.009 (0.046) −0.010 (0.223)

T = 6000
QML∗ 0.000 (0.005) −0.007 (0.058) −0.007 (0.249)

GQARCH −0.001 (0.004) 0.010 (0.033) 0.051 (0.233)
EGARCH 0.000 (0.003) −0.004 (0.032) −0.002 (0.153)

* Harvey and Shephard (1996) Table 1, ** Yu (2005) Table 5

two considered II estimators are performing quite well.

4.2 EGARCH-M and GQARCH-M

We choose again 3 set of parameters, where the conditional parameter values
are the same as in the previous section. For the constant and the price of
risk we set (c0, λ0) = (0.0, 0.111) for the �rst set, (c0, λ0) = (0, 0.111) for the
second one, and (c0, λ0) = (0.07, 0.08) for the third one.

For this set of parameters notice that E (yt) = 0.074 giving an Annualized

Table 5: Bias and Root MSE (in parenthesis) of Bayes, GQARCH and
EGARCH score Generators
Method/param. ψ0 = 0.95 ρ0 = −0.6 ση0 = 0.26

T = 1000
Bayes∗ 0.010 (0.025) −0.180 (0.190) −0.010 (0.039)

GQARCH 0.000 (0.002) −0.034 (0.122) −0.040 (0.092)
EGARCH 0.001 (0.012) 0.024 (0.107) 0.002 (0.048)

* JPR04 Table 1
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Rate of Return of 3.89%, and V ar (yt) = 0.520. In Figure 5.4 the Bias and
Root MSE are presented for the �rst set of parameters. Notice that only for
T=1000 the GQARCH-M score generator has smaller Bias and Root MSE.

Figure 4.4: Parameter Set 1, c0 = 0, λ0 = 0.111, ω0 = −0.1, ψ0 = 0.9, ρ0 =
−0.8, and ση0 = 0.3629.

For the second set of parameters we have that E (yt) = 0.043, with Annu-
alized Rate of Return 2.45%, and V ar (yt) = 1.301. For this set it is obvious
that the Bias and Root MSE of the EGARCH-M score generator are much
smaller the the respective of the GQARCH-M ones (see Figure 5.5).

The same is true for the third set of parameters (Figure 5.6). For this set
of parameters we get E (yt) = 0.123, Annualized Rate of Return 6.59%, and
V ar (yt) = 0.521.

Figure 4.5: Parameter Set 2,c0 = 0, λ0 = 0.04, ω0 = 0.0, ψ0 = 0.9, ρ0 =
−0.95 and ση0 = 0.31623.

In Appendix we present all biases and root MSEs for all three parameter
sets. In terms of estimated biases, in almost all cases, the auxiliary EGARCH
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Figure 4.6: Parameter Set 3, c0 = 0.07, λ0 = 0.08, ω0 = −0.1, ψ0 = 0.9, ρ0 =
−0.9 and ση0 = 0.3629.

estimates are closer to the true ones. With two exemption, at T=5000 for
ω and ρ for the second set of parameters, the estimated root MSE of the
auxiliary EGARCH estimation procedure is by far smaller than the equivalent
of GQARCH estimation procedure.

In terms of program failures, the EGATRCH-M auxiliary routine failed
only in 3 cases for T=1000 and 8 cases for T=10000, for the 1st set of
parameters, and in 27cases for T=1000 and 5 cases for T=2000, for the 2nd
set of parameters, and in 19 case for T=10000, for the 3rd set of parameters.
The picture is completely di�erent for the GQARCH-M auxiliary. In theis
case the failures are as high as 322 cases for T=1000 and as low as 93 cases
for T=10000, for the 1st set of parameters. Similar number of failures we get
for the other two set of parameters.

It seems that the EGARCH-M auxiliary is a better choice not only in
terms of bias and root MSE but in terms of easiness of routine convergence.
Let us turn our attention in the estimation of the model with real data.

5 Application to International Markets.

We apply the developed methods of estimation to weekly excess returns of
four indecies of international markets, i.e. the S&P, the FTSE, the DAX and
the Nikkey. In this way we estimate two aglosaxon markets, a European and
an Asian one. In the following Table we present some descriptive statistics
for the 4 indecies, along with the period of estimation and the number of
observations. It is obvious that the standard deviation of returns is almost
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22 times higher than the average return. Further, in all markets the skewness
and kurtosis coe�cients are far from the corresponding of the normal distri-
bution ones. The asymptotic con�dence interval for the autocorrelations is
(−0.041, 0.041) for the 3 markets and (−0.049, 0.049) for FTSE, indicating
that, apart from Nikkey, either the 1st or the second order autocorrelations
are signi�cant. However, it is known that in the presents of GARCH-type
e�ects the asymptotic distribution of the correlation coe�cients are a�ected
(see e.g. Diebold (1986) [25], Weiss (1984) [65], and Milhοj (1985) [52]).
Q(4) is the 4th order Ljng-Box statistic, distributed as χ2

4 under the null of
no-autocorrelation up to order 4.

Table 6: Statistics Weekly Excess Returns
Index S&P FTSE DAX Nikkey
Period 1973− 2017 1987− 2017 1973− 2017 1973− 2017

No. of Obs. 2299 1621 2300 2299
Average 0.103 0.104 0.134 0.037

Stand.Dev. 2.299 2.299 2.767 2.485
Skewness −0.542 −0.541 −0.592 −0.614
Kurtosis 8.309 8.304 8.003 7.578

Jarque−Bera 2811.4 2807.5 2533.9 2151.9
ρ̂ (yt, yt−1) −0.063 −0.064 −0.005 0.000
ρ̂ (yt, yt−2) 0.038 0.037 0.058 0.038
Q(4) 15.359 15.408 13.635 4.220

ρ̂
(
y2t , y

2
t−1

)
0.267 0.267 0.203 0.217

ρ̂
(
y2t , y

2
t−2

)
0.168 0.168 0.252 0.143

Q(2 (4) 363.53 363.78 425.78 201.19
Dyn.Asym.(1) −0.198 −0.198 −0.176 −0.137

The 1st and 2nd order autocorrelation of the squared returns is signi�cant
indicating strong volatility clustering e�ects. This is justi�ed by the 4th
Ljung-Box statistic for the squared returns Q(2 (4). The estimated Dynamic
Asymmetry, ρ̂ (y2t , yt−1), is negative and signi�cant in all cases. Notice that
the theoretical dynamic asymmetry depends on the leverage e�ect parameter
ρ as well as the parameter λ (see Demos 2023 [23] and Bollerslev and Zhou
(2006) [16]).

Let us turn our attention to the estimation of the model. First, the
asymptotic variance-covariance matrix is evaluated employing the formulae in
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Gourieroux, Monfort, and Renault (1993) [38]. The asymptotic distribution

of the II estimator of ξ, ξ̂ is given

√
T
(
ξ̂ − ξ

)
d−→

T→∞
N (0,W ) ,

where

W =

(
1 +

1

S

)(
∂2l∞
∂ξ∂ζ ′

I−1
0

∂2l∞
∂ζ∂ξ′

)−1

.

As the objective functions of the auxiliary estimator, either for the EGARCH-
M or GQARCH-M, is the sum of individual observations of the quasi-normal
log-likelihood function (see equation 3.1) and there are not exogenous vari-
ables we have that

I0 = lim
T→∞

V0

[
1√
T

T∑
t=1

∂lt (ζ)

∂ζ

]
where V0 [•] is the variance under the assumed true model. Employing Newey
and West (1987) [55] I0 can be consistently estimated by

Γ̂ = Γ̂0 +
K∑
k=1

(
1− k

K + 1

)(
Γ̂k + Γ̂′

k

)
where

Γ̂k =
1

T

T∑
t=k=1

∂lt−k

∂ζ

(
ζ̂
) ∂lt
∂ζ ′

(
ζ̂
)
.

Further, ∂2l∞
∂ξ∂ζ′

can be evaluated numerically at ξ̂, i.e. by
∂2lT (ξ̂)
∂ξ∂ζ′

. Addi-

tionally, as dim (ξ) = dim (ζ) = 6,
∂2lT (ξ̂)
∂ξ∂ζ′

is a square non-singular matrix
and it follows that the estimated asymptotic variance matrix is given by:

W =

(
1 +

1

S

)∂2lT
(
ξ̂
)

∂ζ∂ξ′

−1

Γ̂

∂2lT
(
ξ̂
)

∂ξ∂ζ ′

−1

.

In Table 7 we present the estimated values of the model in equations 2.1
and 2.2 together with the asymptotic z-statistics (in parentheses). To avoid
in�ating the estimator variances we have chosen S = 99000.
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Table 7: Estimation
S&P

EGARCH −M GQARCH −M
Parameter

c −0.125 −0.145
(−0.678) (−0.601)

λ 0.119 0.128
(1.249) (0.954)

ω 0.084 0.115
(1.156) (1.222)

ψ 0.934 0.911
(6.000) (4.872)

ρ −0.606 −0.558
(−2.484) (−2.513)

ση 0.259 0.315
(2.700) (2.688)

FTSE
EGARCH −M GQARCH −M

−0.176 −0.205
(−0.424) (−0.807)
0.110 0.134
(0.584) (1.058)
0.095 0.100
(0.863) (1.077)
0.937 0.935
(4.756) (5.353)
−0.695 −0.600
(0.279) (−2.340)
0.249 0.276
(2.052) (2.346)

DAX
EGARCH −M GQARCH −M

−0.021 0.010
(−0.087) (0.047)
0.079 0.068
(0.804) (0.651)
0.077 0.102
(0.844) (1.152)
0.951 0.937
(5.087) (5.593)
−0.438 −0.367
(−1.395) (−1.465)
0.235 0.284
(2.103) (2.577)

NIKKEY
EGARCH −M GQARCH −M

0.056 0.101
(0.239) (0.773)
−0.014 −0.019
(−0.142) (0.279)
0.066 0.038
(0.830) (0.893)
0.958 0.980
(5.692) (8.007)
−0.348 −0.251
(−1.112) (−0.726)
0.231 0.215
(2.175) (2.917)

It is obvious that the mean constant c is highly insigni�cant in all cases.
Consequently, we estimated the SV-M model with EGARCH-M as an aux-
iliary imposing the constraint that c = 0, but we have chosen S = 90000,
to conserve time. The results are presented in following table. Now all es-
timated prices of risk are positive and signi�cant for the S&P and DAX.
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It seems that the positive e�ect between volatility and expected returns is
stronger than the volatility feed-back e�ect.

Table 8: Constrained Estimation EGARCH-M Auxiliary
S&P

Parameter
λ 0.053

(2.630)
ω 0.079

(1.103)
ψ 0.939

(5.953)
ρ −0.591

(−2.178)
ση 0.254

(2.654)

FTSE

0.023
(0.986)
0.086

(0.0891)
0.945
(5.243)
−0.672
(−2.129)
0.243
(1.998)

DAX

0.070
(2.751)
0.077
(0.891)
0.952
(5.308)
−0.435
(−1.369)
0.235
(2.141)

NIKKEY

0.015
(0.713)
0.067
(0.725)
0.957
(4.886)
−0.358
(−1.008)
0.233
(2.058)

Employing the formulae in Demos (2023) we can evaluate the moments
of the four market returns, treating the estimates of Table 8 as the true ones.
Comparing the moments in Table 9 with the sample ones presented in Table 6
it is obvious that the skewness and kurtosis coe�cients are overestimated and
the same applies for the 1st and 2nd order autocorrelations and the dynamic
asymmetry. On the other hand the 1st and 2nd order autocorrelations of
squared returns are underestimated.
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Table 9: Estimated Statistics Weekly Excess Returns
Index S&P FTSE DAX Nikkey
Average 0.108 (0.103) 0.054(0.104) 0.168(0.134) 0.035(0.037)

Stand.Dev. 2.190(2.299) 2.509(2.299) 2.585(2.767) 2.561(2.485)
Skewness 0.053(−0.542) 0.022(−0.541) 0.078(−0.592) 0.016(−0.614)
Kurtosis 5.178(8.309) 5.2101(8.304) 5.409(8.003) 5.719(7.578)
ρ̂ (yt, yt−1) −0.068(−0.063) −0.079(−0.064) −0.041(−0.005) −0.039(0.000)
ρ̂ (yt, yt−2) −0.064(0.038) −0.074(0.037) −0.039(0.058) −0.037(0.038)
ρ̂
(
y2t , y

2
t−1

)
0.163(0.267) 0.170(0.267) 0.169(0.203) 0.183(0.217)

ρ̂
(
y2t , y

2
t−2

)
0.152(0.168) 0.158(0.168) 0.162(0.252) 0.173(0.143)

Dyn.Asym.(1) 0.007(−0.198) 0.003(−0.198) 0.010(−0.176) 0.004(−0.137)
Leverage −0.173 −0.187 −0.112 −0.086
ρ̂
(
σ2
t , σ

2
t−1

)
0.922 0.930 0.937 0.942

6 Conclusions

We investigated the estimation of an asymmetric SV models with possibly
time varying risk premia, by employing the Indirect Inference estimation
procedure. As a �rst step estimator we employed either the GQARCH-
M model or the EGARCH-M process. In the Monte-Carlo simulations the
comparison the two �rst step models in terms of bias and root MSE, it
seems, that although the GQARCH-M model performs relatively well the
EGARCH-M auxiliary is almost always superior.

In the empirical application section we employed the weekly excess re-
turns of four indices from the New York, London, Frankfurt and Tokyo. It
seems that the relation between future returns and volatility is stronger than
the volatility feedback, as in all cases the price of risk, λ̂, is positive and
signi�cant, apart from the one for Tokyo. Further, the estimation of the
autoregressive coe�cient in the variance equation indicates strong volatility
clustering and leverage e�ects. Although the estimated coe�cients are, in
most cases, are relatively accurately estimated the 3rd and fourth moment
they imply are quite di�erent from the sample counterparts. The same ap-
plies for the dynamic asymmetry and the 1st order autocorrelation of the
squared returns. Nevertheless, the returns 1st order autocorrelation, apart
from Tokyo are successfully matched.

A possible extension of the model could be in terms of relaxing the con-
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straint that the risk premium is the equal to the volatility feedback one. We
leave this for future research.
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APPENDIX

Figure 6.1: Biases Parameter c.

Figure 6.2: Root MSE Parameter c.

Figure 6.3: Biases Parameter λ.
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Figure 6.4: Root MSE Parameter λ.

Figure 6.5: Biases Parameter ω.

Figure 6.6: Root MSE Parameter ω.

Figure 6.7: Biases Parameter ψ.
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Figure 6.8: Root MSE Parameter ψ.

Figure 6.9: Bias Parameter ρ.

Figure 6.10: Root MSE Parameter ρ.

Figure 6.11: Bias Parameter ση.
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Figure 6.12: Root MSE Parameter ση.
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