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Abstract

This paper puts forth a growth model that takes into account the fact
that the economy is embedded in a finite Earth. Economic activity causes
greenhouse gas (GHG) emissions into the atmosphere and uses services
from the biosphere. There are two main messages from the analysis:
First, R&D in technologies that reduce GHG emissions and inputs from
the biosphere must be ramped up rapidly. Second, in view of the fact
that the top 10% of the world’s inhabitants have roughly 76% of the
world’s wealth, consumption that causes emissions and uses inputs from
the biosphere must decrease rapidly.

Keywords: growth, limits, biosphere, population dynamics, impact
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1 Introduction

The Dasgupta (2021) review is a comprehensive and in-depth review of the
economics of biodiversity and ecosystem services which provides important in-
sights about the current status of natural capital at a global level, and the
policies which are necessary to reverse paths that have led ecosystems to their
current conditions. In analyzing these issues, the Dasgupta review embeds the

∗We would like to thank Partha Dasgupta for his very valuable comments on an earlier
draft of this paper
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economy in Nature.1 This embedding causes an important issue to emerge,
namely growth in a finite Earth, along with the accompanying issue of whether
such growth has limits when embedded in a finite Earth.

A similar issue was raised by Solow (2009, page 1) when he pointed out
that “It is possible that real demands on natural resources, and therefore on
the natural environment, will be dramatically different in a world in which
India and China, and other countries, too, grow at 8 or 10 percent a year,
and need to pass through the material-goods-intensive phase of growth before
they arrive at the service economy. The necessary process of (very material-
intensive) urbanization is an outstanding example of what I mean. So it will
probably be more important in the future to deal intellectually, quantitatively,
as well as practically, with the mutual interdependence of economic growth,
natural resource availability, and environmental constraints.”

A central concept in the Dasgupta review (Dasgupta, 2021, Chapter 4; Das-
gupta, 2022) is the impact inequality which compares the demand from the
global economy for services provided by the biosphere or Nature,2 to the supply
of these services by Nature. The impact inequality can be written as

Py

α
> G (S) . (1)

In (1), the left-hand side represents global demand for Nature’s services
where P is the level of population, y is GDP per capita and α is an efficiency
parameter reflecting the transformation of Nature’s services to GDP, while the
right-hand side represents the supply of Nature’s services. In the impact in-
equality, S can be interpreted as natural capital which can be regenerated at a
rate G(·). As pointed out in Dasgupta (2022, page 1021),

“... the ratio of our demand for maintenance and regulating ser-
vices (the left-hand side of inequality (1)) to Nature’s ability to meet
that demand on a sustainable basis (the right-hand side of inequal-
ity (1)) is today 1.7 ... The term “sustainable” is an all-important
qualifier here, for it says that we are enjoying the overshoot at the
expense of the health of the biosphere; that is, by depleting S. The
number 1.7 is almost certainly an underestimate, which makes it
even more a reason that inequality (1) be converted to an equality
sooner rather than later. We are in a fire-fighting situation.”

The supply side of the inequality can be increased by investing in Nature, which
1See also Dasgupta and Levin (2023).
2The terms biosphere and Nature are used interchangeably in the Dasgupta review. Bio-

sphere is the part of the Earth that is occupied by living organisms. We will use these terms
in the same way in this paper.
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involves waiting for Nature to recover. The returns of such investment might
be realized in slow time, or could even be zero for ecosystems that have been
irreversibly damaged, or might be limited because of constraints imposed by
physical processes. Furthermore, even if the biosphere regenerates, supported by
environmental policies, the regeneration rate is expected to be bounded because
of natural limits. Thus, conversion of the impact inequality to equality requires
controlling the demand side, that is, controlling the evolution of population P ,
GDP per capita y, and “biosphere saving” technical progress α, which implies
controlling the growth of P, y and α. Restricting the demand side to restore and
maintain equality between demand and supply relates to a fundamental question
with regard to economic growth, which seeks to explore whether there are limits
to the growth of GDP per capita given the bounds imposed by Nature.3

The view that the economy is embedded in a finite planet and that there
are “limits to growth” is not new. It has been put forward by writers such as
Kenneth Boulding (1966), Barbara Ward (1966) and Herman Daly (1974), who
stressed the point that Earth is not an unlimited reservoir for extraction or
pollution. Similar ideas are embodied in the concept of planetary boundaries
(Rockström et al., 2009) defining safe operating space for the earth system
which, if transgressed, could generate unacceptable environmental change.

In this paper we develop a growth model in which growth is embedded
in a finite Earth. We explore limits imposed by the impact inequality and
conditions for their relaxation in the context of a welfare-maximizing, Ramsey-
type social planner who is embedded in Nature S. In our model we consider
a linear production function embedded in Nature that provides services which
are consumed during the production processes. The planner faces a welfare
cost if the demand on Nature’s services exceeds the supply. In addition, output
production generates climate damages. Output increases with population, so
the model is AP rather than AK. A can be regarded as the level of per capita
income, y, but it can also be interpreted as a productivity parameter driven by
technical change (TFP). Thus, AP is aggregate output that generates demand
for the services of the biosphere equal to AP

α . Population evolves endogenously
and population dynamics follow Galor (2012) by assuming that raising children
is time intensive and requires a certain proportion of the parental unit-time
endowment.4 The rest of the time endowment of a representative individual
is allocated to raising the educational level of children, technical change that

3See, for example, the special issue of The Review of Economics Studies (1974), the Daly
vs Solow–Stiglitz controversy in the special issue of Ecological Economics (1997) or Stokey
(1998).

4Population dynamics and the concept of optimum population have been analyzed by
Partha Dasgupta (see, for example, Dasgupta, 1969, 1995, 2019 and Dasgupta et al., 2021).
We formulate population dynamics in a way that can be regarded as complementary to this
literature. This approach also fits our optimizing framework.

3



increases TFP associated with a linear production function, and “green R&D” or
biosphere saving technical change that can reduce the stress of human demand
on Nature’s services.

In our main results, we provide a general economic growth model constrained
by the biosphere of a finite Earth where population, time allocation divided
among construction of GDP, work, consumption, R&D, child rearing and child
educating, as well as the size of the biosphere are all endogenous. The level of
education, called g, needed for children to be successful plus the time cost to
parents of educating each child to the target level g is a major force for achieving
sustainable population levels. The scaling, R = rA, of the level of biosphere
saving technology and CO2 emission saving technology denoted by R, with A,
is a major force in potentially turning the impact inequality into an equality
if r > 1. Higher A and higher r lead to less pressure on our planet from the
economy by raising R under the scaling. Besides these major take-home points,
we provide quasi-analytical results for several special cases that illustrate the
power of our unified framework in delivering economic insights even though our
model has many moving parts.

The rest of the paper is organized as follows. Section 1 provides the intro-
duction. Section 2 sets forth a general abstract growth model which features
optimal population, optimal allocation of time across building GDP, work time,
consumption time, time spent on R&D in emission reduction technology, and
technology that reduces the impact on the biosphere from producing GDP as
well as emissions, and time spent on child rearing and education of children.
This general framework is used to organize analysis of the special cases that fol-
low in Sections 3, 4, and 5. Section 3 treats a special case where GDP and R&D
are fixed constants and time is allocated between consumption, and child rear-
ing and child education. The general level of background education, g, needed
to function well in the economy, is exogenously fixed in the Section 3 model.
The higher g is, the more costly it is in terms of time to raise a child to level
g. Thus, higher g reduces the number of children and, hence, leads to a smaller
population and less emissions and less impact on the biosphere, all other things
equal. In Section 3 we show that if the level of R&D scales with factor r with
GDP, and if r > 1, then r > 1 relaxes the impact inequality and allows a larger
GDP and a larger population without violating the impact inequality. Optimal
dynamics and optimal steady states are studied in Section 3. Section 4 adds
work time, time building level of GDP, and R&D time. Section 4 computes
quasi-closed form solutions for optimal steady states. Section 5 studies a varia-
tion of the general model where there are two types of consumption: type 1 is
modest in impact on the biosphere and emissions, while type 2 has very large
emissions and a very large impact on the biosphere. Section 6 endogenizes the
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biosphere dynamics whereas previous sections fixed the biosphere at a constant
to reduce the number of state variables. Fixing the size of the biosphere could
be viewed as “loading the analysis” in favor of economic growth by ignoring
the reduction in size of the biosphere due to pressure from economic activity.
Evidence of a rapid fall in the cost of wind and solar power in the production
of energy is suggestive of the potential fall in the cost of reducing the impact
on the biosphere. We take the standard arguments as given, that subsidies
both explicit and implicit for activities harmful to our planet (e.g., fossil fuel
subsidies), subsidies for activities that degrade the biosphere, and maybe even
subsidies for large families, should be eliminated.

Our paper offers a unified framework where population, earth system, and
time allocation across many activities with different impacts on the earth system
are all endogenous. This kind of model provides a useful framework for policy
analysis, e.g., it helps expose unintended consequences to other parts of an
economy when a policy targets one part of the economy. Humanity’s current
ecological footprint is more than one Earth can sustain. Our model helps locate
sufficient conditions for a favorable outcome of the “race” to reduce humanity’s
impact on the biosphere fast enough to overcome the current speed of reduction
of the biosphere’s capacity to continue delivering the essential services needed
for a good life, for both current and future generations. Section 7 closes the
paper with a summary, conclusions, and suggestions for future research.

2 A unified model and sustainable development

Consider a representative individual with a unitary time endowment. This en-
dowment is allocated to time devoted: to working; to leisure and consumption
time for goods produced by work time, tC ; to raising and educating children,
τ = τ q + τee, where τ q, τe, is time devoted to raising and educating children,
respectively, and e is the education level; to research, tR , that increases the
stock of knowledge R, which is the green or biosphere saving R&D; and to
the time, tA, devoted to promoting technical change that increases work time
productivity, TFP. Let C and P denote the total consumption and the level
of population at time t respectively,5 and let n denote the number of surviving
children of the representative individual. Then the flow budget constraint of the
representative individual is defined in terms of per capita consumption which is
consumed during the leisure-consumption time as

C

P
= tC = 1− tw − nτ − tR − tA. (2)

5All the state and control variables have a time dimension. We omitted the time argument
t to ease notation except where it is necessary for clarifications.
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Let T denote the temperature anomaly and A the labor productivity param-
eter associated with a linear production function that produces the consumption
good which is written as AP . Choosing units so that production denotes also
GHG emissions, the dynamics for our model economy can be written as

Ṗ = nP − δPP , P (0) = P0 (3)

Ṫ =
AP

βα(R)
− δTT , T (0) = 0 (4)

Ȧ = βAPtA − δAA , A(0) given (5)

Ṙ = βRPtR − δRR , R(0) given (6)

Ṡ = G(S)− AP

α(R)
, S(0) = S0, (7)

where δj , j = P, T,A,R denote appropriate depreciation rates and α(R) cap-
tures the effect of green R&D in reducing the impact of the economy on Nature,
while AP/ (βα(R)) captures the impact of knowledge in reducing GHG emis-
sions. The underlying assumption for (5) and (6) is that each agent is accumu-
lating the technology capital to produce A and R so that the total technology
capital of each type in the world economy is obtained by multiplying by P .
Utility flow is determined by per capita consumption, the ecosystem services
provided by the biosphere and damages from climate change, and is defined as

U(P,C, S, T ) = U

(
C

P
, S

)
−D(T ),

where D(T ) is an increasing convex function representing damages from climate
change. Extending Galor’s (2012) approach, we define U(·, ·) as

U

(
C

P
, S

)
= (1− γ) ln [(Atw) (1− tw − nτ − tR − tA)] + γ [lnn+ βh (g, e)] +

+B

(
S,

AP

α(R)

)
, (8)

where (1− γ) ln [(Atw) tC ] corresponds to the utility of consumption time of the
goods produced by work time, with τ = τ q+τee ; γ [lnn+ βh (g, e)] is the utility
corresponding to the number of children n, with the level of education e chosen
by the parent at a time cost τe, where h (g, e) is increasing strictly concave in the
education level and decreasing strictly convex at the level of education needed to
function well in the economy, g, motivated by Galor (2012). Finally, B(S, AP

α(R) )

is a function reflecting welfare benefits or costs associated with excess supply
or demand on Nature’s services over the stress term AP

α(R) . Then the social
planner’s problem can be defined as
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max
x

∞̂

s=t

e−ρ(s−t)

[
PU

(
C

P
, S

)
−D(T )

]
dt, (9)

where x = (n, e, tw , tA, tR) is the vector of controls that will determine the opti-
mal number of children, n, and the optimal allocation of time to work tw, TFP
related technical change tA, and R&D accumulation tR. The vector of the state
variables is z = (P, T,A,R, S). The maximization problem (9) is subject to
constraints (3)–(7).

Let λ = (λP , λT , λA, λR, λS) be the vector of the the costate variables as-
sociated with the state variables. Then the current value Hamiltonian can be
written as

H = PU

(
C

P
, S

)
−D(T ) + λ · z. (10)

Pontryagin’s maximum principle implies that the optimal controls are deter-
mined by

∂H
∂x

≤ 0, u∗ ≥ 0. (11)

The optimality conditions characterizing the paths of the costate variables,
which are interpreted as the shadow values of the state variables – population,
temperature, TFP, green R&D and biosphere – along the socially optimal path,
evaluated at the optimal controls defined by (11), are

λ̇ = ρλ− ∂H
∂z

. (12)

The Hamiltonian system is completed by (3)–(7), also evaluated at the opti-
mal controls defined by (11). The optimality conditions characterize the solution
of the social optimum and can provide some useful insights regarding sustain-
ability optimization. Following Arrow et al. (2012), a definition of sustainable
growth and development along the socially optimal path can be provided. Define
the value function of problem (9) as

V (Pt, Tt, At, Rt, St) = max


∞̂

s=t

e−ρ(s−t)

[
PU

(
C

P
, S

)
−D(T )

]
ds

 , (13)

subject to (3)–(7).
Definition (sustainable growth and development): We say that sus-

tainable growth and development holds if

dV

dt
≥ 0 for all dates t ≥ 0.
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Totally differentiating (13), we obtain

dV

dt
=

dV (Pt, Tt, At, Rt, St)

dt
=

∂V

∂P
Ṗ +

∂V

∂T
Ṫ +

∂V

∂A
Ȧ+

∂V

∂R
Ṙ+

∂V

∂S
Ṡ.

= λpṖ + λT Ṫ + λAȦ+ λRṘ+ λSṠ (14)

The partial derivatives of the value function are the costate variables of the
Hamiltonian system and have the interpretation of the accounting or shadow
prices of the state variables, while the time derivatives of the state variables can
be interpreted as the corresponding investments. Thus (14) can be interpreted
as genuine or comprehensive savings along the optimal path. Development is
sustainable, therefore, if the social welfare maximizing choice of time allocated
to production, raising and educating children, and promoting productivity and
knowledge accumulation results in non-declining comprehensive wealth or gen-
uine savings (Arrow et al., 2014). This definition relates optimal population
dynamics to sustainability. Note that in (14), the shadow value or the account-
ing price for the population is derived endogenously through the optimizing
framework of (10).6

The optimality conditions characterize the solution of the problem; their
complexity, however, does not allow tractability. Therefore, in the following
sections we examine certain special cases which can provide useful insights re-
garding optimal population dynamics and growth embedded in finite Earth.

Before we do that, we point out in more detail how our model and approach
relate to that of the Dasgupta review (Dasgupta, 2021). The unified model de-
scribed by equations (2)–(9) and the models emerging after alternative simpli-
fications which are discussed in the rest of this paper describe different versions
of optimal growth models embedded in Nature. This embedding follows the
central idea of the prototype model developed in detail in the Dasgupta review
and in particular chapter 4*, which describes the structure of the model, and
chapter 13*, which provides the optimality conditions and explores population
evolution in the long run based on logistic growth. One of the basic conclusions
of the Dasgupta (2021) model is that the efficiency parameter α of the impact
inequality has an upper bound (see chapter 4*, pages 140–141). This result
suggests that the economy cannot free itself from the bounded biosphere.

Our approach, which also embeds growth in a finite biosphere, takes a dif-
ferent modeling approach relative to the Dasgupta review. Using Galor’s (2012)
modelling, we associate the accumulation of TFP (A in our notation) and the
biosphere saving R&D (R in our notation) with the optimal allocation time avail-
able to an individual, along with optimal time allocation for work, consumption

6See Arrow et al. (2003, 2014) for different approaches to dealing with population in the
context of sustainability criteria.
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and children rearing. Furthermore, we introduce damages from climate change
and this models an important anthropogenic impact on the biosphere, along
with a social cost in case the demand for nature’s services exceeds the available
supply. Having obtained the optimality conditions, we provide quasi-tractable
solutions that could support a realistic calibration of the model. By assuming
that the efficiency parameter of the Dasgupta review can be written as α = αR

and then scaling R with TFP growth as R = rA, we provide conditions un-
der which the restrictions on growth by the finite biosphere can be relaxed. If
the ratio R/A can be sustained forever at values greater that one as the econ-
omy grows, then the denominator on the demand side of the impact inequality
will increase and it is possible to have growth without violating the constraints
imposed by the biosphere.

The important question, however, is whether this is feasible. In a private
communication, Partha Dasgupta put forward the argument that “to imag-
ine that α can be made as large as we like so long as we invest enough in
R&D/institutions is to imagine that no matter how large the economy, further
enlargement will make vanishingly small demands on the biosphere, which is
to say, the economy can free itself of the biosphere in the limit”. Although a
straightforward answer to this point might not be clear, the argument itself
makes clear that the economy cannot untangle itself from the limits imposed by
the bounded biosphere.

3 Slow population dynamics and the impact in-

equality

3.1 No work time: the “manna from heaven model”

We assume that the dynamics for climate, technical progress, and R&D accu-
mulation converge in fast time to their steady states, while the evolution of
population is driven by slower moving cultural as well as economic drivers. Fur-
thermore, we consider Nature, S, as given, so that the flow of services supplied
by Nature and denoted by G(S) is also fixed. We assume that work time is equal
to zero and that A and R are fixed and treated as “manna from heaven” so that
time tR which increases the stock of R&D R, and time tA devoted to promoting
technical change which increases work time productivity, are set equal to zero.
We treat A and R as fixed and remove from the analysis (tw, tA, tR) for sim-
plicity. We do this exercise as an initial foray to gain insight into the economic
forces that may ease limits on economic growth before tackling the more com-
plicated model. We further assume that damages from climate change, T, are
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linear; that if the demand for nature services exceeds supply the social planner’s
utility is reduced, and that α (R) = αR, A = y, where y is the income of the
representative household so A can also be regarded as determining the level of
output.

The dynamics of the problem, setting β = 1 to simplify, become

Ṗ =P (n− δP ) (15)

Ṫ = 0 ⇒ T =
yP

δTαR
(16)

A = y (17)

Impact :G(S)− yP

αR
. (18)

The utility associated with the number of children and their education is
represented in (8) by the term γ [lnn+ βh (g, e)] . We simplify this term to
γ ln (ynτ) by using the simplifying assumption h(e, g) = min {e, g} = g. The
underlying assumption is that, by interpreting g as the level of education needed
to function well in the economy, we let g “pull up” the demand for education e via
a Leontief function. Then τ = τ q+eτe = τ q+gτe. Thus nτ = n (τ q + gτe) is the
total time spent in raising and educating children n with y being its opportunity
cost in dollars per unit of time. Therefore ynτ is dollars of consumption spent
in the form of children and their education. This assumption tries to capture
the role of g in pulling up the demand for education, i.e., human capital, for
each child, thus increasing τ which, in turn, raises the “price” of each child.

We assume that when the demand for Nature’s services exceeds the supply,
the planner’s utility is reduced and the planner’s Hamiltonian can be written as

H = P

[
(1− γ) ln (ytC) + γ ln (ynτ)−D

yP

δTαR
+B

(
G(S)− yP

αR

)]
+ λPP (n− δP ) ,

(19)

where τ = τ q+gτe. The term B
(
G(S)− yPt

αR

)
, B > 0, indicates that a negative

impact inequality will penalize the planner’s objective, while 1 = tC + nτ . The
optimality condition for the choice of the number of children n derived from
Pontryagin’s maximum principle is

n∗ :
(1− γ) τ

1− nτ
=

γ

n
+ λP , (20)
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while the Hamiltonian dynamic system is

Ṗ = P (n∗ − δp) = HλP
(21)

λ̇P = ρλP −HP (n
∗, λP ), (22)

with n∗ the solution for n of the optimality condition (20) which is obtained as

n∗ =
λP − τ ±

√
λ2
p − 2λP τ + 4γλpτ + τ2

2λP τ
. (23)

As is shown below, the correct choice between plus or minus the square root is
the solution corresponding to the negative square root.

The optimal steady state (OSS) is obtained as the solution of
(
P̄ , λ̄P

)
of

(21) and (22) for Ṗ = 0, λ̇P = 0. We can gain more insight into the structure of
the OSS by considering the limiting case γ = 1 in which all preference weight is
placed on children and none on consumption. In this case, from (20) and (21)
we obtain

n∗ =
−1

λP
, λ̄P =

−1

δP
, (24)

while from (22),

λ̇P = ρλP − ln (δP τy)−BG (S) + 2AP

[
BR

α
+

αDR

δT

]
. (25)

Then the following results are obtained:

1. For γ = 1, the shadow price λP of an extra person is negative from (24).
This is to be expected since there is no preference weight on consumption.

2. When γ = 1, the negative square root of (23) results in n∗ = −1
λP

.

3. When γ = 0, λ̄P = τ
(1−δP τ) > 0. When all preference weight is on

consumption, the shadow price of an extra person is positive. Therefore,
there is a critical value γc ∈ (0, 1) where λP (γc) = 0 and γ > γc implies
λP (γ) < 0, while γ < γc implies λP (γ) > 0. Thus the shadow value for
the population, which is relevant for sustainability assessment, depends
on the preference weight placed on children.

4. Solving (20) for λP at the OSS where n∗ = δp, we obtain λ̄P = γ−δP τ
δP (−1+δP τ) .

Proposition 1: For γ = 1, the OSS is a saddle point. The stable manifold has
a positive slope.

Proof: The isocline Ṗ = 0 is given by P = 0 and λP = −1/δP , with n∗ = δP
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at the OSS. The isocline for λ̇P = 0 is given by (25) as

0 = ρλP − ln (δP τy) + 2Py

(
D

αδTR
+

B

αR

)
−BG(S). (26)

The Jacobian matrix at the OSS is

H(P, λP )=

 0
P

λ2
P

2By

αR
+

2Dy

αδTR
ρ

,

with positive trace and negative determinant. Therefore the steady state is a
saddle point. From (26), (dλP /dP ) < 0. The OSS is depicted in Figure 1.■

Figure 1. Saddle point OSS for γ = 1.
To obtain some insights into the potential limits constraining output aug-

mentation, assume that R&D scales with the productivity parameter A as
R = rA, with y = A and AP interpreted as a linear production function.
Then, at the OSS with γ = 1,

P̄ =
αrδT

[
ρ
δP

+ ln (δP τA) +BG(S)
]

2 (D + δTB)
. (27)

For γ ∈ (0, 1) , the isocline for λ̇P = 0 is given, with y = A, by

0 = ρλP − (1− γ) ln (1− δP τA)−γ ln (δP τA)+2PA

(
D

αδTR
+

B

αR

)
−BG(S).
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Assuming again that R = rA, we obtain for the population at the OSS

P̄ =
αrδT

[
ρ
δP

+ (1− γ) ln (A(1− δP τ)) + γ ln (δP τA) +BG(S)
]

2 (D + δTB)
. (28)

In (27), steady-state population increases with the logarithm of A. Thus the
scaling of R&D biosphere saving R, with A, can ease demand on ecosystem
services. Thus, R = rA allows us to exceed the limits that constrain P while
consumption is maintained at the per capita level. Indeed, if A increases, P can
increase with lnA and thus aggregate output increases. Our simple example
suggests the need to study whether the productivity of “green R&D”, which re-
lieves stress on the Earth System from population and consumption per capita,
can increase at the same rate as total factor productivity in goods and services
production. Increase in green R&D can be associated with evidence that renew-
able energy costs have fallen, as described by Moore’s Law and Wright’s Law,7

while costs of fossil fuels have remained roughly constant (Way et al., 2022).
The fall of renewable energy costs can ease the human stress on the Earth Sys-
tem. If we take B → ∞, so that the utility cost of excess demand on ecosystem
services is very high, then by l’ Hôspital’s rule,

P̄ → αrG(S)

2
. (29)

Proposition 2: Conditions (27)–(29) indicate that if A or r tend to infinity,
then the steady-state optimal population tends to infinity.

While these conditions are unrealistic, they do show pathways to relaxation
of constraints on aggregate output that can ease the stress on limits to growth
in the “manna from heaven” model.

If γ = 0, then

H = Pt

[
ln (ytC)−D

yPt

δTαR
+B

(
G(S)− yPt

αR

)]
+ λPPt (n− δP ) (30)

y = A, 1 = tC . (31)

In this case, n = 0 and the population P goes to zero.
7Moore’s law says that costs drop exponentially as a function of time (i.e., at a fixed per-

centage per year), while Wright’s law predicts that costs decline as a power law of cumulative
production.
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3.2 Spending time working, consuming and raising chil-
dren

We assume now that the representative individual spends time working, con-
suming and raising children. This implies that:

y = twA, 1 = tC + tw + nτ, τ = τ q + τeg,

with the associated Hamiltonian system

H = maxP

[
(1− γ) ln (ytC) + γ ln (ynτ)−D

yPt

δTαR
+B

(
G(S)− yP

αR

)]
+ λPP (n− δP )

(32)

Ṗ = P (n− δP ) = HλP
(33)

λ̇P = ρλP −HP . (34)

3.2.1 The Ramsey OSS, ρ = 0

At the Ramsey OSS (i.e., an OSS for ρ = 0), we have n = δP , HP = 0 . The
first-order condition (FOC) for tw is Htw = 0 which results, after some algebra,
in

(1− γ) (1− 2tw − δP τ)

tw (1− tw − δP τ)
+

γ

tw
=

(
AP

αR

)(
D

δT
+B

)
≡ kP (35)

k ≡
(

A

αR

)(
D

δT
+B

)
.

We multiply both sides of (35) by tw and do some algebra to obtain

1− δP τ + tw (γ − 2) = tw (1− tw − δP τ) kP ⇒

Pk(tw)
2 − tw [Pk (1− δP τ) + 2− γ] + 1− δP τ = 0. (36)

The solution of the quadratic (36) will provide two solutions for the optimal tw
as functions of population P.

We make the following intuitively reasonable assumption:

A1: 1− δP τ > 0.

Then, at tw = 0, the quadratic (36) is positive with a negative slope,

− [Pk (1− δP τ) + 2− γ] , for P > 0. Notice that 1− δP τ = tC + tw and that, as
1−δP τ → 0, the smallest root of the quadratic (36) tends to zero. This suggests
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that under A1 there exist two positive solutions for the optimal working time
tw(P ). The acceptable solution will be the one that satisfies Htwtw < 0.

Define j ≡ 1− δP τ, then the roots of (36) are:

tw =
Pkj + 2− γ ±D1/2

2Pk

D ≡ (Pkj + 2− γ)
2 − 4Pkj = (Pkj)

2 − 2γPkj + (2− γ)
2
.

For γ = 1,the negative root gives:

tw =
1

Pk
,

while for γ = 0,

tw =
Pkj + 2±D1/2

2Pk

D = (Pkj)
2
+ (2)

2
.

Using the FOC for the optimal population level, we obtain

HP = 0 ⇒ (1− γ) ln (twAtC)+γ ln (twAnτ)+BG(S)− 2twAP

αR

(
D

δT
+B

)
= 0.

The optimal population for the Ramsey problem can be obtained by substituting
the solution for tw (P ) and checking that HPP < 0.

3.2.2 The optimal steady state

The Hamiltonian for this problem is

H = maxP

[
(1− γ) ln (ytC) + γ ln (ynτ)−D

yP

δTαR
+B

(
G(S)− yPt

αR

)]
+ λPP (n− δP ) ,

y = twA, 1 = tC + tw + nτ, τ = τ q + τeg,
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with FOC for the controls n, tw, and a corresponding Hamiltonian dynamic
system:

n :
− (1− γ) τ

(1− tw − δP τ)
+

γ

n
+ λP = 0

tw :
(1− γ) (1− 2tw − δP τ)

(1− tw − δP τ)
+

γ

tw
− DAP

δTαR
− BAP

αR
= 0

Ṗ = P (n− δP ) = HλP
= 0 ⇒ n̄ = δP or P̄ = 0

λ̇P = ρλP −HP ⇒

λ̇P = ρλP + (1− γ) ln (A (1− tw − δP τ)) + γ ln (Atw) + γ ln (δP τ)−
2AP

αR

(
D

δT
+B

)
.

For OSS we have, for 0 < γ < 1, n̄ = δp and P̄ > 0, three remaining
unknowns –

(
τ̄w, λ̄P , P̄

)
– which can be determined by solving the three steady-

state equations for these three unknowns:

tw :
(1− γ) (1− 2tw − δP τ)

(1− tw − δP τ)
+

γ

tw
= kP (37)

k ≡ A

αR

(
D

δT
+B

)
n :

− (1− γ) τ

(1− tw − δP τ)
+

γ

n
+ λP = 0 (38)

ρλP − {(1− γ) ln (A (1− tw − δP τ)) + γ ln (Atw) + γ ln (δP τ)− 2kP} = 0.

(39)

In principle, the system can be solved for the three unknowns by using
(37) and (38) to obtain P = ζ (tw) andλP = ξ (tw) respectively, and then
substituting into (39) and solving for tw.

To obtain closed form solutions, we consider the two polar cases of γ =

1 and γ = 0.

Special case γ = 1

For γ = 1, we have

tw =
1

kP
(40)

λP =
−1

δp
(41)

ρ

δP
+ lnA− ln k + ln (δP τ) = 2kP + lnP. (42)

Proposition 3: For γ = 1, the OSS is a saddle point. The stable manifold
has a positive slope.
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Proof: The isocline Ṗ = 0 is given, for Ṗ = P (n− δP ) , by P = 0 or n̄ = δP

at the OSS. Using (41), we obtain λP = −1/δp. Then, for the isocline Ṗ = 0,
n = −1/λP . The isocline for λ̇P = 0 is given by the solution for γ = 1 of (39)
for the unknown λp, or

0 = ρλP − ln

(
A

kP

)
+ 2kP. (43)

The Jacobian matrix at the OSS is

J(P, λP )=

 0
P

λ2
P

1

P
+ 2k ρ

,

with positive trace and negative determinant. Therefore, the steady state is a
saddle point with a phase diagram similar to Figure 1.■

The solution for the population steady state is8

P̄ (A) =
ProductLog

[
2δP kτAe

ρ
δP

]
2k

. (44)

We set R = rA so that k ≡ 1
αr

(
D
δT

+B
)
. Then, for P̄ > 0 at the OSS,

∂P̄ (A)

∂A
=

ProductLog
[
2δP kτAe

ρ
δP

]
2kA

[
1 + ProductLog

[
2δP kτAe

ρ
δP

]] > 0,

and a result similar to Proposition 2 can be stated. An increase in TFP will
increase the OSS population, which again suggests a pathway to relaxing limits
to growth.

Special case γ = 0

Using assumption A1, define j ≡ 1− δP τ > 0. Then

1

(j − tw)
= kP =⇒ tw = j − 1

kP
(45)

−τ

(j − tw)
+ λP = 0 ⇒ λP =

τ

(j − tw)
= τkP (46)

ρλP − {ln (A (j − tw))− 2kP} = 0

lnA− ln k = (2 + ρτ) kP + ln (P ) . (47)

8The solution was obtained from Mathematica 13. ProductLog gives the primary (real)
solution for w in z = wew. The derivative of the solution is obtained using Mathematica 13.
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Proposition 4: For γ = 0, the OSS is a saddle point. The stable manifold
has a positive slope.

Proof: The isocline Ṗ = 0 is given for Ṗ = P (n− δP ) with n̄ = δP at the
OSS. Using (46) and the definition of j, we obtain λP = −1/ (1− δpτ − tw) .

Then, on the isocline Ṗ = 0,

n =
−1

λP
+

1− tw
τ

.

The isocline for λ̇P = 0 is given by the solution λP of

0 = ρλP −
{
ln

(
A

kP

)
− 2kP

}
.

.
The Jacobian matrix of the Hamiltonian dynamic system at the OSS is

J(P, λP )=

 0
P

λ2
P

1

P
+ 2k ρ

,

with positive trace and negative determinant. Therefore, the OSS is a saddle
point with a phase diagram shown in Figure 2.■

Figure 2. Saddle point OSS for γ = 0.

The solution for the OSS population implied by (47) has the same structure
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as (44), suggesting that an increase in the productivity parameters will increase
the OSS population. Thus Proposition 2 holds in this model.

4 Endogenizing TFP and R&D

In the previous section we regarded A and R, the productivity parameters
that affect output, and R&R that reduces the demand for Nature’s services,
as “manna from heaven”. In this section, we endogenize these factors by as-
suming that they can be increased by devoting time to them. Thus, the total
available time is allocated between consumption tC , raising children nτ , and
working for production of output (tw), TFP (tA), and R&R (tR). In this case,
therefore, the budget constraint becomes

1 = tC + tA + τ + tw + tR. (48)

We maintain the assumption of Section 3.1 that the dynamics for climate,
technical progress, and knowledge accumulation converge in fast time to their
steady states, while the evolution of population is driven by slower moving
cultural as well as economic drivers, and we consider Nature’s services, G(S), as
fixed. Then the Hamiltonian system associated with the optimization problem
becomes

H = maxP

[
(1− γ) ln (twA (tA) tC) + γ ln (twA (tA)nτ)−D

twA (tA)P

δTαR (tR)
+B

(
G(S)− twA (tA)P

αR (tR)

)]
+ λPP (n− δP ) (49)

y = twA (tA) , A (tA) =
A0tA
δA

≡ kAtA, R (tR) =
R0tR
δR

≡ kRtR (50)

Ṗ = P (n− δP ) = HλP
(51)

λ̇P = ρλP −HP . (52)

The impact inequality In this problem, the controls are x =(tC , tw, tA, nτ, tR).
Using (50), the condition to satisfy the impact inequality for all t ≥ 0 implies
control choice, given the rest of the parameters, such that

twkAtAPt

αkRtR
≤ G(S).

4.1 Choosing optimal controls

We proceed to derive optimality conditions for the controls that can be used to
explore routes to satisfy the impact inequality and thus satisfy the limits set by
the biosphere. In this process, it is useful to write the Hamiltonian (49), with
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A(tA), R(tR) defined by (50), in the compact form:

H = P [u(x)− C(x)P ] + λPPt (n− δP ) , (53)

where u(x) is the logarithmic utility function and C(x) is a “cost function”
corresponding to the cost terms of (49).9

The FOC for the controls resulting from (49) can be stated as follows:
Define c ≡ kA

αkR

(
D
δT

+B
)
. Then

n : (1−γ)
tC

= γ
nτ + λP

τ

tA : −(1−γ)
tC

+ (1−γ)
tA

+ γ
tA

− tw
tR
cP = 0

⇒ −(1−γ)
tC

+ 1
tA

= tw
tR
cP

tw
−(1−γ)

tC
+ (1−γ)

tw
+ γ

tw
− tA

tR
cP = 0

⇒ −(1−γ)
tC

+ 1
tw

= tA
tR
cP ⇒

tA = tw = t

tR : −(1−γ)
tC

+ t2cP
t2R

= 0.

(54)

From the FOC for tA and tw, it follows that tA = tw = t. Then the following
route to satisfying the limits set by the biosphere can be characterized.

Satisfying the limits set by the biosphere Define X ≡ γ
n + λP . Choose

t = tA = tw and n such that t2kAPt

αkRtR
≤ G(S). Since P = P (0) = P0 initially, the

planner could simply choose n, in order to satisfy the limit, n(t) = δP for all
t ≥ 0 and choose the controls t = tA = tw, tR such that

t2kAP0

αkRtR
≤ G(S)

for all dates greater than or equal to zero.
Another route to relaxing limits is biosphere reducing technical change scal-

ing as kR = rkA for some scaling factor r > 1. In this case

t2P0

αrtR
≤ G(S).

9Note that the log function u(x) implies that it is a concave increasing function in the
controls x. Because of the product terms, the “cost function” C(x) is not convex. We get
left-hand Inada conditions from the log function for all controls except tR, which only appears
in the cost function . However, tR = 0 together with the left-hand Inada conditions on the
rest of the controls, implies a left hand-Inada condition for tR too.
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4.2 Optimal steady state

The Hamiltonian (49) can be written as:

H = maxP

[
(1− γ) ln (twkAtAtC) + γ ln (twkAtAnτ)−D

twkAtAP

δTαRtR
(55)

+B

(
G(S)− twkAtAP

αRtR

)
+ λPPt (n− δP )

]
.

Define:
c ≡

(
kA
αkR

)(
D

δP
+B

)
, X ≡ γ

τn
+

λP

τ
.

Using the optimality conditions (54) we obtain for the optimal controls:

tw = tA = t =
1[

[X (cP )]
1/2

+X
] (56)

tR :−X +
t2cP

t2R
= 0 ⇒

(
X

cP

)1/2

=
t

tR
. (57)

At the OSS n = δP , and X is a function of the costate variable λP which is
the shadow value of population. Then, at the OSS

γ

τδP
+

(
(1/ρ)HP

τ

)
= X,

where HP is evaluated at steady state. To explore the existence on OSS and
provide some insight for its computation we proceed as follows:

From the definition of X we have tC = (1−γ)
X . Using the constraint on total

available time we obtain,

1 = tC + 2t+ nτ + tR or

1 =
(1− γ)

X
+

2[
[X (cP )]

1/2
+X

] + τδP +
1[

[X (cP )]
1/2

+X
] (

X
cP

)1/2 . (58)

Note that increasing X causes the RHS of (58) to decrease., so X must
decrease to balance the RHS to one. Looking at the definition of X we see that
λP in OSS decreases as P increases. This makes economic sense.

Define the implicit function

X(P ) by 1 = h1 (X(P ), P ) . (59)

Note that ∂h1

∂X ≡ h1X < 0 and we need X ≥ 0 so that the square root in (58) is
a real number. Thus, X ′(P ) =

−h1p

h1X
and the implicit function X(P ) appears to

be well defined on the set of non-negative X and non-negative P .
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We turn now to the evaluation of HP at OSS. From (52) we have:

ρλP = HP = ln (tw) + ln (kA) + ln (tA) + (1− γ) ln (tC) + γ ln (δP τ) +BG(S)−
(
twtA
tR

)
2cP

= 2 ln (t) + ln (kA) + (1− γ) ln (tC) + γ ln (δP τ) +BG(S)−
(
t2

tR

)
2cP

= 2 ln

 2[
X (cP )

1/2
+X

]
+ ln (kA) + (1− γ) ln

[
(1− γ)

X

]
+ γ ln (δP τ)

+BG(S)−

 4X1/2 (cP )
−1/2[

X (cP )
1/2

+X
]
 2cP (60)

ρ

(
τX − γ

δP

)
,

evaluated at OSS. Recall that at OSS λP (n− δP ) = 0, and that λP = τX− γ
δP

,
and that after some algebra

t2

tR
=

4X1/2 (cP )
−1/2[

X (cP )
1/2

+X
] .

Equation (60) defines an implicit function,

h2 (X,P ) = 0 = h2 (X (P ) , P ) , (61)

where X(P ) was shown above - using the implicit function theorem - to be
well defined from the constraint 1 = h1 (X(P ), P ) . Solutions of the implicit
functions will determine for the OSS. values

(
P̄ , λ̄P

)
, and the optimal controls

(t̄, t̄R) .

The impact inequality At the OSS, the impact inequality becomes

t̄2δRA0P̄

αδAR0t̄R
≤ G(S). (62)

where t̄ and t̄R are the steady state solutions for time spent in production and
TFP, and time spent in R&D respectively. Assume that R0 ≈ rA0 and δR = δA.
Then the impact inequality can be written as

t̄P̄

αrt̄R
≤ G(S). (63)

Therefore, increasing r, which is how the green R&D scales with TFP, eases
the stress on Nature’s services, and allows higher steady-state population and
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output. The same source can reduce damages from climate change, which in
this case can be written as

Dt̄P̄

δTαrt̄R
.

5 Limits with two types of consumption

In this section we introduce the concept of two types of consumption, “basic”
and “profligate”, with the profligate type exercising relatively more pressure on
Nature. We return to the “manna from heaven” and no-work-time model in
order to more clearly identify the impact from this differentiation. Damages to
the biosphere and climate are associated with the types of consumption and the
raising of children.

Let tci , i = 1, 2 be the time devoted to basic and profligate consumption
respectively, and let DTi , DGi , i = 1, 2, nτ be damages from climate change
and damages to the biosphere from the two types of consumption and raising
children respectively. The relevant Lagrangian can be written as

L = maxP {γ1 ln (ytc1) + γ2 ln (ytc2) + γ3 ln (ynτ) −

(DT1tc1 +DT2tc2 +DT,ntnτ)

(
yP

δTαR

)
+ (64)

B

[
G(S)− (DG1

tc1 +DG2
tc2 +DG,ntnτ)

(
yP

αR

)]
+

λP (n− δP ) + µ (1− tc1 − tc2 − nτ)} ,

with y = A, 1 = γ1 + γ2 + γ3.

Define

K1 ≡
(
DT1

δT
+BDG1

)(
yP

αR

)
K2 ≡

(
DT2

δT
+BDG2

)(
yP

αR

)
Knτ ≡

(
DT,nt

δT
+BDG,nt

)(
yP

αR

)
.

The FOC for the controls (tc1 , tc2 , n) are
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tc1 :
γ1
tc1

−K1 − µ = 0 (65)

tc2 :
γ2
tc2

−K2 − µ = 0 (66)

n :
γ3
n

+ λP − τKnτ − µ = 0 (67)

P : LP = 0.

At the OSS, n = δP . Solving (65) and (66), we obtain (tc1 , tc2) as a function
of P.

Solving for tc1 , we obtain:

tc1(P ) =

{
− [(γ1 + γ2)− LPj] +

[
(γ1 + γ2 − LPj)

2
+ 4LPγ1j

]1/2}
2LP

, (68)

where L ≡ K2 − K1 ≫ 0, since we expect that profligate consumption will
cause more damages to climate and Nature, and by an earlier assumption j ≡
1− δP τ > 0. Then tc2 is determined as a function of P by the constraint

1− tc1(P )− tc2(P )− δP τ = 0. (69)

The OSS population level and the corresponding shadow value of the pop-
ulation can be determined by (67) and the OSS condition evaluated at n =

δP , tc1(P ), tc2(P ),
ρλP = HP , (70)

where H is the Hamiltonian associated with (64)
Equation (68) provides a solution for tc1 as a function of P . Then tc2 can

be determined as a function of P , by (69) and (P, λP ) by (67) and (70).
Note that when γ1 = 0, so that preferences concentrate on profligate con-

sumption and child rearing, (68) results in

tc1 =
(LPj − γ2)

LP
> 0,

under the assumption LPj − (γ1 + γ2) > 0.

The impact inequality In the context of the model with two types of con-
sumption, the impact inequality includes damages to climate change and dam-
ages to Nature and can be written at a steady state, recalling that y = A,
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as

(DT1
tc1 +DT2

tc2 +DT,ntnτ)

(
AP

δTαR

)
+

(DG1
tc1 +DG2

tc2 +DG,ntnτ)

(
AP

αR

)
≤ G(S).

Note that if all Ds are equal to 1, the demand on Nature is driven by yP
αR .

If R = rA, then the impact inequality becomes

(DT1
tc1 +DT2

tc2 +DT,ntnτ)

(
P

δTαr

)
+

(DG1
tc1 +DG2

tc2 +DG,ntnτ)

(
P

αr

)
≤ G(S).

If we use rates of cost decline per unit of energy produced by green technology
relative to fossil fuel technology as, for example, in Way et al (2022), to proxy
R = rA, then r is larger than one. In this case, a higher level of population
and output could be sustained at the steady state without violating the impact
inequality, that is, keeping the left-hand side lower than the right-hand side.

6 The dynamics of the finite biosphere

In the previous sections, we assumed that Nature’s services G(S) were constant
and we introduced a penalty that reduced the planner’s welfare when there was
excess demand for these services. The purpose of this simplifying assumption
was to provide a clearer picture of the sources that might ease the intensity of
humans’ demand for the services that the biosphere can provide. This, however,
implies that under excess demand, the stock of natural capital S embedded
in a finite biosphere will be declining, or dS

dt < 0. The decumulation of the
stock of natural capital is pointed out in the Dasgupta Review (Dasgupta, 2021,
page 44), and can be linked with the crossing of the planetary boundaries. As
Richardson et al. (2023) point out, Earth is now beyond six of the nine planetary
boundaries. This implies decumulation of natural capital or accumulation of
pollutants, with boundary crossings implying in turn loss of Nature’s services.
To take into account biosphere dynamics, we simplify our model by assuming
that only the number of children is a control variable and write the Hamiltonian
of the problem as

H = P [(1− γ) ln (1− nτ) + γ ln (nτ)] + λPP (n− δP ) + µP

[
G(S)− AP

α(R)

]
,

(71)
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where R denotes biosphere savings R&D.
Optimality conditions at the OSS, where the steady-state conditions n =

δP , G(S)− AP
α(R) = 0 are satisfied, imply:

n :
−τ (1− γ)

(1− δP τ)
+

γ

δP
+ λP = 0 (72)

P : ρλP = HP = (1− γ) ln (1− δP τ) + γ ln (δP τ)− µ
AP

α(R)

⇒P =
[(1− γ) ln (1− δP τ) + γ ln (δP τ)]α(R)

µA
(73)

S : ρµ = HS = µPG
′
(S) ⇒ µ = 0 or ρ = PG

′
(S) (74)

G(S) =
AP

α(R)
(75)

n = δP .

At an OSS, λP is determined by (72), while (74) determines S as a function
of P, or S = S(P ). Then (75) can be solved for P as function of A,R which are
treated as parameters. This solution can be substituted into (73) to determine
µ.

To provide some insight into the limits imposed by the biosphere, we assume
that α(R) = αR and that R = rA. Then (73) and (75) imply:

P =
[(1− γ) ln (1− δP τ) + γ ln (δP τ)]αr

µ
(76)

G(S) =
AP

α(R)
=

P

αr
. (77)

These conditions mean that A can be arbitrarily large and, with constant
population at the OSS, we can have arbitrarily large output. However, this
result depends on the assumption that our preferences are independent of A.10

If we relax this assumption, the Hamiltonian will be

H = P [(1− γ) ln (A (1− nτ)) + γ ln (nτ)]+λPP (n− δP )+µP

[
G(S)− AP

α(R)

]
.

Then (76), under the assumption α(R) = αR and R = rA implies

P =
[(1− γ) lnA+ (1− γ) ln (1− δP τ) + γ ln (δP τ)]αr

µ
,

which means that as A increases, the steady-state population will increase with
lnA. In this case, however, constraint (77) imposes limits even when R&D scales
with A, since G(S) is finite because the biosphere S is finite.

10The case in which an increase in A requires Nature’s services can also be considered.
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7 Conclusions and areas for further research

This paper built a biosphere-limited optimal growth model where population
is endogenous following Galor (2012), and where the total time of each per-
son is allocated across work, consumption, R&D, building GDP, child rearing
and child educating. The economy is constrained by damages from GHG emis-
sions and damages to the biosphere that increase with the scale of the economy.
Since it is widely recognized that the world economy has overshot the capacity
of the biosphere, our analysis suggests a rapid expansion of biosphere-saving
technology, in addition to the current rapid ramping up of GHG emissions-
saving technology. As Steffen et al. (2018) point out self-reinforcing feedbacks
could prevent stabilization of the Earth’s climate at intermediate temperature
rises. To prevent destabilization, collective human action is required to stabi-
lize the Earth System in a habitable state. This requires policies promoting
decarbonization of the global economy, enhancement of biosphere carbon sinks,
behavioral changes, technological innovations, new governance arrangements,
and transformed social values. Our general model covers most of the avenues
of Earth System damage associated with potential destabilization mentioned by
Steffen et al (2018), and provides insights about the appropriate policies.

World wealth inequality is extreme, since the top 10% of the population
have 76% of the world’s wealth (World Bank (2022)). Since log consumption is
roughly proportional to log wealth and log income (Jawadi and Sousa, 2014), our
optimal biosphere-limited growth model implies that the heavy consumption of
the world’s wealth must be reduced to stay within the Earth’s limits. Recent es-
timates by Burke et al. (2023) of loss and damages (L&D) from GHG emissions
support this conclusion. Since our growth model is somewhat novel – although
it builds on ideas from the Dasgupta Review, Galor’s endogenous population
theory, climate economics, and other work – many directions for future research
are open. First, we need to explore the most effective policy instruments to
reduce humanity’s footprint overshoot and destruction of the biosphere flagged
by the Dasgupta Review. Second, we need to explore ways of using revenue
from perhaps a higher tax on “profligate” biosphere-damaging consumption and
other biosphere-related taxes for the most effective restoration of our damaged
Earth. Third, we need to do more on endogenizing the dynamics of the bio-
sphere, dS/dt = G(S) minus impact. This creates a system with a minimum of
two state variables, S the biosphere stock and P population numbers. Fourth, in
view of the fact that it takes emissions and increased impact on the biosphere to
produce emission-saving technology and biosphere-saving technology, research
is needed to compute the net savings of emissions and biosphere impact. Even
if we try to find better ways to produce such green technology, that effort re-
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quires additional emissions and impacts on the biosphere. Taking actions to
find better ways to economize on such additional emissions and impacts leads
to yet more emissions and impacts, and so on, ad infinitum. Investigation is
needed into the ultimate outcome in net emissions reduction and reduction of
net impact on the biosphere. Fifth, extension to heterogeneous consumers strat-
ified by emissions and impact on the biosphere is needed to better target policy
interventions. Sixth, extension is needed to include spatial effects and optimal
allocation of spatial economic activity to optimize world welfare. The Amazon,
for example, is an important part of the biosphere. Assunçao et al. (2023) show
how impact on the Amazon biosphere can be minimized by optimal allocation
of impact-causing economic activity across space. Their study indicates large
gains from optimal spatial allocation of economic activity world-wide.

We look forward to working on these extensions and ideas and hope others
join us.
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