

DEPARTMENT OF INTERNATIONAL AND EUROPEAN ECONOMIC STUDIES

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

ARTIFICIAL INTELLIGENCE FOR SDGs: A TECHNICAL GUIDE (V. 1.0)

PHOEBE KOUNDOURI

CHRYSILIA PITTI

FIVOS PAPADIMITRIOU

Working Paper Series

25-68

December 2025

Artificial Intelligence for SDGs: A Technical Guide (v.1.0)

Phoebe Koundouri^{1,2,3,4,5}, Chrysilia Pitti ⁶ and Fivos Papadimitriou^{1,5,*}

School of Economics and ReSEES Research Laboratory, Athens University of Economics and Business, Athens, Greece
Sustainable Development Unit, Athena Research Center, Athens, Greece
Dept. Earth Sciences, University of Cambridge, Cambridge, UK
UN SDSN, Global Climate Hub, European Hub, Greek Hub, New York, USA
Alliance of Excellence for Research and Innovation on Aephoria (AE4RIA), Athens, Greece

⁶ Department of Economics, University of London, London, UK * Corresponding author: fpapadimitriou@aueb.gr

Abstract

The United Nations Sustainable Development Goals (SDGs) represent a universal call to action to end poverty, protect the planet, and ensure prosperity for all by 2030. For private sector enterprises, these goals present both challenges and opportunities. Artificial Intelligence (AI) has emerged as a transformative technology that can significantly accelerate progress toward achieving these goals while creating business value. This guide refers to more than 100 different digital platforms and solutions (methods, techniques, algorithms, models, and software) that can help entities of the public or private sectors and interested individuals (researchers, professionals, students) expand their use of AI in order to solve problems and enhance solutions related to anyone of the 17 SDGs.

Keywords: Artificial Intelligence; SDGs; Private Sector; AI Guide

1. Introduction

The integration of AI technologies in corporate sustainability initiatives represents a paradigm shift in how businesses approach the SDGs. From Random Forest algorithms that optimize resource consumption to Convolutional Neural Networks (CNNs) that enhance supply chain transparency, AI offers enterprises unprecedented capabilities to measure, monitor, and achieve sustainable development objectives. This comprehensive analysis examines specific AI applications for each SDG, providing technical specifications and scientific

evidence for corporate leaders seeking to align their business strategies with global sustainability targets.

2. A Technical Guide: AI Methods and Models per SDG

SDG 1: No Poverty

Private institutions may employ SVM (Support Vector Machines) and Random Forests in assessing creditworthiness through non-traditional credit scoring models (Blumenstock et al., 2015). Apache Spark MLlib can be used to process large financial transaction and behavior pattern datasets, while it is also possible to build poverty prediction models using TensorFlow and scikit-learn, incorporating demographic and economic features. Tools such as spaCy and BERT (Bidirectional Encoder Representations from Transformers) have been utilized to analyze sentiment and communication patterns on social media, enabling the identification of at-risk communities. Meanwhile, K-means clustering and DBSCAN algorithms cluster populations based on their socioeconomic features, while XGBoost constructs precise poverty classifiers. These platforms utilize LSTM (Long Short-Term Memory) networks for timeseries modeling of economic activities, or GNNs (Graph Neural Networks) to model social networks and identify community-level economic connections. Software solutions, including H2O.ai and DataRobot, enable enterprise-level models to predict poverty. Further, firms utilizing Deep Reinforcement Learning on OpenAI Gym environments can train microfinance deployment policies based on past repayment behavior and social parameters. The blockchain-based identity verification by Hyperledger Indy may document tamper-proof financial IDs for the unbanked, while smart contracts can automate conditional cash transfers linked to predefined social outcomes. Computer vision applications with *OpenCV* and MediaPipe can be used to examine satellite images of living conditions and infrastructure quality for up-to-date data needed for targeted relief. Beyond OpenCV, YOLO (You Only Look Once) can be used for monitoring and impact measurement to evaluate infrastructure (Jean et al., 2016) and project development by using satellite imagery. Sentiment analysis leverages Transformer models, RoBERTa and DistilBERT, to understand community sentiment, and *Apache Kafka* in order to stream real-time data for ongoing impact monitoring. Characteristically, research by Soto et al. (2011) demonstrates the potential of machine learning methods for enhancing poverty mapping through mobile phone data analysis.

SDG 2: Zero Hunger

Liakos et al. (2018) present an extensive review on the use of machine learning in agricultural systems, and Wolfert et al. (2017) study big data applications in smart farming systems to achieve improved food security. Indeed, there is a wide range of AI technologies applied to agricultural production. First of all, CNNbased methods are also employed for crop disease detection in precision agriculture, utilizing ResNet and DenseNet architectures, along with PyTorch and TensorFlow (Kamilaris & Prenafeta-Boldú, 2018). Random Forest and Gradient *Boosting* model can be combined to derive classifications and regression analyses of multi-spectral meteorological and agricultural imagery from Google Earth Engine, using QGIS with Python to yield predictions. Other technologies may enter in this domain as well: soil moisture, temperature and nutrient levels are monitored using Internet of Things (IoT) sensors with time series forecasting based on ARIMA models in tandem with the Facebook forecasting tool Prophet (Sivaramakrishnan et al., 2022). Edge Computing solutions, such as NVIDIA Jetson, can process ag-tech data in near real-time (Ahmed and Hasan 2025) with the use of the *OpenVINO* optimization toolkit. *Hyperledger Fabric* is utilized for blockchain applications (Androulaki et al., 2018) in food traceability, and realtime supply chain data is processed using Apache Spark Streaming. Cell-level nutrient deficiency detection with hyperspectral imaging using Vision Transformers with Attention Modules, implemented with PyTorch. Drone-based crop monitoring patterns for maximally efficient coverage are optimized using Swarm Intelligence algorithms, such as Ant Colony Optimization and Particle Swarm Optimization, i.e. via PySwarmOptimization. Robotic farming systems utilize Model Predictive Control (MPC) algorithms with CasADi integration for autonomous harvesting and employ a Digital Twin to simulate test scenarios on the farm (Moradi 2022; Sperti 2023).

SDG3: Good Health and Well-being

In medical imaging, U-Net architectures and *Mask R-CNN* are used for segmentation tasks using both PyTorch and TensorFlow (Esteva et al., 2017). X-rays, MRIs, and CT scans can reveal diseases in a way that's difficult for humans to understand: *ResNet, VGG*, and *InceptionV3* models are used for this classification (Shah et al., 2023). Graph-based molecular designs use GCNs and RNNs for molecular property prediction with *RDKit* and *DeepChem* libraries and drug design processes are optimized using Reinforcement Learning algorithms such as *DQN* and *OpenAI Gym* environments. In the same context, the *MONAI* (Medical Open Network for AI) is a collection of open-source software that includes domain-optimized deep learning capabilities for healthcare and life sciences using PyTorch (Cardoso et al., 2022). As concerns the LLMs, some

EHR analyses utilized BERT and *BioBERT* models for processing clinical text (Rajkomar et al., 2018), while recent works (Yu et al., 2019) have adopted *Federated Learning* frameworks, such as *TensorFlow Federated*, for privacy-preserving model training across healthcare providers.

SDG 4: Quality Education

Chen et al. (2020) provide a comprehensive review of how AI is being utilized in education, while Holmes et al. (2019) offer a global perspective on artificial intelligence in the educational landscape, highlighting both the challenges and opportunities associated with its implementation. Adaptive learning systems are making waves with techniques such as Bayesian Knowledge Tracing and Deep Knowledge Tracing, all of which are powered by TensorFlow and PyTorch (Zawacki-Richter et al., 2019). To personalize content recommendations, we see collaborative filtering algorithms and matrix factorization techniques in action, utilizing tools like Apache Mahout libraries (Hassen 2017). Intelligent Tutoring Systems are stepping up their game with Natural Language Understanding, leveraging spaCy, NLTK, and Transformer models to generate automated feedback. Additionally, Reinforcement Learning algorithms, such as *Q-Learning* and *Policy Gradient methods*, optimize learning paths through frameworks like Stable Baselines3 (Raffin et al., 2023). When it comes to learning analytics, platforms are harnessing clustering algorithms (think K-means and hierarchical clustering) and classification models (like Random Forest and SVM) using Weka, R, and Python's scikit-learn (Pedregosa et al., 2011). Besides these, Time Series Analysis enhanced with LSTM networks can be useful in predicting student dropout risks, while anomaly detection algorithms are on the lookout for learners who might be struggling. Now, shifting our focus to advanced educational technologies, multimodal learning analytics are integrating eye-tracking data, EEG signals, and behavioral patterns with tools like MNE-Python and PsychoPy to gain insight into cognitive load and learning effectiveness. Graph-based knowledge representation is using Neo4j to model concept relationships and finetune learning sequences based on what students already know (Miller 2013). And let's not forget about language models that are fine-tuned on educational content through Hugging Face, providing personalized tutoring across various subjects and languages. Automated Essay Scoring is also in the mix, employing BERT, GPT models, and feature engineering techniques with Hugging Face Transformers. Meanwhile, Speech Recognition systems like Google Speech-to-Text and Azure Cognitive Services are paving the way for voice-driven learning applications. Meanwhile, Computer Vision tools like *OpenCV* are making gesture recognition a reality for interactive learning experiences.

SDG 5: Gender Equality

Bias detection algorithms are harnessing fairness-aware machine learning techniques, such as disparate impact analysis and equalized odds metrics, using tools like IBM's AI Fairness 360 toolkit and Google's What-If Tool (Bolukbasi et al., 2016). NLP (Natural Language Processing) is stepping in with Word embeddings analysis (such as Word2Vec) to identify gender bias in text, while BERT-based models are on the lookout for discriminatory language patterns (Friedman et al. 2019). For bias assessment, Statistical Parity and Individual Fairness metrics are being implemented through Fairlearn (Microsoft) and Aeguitas frameworks (Saleiro et al. 2018). In the realm of HR analytics, platforms are tapping into Ensemble methods (i.e. Random Forest and Gradient Boosting) and neural networks to make fair hiring decisions, with the help of DataRobot (Lankut et al., 2024). Graph algorithms using Neo4j are being used to analyze organizational networks and uncover patterns in gender representation (do Vale et al., 2024). When it comes to Advanced Gender Analytics and Workplace Equity Systems, intersectionality analysis is employing Multi-task Learning and Multi-label Classification through scikit-multilearn to grasp the complex effects of discrimination across gender, race, age, and other protected characteristics. Pay equity algorithms are leveraging Regression Discontinuity and Difference-in-Differences methods to pinpoint and quantify compensation gaps with statistical significance. Leadership pipeline analysis leverages Survival Analysis and Cox Proportional Hazards models (Adebowale and Martins 2013), utilizing the lifelines library to forecast career advancement trends and identify obstacles that women encounter in their professional journeys. Meanwhile, network analysis powered by PyTorch Geometric maps out mentorship and sponsorship connections, aiming to enhance gender-balanced development programs (Lee et al., 2024). When it comes to performance evaluation, systems or research projects may incorporate Multi-criteria Decision Analysis (MCDA) and Fuzzy Logic algorithms to minimize subjective bias. Research by Lambrecht & Tucker (2019) highlights algorithmic bias in advertising, while Caliskan et al. (2017) demonstrate how machine learning can capture human biases from language data, underscoring the importance of implementing effective bias mitigation strategies.

SDG 6: Clean Water and Sanitation

Research by Zhai et al. (2020) explores decision support systems for water management, while Ahmed et al. (2018) demonstrate how machine learning can improve water quality prediction and management systems. Water quality monitoring employs Convolutional Neural Networks with *MobileNet* and

EfficientNet architectures to detect contamination through images (Kannan et al. 2024), all thanks to TensorFlow Lite running on edge devices (Gude, 2017). Time Series Forecasting using LSTM helps predict water demand, with implementations in Keras and PyTorch. IoT sensor networks harness Edge AI processing via NVIDIA Jetson and Intel OpenVINO for real-time water quality assessments (Tham et al., 2023). Anomaly Detection algorithms, including Isolation Forest, One-Class SVM, and Autoencoders, are utilized to spot system failures, leveraging scikit-learn and PyOD libraries. Smart water distribution systems utilize reinforcement learning algorithms, such as Deep Deterministic Policy Gradient and Proximal Policy Optimization, to manage pressure effectively. Advanced water management and conservation technologies are making waves in how we handle our water resources. For instance, satellitebased water mapping utilizes semantic segmentation models, such as DeepLab and *U-Net*, to monitor changes in watersheds and forecast drought conditions, thanks to tools like Google Earth Engine (Li et al., 2019). On the hydraulic modeling front, we're seeing a blend of Physics-Informed Neural Networks (PINNs) and traditional Computational Fluid Dynamics, utilizing the FEniCS framework for precise flow predictions. When it comes to optimizing water treatment, Multi-objective Evolutionary Algorithms such as NSGA-II and SPEA2 are employed, utilizing the DEAP library to strike a balance between treatment effectiveness, energy use, and chemical consumption. Smart irrigation systems are also stepping up, combining crop water stress index calculations with Fuzzy Logic Controllers through scikit-fuzzy to ensure water is applied just right. Predictive maintenance systems are leveraging Survival Analysis algorithms and Cox Proportional Hazards models with the lifelines library, while Computer Vision techniques like YOLO and FasterRCNN are used to monitor infrastructure conditions using OpenCV and Detectron2 frameworks (Midigudia et al., 2025).

SDG 7: Affordable and Clean Energy

A comprehensive review by Mosavi et al. (2019) examines machine learning models in energy systems, while Wang et al. (2018) investigate the role of artificial intelligence in smart energy systems, aiming to enhance efficiency and sustainability. In the realm of smart grid optimization, *Deep Reinforcement Learning* is being utilized with Multi-Agent Reinforcement Learning, all implemented through OpenAI Gym and *PettingZoo* environments (Ahmad et al., 2018). Load forecasting is gaining momentum from LSTM networks, Transformer models, and Prophet for time series predictions, leveraging TensorFlow and *Facebook Prophet*. In parallel, energy management systems are leveraging Genetic Algorithms, Particle Swarm Optimization, and Simulated Annealing through the DEAP (Distributed Evolutionary Algorithms in Python)

and *PySwarm* libraries (Abid et al., 2025), whereas building automation is harnessing Fuzzy Logic Controllers and Model Predictive Control, utilizing scikit-fuzzy and CasADi optimization frameworks to enhance efficiency.

Renewable energy forecasting leverages Ensemble methods like Random Forest and Gradient Boosting, along with Support Vector Regression, to predict solar and wind energy. These techniques are implemented using tools like scikit-learn and XGBoost (Xu et al., 2024). In the realm of Computer Vision, Semantic Segmentation models such as U-Net and DeepLab are employed to analyze satellite images for selecting optimal sites for renewable energy projects, utilizing the Segmentation Models library. When it comes to Advanced Energy Systems and Grid Intelligence, distributed energy resource management taps into Federated Learning frameworks, including PySyft and TensorFlow Federated (Zhang et al., 2024). This approach optimizes peer-to-peer energy trading while ensuring consumer privacy remains intact. Additionally, quantum computing applications, such as those through Qiskit and Cirq, tackle complex optimization challenges in grid balancing and energy portfolio management, offering significant speed improvements (Paler and Basmadjian 2022). Energy storage optimization leverages Dynamic Programming and Approximate Dynamic Programming techniques, utilizing OR-Tools, to effectively manage battery systems and pumped hydro storage, thereby ensuring maximum grid stability. Digital Twin technology is also making waves, creating real-time virtual models of power plants with ANSYS Twin Builder, which aids in predictive maintenance and operational efficiency (Pliuhin et al., 2022). On the predictive maintenance front, platforms like GE Predix, Siemens MindSphere, and IBM Maximo utilize Survival Analysis, Weibull Distribution modeling, and Neural Networks to enhance equipment performance (Rakhmonov et al., 2025). Similarly, Apache Spark, equipped with MLlib, are able to processes vast amounts of energy consumption data to identify patterns.

SDG 8: Decent Work and Economic Growth

Frey & Osborne (2017) examine the risk of jobs being automated, while Brynjolfsson et al. (2018) investigate how machine learning is reshaping work and employment trends in the digital economy; indeed, there is a trove of AI software and methods that hasfound applications in what concerns this SDG. Workforce analytics harnesses the power of Natural Language Processing, utilizing BERT and RoBERTa models to match jobs with the right skills, thanks to Hugging Face Transformers (Carnevale et al., 2014). On the other hand, Graph Neural Networks help us understand labor market dynamics through PyTorch Geometric, while Collaborative Filtering algorithms guide individuals in choosing career paths using tools like *Apache Mahout* and *Surprise* libraries. For

predicting skills, a Multi-label Classification can be used with Binary Relevance and Label Powerset methods, implementing using scikit-multilearn (Botov et al., 2019). For identifying employment trends, Time Series Analysis with ARIMA and Seasonal Decomposition is employed, utilizing the statsmodels and Prophet libraries. Workplace safety is enhanced through Computer Vision, employing Object Detection models like YOLOv5. In advancing workforce intelligence and economic modeling, analytics utilize matching algorithms and Market Design principles through NetworkX and OR-Tools to ensure that worker-task allocations are optimized and fair compensation is maintained. Economic impact modeling combines Input-Output Analysis with Machine Learning regression techniques to forecast how policies might affect employment and GDP growth. For assessing automation risks, Task-based models can be used to analyze Occupational Information Network (O*NET) data using pandas and scikit-learn to identify jobs that may be at risk of displacement by technology. Finally, when it comes to reskilling, we employ Curriculum Learning and Transfer Learning strategies with PyTorch to create effective workforce transition programs. Employee satisfaction analysis leverages sentiment analysis tools, such as VADER, TextBlob, and Transformer-based models (Borg and Boldt, 2020). On the other hand, topic modeling utilizes Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorization, leveraging the scikit-learn libraries.

SDG 9: Industry, Innovation, and Infrastructure, infrastructure monitoring AI has manifold applications in intelligent manufacturing, particularly within the context of Industry 4.0 (Zhong et al., 2017), as well as in tandem with any technologies that are used to build industrial Digital Twins (Lu 2017). Efforts to achieve SDG9 in the private sector employ Convolutional Neural Networks, specifically ResNet and DenseNet architectures, to assess structural health using TensorFlow and PyTorch (Dallasega et al., 2018). Digital Twin technologies incorporate Physics-Informed Neural Networks (PINNs) and integrate Finite Element Methods through platforms like ANSYS and COMSOL. Predictive maintenance relies on Survival Analysis, utilizing Cox Regression and Accelerated Failure Time models with the lifelines library. For signal processing, Wavelet Transforms and Fourier Analysis are used for vibration monitoring, employing PyWavelets and SciPy libraries. In construction optimization, Genetic Algorithms, Ant Colony Optimization, and Simulated Annealing are harnessed for project scheduling, utilizing DEAP and OR-Tools. Building Information Modeling (BIM) integration utilizes machine learning algorithms for design optimization via Autodesk Forge and Bentley Systems APIs. In advanced manufacturing and Industry 4.0 Systems, additive manufacturing optimization

uses Generative Design techniques with OpenMDAO frameworks to create

lightweight, high-performance components (Bapty et al. 2022). Quality control systems combine Hyperspectral imaging with Attention mechanisms for defect detection at sub-millimeter precision, utilizing PyTorch and spectral library. Supply chain resilience modeling utilizes Complex Network Analysis and Monte Carlo Simulation through tools like *NetworkX* and SimPy to identify vulnerabilities and refine backup sourcing strategies. Further, autonomous manufacturing systems utilize Multi-Agent Systems and Distributed Artificial Intelligence, leveraging the Mesa framework, to streamline production scheduling. Smart manufacturing integrates Industrial IoT with Edge AI processing, utilizing platforms such as Azure IoT Edge and *AWS IoT Greengrass*. For quality control, systems rely on Computer Vision, employing Instance Segmentation models like *Mask R-CNN* and Defect Detection algorithms.

SDG 10: Reduced Inequalities

A comprehensive survey by Mehrabi et al. (2021) examines bias and fairness in machine learning, while Chouldechova & Roth (2020) explore algorithmic fairness from a societal perspective, emphasizing the importance of creating inclusive AI systems. Perhaps one of the most interesting applications of AI is its fairness-aware algorithms that utilize demographic parity, equalized Opportunity, and calibration metrics, leveraging tools like IBM AI Fairness 360 and Google Fairness Indicators (Baracas et al., 2019). Causal Inference methods, such as Propensity Score Matching and Instrumental Variables, are implemented using the DoWhy and EconML libraries that were mentioned earlier. Inclusive service design employs clustering algorithms (like K-means and DBSCAN) for market segmentation, along with Association Rule Mining through Apriori and FPgrowth algorithms via the mlxtend library. Recommendation Systems utilize Matrix Factorization and Deep Learning techniques, tapping into Surprise libraries and TensorFlow Recommenders. To enhance accessibility, Computer Vision is leveraged to assist individuals with visual impairments, utilizing object detection methods (such as YOLO and SSD) and Optical Character Recognition with Tesseract and EasyOCR. Additionally, Speech-to-Text and Text-to-Speech systems rely on Mozilla DeepSpeech and Google Text-to-Speech APIs.

Advanced Equity Analytics and Social Impact Measurement employ social mobility modeling (i.e. Markov chains and and Hidden Markov Models) to track how economic status changes across generations. When it comes to geographic inequality, AI-enhanced methods of Spatial Statistics and Geographically Weighted Regression, can employ i.e. the *PySAL* and *GeoPandas* libraries to gain a deeper understanding of regional disparities. To tackle the digital divide, one may turn to Network Analysis and Graph Centrality measures using NetworkX,

which helps us identify communities that lack access to technology and prioritize where to invest in infrastructure. To assess the impact of algorithms, the Counterfactual Machine Learning and Synthetic Control methods through CausalML can be used to evaluate the effectiveness of policy interventions. Bias mitigation is another crucial area, employing Adversarial Debiasing techniques and optimizing Fairness Constraints with TensorFlow Privacy and *PyTorch Fairness* (Priyadarshini and Gago-Masague 2024).

SDG 11: Sustainable Cities and Communities

The contribution of AI in developing smart and sustainable cities is well known (see, i.e. Silva et al., 2018; Yigitcanlar et al. 2020), particularly in the context of machine learning. Traffic optimization is all about using Deep Reinforcement Learning, specifically with *Deep Q-Networks* and *Actor-Critic* methods, all while leveraging SUMO (Simulation of Urban Mobility) and OpenAI Gym environments (Bibri & Krogstie, 2017). In what concerns traffic monitoring in particular, Computer Vision systems come into play, utilizing Object Detection techniques like YOLOv5 and Faster R-CNN, along with Tracking algorithms such as DeepSORT and ByteTrack, all powered by OpenCV and PyTorch. For air quality prediction, we turn to Time Series Forecasting, employing LSTM networks, Transformer models, and Prophet to forecast pollutant levels, utilizing tools such as TensorFlow and Facebook Prophet. Sensor fusion is handled through Kalman Filters and Particle Filters for effective data integration, i.e. by utilizing the FilterPy and PyKalman libraries (Blasch et al., 2021). Urban planning receives a boost from GIS, which integrate Machine Learning through platforms such as ArcGIS Pro, QGIS, and Google Earth Engine. Agent-Based Modeling is used to simulate urban dynamics with frameworks such as Mesa and NetLogo, while Spatial Analysis relies on libraries like GeoPandas and Shapely. To tackle urban heat islands, we utilize thermal imaging analysis with Convolutional Neural Networks and Semantic Segmentation models via PyTorch, enabling us to identify heat sources and optimize the placement of green infrastructure. For pedestrian flow modeling, Graph Convolutional Networks and Spatial-Temporal prediction models are utilized, leveraging PyTorch Geometric for effective crowd management and emergency evacuation planning. Smart parking systems are a game-changer, integrating Computer Vision with Edge Computing through *OpenCV* and *TensorFlow Lite* for real-time space detection. Plus, Dynamic Pricing algorithms utilize Reinforcement Learning via RayRLlib to maximize utilization and revenue. Smart waste management is eventually about utilizing route optimization algorithms, such as Dijkstra's, along with Vehicle Routing Problem solvers through tools like OR-Tools and NetworkX (Revanna and Al Nakash 2023) and when it comes to IoT integration, we're talking about Edge AI processing with TensorFlow Lite and *OpenVINO* for real-time monitoring of bins.

SDG 12: Responsible Consumption and Production

Optimizing the circular economy involves the use of linear programming and mixed-integer programming, utilizing PuLP, OR-Tools, and Gurobi optimizers (Ghisellini et al., 2016). Tseng et al. (2018) showed how AI can be used to align circular economy concepts with the Industry 4.0 landscape, while Kristoffersen et al. (2020) showed how smart technologies can drive innovation in circular business models. For material flow analysis, we can tap the potential of Graph Neural Networks and Network Analysis algorithms through PyTorch Geometric and NetworkX libraries. When it comes to product lifecycle assessment, we can leverage Life Cycle Assessment (LCA) integrated with Machine Learning using Brightway2 and OpenLCA frameworks (Xiang et al., 2025). Design optimization utilizes Genetic Algorithms, Multi-objective Optimization, and Pareto Front analysis via DEAP and NSGA-II implementations. In the realm of supply chain sustainability, Blockchain integration with Hyperledger Fabric and Ethereum smart contracts plays a crucial role. Traceability systems utilize QR Code and RFID integration alongside Computer Vision using *OpenCV* and pyzbar libraries for automated tracking. Advanced Sustainability Analytics and Circular Economy Intelligence Material passport systems harness Natural Language Processing and Knowledge Graphs with spaCy and Neo4j to extract and structure product composition data for optimizing end-of-life processes. Consumer behavior modeling utilizes principles from Behavioral Economics and Choice Modeling techniques, leveraging the PyLogit and Biogeme libraries, to predict purchasing decisions and design effective interventions. Packaging optimization leverages 3D Computer Vision and Volumetric Analysis, utilizing Open3D and PCL libraries to minimize material waste while ensuring complete protection. When it comes to reverse logistics, we can tackle Vehicle Routing Problems with Time Windows and Capacity Constraints using OR-Tools, creating efficient systems for returning products. Waste classification can be handled by Convolutional Neural Networks, utilizing ResNet, MobileNet, and EfficientNet architectures for automated sorting, all powered by TensorFlow and PyTorch.

SDG 13 Climate Action

The role of AI methods and models in climate change and climate research has been established (Huntingford et al.m 2019; Kaack et al. 2022), particularly as regards machine learning. Tracking carbon footprints involves Time Series Analysis with ARIMA and Seasonal Decomposition models, using statsmodels and Prophet libraries (Rolnick et al., 2019). Emission predictions are made using

neural networks and Ensemble methods, such as Random Forest and Gradient Boosting, with TensorFlow and scikit-learn. Climate modeling benefits from Physics-Informed Neural Networks (PINNs) and Deep Learning techniques, employing frameworks like *DeepONet* and FEniCS. Weather forecasting is enhanced through Convolutional Neural Networks and Recurrent Neural Networks, utilizing MetNet and GraphCast architectures. For carbon accounting, we utilize blockchain technology with smart contracts to ensure transparent reporting, leveraging platforms such as Hyperledger Fabric and Ethereum. Lastly, satellite imagery analysis employs Semantic Segmentation models such as U-Net and DeepLab for monitoring deforestation, utilizing tools like Google Earth Engine and Planetary Computer. Carbon capture optimization leverages process optimization algorithms and integrates Computational Fluid Dynamics with tools like CasADi and OpenFOAM to significantly enhance CO2 capture efficiency in industrial settings. When it comes to climate scenario modeling, Ensemble Methods and Uncertainty Quantification techniques come into play, utilizing scikit-learn and PyMC3 for a solid assessment of climate risks. On the finance side, green finance analytics tap into Alternative Data sources and employ ESG scoring algorithms, leveraging Natural Language Processing with models like FinBERT and ESG-BERT to assess climate-related financial risks. For carbon offset verification, Remote Sensing and Machine Learning are utilized through platforms like Google Earth Engine and TensorFlow, allowing for automated monitoring of reforestation and conservation efforts. Risk assessment is addressed using Monte Carlo Simulation and Bayesian Networks, with a focus on climate vulnerability analysis, leveraging PvMC3. Optimization algorithms are also at work, employing Multi-objective Optimization and Genetic Algorithms for climate adaptation strategies, utilizing frameworks such as DEAP.

SDG 14: Life Below Water

Marine monitoring is now making great strides with the use of Convolutional Neural Networks, particularly the ResNet and EfficientNet architectures, to identify underwater species through TensorFlow and PyTorch (Siddiqui et al., 2018). Wäldchen & Mäder (2018) delve into the world of machine learning for identifying species through images, while González-Rivero et al. (2016) showcase how computer vision can automate the classification of benthic habitats, which is crucial for monitoring coral reefs. For detecting marine debris, Object Detection systems like *YOLOv5* and *Detectron2* come into play, while Instance Segmentation models are used to assess the health of coral reefs. On the acoustic side, monitoring employs Signal Processing techniques, utilizing Fourier Transforms and Spectrograms to detect marine life with the help of librosa and

SciPy libraries. Deep Learning methods also play a role, using Recurrent Neural Networks and Attention mechanisms for bioacoustic analysis via Keras and PyTorch. When it comes to modeling ocean currents, Physics-Informed Neural Networks (PINNs) are integrated with Computational Fluid Dynamics, utilizing frameworks such as OpenFOAM. Satellite oceanography benefits from Time Series Analysis and Spatiotemporal modeling, leveraging Xarray and Dask for processing large-scale data. Advanced Marine Conservation and Blue Economy Analytics. Optimizing marine protected areas involves Spatial Conservation Prioritization algorithms, utilizing the Marxan and PrioritizR packages alongside Machine Learning habitat suitability models. For fish stock assessments, Surplus Production Models and Virtual Population Analysis are enhanced with Bayesian inference using Stan and PyMC3, which helps quantify uncertainty in fisheries management. Underwater robotics are also evolving, integrating Simultaneous Localization and Mapping (SLAM) algorithms with Computer Vision through ORB-SLAM and OpenCV for autonomous marine data collection. Lastly, tracking marine pollution utilizes Lagrangian Particle Tracking models and Ocean Current data, employing the Parcels framework to predict debris trajectories and enhance cleanup efforts. Fishing fleet optimization utilizes route optimization algorithms and Dynamic Programming techniques, all powered by OR-Tools and NetworkX. When it comes to detecting illegal fishing, we rely on anomaly detection algorithms such as Isolation Forest and One-Class SVM, combined with Trajectory Analysis, utilizing the scikit-learn and *MovingPandas* libraries.

SDG 15: Life on Land

Tuia et al. (2022) explore the role of machine learning in wildlife conservation, while Joppa (2017) showcases how technology, particularly machine learning and computer vision, can be applied in conservation efforts. Forest monitoring utilizes satellite image analysis through Convolutional Neural Networks, employing architectures such as U-Net, ResNet, and DeepLab to detect deforestation via Google Earth Engine and Sentinel Hub APIs (Christin et al., 2019). Change Detection algorithms process data from Landsat and Sentinel-2 using GDAL and Rasterio libraries. For biodiversity assessment, we utilize computer vision with Object Detection models, such as YOLOv5 and Faster R-CNN, alongside Species Classification models that leverage iNaturalist datasets and TensorFlow (Dimson and Gillespie 2023). Acoustic monitoring is enhanced through Bioacoustic Analysis, utilizing Mel-Frequency Cepstral Coefficients (MFCC) and Convolutional Neural Networks, powered by Librosa and PyTorch Audio (Rajakumari 2023). Wildlife tracking benefits from analyzing GPS collar data through Movement Ecology modeling, utilizing the ctmm and movebank packages in R. Camera trap analysis employs Image Classification and Object

Detection, leveraging platforms such as Wildlife Insights and Microsoft AI for Earth. When it comes to Advanced Ecosystem Analytics and Conservation Technology, landscape connectivity modeling utilizes circuit theory and Least-Cost Path analysis, along with tools like Circuitscape and GRASS GIS, to pinpoint vital wildlife corridors and assess the impacts of fragmentation. Species distribution modeling employs MaxEnt, Random Forest, and Deep Neural Networks through the *SDMtoolbox* and Wallace R package, all aimed at planning for climate change adaptation (Brown et al. 2017). Forest carbon accounting utilizes LiDAR data processing combined with Point Cloud analysis, employing tools such as PDAL and CloudCompare to achieve accurate biomass estimates and verify REDD+ programs. For invasive species detection, we rely on hyperspectral imaging and Spectral Mixture Analysis, utilizing ENVI and the spectral Python library to develop early intervention strategies. When it comes to habitat modeling, we rely on Species Distribution Modeling, using Maximum Entropy (MaxEnt) and Random Forest algorithms through the ENMeval and biomod2 package (Kass et al., 2021; Zhao et al. 2021). Landscape connectivity analysis is addressed using Graph Theory and Network Analysis, employing the NetworkX and igraph libraries to identify potential corridors.

SDG 16: Peace, Justice, and Strong Institutions

Ashley & Susskind (2003) explore how artificial intelligence can enhance legal reasoning and improve justice systems. Of these, security and privacy are only two facets (Levi and Wall 2004). Privacy-preserving techniques employ Differential Privacy using Google's DP library and IBM's Diffprivlib (Holohan et al., 2019), while Homomorphic Encryption libraries, such as Microsoft SEAL and IBM FHE Toolkit, enable computation on encrypted data. AsFraud detection employs Anomaly Detection algorithms, such as Isolation Forest, Local Outlier Factor, and One-Class SVM, utilizing the scikit-learn and PyOD libraries (Kroll et al., 2017). Graph Analytics plays a crucial role in identifying suspicious transaction patterns through Network Analysis, leveraging NetworkX and Neo4j graph databases. For compliance monitoring, we utilize Natural Language Processing (NLP) with models such as BERT, RoBERTa, and Legal-BERT to analyze regulatory documents, thanks to Hugging Face Transformers. Text Mining involves Named Entity Recognition and Relation Extraction, utilizing frameworks like spaCy and Stanford CoreNLP (Manning et al. 2014). Lastly, risk assessment benefits from Predictive Modeling with Ensemble methods (such as Random Forest and XGBoost) and Neural Networks to predict corruption risks, utilizing platforms like H2O.ai and DataRobot. Causal Inference techniques apply Propensity Score Matching and Instrumental Variables, utilizing DoWhy and EconML libraries. Advanced Governance Analytics and Justice System

Intelligence is a fascinating field. Legal case prediction uses Transformer models that have been fine-tuned on legal texts, specifically leveraging LegalBERT datasets to forecast outcomes and optimize resource allocation (Kim et al., 2024). When it comes to contract analysis, we tap into Information Extraction and Semantic Similarity algorithms through tools like spaCy and Sentence-BERT, which help automate compliance checks and assess risks. For detecting judicial bias, we employ Causal Inference methods and analyze Randomized Controlled Trials using DoWhy and CausalML to uncover systematic disparities in sentencing patterns. Transparency scoring is achieved through Document Similarity and Topic Modeling, utilizing Gensim and scikit-learn to evaluate the quality of government information disclosure. In document analysis, we utilize Optical Character Recognition (OCR) tools, including Tesseract and Amazon Textract (Hegghammer 2022). Document Classification is handled by Support Vector Machines and Deep Learning techniques, using scikit-learn and TensorFlow. Additionally, we integrate blockchain technology with Smart Contracts to ensure transparent governance via Ethereum and Hyperledger platforms. Apache Hadoop, Apache Spark, and Delta Lake for scalable data storage and processing (Salloum et al. 2016). Cloud platforms such as AWS, Google Cloud Platform, and Microsoft Azure offer managed services, including Amazon SageMaker, Google AI Platform, and Azure Machine Learning, to support enterprise-scale AI deployment.

SDG 17: Partnerships for the Goals

Vladova et al. (2021) examine AI's role in enabling cross-sector partnerships for SDGs, while Mayer-Schönberger & Ramge (2018) analyze data-driven partnerships in the age of AI. Partnership matching utilizes Collaborative Filtering algorithms and Content-Based Filtering, leveraging Apache Mahout and Surprise libraries, for assessing organizational compatibility (Sachs et al., 2019). Graph Neural Networks model multi-stakeholder relationships using PyTorch Geometric and DGL (Deep Graph Library) frameworks (Wang et al., 2019). Knowledge-sharing platforms utilize Semantic Web technologies, including RDF and OWL ontologies, through Apache Jena and Protégé tools (El Asikri et al. 2018). Information Retrieval systems employ search with Machine Learning plugins and Vector Search capabilities using dense passage retrieval (DPR) models. Impact measurement leverages Multi-Criteria Decision Analysis (MCDA) and the Analytic Hierarchy Process (AHP) using SuperDecisions and the Python AHP library. Causal Impact Assessment employs Bayesian Structural Time Series and Difference-in-Differences methods, utilizing the CausalImpact and DoWhy frameworks. Collaboration optimization uses Game Theory algorithms and Coalition Formation techniques implemented through Nashpy and CoalitionPy libraries. Communication analysis employs Social Network Analysis and Community Detection algorithms using NetworkX and python-louvain for partnership effectiveness assessment. Data integration platforms utilize Federated Learning frameworks, such as TensorFlow Federated and PySyft, for privacy-preserving collaborative machine learning. API orchestration utilizes Apache Airflow and Kubernetes for managing scalable partnership workflows.

3. Technical Implementation for Enterprises

Successful AI implementation for achieving the SDGs requires robust data lake architectures that utilize Apache Hadoop, Apache Spark, and Delta Lake for scalable data storage and processing (Armbrust et al., 2020). Cloud platforms like AWS, Google Cloud Platform, and Microsoft Azure provide managed services, including Amazon SageMaker, Google AI Platform, and Azure Machine Learning, for enterprise-scale AI deployment. Real-time data processing utilizes Apache Kafka for stream processing (Vyas et al. 2021), while Apache Storm or Apache Flink are employed for complex event processing. Data governance frameworks utilize Apache Atlas, and Informatica for metadata management and compliance tracking (Rodrigues et al. 2022). MLOps pipelines employ Kubeflow, MLflow, and DVC (Data Version Control) for reproducible model development and deployment. Containerization uses Docker and Kubernetes for scalable model serving, while model monitoring utilizes Seldon, BentoML, and Evidently AI for performance tracking and drift detection. AutoML platforms, such as H2O.ai, DataRobot, and Google AutoML, accelerate model development for organizations with limited AI expertise. Feature stores, such as those using Feast and Tecton, enable consistent feature engineering across different models and applications. Besides these, Edge AI deployment utilizes NVIDIA Jetson, Intel OpenVINO, and Google Coral hardware for real-time processing at remote locations. IoT platforms, such as AWS IoT, Azure IoT Hub, and Google Cloud IoT, offer device management and data ingestion capabilities. Model optimization employs TensorFlow Lite, ONNX Runtime (Shridhar et al., 2020) and Apache TVM for efficient inference on resource-constrained devices (Alaejos et al., 2024). Federated learning frameworks enable collaborative model training while preserving data privacy. Further, KPI tracking systems integrate business intelligence tools like Tableau, Power BI, and Looker with AI model outputs for comprehensive SDG performance dashboards...

4. Industry-Specific Implementation Strategies

Manufacturing companies leverage Digital Twin technologies using ANSYS Twin Builder, Siemens MindSphere, and GE Digital platforms for virtual production

optimization. Predictive Quality systems employ Statistical Process Control (SPC) integrated with Machine Learning using Minitab and JMP software. Energy efficiency in data centers employs Google DeepMind techniques for cooling optimization and Microsoft's *Project Natick* approaches for sustainable infrastructure design. Supply chain optimization utilizes Advanced Planning Systems (APS) like SAP APO and Oracle ASCP enhanced with AI algorithms for demand forecasting and inventory optimization. Sustainability tracking employs Product Lifecycle Management (PLM) systems integrated with Carbon Accounting software. Tech companies leverage AI for Social Good initiatives using open-source frameworks like Microsoft AI for Good and Google AI for Social Good. Digital inclusion programs utilize Accessible AI technologies and Universal Design principles for inclusive product development. Financial institutions implement Risk Management systems using Monte Carlo Simulation and Value at Risk (VaR) models enhanced with Machine Learning for climate risk assessment. ESG scoring utilizes Alternative Data analysis with Natural Language Processing for comprehensive sustainability evaluation. Sustainable finance platforms utilize Green Bond verification through blockchain and Smart Contracts, while impact investing employs AI-powered due diligence for SDGaligned investment selection.

5. Challenges and Implementation Considerations

a) Technical Challenges

Data quality issues necessitate comprehensive data cleansing pipelines utilizing the Great Expectations and Deequ frameworks for automated data validation. Model interpretability challenges necessitate the implementation of Explainable AI using SHAP, *LIME*, and *Anchors* libraries to ensure stakeholder transparency. Scalability concerns necessitate the use of distributed computing architectures, such as those employing Ray, Dask, and Apache Spark, for handling large-scale AI workloads. Model drift management utilizes continuous monitoring systems, leveraging Evidently AI and *Alibi Detect*, to detect performance degradation.

b) Organizational and Cultural Challenges

Skills gaps require comprehensive training programs that utilize online learning platforms, such as *edX for Business*, and *Udacity* for Enterprise. Change management utilizes *Agile* methodologies and Design Thinking approaches to facilitate successful AI adoption. Stakeholder alignment necessitates crossfunctional collaboration platforms and project management tools, such as *Monday.com*, *Asana*, and Microsoft *Project*, for coordinated SDG implementation efforts.

c) Regulatory and Compliance Considerations

AI governance frameworks must align with emerging regulations like EU AI Act, GDPR, and industry-specific compliance requirements. Audit trails utilize blockchain-based systems for maintaining immutable records and facilitating regulatory reporting.

d) Ethical considerations

Ethical AI implementation requires bias testing protocols using Fairness Indicators and AI Fairness 360 toolkits, while privacy protection employs Federated Learning and Differential Privacy techniques. Also (where necessary), AI governance frameworks are expected to implement IEEE Standards (IEEE 2857, IEEE 2858) and ISO/IEC 23053 for managing algorithmic bias. Explainable AI platforms, such as *IBM Watson OpenScale*, *DataRobot Model* Transparency, and H2O.ai Interpretability, ensure transparent decision-making processes.

6. Future Trends and Emerging Technologies

Large Language Models (LLMs) such as GPT-4, BERT, and T5, enable sophisticated natural language understanding for sustainability reporting and stakeholder communication. Multimodal AI systems, which combine vision, language, and sensor data, provide comprehensive environmental monitoring capabilities. Digital Twins of entire ecosystems enable comprehensive modeling of environmental impact and scenario planning. Autonomous systems for environmental monitoring and resource management reduce the need for human intervention while improving efficiency. Quantum Machine Learning using *Qiskit*, *Cirq*, and *PennyLane* frameworks offers potential breakthroughs in optimization problems related to resource allocation and climate modeling. Aside of these, brain-computer interfaces and Augmented Reality technologies enhance human-AI collaboration for complex sustainability challenges that require both analytical and creative problem-solving approaches.

7. Conclusion

The integration of AI technologies with Sustainable Development Goals represents a transformative opportunity for private sector enterprises to create both economic value and positive societal impact. From Random Forest algorithms optimizing supply chains for SDG 12 (Responsible Consumption) to Convolutional Neural Networks monitoring biodiversity for SDG 15 (Life on Land), the technical possibilities are vast and scientifically validated. The specific AI methods, algorithms, and software solutions outlined in this document provide practical pathways for companies to implement measurable sustainability initiatives. TensorFlow and PyTorch frameworks enable deep learning

applications across multiple SDGs, while scikit-learn and H2O.ai platforms offer accessible machine learning capabilities for organizations at different stages of AI maturity. The scientific literature demonstrates consistent evidence that AI applications can accelerate progress toward SDG achievement while generating competitive business advantages. As we approach the 2030 SDG deadline, companies that successfully leverage AI technologies for sustainability will not only contribute to global development objectives but also position themselves as leaders in the emerging sustainable economy. The convergence of AI and sustainability represents more than technological advancement—it embodies a fundamental shift toward purpose-driven business practices that create value for all stakeholders. The technical frameworks, implementation strategies, and scientific evidence presented in this document provide the foundation for transforming sustainability aspirations into measurable impact through the strategic application of Artificial Intelligence. The time for action is now, and the tools are available to make SDG achievement a reality through intelligent, datadriven approaches to global challenges.

References

Adebowale, A. S., & Martins, E. P. (2013). Cox-proportional hazard model of gender differentials in determinants of early marriage: evidence from 2010 Malawi demographic health and survey. *Gender and Behaviour*, *11*(2), 5421-5438. https://hdl.handle.net/10520/EJC144860

Abid, A., Barrak, A., Bakayoko, I., Jaafar, F., & Rancourt, D. (2025). Dependable Software-Optimized Energy Management for IoT-Enabled Smart Buildings. In 2025 IEEE/ACM 7th International Workshop on Software Engineering Research & Practices for the IoT (SERP4IoT) (pp. 60-67). IEEE Computer Society. 10.1109/SERP4IoT66600.2025.00014

Ahmad, T., Chen, H., Guo, Y., & Wang, J. (2018). A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review. *Energy and Buildings*, *165*, 301–320. https://doi.org/10.1016/j.enbuild.2018.01.017

Ahmed, T., & Hasan, M. (2025). Weather-Driven Agricultural Decision-Making Using Digital Twins Under Imperfect Conditions. *arXiv preprint arXiv*:2508.08326.

Ahmed, U., Mumtaz, R., Anwar, H., Shah, A. A., Irfan, R., & García-Nieto, J. (2019). Efficient water quality prediction using supervised machine learning. *Water*, *11*(11), 2210. https://doi.org/10.3390/w11112210

Alaejos, G., Castelló, A., Alonso-Jordá, P., Igual, F. D., Martínez, H., & Quintana-Ortí, E. S. (2024). Algorithm 1039: Automatic generators for a family of matrix multiplication routines with apache tvm. *ACM Transactions on Mathematical Software*, *50*(1), 1-34. https://doi.org/10.1145/3638532

Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., ... & Yellick, J. (2018, April). Hyperledger fabric: a distributed operating system for permissioned blockchains. In *Proceedings of the thirteenth EuroSys conference* (pp. 1-15). https://doi.org/10.1145/3190508.3190538

Armbrust, M., Das, T., Sun, L., Yavuz, B., Zhu, S., Murthy, M., ... & Zaharia, M. (2020). Delta lake: high-performance ACID table storage over cloud object stores. *Proceedings of the VLDB Endowment*, *13*(12), 3411-3424. https://doi.org/10.14778/3415478.3415560

Ashley, K. D., & Susskind, R. (2003). *The future of law and innovation*. Oxford University Press.

ISBN: 978-0198764960

Bapty, T., Whittington, S., Walker, J., Hite, J., Swenson, B., Owens, K., ... & Owens, R. (2022). Design oracle for AI-based CPS design. In *2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION)* (pp. 13-18). IEEE. DOI: 10.1109/DESTION56136.2022.0000

Barocas, S., Hardt, M., & Narayanan, A. (2019). *Fairness and machine learning*. https://fairmlbook.org/

Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. *Sustainable Cities and Society*, *31*, 183–212. https://doi.org/10.1016/j.scs.2017.02.016

Blasch, E., Pham, T., Chong, C. Y., Koch, W., Leung, H., Braines, D., & Abdelzaher, T. (2021). Machine learning/artificial intelligence for sensor data fusion—opportunities and challenges. *IEEE aerospace and electronic systems magazine*, *36*(7), 80-93. DOI: 10.1109/MAES.2020.3049030

Blumenstock, J., Cadamuro, G., & On, R. (2015). Predicting poverty and wealth from mobile phone metadata. *Science*, *350*(6264), 1073–1076. https://doi.org/10.1126/science.aac4420

Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). *Man is to computer programmer as woman is to homemaker? Debiasing word embeddings.* In *Advances in Neural Information Processing Systems*, 29, 4349–4357. https://arxiv.org/abs/1607.06520

Borg, A., & Boldt, M. (2020). Using VADER sentiment and SVM for predicting customer response sentiment. *Expert Systems with Applications*, *162*, 113746.

Botov, D., Klenin, J., Melnikov, A., Dmitrin, Y., Nikolaev, I., & Vinel, M. (2019). Mining labor market requirements using distributional semantic models and deep learning. In *International Conference on Business Information Systems* (pp. 177-190). Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-030-20482-2_15

Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. *PeerJ*, *5*, e4095.

https://peerj.com/articles/4095/

Brynjolfsson, E., Mitchell, T., & Rock, D. (2018). What can machines learn, and what does this mean for occupations and the economy? *AEA Papers and Proceedings*, *108*, 43–47. https://www.aeaweb.org/articles?id=10.1257/pandp.20181019

Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. *Science*, *356*(6334), 183–186. https://doi.org/10.1126/science.aal4230

Cardoso, M. J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., ... & Feng, A. (2022). Monai: An open-source framework for deep learning in healthcare. *arXiv* preprint *arXiv*:2211.02701.

Carnevale, A. P., Jayasundera, T., & Repnikov, D. (2014). *Understanding online job ads data*. Georgetown University Center on Education and the Workforce, 1–48. https://cew.georgetown.edu/wp-content/uploads/2014/11/OCLM.Tech_.Web_.pdf

Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y. (2014). OpenFOAM for computational fluid dynamics. *Notices of the AMS*, 61(4), 354-363. DOI: http://dx.doi.org/10.1090/noti1095

Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. *IEEE Access*, 8, 75,264–75,278. https://doi.org/10.1109/ACCESS.2020.2992349

Chouldechova, A., & Roth, A. (2020). A snapshot of the frontiers of fairness in machine learning. *Communications of the ACM*, 63(5), 82–89. https://doi.org/10.1145/3376898

Christin, S., Hervet, É., & Lecomte, N. (2019). Applications for deep learning in ecology. *Methods in Ecology and Evolution*, 10(10), 1,632–1,644. https://doi.org/10.1111/2041-210X.13256

Dallasega, P., Rauch, E., & Linder, C. (2018). Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review. *Computers in Industry*, 99, 205–225. https://doi.org/10.1016/j.compind.2018.03.022

- Dimson, M., & Gillespie, T. W. (2023). Who, where, when: Observer behavior influences spatial and temporal patterns of iNaturalist participation. *Applied Geography*, *153*, 102916. https://doi.org/10.1016/j.apgeog.2023.102916
- do Vale, M. A., Holanda, M., Ralha, C. G., Araujo, A., & Da Silva, D. (2024). Graduate Programs in Computing at the University of Brasilia: Comparison of Academic Papers and Collaborations by Gender. In *2024 IEEE Frontiers in Education Conference (FIE)* (pp. 1-6). DOI: 10.1109/FIE61694.2024.10892921
- El Asikri, M., Krit, S., & Chaib, H. (2018, June). A brief survey of Creating Semantic Web content with Protégé. In *Proceedings of the Fourth International Conference on Engineering & MIS 2018* (pp. 1-8).

DOI: https://doi.org/10.1145/3234698.3234704

- Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. *Nature*, 542(7639), 115–118. https://doi.org/10.1038/nature21056
- Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? *Technological Forecasting and Social Change*, *114*, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019
- Friedman, S., Schmer-Galunder, S., Chen, A., & Rye, J. (2019). Relating word embedding gender biases to gender gaps: A cross-cultural analysis. In *Proceedings of the first workshop on gender bias in natural language processing* (pp. 18-24). DOI:10.18653/v1/W19-3803
- Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. *Journal of Cleaner Production*, 114, 11–32.

https://doi.org/10.1016/j.jclepro.2015.09.007

- González-Rivero, M., Beijbom, O., Rodriguez-Ramirez, A., Holtrop, T., González-Marrero, Y., Ganase, A., ... & Hoegh-Guldberg, O. (2016). Scaling up ecological measurements of coral reefs using semi-automated field image collection and analysis. *Remote Sensing*, 8(1), 30. https://doi.org/10.3390/rs8010030
- Gude, V. G. (2017). Desalination and water reuse to address global water scarcity. *Reviews in Environmental Science and Bio/Technology*, *16*(4), 591–609. https://doi.org/10.1007/s11157-017-9439-4
- Hegghammer, T. (2022). OCR with Tesseract, Amazon Textract, and Google Document AI: a benchmarking experiment. *Journal of Computational Social Science*, *5*(1), 861-882. https://doi.org/10.1007/s42001-021-00149-1

Holmes, W., Bialik, M., & Fadel, C. (2019). *Artificial intelligence in education: Promises and implications for teaching and learning*. Center for Curriculum Redesign. ISBN: 978-1794293700

Heleben N. Drechin C. Mac Aench

Holohan, N., Braghin, S., Mac Aonghusa, P., & Levacher, K. (2019). Diffprivlib: the IBM differential privacy library. *arXiv preprint arXiv:1907.02444*.

Huntingford, C., Jeffers, E. S., Bonsall, M. B., Christensen, H. M., Lees, T., & Yang, H. (2019). Machine learning and artificial intelligence to aid climate change research and preparedness. *Environmental Research Letters*, *14*(12), 124007. https://doi.org/10.1088/1748-9326/ab5291

Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. *Science*, *353*(6301), 790–794. https://doi.org/10.1126/science.aaf7894 (Stanford University)

Joppa, L. N. (2017). Technology for nature conservation: An industry perspective. *AMBIO*, 46(4), 493–501. https://doi.org/10.1007/s13280-015-0702-4

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. *Nature Climate Change*, *12*(6), 518–527. https://doi.org/10.1038/s41558-022-01377-7

Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. *Computers and Electronics in Agriculture*, *147*, 70–90. https://doi.org/10.1016/j.compag.2018.02.016

Kannan, N., Rayan, T. M., Renuka, N., Suruthi, P., Nandhakumar, M., & Santhru, V. (2024). Accurate detection of underwater objects using EfficientNet Algorithm. In 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-5). IEEE.

DOI: 10.1109/ACCAI61061.2024.1060223

Kass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla-Buitrago, G. E., Boria, R. A., ... & Anderson, R. P. (2021). ENMeval 2.0: Redesigned for customizable and reproducible modeling of species' niches and distributions. *Methods in Ecology and Evolution*, *12*(9), 1602-1608.

https://doi.org/10.1111/2041-210X.13628

Kim, M. Y., Rabelo, J., Babiker, H. K. B., Rahman, M. A., & Goebel, R. (2024). Legal information retrieval and entailment using transformer-based approaches. *The Review of Socionetwork Strategies*, *18*(1), 101-121. https://doi.org/10.1007/s12626-023-00153-z

Kristoffersen, E., Blomsma, F., Mikalef, P., & Li, J. (2020). The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies. *Journal of Business Research*, 120, 241–261. https://doi.org/10.1016/j.jbusres.2020.07.044

Kroll, J. A., Huey, J., Barocas, S., Felten, E. W., Reidenberg, J. R., Robinson, D. G., & Yu, H. (2017). Accountable algorithms. *University of Pennsylvania Law Review*, 165, 633. Draft / working version available:

https://oar.princeton.edu/bitstream/88435/pr1r24q/1/AccountableAlgorithms.pdf

Lambrecht, A., & Tucker, C. (2019). Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads. *Management Science*, 65(7), 2966–2981.

https://doi.org/10.1287/mnsc.2018.3093

Lankut, E., Warner-Søderholm, G., Alon, I., & Minelgaité, I. (2024). Big Data in Leadership Studies: Automated Machine Learning Model to Predict Preferred Leader Behavior Across Cultures. *Businesses*, 4(4), 696-722.

https://doi.org/10.3390/businesses4040039

Lee, D. C., Jeong, M. S., Jeong, S. I., Jung, S. Y., & Park, K. R. (2024). Estimation of fractal dimension and segmentation of body regions for deep learning-based gender recognition. *Fractal and Fractional*, 8(10), 551.

https://doi.org/10.3390/fractalfract8100551

Levi, M., & Wall, D. S. (2004). Technologies, security, and privacy in the post-9/11 European information society. *Journal of Law and Society*, *31*(2), 194–220. https://doi.org/10.1111/j.1467-6478.2004.00288.x

Li, Z., Wang, R., Zhang, W., Hu, F., & Meng, L. (2019). Multiscale features supported DeepLabV3+ optimization scheme for accurate water semantic segmentation. *Ieee Access*, 7, 155787-155804.

DOI: 10.1109/ACCESS.2019.2949635

Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. *Sensors*, 18(8), 2674. https://doi.org/10.3390/s18082674

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. *Journal of Industrial Information Integration*, 6, 1–10. https://doi.org/10.1016/j.jii.2017.04.005

Hassen, O. A. (2017). Big data based machine learning and predictive analytics using apache mahout and storm. *International Refereed Journal of Reviews and Research*, 5. https://irjrr.com/irjrr/September2017/5.pdf

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., & McClosky, D. (2014, June). The Stanford CoreNLP natural language processing toolkit. In *Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations* (pp. 55-60).

https://aclanthology.org/P14-5010.pdf

Mayer-Schönberger, V., & Ramge, T. (2018). *Reinventing capitalism in the age of big data*. Basic Books.

ISBN: 978-0465093687

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. *ACM Computing Surveys*, *54*(6), 1–35. https://doi.org/10.1145/3457607

Midigudla, R. S., Dichpally, T., Vallabhaneni, U., Wutla, Y., Sundaram, D. M., & Jayachandran, S. (2025). A comparative analysis of deep learning models for waste segregation: YOLOv8, EfficientDet, and Detectron 2. *Multimedia Tools and Applications*, 1-24.

https://doi.org/10.1007/s11042-025-20647-y

Miller, J. J. (2013, March). Graph database applications and concepts with Neo4j. In *Proceedings of the southern association for information systems conference, Atlanta, GA, USA* (Vol. 2324, No. 36, pp. 141-147). http://aisel.aisnet.org/sais2013

Moradi, B. (2022). A non-linear mpc local planner for tractor-trailer vehicles in forward and backward maneuvering. The University of Regina (Canada). https://arxiv.org/pdf/2212.11427

Paler, A., & Basmadjian, R. (2022). Energy cost of quantum circuit optimisation: Predicting that optimising Shor's algorithm circuit uses 1 GWh. *ACM Transactions on Quantum Computing*, 3(1), 1-14.

https://dl.acm.org/doi/pdf/10.1145/3490172

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. *the Journal of machine Learning research*, *12*, 2825-2830.

https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?source=post_page

Pliuhin, V., Tsegelnyk, Y., Slovikovskyi, O., Duniev, O., & Yehorov, A. (2022). The speed stabilization system of electromechanical energy converters in ANSYS Twin Builder. *Lighting Engineering & Power Engineering*, 61(2), 55-64. https://doi.org/10.33042/2079-424X.2022.61.2.03

Priyadarshini, A., & Gago-Masague, S. (2024). Fair Evaluator: An Adversarial Debiasing-based Deep Learning Framework in Student Admissions. In *2024 IEEE 6th International Conference on Cognitive Machine Intelligence (CogMI)* (pp. 152-161). IEEE. DOI: 10.1109/CogMI62246.2024.00029

Rajakumari, R. (2023, November). Comprehensive speech emotion recognition system employing multi-layer perceptron (mlp) classifier and librosa feature extraction. In 2023 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 1204-1211). IEEE.

DOI: 10.1109/ICSCNA58489.2023.10370394

Rakhmonov, I., Obidov, K., Nematov, L., & Bafoyev, O. (2025, November). Analysis of existing software for energy service system monitoring. In *AIP Conference Proceedings* (Vol. 3331, No. 1, p. 030036). AIP Publishing LLC. https://doi.org/10.1063/5.0305710

Revanna, J. K. C., & Al-Nakash, N. Y. B. (2023). Metaheuristic link prediction (MLP) using AI based ACO-GA optimization model for solving vehicle routing problem. *International Journal of Information Technology*, *15*(7), 3425-3439. https://doi.org/10.1007/s41870-023-01378-5

Rodrigues, D., Almeida, M., Guimarães, P., & Santos, M. Y. (2022). DataHub and Apache Atlas: A Comparative Analysis of Data Catalog Tools. https://aisel.aisnet.org/capsi2022/41

Sperti, M. (2023). *Non-linear Model Predictive Control for GPS-free Autonomous Navigation in Vineyards* (Doctoral dissertation, Politecnico di Torino). https://webthesis.biblio.polito.it/29477/

Mosavi, A., Salimi, M., Ardabili, S. F., Rabczuk, T., Shamshirband, S., & Varkonyi-Koczy, A. R. (2019). State of the art of machine learning models in energy systems, a systematic review. *Energies*, 12(7), 1301.

https://doi.org/10.3390/en12071301

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021). Stable-baselines3: Reliable reinforcement learning implementations. *Journal of machine learning research*, 22(268), 1-8.

https://www.jmlr.org/papers/v22/20-1364.html

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Dean, J. (2018). Scalable and accurate deep learning with electronic health records. *NPJ Digital Medicine*, *I*(1), 18.

https://doi.org/10.1038/s41746-018-0029-1

- Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., ... & Bengio, Y. (2019). Tackling climate change with machine learning. *arXiv preprint*. https://arxiv.org/abs/1906.05433
- Saleiro, P., Kuester, B., Hinkson, L., London, J., Stevens, A., Anisfeld, A., ... & Ghani, R. (2018). Aequitas: A bias and fairness audit toolkit. *arXiv preprint arXiv:1811.05577*.
- Salloum, S., Dautov, R., Chen, X., Peng, P. X., & Huang, J. Z. (2016). Big data analytics on Apache Spark. *International Journal of Data Science and Analytics*, *1*(3), 145-164. DOI 10.1007/s41060-016-0027-9
- Sachs, J. D., Schmidt-Traub, G., Mazzucato, M., Messner, D., Nakicenovic, N., & Rockström, J. (2019). Six transformations to achieve the sustainable development goals. *Nature Sustainability*, *2*(9), 805–814. https://doi.org/10.1038/s41893-019-0352-9
- Shah, S. R., Qadri, S., Bibi, H., Shah, S. M. W., Sharif, M. I., & Marinello, F. (2023). Comparing inception V3, VGG 16, VGG 19, CNN, and ResNet 50: a case study on early detection of a rice disease. *Agronomy*, *13*(6), 1633. https://doi.org/10.3390/agronomy13061633
- Shridhar, A., Tomson, P., & Innes, M. (2020, August). Interoperating deep learning models with onnx. jl. In *Proceedings of the JuliaCon Conferences* (Vol. 1, No. 1, p. 59). https://proceedings.juliacon.org/papers/10.21105/jcon.00059.pdf
- Siddiqui, S. A., Salman, A., Malik, M. I., Shafait, F., Mian, A., Shortis, M. R., & Harvey, E. S. (2018). Automatic fish species classification in underwater videos. *ICES Journal of Marine Science*, 75(1), 374–389. https://doi.org/10.1093/icesims/fsx109
- Silva, B. N., Khan, M., & Han, K. (2018). Towards sustainable smart cities: A review. *Sustainable Cities and Society*, *38*, 697–713. https://doi.org/10.1016/j.scs.2018.01.053
- Sivaramakrishnan, S., Fernandez, T. F., Babukarthik, R. G., & Premalatha, S. (2022). Forecasting time series data using arima and facebook prophet models. In *Big data management in Sensing* (pp. 47-59). River Publishers. Doi: 10.1201/9781003337355-4
- Soto, V., Frias-Martinez, V., Virseda, J., & Frias-Martinez, E. (2011). Prediction of socioeconomic levels using cell phone records. In *UMAP 2011* (pp. 377–388). https://doi.org/10.1007/978-3-642-22362-4_33

- Tham, M. L., Ng, X. H., Leong, R. C., & Owada, Y. (2023, February). Flood Forecasting Using Edge AI and LoRa Mesh Network. In *International Conference on Signal Processing and Information Communications* (pp. 73-83). Cham: Springer Nature Switzerland. doi.org/10.1007/978-3-031-43781-6_7
- Tseng, M. L., Tan, R. R., Chiu, A. S., Chien, C. F., & Kuo, T. C. (2018). Circular economy meets industry 4.0. *Resources, Conservation & Recycling, 131*, 146–147. https://doi.org/10.1016/j.resconrec.2017.12.014
- Tuia, D., Kellenberger, B., Beery, S., Costelloe, B. R., Zuffi, S., Risse, B., ... & Berger-Wolf, T. (2022). Perspectives in machine learning for wildlife conservation. *Nature Communications*, 13(1), 792.

https://doi.org/10.1038/s41467-022-28352-4

- Vladova, G., Thurner, T., & Gollnhofer, J. F. (2021). The role of AI in enabling cross-sector partnerships for SDGs. *AI & Society*, *36*(4), 1083–1095. https://doi.org/10.1007/s00146-020-01033-8
- Vyas, S., Tyagi, R. K., Jain, C., & Sahu, S. (2021). Literature review: A comparative study of real time streaming technologies and apache kafka. In *2021 Fourth International Conference on Computational Intelligence and Communication Technologies (CCICT)* (pp. 146-153).. DOI: 10.1109/CCICT53244.2021.00038
- Wäldchen, J., & Mäder, P. (2018). Machine learning for image-based species identification. *Methods in Ecology and Evolution*, *9*(11), 2216–2225. https://doi.org/10.1111/2041-210X.13075
- Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., ... & Zhang, Z. (2019). Deep graph library: A graph-centric, highly-performant package for graph neural networks. *arXiv preprint arXiv:1909.01315*.
- Wang, Y., Chen, Q., Hong, T., & Kang, C. (2018). Review of smart meter data analytics. *IEEE Transactions on Smart Grid*, 10(3), 3125–3148. https://doi.org/10.1109/TSG.2018.2820161
- Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming—A review. *Agricultural Systems*, *153*, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023
- Xiang, J., He, Z., Lei, G., & Chen, C. (2025). Life Cycle Assessment of Iridium Production: Environmental Impact Analysis Based on Brightway2. *Journal of Geo-Energy and Environment*, 1(2), 70-75.

http://dx.doi.org/10.62762/JGEE.2025.365181

Xu, Y., Zheng, S., Zhu, Q., Wong, K. C., Wang, X., & Lin, Q. (2024). A complementary fused method using GRU and XGBoost models for long-term solar energy hourly forecasting. *Expert Systems with Applications*, 254, 124286.

https://doi.org/10.1016/j.eswa.2024.124286

Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of AI in building smarter cities. *Energies*, *13*(6), 1473. https://doi.org/10.3390/en13061473

Yu, K. H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. *Nature Biomedical Engineering*, 2(10), 719–731. https://doi.org/10.1038/s41551-018-0305-z

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of AI in higher education. *International Journal of Educational Technology in Higher Education*, *16*(1), 39. https://doi.org/10.1186/s41239-019-0171-0

Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. (2020). Decision support systems for agriculture 4.0. *Computers and Electronics in Agriculture*, 170, 105256. https://doi.org/10.1016/j.compag.2020.105256

Zhang, L., Zhu, S., Su, S., Chen, X., Yang, Y., & Zhou, B. (2024). Wind power prediction method based on cloud computing and data privacy protection. *Journal of Cloud Computing*, *13*(1), 137.

https://doi.org/10.1186/s13677-024-00679-9

Zhao, G., Cui, X., Sun, J., Li, T., Wang, Q. I., Ye, X., & Fan, B. (2021). Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. *Ecological Indicators*, *132*, 108256. https://doi.org/10.1016/j.ecolind.2021.108256

Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: A review. *Engineering*, *3*(5), 616–630. https://doi.org/10.1016/J.ENG.2017.05.015