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Abstract 

The United Nations Sustainable Development Goals (SDGs) represent a 

universal call to action to end poverty, protect the planet, and ensure prosperity 

for all by 2030. For private sector enterprises, these goals present both challenges 

and opportunities. Artificial Intelligence (AI) has emerged as a transformative 

technology that can significantly accelerate progress toward achieving these 

goals while creating business value. This guide refers to more than 100 different 

digital platforms and solutions (methods, techniques, algorithms, models, and 

software) that can help entities of the public or private sectors and interested 

individuals (researchers, professionals, students) expand their use of AI in order 

to solve problems and enhance solutions related to anyone of the 17 SDGs.  
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1. Introduction 
The integration of AI technologies in corporate sustainability initiatives 

represents a paradigm shift in how businesses approach the SDGs. From Random 

Forest algorithms that optimize resource consumption to Convolutional Neural 

Networks (CNNs) that enhance supply chain transparency, AI offers enterprises 

unprecedented capabilities to measure, monitor, and achieve sustainable 

development objectives. This comprehensive analysis examines specific AI 

applications for each SDG, providing technical specifications and scientific 



evidence for corporate leaders seeking to align their business strategies with 

global sustainability targets. 

 

 

2. A Technical Guide: AI Methods and Models per SDG 
 

SDG 1: No Poverty 

Private institutions may employ SVM (Support Vector Machines) and Random 

Forests in assessing creditworthiness through non-traditional credit scoring 

models (Blumenstock et al., 2015). Apache Spark MLlib can be used to process 

large financial transaction and behavior pattern datasets, while it is also possible 

to build poverty prediction models using TensorFlow and scikit-learn, 

incorporating demographic and economic features. Tools such as spaCy and 

BERT (Bidirectional Encoder Representations from Transformers) have been 

utilized to analyze sentiment and communication patterns on social media, 

enabling the identification of at-risk communities. Meanwhile, K-means 

clustering and DBSCAN algorithms cluster populations based on their 

socioeconomic features, while XGBoost constructs precise poverty classifiers. 

These platforms utilize LSTM (Long Short-Term Memory) networks for time-

series modeling of economic activities, or GNNs (Graph Neural Networks) to 

model social networks and identify community-level economic connections. 

Software solutions, including H2O.ai and DataRobot, enable enterprise-level 

models to predict poverty. Further, firms utilizing Deep Reinforcement Learning 

on OpenAI Gym environments can train microfinance deployment policies based 

on past repayment behavior and social parameters. The blockchain-based identity 

verification by Hyperledger Indy may document tamper-proof financial IDs for 

the unbanked, while smart contracts can automate conditional cash transfers 

linked to predefined social outcomes. Computer vision applications with OpenCV 

and MediaPipe can be used to examine satellite images of living conditions and 

infrastructure quality for up-to-date data needed for targeted relief. Beyond 

OpenCV, YOLO (You Only Look Once) can be used for monitoring and impact 

measurement to evaluate infrastructure (Jean et al., 2016) and project 

development by using satellite imagery. Sentiment analysis leverages 

Transformer models, RoBERTa and DistilBERT, to understand community 

sentiment, and Apache Kafka in order to stream real-time data for ongoing impact 

monitoring. Characteristically, research by Soto et al. (2011) demonstrates the 

potential of machine learning methods for enhancing poverty mapping through 

mobile phone data analysis. 

 



SDG 2: Zero Hunger 

Liakos et al. (2018) present an extensive review on the use of machine learning in 

agricultural systems, and Wolfert et al. (2017) study big data applications in 

smart farming systems to achieve improved food security. Indeed, there is a wide 

range of AI technologies applied to agricultural production. First of all, CNN-

based methods are also employed for crop disease detection in precision 

agriculture, utilizing ResNet and DenseNet architectures, along with PyTorch and 

TensorFlow (Kamilaris & Prenafeta-Boldú, 2018). Random Forest and Gradient 

Boosting model can be combined to derive classifications and regression analyses 

of multi-spectral meteorological and agricultural imagery from Google Earth 

Engine, using QGIS with Python to yield predictions. Other technologies may 

enter in this domain as well: soil moisture, temperature and nutrient levels are 

monitored using Internet of Things (IoT) sensors with time series forecasting 

based on ARIMA models in tandem with the Facebook forecasting tool Prophet 

(Sivaramakrishnan et al., 2022). Edge Computing solutions, such as NVIDIA 

Jetson, can process ag-tech data in near real-time (Ahmed and Hasan 2025) with 

the use of the OpenVINO optimization toolkit. Hyperledger Fabric is utilized for 

blockchain applications (Androulaki et al., 2018) in food traceability, and real-

time supply chain data is processed using Apache Spark Streaming. Cell-level 

nutrient deficiency detection with hyperspectral imaging using Vision 

Transformers with Attention Modules, implemented with PyTorch. Drone-based 

crop monitoring patterns for maximally efficient coverage are optimized using 

Swarm Intelligence algorithms, such as Ant Colony Optimization and Particle 

Swarm Optimization, i.e. via PySwarmOptimization. Robotic farming systems 

utilize Model Predictive Control (MPC) algorithms with CasADi integration for 

autonomous harvesting and employ a Digital Twin to simulate test scenarios on 

the farm (Moradi 2022; Sperti 2023).  

 

SDG3: Good Health and Well-being 

In medical imaging, U-Net architectures and Mask R-CNN are used for 

segmentation tasks using both PyTorch and TensorFlow (Esteva et al., 2017). X-

rays, MRIs, and CT scans can reveal diseases in a way that’s difficult for humans 

to understand: ResNet, VGG, and InceptionV3 models are used for this 

classification (Shah et al., 2023). Graph-based molecular designs use GCNs and 

RNNs for molecular property prediction with RDKit and DeepChem libraries and 

drug design processes are optimized using Reinforcement Learning algorithms 

such as DQN and OpenAI Gym environments. In the same context, the MONAI 

(Medical Open Network for AI) is a collection of open-source software that 

includes domain-optimized deep learning capabilities for healthcare and life 

sciences using PyTorch (Cardoso et al., 2022). As concerns the LLMs, some 



EHR analyses utilized BERT and BioBERT models for processing clinical text 

(Rajkomar et al., 2018), while recent works (Yu et al., 2019) have adopted 

Federated Learning frameworks, such as TensorFlow Federated, for privacy-

preserving model training across healthcare providers.  

 

SDG 4: Quality Education 

Chen et al. (2020) provide a comprehensive review of how AI is being utilized in 

education, while Holmes et al. (2019) offer a global perspective on artificial 

intelligence in the educational landscape, highlighting both the challenges and 

opportunities associated with its implementation. Adaptive learning systems are 

making waves with techniques such as Bayesian Knowledge Tracing and Deep 

Knowledge Tracing, all of which are powered by TensorFlow and PyTorch 

(Zawacki-Richter et al., 2019). To personalize content recommendations, we see 

collaborative filtering algorithms and matrix factorization techniques in action, 

utilizing tools like Apache Mahout libraries (Hassen 2017). Intelligent Tutoring 

Systems are stepping up their game with Natural Language Understanding, 

leveraging spaCy, NLTK, and Transformer models to generate automated 

feedback. Additionally, Reinforcement Learning algorithms, such as Q-Learning 

and Policy Gradient methods, optimize learning paths through frameworks like 

Stable Baselines3 (Raffin et al., 2023). When it comes to learning analytics, 

platforms are harnessing clustering algorithms (think K-means and hierarchical 

clustering) and classification models (like Random Forest and SVM) using Weka, 

R, and Python’s scikit-learn (Pedregosa et al., 2011). Besides these, Time Series 

Analysis enhanced with LSTM networks can be useful in predicting student 

dropout risks, while anomaly detection algorithms are on the lookout for learners 

who might be struggling. Now, shifting our focus to advanced educational 

technologies, multimodal learning analytics are integrating eye-tracking data, 

EEG signals, and behavioral patterns with tools like MNE-Python and PsychoPy 

to gain insight into cognitive load and learning effectiveness.  Graph-based 

knowledge representation is using Neo4j to model concept relationships and fine-

tune learning sequences based on what students already know (Miller 2013). And 

let’s not forget about language models that are fine-tuned on educational content 

through Hugging Face, providing personalized tutoring across various subjects 

and languages. Automated Essay Scoring is also in the mix, employing BERT, 

GPT models, and feature engineering techniques with Hugging Face 

Transformers. Meanwhile, Speech Recognition systems like Google Speech-to-

Text and Azure Cognitive Services are paving the way for voice-driven learning 

applications. Meanwhile, Computer Vision tools like OpenCV are making gesture 

recognition a reality for interactive learning experiences.  

 



SDG 5: Gender Equality 

Bias detection algorithms are harnessing fairness-aware machine learning 

techniques, such as disparate impact analysis and equalized odds metrics, using 

tools like IBM's AI Fairness 360 toolkit and Google's What-If Tool (Bolukbasi et 

al., 2016). NLP (Natural Language Processing) is stepping in with Word 

embeddings analysis (such as Word2Vec) to identify gender bias in text, while 

BERT-based models are on the lookout for discriminatory language patterns 

(Friedman et al. 2019). For bias assessment, Statistical Parity and Individual 

Fairness metrics are being implemented through Fairlearn (Microsoft) and 

Aequitas frameworks (Saleiro et al. 2018). In the realm of HR analytics, 

platforms are tapping into Ensemble methods (i.e. Random Forest and Gradient 

Boosting) and neural networks to make fair hiring decisions, with the help of 

DataRobot (Lankut et al., 2024). Graph algorithms using Neo4j are being used to 

analyze organizational networks and uncover patterns in gender representation 

(do Vale et al., 2024). When it comes to Advanced Gender Analytics and 

Workplace Equity Systems, intersectionality analysis is employing Multi-task 

Learning and Multi-label Classification through scikit-multilearn to grasp the 

complex effects of discrimination across gender, race, age, and other protected 

characteristics. Pay equity algorithms are leveraging Regression Discontinuity 

and Difference-in-Differences methods to pinpoint and quantify compensation 

gaps with statistical significance. Leadership pipeline analysis leverages Survival 

Analysis and Cox Proportional Hazards models (Adebowale and Martins 2013), 

utilizing the lifelines library to forecast career advancement trends and identify 

obstacles that women encounter in their professional journeys. Meanwhile, 

network analysis powered by PyTorch Geometric maps out mentorship and 

sponsorship connections, aiming to enhance gender-balanced development 

programs (Lee et al., 2024). When it comes to performance evaluation, systems 

or research projects may incorporate Multi-criteria Decision Analysis (MCDA) 

and Fuzzy Logic algorithms to minimize subjective bias. Research by Lambrecht 

& Tucker (2019) highlights algorithmic bias in advertising, while Caliskan et al. 

(2017) demonstrate how machine learning can capture human biases from 

language data, underscoring the importance of implementing effective bias 

mitigation strategies.  

 

 

SDG 6: Clean Water and Sanitation 

Research by Zhai et al. (2020) explores decision support systems for water 

management, while Ahmed et al. (2018) demonstrate how machine learning can 

improve water quality prediction and management systems. Water quality 

monitoring employs Convolutional Neural Networks with MobileNet and 



EfficientNet architectures to detect contamination through images (Kannan et al. 

2024), all thanks to TensorFlow Lite running on edge devices (Gude, 2017). 

Time Series Forecasting using LSTM helps predict water demand, with 

implementations in Keras and PyTorch. IoT sensor networks harness Edge AI 

processing via NVIDIA Jetson and Intel OpenVINO for real-time water quality 

assessments (Tham et al., 2023). Anomaly Detection algorithms, including 

Isolation Forest, One-Class SVM, and Autoencoders, are utilized to spot system 

failures, leveraging scikit-learn and PyOD libraries. Smart water distribution 

systems utilize reinforcement learning algorithms, such as Deep Deterministic 

Policy Gradient and Proximal Policy Optimization, to manage pressure 

effectively. Advanced water management and conservation technologies are 

making waves in how we handle our water resources. For instance, satellite-

based water mapping utilizes semantic segmentation models, such as DeepLab 

and U-Net, to monitor changes in watersheds and forecast drought conditions, 

thanks to tools like Google Earth Engine (Li et al., 2019). On the hydraulic 

modeling front, we’re seeing a blend of Physics-Informed Neural Networks 

(PINNs) and traditional Computational Fluid Dynamics, utilizing the FEniCS 

framework for precise flow predictions. When it comes to optimizing water 

treatment, Multi-objective Evolutionary Algorithms such as NSGA-II and SPEA2 

are employed, utilizing the DEAP library to strike a balance between treatment 

effectiveness, energy use, and chemical consumption. Smart irrigation systems 

are also stepping up, combining crop water stress index calculations with Fuzzy 

Logic Controllers through scikit-fuzzy to ensure water is applied just right. 

Predictive maintenance systems are leveraging Survival Analysis algorithms and 

Cox Proportional Hazards models with the lifelines library, while Computer 

Vision techniques like YOLO and FasterRCNN are used to monitor infrastructure 

conditions using OpenCV and Detectron2 frameworks (Midigudia et al., 2025).  

 

SDG 7: Affordable and Clean Energy 

A comprehensive review by Mosavi et al. (2019) examines machine learning 

models in energy systems, while Wang et al. (2018) investigate the role of 

artificial intelligence in smart energy systems, aiming to enhance efficiency and 

sustainability. In the realm of smart grid optimization, Deep Reinforcement 

Learning is being utilized with Multi-Agent Reinforcement Learning, all 

implemented through OpenAI Gym and PettingZoo environments (Ahmad et al., 

2018). Load forecasting is gaining momentum from LSTM networks, 

Transformer models, and Prophet for time series predictions, leveraging 

TensorFlow and Facebook Prophet. In parallel, energy management systems are 

leveraging Genetic Algorithms, Particle Swarm Optimization, and Simulated 

Annealing through the DEAP (Distributed Evolutionary Algorithms in Python) 



and PySwarm libraries (Abid et al., 2025), whereas building automation is 

harnessing Fuzzy Logic Controllers and Model Predictive Control, utilizing 

scikit-fuzzy and CasADi optimization frameworks to enhance efficiency. 

Renewable energy forecasting leverages Ensemble methods like Random Forest 

and Gradient Boosting, along with Support Vector Regression, to predict solar 

and wind energy. These techniques are implemented using tools like scikit-learn 

and XGBoost (Xu et al., 2024). In the realm of Computer Vision, Semantic 

Segmentation models such as U-Net and DeepLab are employed to analyze 

satellite images for selecting optimal sites for renewable energy projects, utilizing 

the Segmentation Models library. When it comes to Advanced Energy Systems 

and Grid Intelligence, distributed energy resource management taps into 

Federated Learning frameworks, including PySyft and TensorFlow Federated 

(Zhang et al., 2024). This approach optimizes peer-to-peer energy trading while 

ensuring consumer privacy remains intact. Additionally, quantum computing 

applications, such as those through Qiskit and Cirq, tackle complex optimization 

challenges in grid balancing and energy portfolio management, offering 

significant speed improvements (Paler and Basmadjian 2022). Energy storage 

optimization leverages Dynamic Programming and Approximate Dynamic 

Programming techniques, utilizing OR-Tools, to effectively manage battery 

systems and pumped hydro storage, thereby ensuring maximum grid stability. 

Digital Twin technology is also making waves, creating real-time virtual models 

of power plants with ANSYS Twin Builder, which aids in predictive maintenance 

and operational efficiency (Pliuhin et al., 2022). On the predictive maintenance 

front, platforms like GE Predix, Siemens MindSphere, and IBM Maximo utilize 

Survival Analysis, Weibull Distribution modeling, and Neural Networks to 

enhance equipment performance (Rakhmonov et al., 2025). Similarly, Apache 

Spark, equipped with MLlib, are able to processes vast amounts of energy 

consumption data to identify patterns.  

 

SDG 8: Decent Work and Economic Growth 

Frey & Osborne (2017) examine the risk of jobs being automated, while 

Brynjolfsson et al. (2018) investigate how machine learning is reshaping work 

and employment trends in the digital economy; indeed, there is a trove of AI 

software and methods that hasfound applications in what concerns this SDG. 

Workforce analytics harnesses the power of Natural Language Processing, 

utilizing BERT and RoBERTa models to match jobs with the right skills, thanks 

to Hugging Face Transformers (Carnevale et al., 2014). On the other hand, Graph 

Neural Networks help us understand labor market dynamics through PyTorch 

Geometric, while Collaborative Filtering algorithms guide individuals in 

choosing career paths using tools like Apache Mahout and Surprise libraries. For 



predicting skills, a Multi-label Classification can be used with Binary Relevance 

and Label Powerset methods, implementing using scikit-multilearn (Botov et al., 

2019). For identifying employment trends, Time Series Analysis with ARIMA 

and Seasonal Decomposition is employed, utilizing the statsmodels and Prophet 

libraries. Workplace safety is enhanced through Computer Vision, employing 

Object Detection models like YOLOv5. In advancing workforce intelligence and 

economic modeling, analytics utilize matching algorithms and Market Design 

principles through NetworkX and OR-Tools to ensure that worker-task 

allocations are optimized and fair compensation is maintained. Economic impact 

modeling combines Input-Output Analysis with Machine Learning regression 

techniques to forecast how policies might affect employment and GDP growth. 

For assessing automation risks, Task-based models can be used to analyze 

Occupational Information Network (O*NET) data using pandas and scikit-learn 

to identify jobs that may be at risk of displacement by technology. Finally, when 

it comes to reskilling, we employ Curriculum Learning and Transfer Learning 

strategies with PyTorch to create effective workforce transition programs. 

Employee satisfaction analysis leverages sentiment analysis tools, such as 

VADER, TextBlob, and Transformer-based models (Borg and Boldt, 2020). On 

the other hand, topic modeling utilizes Latent Dirichlet Allocation (LDA) and 

Non-negative Matrix Factorization, leveraging the scikit-learn libraries.  

 

SDG 9: Industry, Innovation, and Infrastructure, infrastructure monitoring  

AI has manifold applications in intelligent manufacturing, particularly within the 

context of Industry 4.0 (Zhong et al., 2017), as well as in tandem with any 

technologies that are used to build industrial Digital Twins (Lu 2017). Efforts to 

achieve SDG9 in the private sector employ Convolutional Neural Networks, 

specifically ResNet and DenseNet architectures, to assess structural health using 

TensorFlow and PyTorch (Dallasega et al., 2018). Digital Twin technologies 

incorporate Physics-Informed Neural Networks (PINNs) and integrate Finite 

Element Methods through platforms like ANSYS and COMSOL. Predictive 

maintenance relies on Survival Analysis, utilizing Cox Regression and 

Accelerated Failure Time models with the lifelines library. For signal processing, 

Wavelet Transforms and Fourier Analysis are used for vibration monitoring, 

employing PyWavelets and SciPy libraries. In construction optimization, Genetic 

Algorithms, Ant Colony Optimization, and Simulated Annealing are harnessed 

for project scheduling, utilizing DEAP and OR-Tools. Building Information 

Modeling (BIM) integration utilizes machine learning algorithms for design 

optimization via Autodesk Forge and Bentley Systems APIs. In advanced 

manufacturing and Industry 4.0 Systems, additive manufacturing optimization 

uses Generative Design techniques with OpenMDAO frameworks to create 



lightweight, high-performance components (Bapty et al. 2022). Quality control 

systems combine Hyperspectral imaging with Attention mechanisms for defect 

detection at sub-millimeter precision, utilizing PyTorch and spectral library. 

Supply chain resilience modeling utilizes Complex Network Analysis and Monte 

Carlo Simulation through tools like NetworkX and SimPy to identify 

vulnerabilities and refine backup sourcing strategies. Further, autonomous 

manufacturing systems utilize Multi-Agent Systems and Distributed Artificial 

Intelligence, leveraging the Mesa framework, to streamline production 

scheduling. Smart manufacturing integrates Industrial IoT with Edge AI 

processing, utilizing platforms such as Azure IoT Edge and AWS IoT Greengrass. 

For quality control, systems rely on Computer Vision, employing Instance 

Segmentation models like Mask R-CNN and Defect Detection algorithms.  

 

SDG 10: Reduced Inequalities 

A comprehensive survey by Mehrabi et al. (2021) examines bias and fairness in 

machine learning, while Chouldechova & Roth (2020) explore algorithmic 

fairness from a societal perspective, emphasizing the importance of creating 

inclusive AI systems. Perhaps one of the most interesting applications of AI is its 

fairness-aware algorithms that utilize demographic parity, equalized Opportunity, 

and calibration metrics, leveraging tools like IBM AI Fairness 360 and Google 

Fairness Indicators (Baracas et al., 2019). Causal Inference methods, such as 

Propensity Score Matching and Instrumental Variables, are implemented using 

the DoWhy and EconML libraries that were mentioned earlier. Inclusive service 

design employs clustering algorithms (like K-means and DBSCAN) for market 

segmentation, along with Association Rule Mining through Apriori and FP-

growth algorithms via the mlxtend library. Recommendation Systems utilize 

Matrix Factorization and Deep Learning techniques, tapping into Surprise 

libraries and TensorFlow Recommenders. To enhance accessibility, Computer 

Vision is leveraged to assist individuals with visual impairments, utilizing object 

detection methods (such as YOLO and SSD) and Optical Character Recognition 

with Tesseract and EasyOCR. Additionally, Speech-to-Text and Text-to-Speech 

systems rely on Mozilla DeepSpeech and Google Text-to-Speech APIs. 

 

Advanced Equity Analytics and Social Impact Measurement employ social 

mobility modeling (i.e. Markov chains and and Hidden Markov Models) to track 

how economic status changes across generations. When it comes to geographic 

inequality, AI-enhanced methods of Spatial Statistics and Geographically 

Weighted Regression, can employ i.e. the PySAL and GeoPandas libraries to gain 

a deeper understanding of regional disparities. To tackle the digital divide, one 

may turn to Network Analysis and Graph Centrality measures using NetworkX, 



which helps us identify communities that lack access to technology and prioritize 

where to invest in infrastructure. To assess the impact of algorithms, the 

Counterfactual Machine Learning and Synthetic Control methods through 

CausalML can be used to evaluate the effectiveness of policy interventions. Bias 

mitigation is another crucial area, employing Adversarial Debiasing techniques 

and optimizing Fairness Constraints with TensorFlow Privacy and PyTorch 

Fairness (Priyadarshini and Gago-Masague 2024).  

 

SDG 11: Sustainable Cities and Communities 

The contribution of AI in developing smart and sustainable cities is well known 

(see, i.e. Silva et al., 2018 ; Yigitcanlar et al. 2020), particularly in the context of  

machine learning. Traffic optimization is all about using Deep Reinforcement 

Learning, specifically with Deep Q-Networks and Actor-Critic methods, all while 

leveraging SUMO (Simulation of Urban Mobility) and OpenAI Gym 

environments (Bibri & Krogstie, 2017). In what concerns traffic monitoring in 

particular, Computer Vision systems come into play, utilizing Object Detection 

techniques like YOLOv5 and Faster R-CNN, along with Tracking algorithms such 

as DeepSORT and ByteTrack, all powered by OpenCV and PyTorch. For air 

quality prediction, we turn to Time Series Forecasting, employing LSTM 

networks, Transformer models, and Prophet to forecast pollutant levels, utilizing 

tools such as TensorFlow and Facebook Prophet. Sensor fusion is handled 

through Kalman Filters and Particle Filters for effective data integration, i.e. by 

utilizing the FilterPy and PyKalman libraries (Blasch et al., 2021). Urban 

planning receives a boost from GIS, which integrate Machine Learning through 

platforms such as ArcGIS Pro, QGIS, and Google Earth Engine. Agent-Based 

Modeling is used to simulate urban dynamics with frameworks such as Mesa and 

NetLogo, while Spatial Analysis relies on libraries like GeoPandas and Shapely. 

To tackle urban heat islands, we utilize thermal imaging analysis with 

Convolutional Neural Networks and Semantic Segmentation models via 

PyTorch, enabling us to identify heat sources and optimize the placement of 

green infrastructure. For pedestrian flow modeling, Graph Convolutional 

Networks and Spatial-Temporal prediction models are utilized, leveraging 

PyTorch Geometric for effective crowd management and emergency evacuation 

planning. Smart parking systems are a game-changer, integrating Computer 

Vision with Edge Computing through OpenCV and TensorFlow Lite for real-time 

space detection. Plus, Dynamic Pricing algorithms utilize Reinforcement 

Learning via RayRLlib to maximize utilization and revenue. Smart waste 

management is eventually about utilizing route optimization algorithms, such as 

Dijkstra's, along with Vehicle Routing Problem solvers through tools like OR-

Tools and NetworkX (Revanna and Al Nakash 2023) and when it comes to IoT 



integration, we’re talking about Edge AI processing with TensorFlow Lite and 

OpenVINO for real-time monitoring of bins.  

 

SDG 12: Responsible Consumption and Production  

Optimizing the circular economy involves the use of linear programming and 

mixed-integer programming, utilizing PuLP, OR-Tools, and Gurobi optimizers 

(Ghisellini et al., 2016). Tseng et al. (2018) showed how AI can be used to align 

circular economy concepts with the Industry 4.0 landscape, while Kristoffersen et 

al. (2020) showed how smart technologies can drive innovation in circular 

business models. For material flow analysis, we can tap the potential of Graph 

Neural Networks and Network Analysis algorithms through PyTorch Geometric 

and NetworkX libraries. When it comes to product lifecycle assessment, we can 

leverage Life Cycle Assessment (LCA) integrated with Machine Learning using 

Brightway2 and OpenLCA frameworks (Xiang et al., 2025). Design optimization 

utilizes Genetic Algorithms, Multi-objective Optimization, and Pareto Front 

analysis via DEAP and NSGA-II implementations. In the realm of supply chain 

sustainability, Blockchain integration with Hyperledger Fabric and Ethereum 

smart contracts plays a crucial role. Traceability systems utilize QR Code and 

RFID integration alongside Computer Vision using OpenCV and pyzbar libraries 

for automated tracking. Advanced Sustainability Analytics and Circular 

Economy Intelligence Material passport systems harness Natural Language 

Processing and Knowledge Graphs with spaCy and Neo4j to extract and structure 

product composition data for optimizing end-of-life processes. Consumer 

behavior modeling utilizes principles from Behavioral Economics and Choice 

Modeling techniques, leveraging the PyLogit and Biogeme libraries, to predict 

purchasing decisions and design effective interventions. Packaging optimization 

leverages 3D Computer Vision and Volumetric Analysis, utilizing Open3D and 

PCL libraries to minimize material waste while ensuring complete protection. 

When it comes to reverse logistics, we can tackle Vehicle Routing Problems with 

Time Windows and Capacity Constraints using OR-Tools, creating efficient 

systems for returning products. Waste classification can be handled by 

Convolutional Neural Networks, utilizing ResNet, MobileNet, and EfficientNet 

architectures for automated sorting, all powered by TensorFlow and PyTorch.  

 

SDG 13 Climate Action 

The role of AI methods and models in climate change and climate research has 

been established (Huntingford et al.m 2019; Kaack et al. 2022), particularly as 

regards machine learning. Tracking carbon footprints involves Time Series 

Analysis with ARIMA and Seasonal Decomposition models, using statsmodels 

and Prophet libraries (Rolnick et al., 2019). Emission predictions are made using 



neural networks and Ensemble methods, such as Random Forest and Gradient 

Boosting, with TensorFlow and scikit-learn. Climate modeling benefits from 

Physics-Informed Neural Networks (PINNs) and Deep Learning techniques, 

employing frameworks like DeepONet and FEniCS. Weather forecasting is 

enhanced through Convolutional Neural Networks and Recurrent Neural 

Networks, utilizing MetNet and GraphCast architectures. For carbon accounting, 

we utilize blockchain technology with smart contracts to ensure transparent 

reporting, leveraging platforms such as Hyperledger Fabric and Ethereum. Lastly, 

satellite imagery analysis employs Semantic Segmentation models such as U-Net 

and DeepLab for monitoring deforestation, utilizing tools like Google Earth 

Engine and Planetary Computer. Carbon capture optimization leverages process 

optimization algorithms and integrates Computational Fluid Dynamics with tools 

like CasADi and OpenFOAM to significantly enhance CO2 capture efficiency in 

industrial settings. When it comes to climate scenario modeling, Ensemble 

Methods and Uncertainty Quantification techniques come into play, utilizing 

scikit-learn and PyMC3 for a solid assessment of climate risks. On the finance 

side, green finance analytics tap into Alternative Data sources and employ ESG 

scoring algorithms, leveraging Natural Language Processing with models like 

FinBERT and ESG-BERT to assess climate-related financial risks. For carbon 

offset verification, Remote Sensing and Machine Learning are utilized through 

platforms like Google Earth Engine and TensorFlow, allowing for automated 

monitoring of reforestation and conservation efforts. Risk assessment is 

addressed using Monte Carlo Simulation and Bayesian Networks, with a focus on 

climate vulnerability analysis, leveraging PyMC3. Optimization algorithms are 

also at work, employing Multi-objective Optimization and Genetic Algorithms 

for climate adaptation strategies, utilizing frameworks such as DEAP.  

 

 

SDG 14: Life Below Water  

Marine monitoring is now making great strides with the use of Convolutional 

Neural Networks, particularly the ResNet and EfficientNet architectures, to 

identify underwater species through TensorFlow and PyTorch (Siddiqui et al., 

2018). Wäldchen & Mäder (2018) delve into the world of machine learning for 

identifying species through images, while González-Rivero et al. (2016) 

showcase how computer vision can automate the classification of benthic 

habitats, which is crucial for monitoring coral reefs. For detecting marine debris, 

Object Detection systems like YOLOv5 and Detectron2 come into play, while 

Instance Segmentation models are used to assess the health of coral reefs. On the 

acoustic side, monitoring employs Signal Processing techniques, utilizing Fourier 

Transforms and Spectrograms to detect marine life with the help of librosa and 



SciPy libraries. Deep Learning methods also play a role, using Recurrent Neural 

Networks and Attention mechanisms for bioacoustic analysis via Keras and 

PyTorch. When it comes to modeling ocean currents, Physics-Informed Neural 

Networks (PINNs) are integrated with Computational Fluid Dynamics, utilizing 

frameworks such as OpenFOAM. Satellite oceanography benefits from Time 

Series Analysis and Spatiotemporal modeling, leveraging Xarray and Dask for 

processing large-scale data. Advanced Marine Conservation and Blue Economy 

Analytics. Optimizing marine protected areas involves Spatial Conservation 

Prioritization algorithms, utilizing the Marxan and PrioritizR packages alongside 

Machine Learning habitat suitability models. For fish stock assessments, Surplus 

Production Models and Virtual Population Analysis are enhanced with Bayesian 

inference using Stan and PyMC3, which helps quantify uncertainty in fisheries 

management. Underwater robotics are also evolving, integrating Simultaneous 

Localization and Mapping (SLAM) algorithms with Computer Vision through 

ORB-SLAM and OpenCV for autonomous marine data collection. Lastly, tracking 

marine pollution utilizes Lagrangian Particle Tracking models and Ocean Current 

data, employing the Parcels framework to predict debris trajectories and enhance 

cleanup efforts. Fishing fleet optimization utilizes route optimization algorithms 

and Dynamic Programming techniques, all powered by OR-Tools and NetworkX. 

When it comes to detecting illegal fishing, we rely on anomaly detection 

algorithms such as Isolation Forest and One-Class SVM, combined with 

Trajectory Analysis, utilizing the scikit-learn and MovingPandas libraries.  

 

SDG 15: Life on Land 

Tuia et al. (2022) explore the role of machine learning in wildlife conservation, 

while Joppa (2017) showcases how technology, particularly machine learning 

and computer vision, can be applied in conservation efforts. Forest monitoring 

utilizes satellite image analysis through Convolutional Neural Networks, 

employing architectures such as U-Net, ResNet, and DeepLab to detect 

deforestation via Google Earth Engine and Sentinel Hub APIs (Christin et al., 

2019). Change Detection algorithms process data from Landsat and Sentinel-2 

using GDAL and Rasterio libraries. For biodiversity assessment, we utilize 

computer vision with Object Detection models, such as YOLOv5 and Faster R-

CNN, alongside Species Classification models that leverage iNaturalist datasets 

and TensorFlow (Dimson and Gillespie 2023). Acoustic monitoring is enhanced 

through Bioacoustic Analysis, utilizing Mel-Frequency Cepstral Coefficients 

(MFCC) and Convolutional Neural Networks, powered by Librosa and PyTorch 

Audio (Rajakumari 2023). Wildlife tracking benefits from analyzing GPS collar 

data through Movement Ecology modeling, utilizing the ctmm and movebank 

packages in R. Camera trap analysis employs Image Classification and Object 



Detection, leveraging platforms such as Wildlife Insights and Microsoft AI for 

Earth. When it comes to Advanced Ecosystem Analytics and Conservation 

Technology, landscape connectivity modeling utilizes circuit theory and Least-

Cost Path analysis, along with tools like Circuitscape and GRASS GIS, to 

pinpoint vital wildlife corridors and assess the impacts of fragmentation. Species 

distribution modeling employs MaxEnt, Random Forest, and Deep Neural 

Networks through the SDMtoolbox and Wallace R package, all aimed at planning 

for climate change adaptation (Brown et al. 2017). Forest carbon accounting 

utilizes LiDAR data processing combined with Point Cloud analysis, employing 

tools such as PDAL and CloudCompare to achieve accurate biomass estimates 

and verify REDD+ programs. For invasive species detection, we rely on 

hyperspectral imaging and Spectral Mixture Analysis, utilizing ENVI and the 

spectral Python library to develop early intervention strategies. When it comes to 

habitat modeling, we rely on Species Distribution Modeling, using Maximum 

Entropy (MaxEnt) and Random Forest algorithms through the ENMeval and 

biomod2 package (Kass et al., 2021; Zhao et al. 2021). Landscape connectivity 

analysis is addressed using Graph Theory and Network Analysis, employing the 

NetworkX and igraph libraries to identify potential corridors.  

 

SDG 16: Peace, Justice, and Strong Institutions 

Ashley & Susskind (2003) explore how artificial intelligence can enhance legal 

reasoning and improve justice systems. Of these, security and privacy are only 

two facets (Levi and Wall 2004). Privacy-preserving techniques employ 

Differential Privacy using Google's DP library and IBM's Diffprivlib (Holohan et 

al., 2019), while Homomorphic Encryption libraries, such as Microsoft SEAL 

and IBM FHE Toolkit, enable computation on encrypted data.AsFraud detection 

employs Anomaly Detection algorithms, such as Isolation Forest, Local Outlier 

Factor, and One-Class SVM, utilizing the scikit-learn and PyOD libraries (Kroll 

et al., 2017). Graph Analytics plays a crucial role in identifying suspicious 

transaction patterns through Network Analysis, leveraging NetworkX and Neo4j 

graph databases. For compliance monitoring, we utilize Natural Language 

Processing (NLP) with models such as BERT, RoBERTa, and Legal-BERT to 

analyze regulatory documents, thanks to Hugging Face Transformers. Text 

Mining involves Named Entity Recognition and Relation Extraction, utilizing 

frameworks like spaCy and Stanford CoreNLP (Manning et al. 2014). Lastly, risk 

assessment benefits from Predictive Modeling with Ensemble methods (such as 

Random Forest and XGBoost) and Neural Networks to predict corruption risks, 

utilizing platforms like H2O.ai and DataRobot. Causal Inference techniques 

apply Propensity Score Matching and Instrumental Variables, utilizing DoWhy 

and EconML libraries. Advanced Governance Analytics and Justice System 



Intelligence is a fascinating field. Legal case prediction uses Transformer models 

that have been fine-tuned on legal texts, specifically leveraging LegalBERT 

datasets to forecast outcomes and optimize resource allocation (Kim et al., 2024). 

When it comes to contract analysis, we tap into Information Extraction and 

Semantic Similarity algorithms through tools like spaCy and Sentence-BERT, 

which help automate compliance checks and assess risks. For detecting judicial 

bias, we employ Causal Inference methods and analyze Randomized Controlled 

Trials using DoWhy and CausalML to uncover systematic disparities in 

sentencing patterns. Transparency scoring is achieved through Document 

Similarity and Topic Modeling, utilizing Gensim and scikit-learn to evaluate the 

quality of government information disclosure. In document analysis, we utilize 

Optical Character Recognition (OCR) tools, including Tesseract and Amazon 

Textract (Hegghammer 2022). Document Classification is handled by Support 

Vector Machines and Deep Learning techniques, using scikit-learn and 

TensorFlow. Additionally, we integrate blockchain technology with Smart 

Contracts to ensure transparent governance via Ethereum and Hyperledger 

platforms. Apache Hadoop, Apache Spark, and Delta Lake for scalable data 

storage and processing (Salloum et al. 2016). Cloud platforms such as AWS, 

Google Cloud Platform, and Microsoft Azure offer managed services, including 

Amazon SageMaker, Google AI Platform, and Azure Machine Learning, to 

support enterprise-scale AI deployment. 

 

SDG 17: Partnerships for the Goals 

Vladova et al. (2021) examine AI's role in enabling cross-sector partnerships for 

SDGs, while Mayer-Schönberger & Ramge (2018) analyze data-driven 

partnerships in the age of ΑΙ. Partnership matching utilizes Collaborative 

Filtering algorithms and Content-Based Filtering, leveraging Apache Mahout and 

Surprise libraries, for assessing organizational compatibility (Sachs et al., 2019). 

Graph Neural Networks model multi-stakeholder relationships using PyTorch 

Geometric and DGL (Deep Graph Library) frameworks (Wang et al., 2019). 

Knowledge-sharing platforms utilize Semantic Web technologies, including RDF 

and OWL ontologies, through Apache Jena and Protégé tools (El Asikri et al. 

2018). Information Retrieval systems employ search with Machine Learning 

plugins and Vector Search capabilities using dense passage retrieval (DPR) 

models. Impact measurement leverages Multi-Criteria Decision Analysis 

(MCDA) and the Analytic Hierarchy Process (AHP) using SuperDecisions and 

the Python AHP library. Causal Impact Assessment employs Bayesian Structural 

Time Series and Difference-in-Differences methods, utilizing the CausalImpact 

and DoWhy frameworks. Collaboration optimization uses Game Theory 

algorithms and Coalition Formation techniques implemented through Nashpy and 



CoalitionPy libraries. Communication analysis employs Social Network Analysis 

and Community Detection algorithms using NetworkX and python-louvain for 

partnership effectiveness assessment. Data integration platforms utilize Federated 

Learning frameworks, such as TensorFlow Federated and PySyft, for privacy-

preserving collaborative machine learning. API orchestration utilizes Apache 

Airflow and Kubernetes for managing scalable partnership workflows.  

 
3. Technical Implementation for Enterprises 
Successful AI implementation for achieving the SDGs requires robust data lake 

architectures that utilize Apache Hadoop, Apache Spark, and Delta Lake for 

scalable data storage and processing (Armbrust et al., 2020). Cloud platforms like 

AWS, Google Cloud Platform, and Microsoft Azure provide managed services, 

including Amazon SageMaker, Google AI Platform, and Azure Machine 

Learning, for enterprise-scale AI deployment. Real-time data processing utilizes 

Apache Kafka for stream processing (Vyas et al. 2021), while Apache Storm or 

Apache Flink are employed for complex event processing. Data governance 

frameworks utilize Apache Atlas, and Informatica for metadata management and 

compliance tracking (Rodrigues et al. 2022). MLOps pipelines employ Kubeflow, 

MLflow, and DVC (Data Version Control) for reproducible model development 

and deployment. Containerization uses Docker and Kubernetes for scalable 

model serving, while model monitoring utilizes Seldon, BentoML, and Evidently 

AI for performance tracking and drift detection. AutoML platforms, such as 

H2O.ai, DataRobot, and Google AutoML, accelerate model development for 

organizations with limited AI expertise. Feature stores, such as those using Feast 

and Tecton, enable consistent feature engineering across different models and 

applications. Besides these, Edge AI deployment utilizes NVIDIA Jetson, Intel 

OpenVINO, and Google Coral hardware for real-time processing at remote 

locations. IoT platforms, such as AWS IoT, Azure IoT Hub, and Google Cloud 

IoT, offer device management and data ingestion capabilities. Model 

optimization employs TensorFlow Lite, ONNX Runtime (Shridhar et al., 2020) 

and Apache TVM for efficient inference on resource-constrained devices (Alaejos 

et al., 2024). Federated learning frameworks enable collaborative model training 

while preserving data privacy. Further, KPI tracking systems integrate business 

intelligence tools like Tableau, Power BI, and Looker with AI model outputs for 

comprehensive SDG performance dashboards.. 

 

4. Industry-Specific Implementation Strategies 
Manufacturing companies leverage Digital Twin technologies using ANSYS Twin 

Builder, Siemens MindSphere, and GE Digital platforms for virtual production 



optimization. Predictive Quality systems employ Statistical Process Control 

(SPC) integrated with Machine Learning using Minitab and JMP software. 

Energy efficiency in data centers employs Google DeepMind techniques for 

cooling optimization and Microsoft's Project Natick approaches for sustainable 

infrastructure design. Supply chain optimization utilizes Advanced Planning 

Systems (APS) like SAP APO and Oracle ASCP enhanced with AI algorithms for 

demand forecasting and inventory optimization. Sustainability tracking employs 

Product Lifecycle Management (PLM) systems integrated with Carbon 

Accounting software. Tech companies leverage AI for Social Good initiatives 

using open-source frameworks like Microsoft AI for Good and Google AI for 

Social Good. Digital inclusion programs utilize Accessible AI technologies and 

Universal Design principles for inclusive product development. Financial 

institutions implement Risk Management systems using Monte Carlo Simulation 

and Value at Risk (VaR) models enhanced with Machine Learning for climate 

risk assessment. ESG scoring utilizes Alternative Data analysis with Natural 

Language Processing for comprehensive sustainability evaluation. Sustainable 

finance platforms utilize Green Bond verification through blockchain and Smart 

Contracts, while impact investing employs AI-powered due diligence for SDG-

aligned investment selection. 

 

5. Challenges and Implementation Considerations 
a) Technical Challenges 

Data quality issues necessitate comprehensive data cleansing pipelines utilizing 

the Great Expectations and Deequ frameworks for automated data validation. 

Model interpretability challenges necessitate the implementation of Explainable 

AI using SHAP, LIME, and Anchors libraries to ensure stakeholder transparency. 

Scalability concerns necessitate the use of distributed computing architectures, 

such as those employing Ray, Dask, and Apache Spark, for handling large-scale 

AI workloads. Model drift management utilizes continuous monitoring systems, 

leveraging Evidently AI and Alibi Detect, to detect performance degradation. 

b) Organizational and Cultural Challenges 

Skills gaps require comprehensive training programs that utilize online learning 

platforms, such as edX for Business, and Udacity for Enterprise. Change 

management utilizes Agile methodologies and Design Thinking approaches to 

facilitate successful AI adoption. Stakeholder alignment necessitates cross-

functional collaboration platforms and project management tools, such as 

Monday.com, Asana, and Microsoft Project, for coordinated SDG 

implementation efforts. 

c) Regulatory and Compliance Considerations 



AI governance frameworks must align with emerging regulations like EU AI Act, 

GDPR, and industry-specific compliance requirements. Audit trails utilize 

blockchain-based systems for maintaining immutable records and facilitating 

regulatory reporting. 

d) Ethical considerations 

Ethical AI implementation requires bias testing protocols using Fairness 

Indicators and AI Fairness 360 toolkits, while privacy protection employs 

Federated Learning and Differential Privacy techniques. Also (where necessary), 

AI governance frameworks are expected to implement IEEE Standards (IEEE 

2857, IEEE 2858) and ISO/IEC 23053 for managing algorithmic bias. 

Explainable AI platforms, such as IBM Watson OpenScale, DataRobot Model 

Transparency, and H2O.ai Interpretability, ensure transparent decision-making 

processes.  

 

6. Future Trends and Emerging Technologies 
Large Language Models (LLMs) such as GPT-4, BERT, and T5, enable 

sophisticated natural language understanding for sustainability reporting and 

stakeholder communication. Multimodal AI systems, which combine vision, 

language, and sensor data, provide comprehensive environmental monitoring 

capabilities. Digital Twins of entire ecosystems enable comprehensive modeling 

of environmental impact and scenario planning. Autonomous systems for 

environmental monitoring and resource management reduce the need for human 

intervention while improving efficiency. Quantum Machine Learning using 

Qiskit, Cirq, and PennyLane frameworks offers potential breakthroughs in 

optimization problems related to resource allocation and climate modeling.  

Aside of these, brain-computer interfaces and Augmented Reality technologies 

enhance human-AI collaboration for complex sustainability challenges that 

require both analytical and creative problem-solving approaches. 

 

7. Conclusion 
The integration of AI technologies with Sustainable Development Goals 

represents a transformative opportunity for private sector enterprises to create 

both economic value and positive societal impact. From Random Forest 

algorithms optimizing supply chains for SDG 12 (Responsible Consumption) to 

Convolutional Neural Networks monitoring biodiversity for SDG 15 (Life on 

Land), the technical possibilities are vast and scientifically validated. The specific 

AI methods, algorithms, and software solutions outlined in this document provide 

practical pathways for companies to implement measurable sustainability 

initiatives. TensorFlow and PyTorch frameworks enable deep learning 



applications across multiple SDGs, while scikit-learn and H2O.ai platforms offer 

accessible machine learning capabilities for organizations at different stages of 

AI maturity. The scientific literature demonstrates consistent evidence that AI 

applications can accelerate progress toward SDG achievement while generating 

competitive business advantages. As we approach the 2030 SDG deadline, 

companies that successfully leverage AI technologies for sustainability will not 

only contribute to global development objectives but also position themselves as 

leaders in the emerging sustainable economy. The convergence of AI and 

sustainability represents more than technological advancement—it embodies a 

fundamental shift toward purpose-driven business practices that create value for 

all stakeholders. The technical frameworks, implementation strategies, and 

scientific evidence presented in this document provide the foundation for 

transforming sustainability aspirations into measurable impact through the 

strategic application of Artificial Intelligence. The time for action is now, and the 

tools are available to make SDG achievement a reality through intelligent, data-

driven approaches to global challenges. 
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