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ABSTRACT - This study develops a finite-horizon optimal control model linking forest biomass, 9 

biodiversity, cumulative extraction, and stochastic disturbance shocks to assess three governance 10 

regimes: non-cooperative management with free terminal states (OLNE-Free) and two cooperative 11 

approaches - one with fixed ecological targets (Regulator-Fixed) and another with flexible endpoints 12 

(Regulator-Free). Non-cooperative harvesters prioritize short-term extraction, overlooking 13 

biodiversity's contribution to productivity and allowing extraction to accumulate. In contrast, 14 

cooperative regimes internalize ecological values and dynamically adjust harvest effort, resulting in 15 

improved ecological and economic outcomes. Cooperative management moderates harvesting 16 

intensity, enhances biodiversity, and increases overall welfare compared to non-cooperative 17 

approaches. Implementing mechanisms - such as fees, taxes, or regulations - that align private 18 

incentives with social values helps decentralize cooperation and buffers outcomes against parameter 19 

variability. Sensitivity analysis demonstrates that cooperative regimes consistently influence 20 

ecological changes and tend to promote more stable long-term dynamics. These findings highlight 21 

the critical role of biodiversity valuation and flexible cooperation in advancing sustainable forest 22 

management amid ecological and economic indeterminacies. 23 

 24 
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1. Introduction 27 

Reconciling short-run economic incentives with long-term ecological sustainability remains a central 28 

challenge in forest management. Forest ecosystems supply not only marketable goods such as timber 29 

but also critical public services, including carbon sequestration, hydrological regulation, and 30 

biodiversity maintenance (Spittlehouse and Stewart, 2004; Puettmann et al., 2012). However, 31 

conventional forest policies frequently prioritize private profitability while neglecting the underlying 32 

biophysical processes that sustain ecosystem productivity over time. Since Faustmann’s (1849) 33 

foundational model of optimal rotation, forest economics has evolved to incorporate stochastic 34 

pricing, disturbance risk, and non-market values (Lembersky, 1978; Reed, 1984; Snyder and 35 

Bhattacharya, 1990; Chadès and Bouteiller, 2005). Yet two critical limitations persist. First, 36 

biodiversity is often externalized or treated as a static constraint, rather than modeled as a productive 37 

asset. Empirical studies increasingly show that species and functional diversity enhance forest 38 

growth, carbon storage, and stability through mechanisms such as niche complementarity and 39 

insurance effects (Tilman et al., 1996; Cardinale et al., 2012; Brockerhoff et al., 2017). These findings 40 

suggest that biodiversity loss not only undermines ecosystem integrity but also compromises long-41 

term economic returns. Despite this, most bioeconomic models treat biodiversity as exogenous to the 42 

production process. Unlike most prior studies, this paper explicitly endogenizes biodiversity as a 43 

dynamic, productive input influencing forest biomass growth, rather than treating it as an exogenous 44 

or static constraint. Second, the relative performance of alternative governance regimes under 45 

ecological instability and feedback remains poorly understood. While advances in flexible 46 

management and demographic modeling have increased ecological realism (Walters and Holling, 47 

1990; Franklin et al., 2000; Grimm et al., 2005; Caswell, 2008; Allen et al., 2011), they often fail to 48 

capture the institutional and behavioral divergence between decentralized and coordinated decision-49 

making. This study addresses these limitations by developing a finite-horizon optimal control model 50 

in which biodiversity directly enhances biomass growth and is itself affected by cumulative 51 
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degradation and stochastic ecological shocks. Within this framework, we compare three governance 52 

regimes: a non-cooperative open-loop Nash equilibrium with unconstrained terminal states (OLNE-53 

Free), a cooperative regime with fixed ecological end targets (Regulator-Fixed), and a cooperative 54 

regime with endogenously determined terminal states (Regulator-Free). These regimes are designed 55 

not as normative prescriptions but as institutional alternatives, enabling analysis of how endogenous 56 

ecological valuation and planning flexibility shape forest dynamics under ecological variability. 57 

Simulation results reveal that non-cooperative harvesters front-load extraction, neglect biodiversity’s 58 

contribution to productivity, and allow resource withdrawal to accumulate. The Regulator-Fixed 59 

scenario mitigates these tendencies through binding constraints but exhibits reduced responsiveness 60 

to ecological shifts. The Regulator-Free regime, in contrast, dynamically aligns harvesting effort with 61 

evolving ecological and economic conditions. Without overstating precision, this regime generally 62 

maintains higher biomass and biodiversity, and achieves stronger welfare outcomes. These 63 

performance differences stem from integrating biodiversity into the growth function and permitting 64 

fixable adjustments over time. While the model does not simulate specific policy instruments, the 65 

resulting shadow-price differentials offer a conceptual foundation for incentive-based strategies. A 66 

theoretical implication of the model is that the difference between cooperative and non-cooperative 67 

shadow prices can be interpreted as an implicit marginal external cost - suggesting a dynamic 68 

Pigouvian fee that adjusts over time to internalize biodiversity’s role in productivity and intertemporal 69 

scarcity. However, in practice, implementing such a tax is fraught with institutional barriers, including 70 

enforcement limitations, credit constraints, and ill-defined property rights - especially in tropical 71 

forest contexts. As such, market-based compensation mechanisms such as Payments for Ecosystem 72 

Services (PES), conservation subsidies, and forest-linked financial instruments (e.g., green or forest 73 

bonds) may offer more viable and politically palatable alternatives. These approaches align with 74 

REDD+ strategies and emerging biodiversity finance initiatives, which aim to incentivize 75 

conservation by rewarding avoided degradation rather than penalizing extraction. This analysis 76 

contributes to a growing body of work that highlights the interdependence between ecological 77 
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complexity and economic sustainability (Brock and Xepapadeas, 2002; 2003; Naeem et al., 2009; 78 

Vardas and Xepapadeas, 2010). It reinforces the view that biodiversity should be treated not only as 79 

a constraint or amenity but as a dynamic, productive input to forest systems. Governance structures 80 

that internalize ecological feedbacks and permit flexible responses to environmental variability are 81 

better positioned to support long-term sustainability. These insights are consistent with recent policy 82 

frameworks, such as those proposed by IPBES1 (Bongaarts, 2019), and underscore the importance of 83 

ecological valuation in shaping future conservation and land-use strategies. The paper is organized as 84 

follows: Section 2 reviews the relevant literature; Section 3 introduces the modeling framework and 85 

governance regimes; Section 4 presents the simulation results and policy implications; Section 5 86 

offers an in-depth discussion, followed by concluding remarks. 87 

 88 

2. Literature 89 

The economic foundations of forest harvest modeling trace back to Faustmann (1849), whose rotation 90 

rule conceptualized timber production as an intertemporal investment problem by discounting future 91 

revenues. Subsequent refinements incorporated replanting costs, variable interest rates, and fiscal 92 

instruments - demonstrating that higher establishment costs or lower discount rates prolong optimal 93 

harvest cycles, while higher interest rates accelerate them (Hyytiäinen and Tahvonen, 2003). Despite 94 

these advances, early models largely treated forest growth as deterministic and ecological complexity 95 

as exogenous. A second wave of research introduced stochasticity into the optimization framework, 96 

particularly through volatile timber prices and biological growth indeterminacy. Clarke and Reed 97 

(1989) co-modeled price and stock dynamics using geometric Brownian motion, deriving a stochastic 98 

stopping rule that balances volatility and biological growth drift. Willassen (1998) extended this 99 

approach in an impulse-control setting, while Buongiorno (2001) applied Markov decision processes 100 

 
1 IPBES: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 
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(MDPs) to simulate optimal forest policies under indeterminacy. Earlier, Lembersky (1978) 101 

demonstrated how MDPs could be used to manage forest dynamics under probabilistic transitions, 102 

laying the groundwork for discrete-state optimization. Chadès and Bouteiller (2005) further advanced 103 

this approach in multi-agent contexts, solving cooperative and competitive forest management 104 

problems using MDP frameworks. Yet, biodiversity remained absent from these models - neither as 105 

a productivity determinant nor a dynamic component of forest ecosystems. The modeling of 106 

catastrophic disturbances added further realism. Routledge (1980) and Reed (1984) showed how 107 

wildfire risk compresses optimal rotation lengths. Thorsen and Helles (1998) linked windthrow to 108 

stand structure, while Loisel (2014) incorporated storm and pest damage into stochastic frameworks. 109 

These works recognized ecological risk but continued to treat biodiversity as a passive casualty rather 110 

than a structural variable influencing stability and growth. As attention shifted to ecosystem services, 111 

forest economics began integrating non-timber values. Snyder and Bhattacharya (1990) modeled 112 

recreation benefits increasing with stand age; Swallow and Wear (1993) incorporated wildlife habitat 113 

preferences; and Koskela and Ollikainen (2000) added carbon rents in response to climate policy. 114 

Even-aged models explored optimal thinning and rotation (Haight and Monserud, 1990; Cao et al., 115 

2006; Clark, 2010), though often assuming that amenities did not affect biological growth. More 116 

flexible modeling emerged with uneven-aged and selective logging regimes. Schreuder (1971) 117 

demonstrated how continuous forest management systems - particularly under uneven-aged regimes 118 

- could be modeled using simulation, offering an alternative to traditional rotation-based approaches. 119 

Montgomery and Adams (1995) applied Hamilton-Jacobi-Bellman equations to characterize steady-120 

state logging rules under continuous effort, while Touza et al. (2008) used variational inequalities to 121 

derive dynamic harvesting strategies. Although these models allowed for natural regeneration and 122 

flexible harvesting schedules, biodiversity feedbacks continued to be treated as exogenous to biomass 123 

dynamics. Strategic interactions among multiple agents - particularly under open access or 124 

fragmented property rights - added further bioeconomic complexity. Differential game theory 125 

captured intertemporal externalities in decentralized settings (Başar and Olsder, 1999), but few 126 
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studies addressed how biodiversity-productivity linkages affect strategic equilibria. Meanwhile, 127 

ecological studies increasingly demonstrated that biodiversity enhances productivity. Tilman et al. 128 

(1996), Cardinale et al. (2012), and Brockerhoff et al. (2017) showed that species richness and 129 

structural heterogeneity improve biomass accumulation, nutrient cycling, and ecosystem stability. 130 

Ignoring these linkages risks underestimating both ecological stability and long-term economic 131 

returns. Disturbance ecology reinforces the need for stochastic modeling. Wildfires, pest outbreaks, 132 

and extreme weather degrade biodiversity and disrupt ecosystem states (Turner, 2010; Johnstone et 133 

al., 2016). Stochastic control tools - such as jump-diffusion processes (Øksendal and Sulem, 2007; 134 

Allen, 2010) and catastrophe-risk models from fisheries (Reed, 1988) - provide a foundation for 135 

simulating abrupt ecological shocks and flexible responses. Despite these conceptual advances, most 136 

forest models still do not endogenize biodiversity within the growth process, nor do they simulate 137 

cooperative and non-cooperative governance or account for strategic behavior. Recent work by 138 

Agliardi et al. (2024), which examines biodiversity preservation under ambiguity, irreversibility, and 139 

regulatory constraints, offers a complementary perspective that moves in the direction of more 140 

integrated ecological-economic modeling. Our study addresses that gap by building a dynamic model 141 

in which biodiversity enters the biomass growth function and is itself vulnerable to cumulative 142 

harvesting and stochastic shocks, modeled as a compound Poisson process. We compare three 143 

governance regimes - non-cooperative with free terminal states (OLNE-Free), cooperative with fixed 144 

terminal constraints (Regulator-Fixed), and cooperative with endogenous terminal conditions 145 

(Regulator-Free) - applying Pontryagin’s Maximum Principle to derive optimal and Nash strategies 146 

(Corriga et al., 1988; Xepapadeas, 2022). The model reveals how biodiversity influences forest 147 

dynamics and long-term outcomes through its role in the growth process and its exposure to 148 

cumulative harvesting and ecological shocks. The resulting divergence between cooperative and non-149 

cooperative shadow values provides a theoretical foundation for policy-relevant instruments. 150 

 151 
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3. The model 152 

This study develops a bio-economic framework to model the dynamic interactions between biomass 153 

harvesting, biodiversity conservation, and forest ecosystem sustainability within a spatially 154 

homogeneous environment. We consider a finite number of rational agents 𝑖 = 1, . . . , 𝑛, each 155 

maximizing their own profit by harvesting biomass 𝑢𝑖(𝑡) over a finite planning horizon. The spatial 156 

homogeneity assumption implies that biomass and biodiversity are uniformly distributed across the 157 

forest, enabling the use of aggregate state variables without spatial disaggregation. 158 

The natural growth dynamics of standing biomass 𝑥(𝑡) are initially articulated using a generalized 159 

nonlinear function: 160 

𝐹(𝑥) = 𝛼𝑥(𝑡) + 𝛽𝑥(𝑡)(𝜃 + 1)    (1) 161 

In alignment with classical population ecology modeling, we simplify this representation by setting 162 

𝜃 = 1, thereby reducing it to a form resembling the logistic growth equation. Re-expressing 163 

parameters, we define 𝛼 = 𝑟(𝐵) and 𝛽 =
𝑟(𝐵)

𝐾
, with 𝐾 denoting the carrying capacity of the forest 164 

ecosystem. This leads to the logistic growth model: 165 

𝑥̇(𝑡) =  𝑟(𝐵)𝑥(𝑡) (1 −
𝑥(𝑡)

𝐾
 ) −∑ 𝑢𝑖(𝑡)

𝑛

𝑖=1
, (2) 166 

where 𝑟(𝐵(𝑡)) is the intrinsic biomass growth rate, which depends positively on the ecological index 167 

𝐵(𝑡) encompassing biodiversity and broader ecosystem functionality. 168 

The formulation of biodiversity’s contribution to ecosystem productivity has been a subject of 169 

considerable research. Tilman et al. (1996) introduced a saturating functional form to describe how 170 

ecosystem productivity increases asymptotically with species richness. Loreau and Hector (2001) 171 

identified two primary mechanisms - complementarity and selection effects - that reinforce 172 

biodiversity’s role in promoting ecosystem functioning. Cardinale et al. (2012) synthesized empirical 173 

findings across ecosystems, supporting a nonlinear, concave relationship between biodiversity and 174 



8 
 

ecosystem services. In line with these insights, we model biodiversity’s effect on biomass growth 175 

using a power-law function to capture the diminishing returns of biodiversity on forest productivity. 176 

Specifically, the intrinsic growth rate is defined as: 177 

𝑟(𝐵) =  𝐴𝐵𝜁 , 0 <  𝜁 ≤  1,     (3) 178 

where 𝐴 > 0 is a scaling coefficient and 𝜁 ∈ (0,1]  shapes how productivity changes with 179 

biodiversity. This specification captures that increases in biodiversity tend to enhance productivity, 180 

especially at lower diversity levels, though the rate of improvement may vary and is not necessarily 181 

strongly diminishing as biodiversity increases. 182 

The biodiversity metric 𝐵(𝑡) evolves dynamically, representing both the regenerative capacity of the 183 

forest ecosystem and the cumulative effects of harvesting, which together influence productivity in 184 

complex ways (Baumgärtner, 2006). Its dynamics are modeled as: 185 

𝐵̇(𝑡) = 𝐺(𝐵(𝑡), 𝑍(𝑡)),    (4) 186 

where the function 𝐺 captures the dynamics of biodiversity growth in response to ecological factors 187 

and cumulative harvesting. It is constructed to satisfy key ecological and economic properties. 188 

Specifically, biodiversity growth increases with species richness (
𝜕𝐺

𝜕𝐵
 >  0), though at a diminishing 189 

rate (
𝜕2𝐺

𝜕𝐵2
≤ 0), reflecting ecological saturation effects. Conversely, cumulative harvesting negatively 190 

affects biodiversity growth (
𝜕𝐺

𝜕𝑍
<  0), with the marginal impact decreasing as harvesting intensity 191 

rises (
𝜕2𝐺

𝜕𝑍2
≥ 0), capturing potential robustness or threshold effects. The function is further constrained 192 

by boundary conditions: biodiversity growth ceases as cumulative harvesting reaches an upper limit 193 

𝑍̅ or as species richness approaches a saturation threshold 𝐵̅, i.e., lim
𝑍→𝑍

𝐺(𝐵(𝑡), 𝑍(𝑡)) = 0 and 194 

lim
𝐵→𝐵̅

𝐺(𝐵(𝑡), 𝑍(𝑡)) = 0. Collectively, these properties ensure that the function realistically represents 195 

the trade-offs between harvesting pressure and biodiversity sustainability, allowing for growth under 196 

moderate conditions but signaling collapse under excessive exploitation. 197 
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Disturbance ecology recognizes that biodiversity can experience sudden, discontinuous losses 198 

triggered by fires, wind‑throws, pest outbreaks, or pathogen incursions (Turner, 2010; Johnstone et 199 

al., 2016). To model such pulse events, a compound Poisson jump term can be incorporated into the 200 

biodiversity state equation as follows: 201 

𝐵̇(𝑡) =  𝐺(𝐵(𝑡−), 𝑍(𝑡−))𝑑𝑡 −  𝑘 𝑁𝑡̇  ,      (5) 202 

where 𝑁𝑡̇   is a Poisson process representing the occurrence of jump events, and 𝑘 denotes the average 203 

loss in biodiversity per event (Allen, 2010). The left-limit notation 𝑡− indicates that the jumps occur 204 

instantaneously, affecting the state just prior to the jump. Since the biomass growth rate - for example, 205 

𝑟(𝐵) =  𝐴𝐵𝜁 - is evaluated at the post-jump state, stochastic shocks are instantaneously incorporated 206 

into the logistic biomass growth equation (1), precipitating an immediate decline in productivity that 207 

endures until biodiversity is restored. This jump specification augments the continuous diffusive noise 208 

employed in other ecological models (Lande, 1993) and aligns with empirical evidence indicating 209 

that forest disturbances manifest as infrequent yet severe pulses, rather than as minor, recurrent 210 

fluctuations. In expectation, the Poisson jump component contributes an additive drift correction to 211 

equation (4), yielding equation (5), while the jumps concurrently modulate the Hamiltonian via their 212 

influence on the state–costate dynamics, all of which may be formulated within a deterministic or 213 

open-loop control framework that explicitly eschews reliance on martingale or arbitrage arguments. 214 

To facilitate analytical tractability, this study adopts the simplifying assumption of a constant jump 215 

intensity, denoted by 𝜛 and a fixed mean loss per event, 𝑘. Under these assumptions, the expected 216 

drift in biodiversity dynamics can be expressed as 217 

𝐵̇(𝑡) =  𝐺(𝐵(𝑡), 𝑍(𝑡)) −  𝜛. 𝑘,     (6) 218 

where the term 𝜛. 𝑘 represents the average instantaneous reduction in biodiversity due to jump events. 219 

quantifies the average instantaneous reduction in biodiversity attributable to jump events. This 220 

formulation captures the net effect of stochastic shocks on the system while preserving model 221 

simplicity. 222 
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Here, the growth function is specified linearly as 223 

𝐺(𝐵(𝑡), 𝑍(𝑡)) = 𝑔𝐵(𝑡) − 𝛿𝑍(𝑡). 224 

Substituting this expression into equation (6) yields: 225 

𝐵̇(𝑡) =  𝑔𝐵(𝑡) − 𝛿𝑍(𝑡) −  𝜛. 𝑘,        (7) 226 

with 𝑔 > 0 and 𝛿 representing the sensitivity of biodiversity to external pressures. This linear 227 

formulation preserves analytical clarity while providing sufficient flexibility to capture essential 228 

ecological interactions subject to stochastic perturbations. 229 

The cumulative harvest 𝑍(𝑡) records total biomass removed, increasing with harvests and decreasing 230 

as past extraction impacts fade, modeled as 231 

𝑍̇(𝑡) =∑𝑢𝑖(𝑡) − 𝛾𝑍(𝑡)

𝑛

𝑖=1

,            (8) 232 

where 𝛾 represents the decay rate of historical extraction effects on biodiversity. Each harvester 𝑖 233 

maximizes their individual discounted profit: 234 

𝜋 = max
𝑢𝑖

∫ 𝑒−𝜌𝑡[𝑝(𝑡)𝑢𝑖(𝑡) − 𝐶(𝑢𝑖(𝑡))]𝑑𝑡
∞

0

,        (9) 235 

In this formulation, 𝑝(𝑡) represents the price of biomass, while 𝐶(𝑢𝑖(𝑡)) denotes a convex cost 236 

function, such as a quadratic function, that captures the increasing marginal costs associated with 237 

harvesting. The parameter 𝜌 signifies the discount rate. This mathematical representation reflects the 238 

temporal value of profits, acknowledging that future earnings are intrinsically less valuable than 239 

present earnings due to the discount factor 𝑒−𝜌𝑡. 240 

The corresponding Hamiltonian for each harvester in the open-loop Nash framework is: 241 

𝐻 = 𝑝(𝑡)𝑢𝑖(𝑡) − 𝐶(𝑢𝑖(𝑡)) + 𝜆𝑖 [𝑟(𝐵(𝑡))𝑥(𝑡) (1 −
𝑥(𝑡)

𝐾
 ) − 𝑢𝑖(𝑡) −∑𝑢̅𝑗(𝑡)

𝑛

𝑗≠𝑖

]242 

+ 𝜇𝑖[𝑔𝐵(𝑡) − 𝛿𝑍(𝑡) −  𝜛. 𝑘] + 𝜈𝑖 [𝑢𝑖(𝑡) +∑𝑢̅𝑗(𝑡)

𝑛

𝑗≠𝑖

− 𝛾𝑍(𝑡)],    (10) 243 
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Applying Pontryagin’s Maximum Principle, the first-order condition yields the optimal control: 244 

𝑢𝑖
∗(𝑡) =

𝑝(𝑡) − 𝜆𝑖 + 𝑣𝑖
𝛼𝐶𝑖

.      (11) 245 

Under the assumption of symmetric harvesting, substituting Eq. (11) into the system dynamics and 246 

costate evolution equations yields the system of differential equations describing the Nash 247 

equilibrium: 248 

{
 
 
 
 
 

 
 
 
 
 𝑥̇(𝑡) = 𝑟(𝐵(𝑡)) (1 −

𝑥(𝑡)

𝐾
) − 𝑛

𝑝(𝑡) − 𝜆 + 𝑣

𝛼𝐶
𝐵̇(𝑡) = 𝑔𝐵(𝑡) − 𝛿𝑍(𝑡) −  𝜛. 𝑘

𝑍̇(𝑡) = 𝑛
𝑝(𝑡) − 𝜆 + 𝑣

𝛼𝐶
− 𝛾𝑍(𝑡)

𝜆̇ =  𝜌𝜆 − (𝜆𝑟(𝐵(𝑡)) (1 −
2𝑥(𝑡)

𝐾
))

𝜇̇ =  𝜌𝜇 − (𝜆𝑟′(𝐵(𝑡))𝑥(𝑡) (1 −
𝑥(𝑡)

𝐾
) + 𝜇𝑔)

𝑣̇ =  𝜌𝑣 − (−𝛿𝜇 − 𝛾𝑣)

     (12) 249 

In the cooperative scenario, a regulator maximizes total discounted welfare: 250 

𝑊 = max
𝑢𝑖

∫ 𝑒−𝜌𝑡 (∑ [𝑝(𝑡)𝑢𝑖(𝑡) − 𝐶(𝑢𝑖(𝑡))]
𝑛

𝑖=1
+ V1(𝐵(𝑡)) + V2(𝑥(𝑡)))

∞

0

𝑑𝑡 ,    (13) 251 

where V1(𝐵(𝑡)) and V2(𝑥(𝑡)) represent the societal value attributed to biodiversity and the standing 252 

biomass, respectively. These functions are assumed concave and increasing, capturing diminishing 253 

marginal valuation and the importance of conserving higher biodiversity levels and biomass stocks. 254 

Consequently, the current-value Hamiltonian capturing the regulator’s objective is: 255 

𝐻 =∑ [𝑝(𝑡)𝑢𝑖(𝑡) − 𝐶(𝑢𝑖(𝑡))] + V1(𝐵(𝑡)) + V2(𝑥(𝑡))
𝑛

𝑖=1
256 

+ 𝜆𝑖 [𝑟(𝐵)𝑥(𝑡) (1 −
𝑥(𝑡)

𝐾
 ) − 𝑢𝑖(𝑡) −∑𝑢̅𝑗(𝑡)

𝑛

𝑗≠𝑖

] + 𝜇𝑖[𝑔𝐵(𝑡) − 𝛿𝑍(𝑡) −  𝜛. 𝑘]257 

+ 𝑣𝑖 [𝑢𝑖(𝑡) +∑𝑢̅𝑗(𝑡)

𝑛

𝑗≠𝑖

− 𝛾𝑍(𝑡)],     (14) 258 

Under symmetry, the optimal control remains: 259 
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𝑢𝑖
∗(𝑡) =

𝑝(𝑡) − 𝜆𝑖 + 𝑣𝑖
𝛼𝐶𝑖

. (15) 260 

The costate equations in the cooperative case incorporate the marginal societal valuations: 261 

{
 
 

 
 𝜆̇ =  𝜌𝜆 − (𝑉2

′(𝑥(𝑡)) + 𝜆𝑟(𝐵(𝑡)) (1 −
2𝑥(𝑡)

𝐾
))

𝜇̇ =  𝜌𝜇 − (𝑉1
′(𝐵(𝑡)) + 𝜆𝑟′(𝐵(𝑡))𝑥(𝑡) (1 −

𝑥(𝑡)

𝐾
) + 𝑔𝜇)

𝑣̇ =  𝜌𝑣 − (−𝛿𝜇 − 𝛾𝑣)

   (16) 262 

Consequently, the subsequent ODE system is to be solved: 263 

{
 
 
 
 
 

 
 
 
 
 𝑥̇(𝑡) = 𝑟(𝐵(𝑡)) (1 −

𝑥(𝑡)

𝐾
) − 𝑛

𝑝(𝑡) − 𝜆 + 𝑣

𝛼𝐶
𝐵̇(𝑡) = 𝑔𝐵(𝑡) − 𝛿𝑍(𝑡) −  𝜛. 𝑘

𝑍̇(𝑡) = 𝑛
𝑝(𝑡) − 𝜆 + 𝑣

𝛼𝐶
− 𝛾𝑍(𝑡)

𝜆̇ =  𝜌𝜆 − (𝑉2
′(𝑥(𝑡)) + 𝜆𝑟(𝐵(𝑡)) (1 −

2𝑥(𝑡)

𝐾
))

𝜇̇ =  𝜌𝜇 − (𝑉1
′(𝐵(𝑡)) + 𝜆𝑟′(𝐵(𝑡))𝑥(𝑡) (1 −

𝑥(𝑡)

𝐾
) + 𝑔𝜇)

𝑣̇ =  𝜌𝑣 − (−𝛿𝜇 − 𝛾𝑣)

     (17) 264 

The coupled systems (12) and (17) represent two control problems that are approximated by taking 265 

expectations over the jump distribution and applying a scenario-based shooting algorithm, which 266 

ensures rapid convergence for moderate jump intensities while preserving the accuracy of the 267 

deterministic framework (Kushner, 1990; Seyedi, 2010; Xepapadeas, 2022). These systems are 268 

numerically solved using suitable software (e.g., Mathematica’s NDSolve) with a stiffness-switching 269 

solver and high working precision to accurately capture the nonlinear dynamics (Seyedi et al., 2018). 270 

Depending on the modeling context, terminal conditions are imposed either as fixed states (e.g., 271 

prescribed 𝑥(𝑇), 𝐵(𝑇)) or as free costate variables (e.g., (𝑇)  =  0, 𝜇(𝑇)  =  0, 𝑣(𝑇)  =  0), reflecting 272 

the presence or absence of boundary constraints such as regulatory policies. The shooting method is 273 

employed to iteratively adjust initial costates to satisfy these terminal conditions. To evaluate the 274 

robustness of the model’s outcomes, a comprehensive sensitivity analysis is performed by 275 

systematically varying key parameters (𝛿, 𝑔, 𝜌, 𝛾, 𝑝,𝜛𝑘) to examine their influence on optimal 276 
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harvesting trajectories, ecosystem stability, and long-term welfare outcomes (see Appendix A). 277 

Under the usual ecological-economics assumptions – strictly positive parameters, interior initial 278 

stocks, and an ecologically feasible domain – the six-dimensional forward–backward systems defined 279 

in equations (12) and (17), which govern biomass, biodiversity, cumulative harvest, and their shadow 280 

prices, form a deterministic Pontryagin system that is well posed and produces a unique solution for 281 

given starting conditions. Because the biological components – logistic growth for biomass, linear 282 

regeneration for biodiversity, and exponential decay for cumulative harvest - are continuous and 283 

locally Lipschitz within the feasible domain, the Picard–Lindelöf theorem ensures that a unique local 284 

trajectory exists from any admissible starting point. In addition, the system is globally bounded. 285 

Linear growth bounds and inward-pointing vector fields ensure that, over the finite time horizon, the 286 

state variables remain uniformly bounded within the ecological domain, consistent with the saddle-287 

point structure of the underlying dynamics (Lee and Haddad, 2021). This is formally supported using 288 

Grönwall’s lemma and Nagumo’s viability criterion, which together guarantee that solutions do not 289 

blow up in finite time and remain ecologically meaningful (Nagumo, 1942; Hale and Koçak, 1991; 290 

Teschl, 2012). The inclusion of costate equations – linear in the Nash system (12), affine in the planner 291 

system (17) – preserves Lipschitz continuity, so the overall forward–backward system inherits the 292 

same global existence guarantees. Continuous dependence on initial costates also ensures that the 293 

multiple-shooting algorithms used to satisfy transversality conditions are well behaved (Bryson, 294 

2018). A local analysis around the steady state indicates that, under typical parameter values – such 295 

as a discount rate higher than ecological regeneration and cumulative impact rates, and moderate 296 

biodiversity feedbacks –s the system behaves in a locally stable manner when guided by the optimal 297 

control path over the finite time horizon (Khalil, 2002). This structure supports numerical stability as 298 

well: A-stable backward-differentiation solvers, such as those used by Mathematica’s NDSolve(), 299 

accurately capture the system’s decay behavior over time (Hairer et al., 1993; Hairer and Wanner, 300 

1996). In the context of a shooting method, the contraction property of the boundary-matching map 301 

supports robust and efficient convergence of the numerical solution (Stoer and Bulirsch, 2002). These 302 
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properties ensure that, for any feasible initial condition, the system remains well behaved over the 303 

entire time horizon, providing a rigorous foundation for the policy simulations and comparative-static 304 

insights developed in the article. 305 

 306 

4. Results 307 

This study develops a finite-horizon optimal control analysis of a coupled biomass–biodiversity–308 

harvest system, emphasizing the influence of key ecological and economic parameters-including the 309 

stochastic disturbance intensity 𝜛𝑘 - on dynamic trajectories. Each parameter (𝛿, 𝑔, 𝜌, 𝛾, 𝑝,𝜛𝑘) 310 

governs the intertemporal allocation of value across state variables. Numerical simulations were 311 

performed in Wolfram Mathematica 14.2 using NDSolve with stiffness-adaptive solvers, 14-digit 312 

working precision, and adaptive time meshes to ensure numerical convergence. All runs begin from 313 

the initial condition (𝑥0, 𝐵0, 𝑍0) = (500, 10, 0.1) . Free-boundary cases adopt transversality 314 

conditions 𝜆(20) = 𝜇(20) = 𝑣(20) = 0, while fixed-boundary runs enforce 𝑥(20) = 400, 𝐵(20) =315 

150, and 𝑍(20) = 10. Convergence was validated through mesh refinement and residual norm 316 

diagnostics, ensuring stability under all tested scenarios. 317 

Fig. 1 presents state and costate trajectories under stochastic biodiversity shocks (𝜛𝑘 = 0.1). Panels 318 

a–c display the evolution of ecological states. Panel a shows that live biomass declines most rapidly 319 

under the non-cooperative free-terminal regime (OLNE-Free). Cooperative fixed-terminal 320 

governance (Reg-Fixed) sustains higher biomass levels throughout the time horizon. The cooperative 321 

free-terminal regime (Reg-Free) exhibits the slowest decline and maintains the highest biomass levels 322 

by the end of the period, although in all cases, biomass remains below initial levels. Panel b shows 323 

the biodiversity index 𝐵(𝑡), which increases under all regimes. The cooperative free-terminal regime 324 

(Reg-Free) yields the highest biodiversity by the end, with a steep upward trend. OLNE–Free and 325 

Reg–Fixed also show clear improvement, with OLNE–Free slightly outperforming Reg–Fixed later 326 

in the period. While all regimes support recovery, the pace and extent vary by governance. Panel c 327 
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shows cumulative harvesting 𝑍(𝑡). Reg–Fixed follows an inverted-U pattern, with rapid early harvest 328 

that declines after the midpoint. OLNE–Free rises quickly at first, then levels off. Reg–Free increases 329 

steadily throughout, ending with the highest total harvest. These patterns reflect distinct strategies: 330 

early intensive use under Reg–Fixed, front-loaded harvesting in OLNE–Free, and gradual, sustained 331 

use in Reg–Free. Panels d–f show the evolution of costate variables. In Panel d, the biomass 332 

multiplier 𝜆(𝑡) is higher under cooperative regimes, especially Reg–Fixed, reflecting internalized 333 

harvest externalities. Panel E shows the biodiversity shadow price 𝜇(𝑡): it stays flat and negative 334 

under OLNE–Free, rises from strongly negative under Reg–Fixed, and declines from a high positive 335 

value under Reg–Free. Panel F displays the terminal multiplier 𝑣(𝑡): Reg–Fixed starts high and drops 336 

sharply into negative territory, Reg–Free rises from a large negative value toward zero, and OLNE–337 

Free stays flat and slightly positive, consistent with a non-binding terminal condition. 338 

Fig. 2 displays the control and performance outcomes under each regime. Panel a shows that the non-339 

cooperative OLNE-Free regime applies a constant harvest rate, lacking any dynamic adjustment. Reg-340 

Fixed begins with aggressive extraction that steadily declines, while Reg-Free follows a time-varying 341 

harvest profile - effort rises through the first half of the period and then tapers off. Panel b highlights 342 

the welfare implications: both cooperative regimes significantly outperform OLNE-Free in 343 

cumulative discounted benefits, with Reg-Free achieving the highest total by a small margin. These 344 

results underscore the long-term gains of coordinated strategies that adjust harvest effort over time. 345 

Fig. A1 illustrates the local sensitivity of biomass and biodiversity to key structural parameters under 346 

three governance regimes. Panels a and b display the OLNE-Free case, Panels c and d correspond 347 

to the Regulator-Fixed regime, and Panels e and f present the Regulator-Free regime. Each curve 348 

represents the partial derivative of a state variable – biomass 𝑥(𝑡) in the left column and biodiversity 349 

𝐵(𝑡) in the right column - with respect to one of six parameters: cumulative impact coefficient 𝛿, 350 

biodiversity growth rate 𝑔, discount rate 𝜌, natural recovery rate 𝛾, biomass price 𝑝, and stochastic 351 

disturbance intensity 𝜛𝑘, computed using centered-difference approximations along the baseline 352 
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solution paths. Panel a shows that under OLNE-Free, biomass is highly negatively sensitive to 353 

increases in 𝛿, 𝜌, 𝑝, and particularly 𝜛𝑘, all of which accelerate ecological decline. In contrast, 354 

positive sensitivity is observed with respect to 𝑔 and 𝛾, indicating that regenerative processes partially 355 

offset degradation. Panel b reveals similar trends for biodiversity: sharp negative responses to 𝛿 and 356 

𝜛𝑘, moderate declines with 𝑝, and strong positive influence from 𝑔, while 𝑝 and 𝛾 exhibit weak or 357 

negligible effects. Together, Panels a and b highlight the ecological vulnerability of non-cooperative 358 

management to both biophysical and economic stressors. Panels c and d depict the Regulator-Fixed 359 

regime, where biomass and biodiversity sensitivities become more complex due to the influence of 360 

terminal constraints. In Panel c, biomass responses to 𝛿, 𝑔, 𝛾 and are non-monotonic and oscillatory 361 

over time, reflecting the interaction between dynamic effort control and fixed end conditions. In Panel 362 

d, biodiversity shows a bell-shaped positive sensitivity to the cumulative impact coefficient 𝛿, 363 

peaking mid-horizon. The growth rate 𝑔 exhibits a U-shaped negative pattern, while recovery 𝛾 364 

remains consistently negative. Stochastic disturbance 𝜛𝑘 shows a mild but steady positive effect. 365 

Sensitivities to the discount rate 𝜌 and biomass price 𝑝 are negligible throughout. Panels e and f 366 

present the Regulator-Free case, where sensitivity profiles appear more stable and dampened. Panel 367 

e shows that biomass is positively responsive to 𝛿 and 𝛾, while 𝑔 and 𝜌 exert consistently negative 368 

influence. The effect of 𝑝 and 𝜛𝑘 remains weak and nearly flat throughout the horizon. In Panel f, 369 

biodiversity shows a strong and rising positive sensitivity to growth rate 𝑔. Sensitivity to 𝛿, 𝜌, and 370 

𝜛𝑘 is consistently negative but less volatile than in other earlier regimes. Recovery 𝛾 has a stable 371 

positive effect, while biomass price 𝑝 remains minimally influential. Taken together, Panels a–f 372 

illustrate that system sensitivity is strongly influenced by institutional design. OLNE-Free (Panels a–373 

b) displays the greatest ecological exposure, with large, monotonic sensitivities to multiple 374 

parameters. Regulator-Fixed (Panels c–d) shows constraint-driven oscillations and non-monotonic 375 

behavior, especially near terminal time. Regulator-Free (Panels e–f) yields smoother, more 376 
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symmetric, and generally attenuated responses across parameters - indicating enhanced robustness 377 

and dynamic flexibility in response to structural changes. 378 

Figs. 1–2 and Fig. A1 show that cooperative governance - especially with free-terminal conditions - 379 

improves biomass, biodiversity, and welfare, while reducing sensitivity to structural parameters. 380 

Regulator-Free yields stable responses across drivers, whereas OLNE-Free shows strong, 381 

destabilizing effects. Cooperation thus supports both performance and ecological stability under 382 

change. 383 

 384 

4.1.Policy Implications 385 

The results reveal a persistent divergence between individual and socially optimal harvesting 386 

behavior, particularly under the non-cooperative free-terminal regime (OLNE-Free). As shown in 387 

Fig. 1 (Panels a–c), private harvesters deplete biomass rapidly and underinvest in biodiversity 388 

recovery, failing to internalize long-term ecological trade-offs. This behavioral misalignment is 389 

captured in the costate dynamics (Panels d–f), where cooperative regimes assign higher shadow 390 

values to ecological states. Specifically, the cooperative biomass multiplier 𝜆(𝑡) exceeds its non-391 

cooperative counterpart throughout the horizon, reflecting stronger incentives for conservation under 392 

centralized planning. To address this gap, we propose a time-varying Pigouvian tax defined as 𝜏(𝑡) =393 

𝜆𝑅𝑒𝑔(𝑡) − 𝜆𝑂𝐿𝑁𝐸(𝑡), levied per unit of harvested biomass. This tax would align private harvesting 394 

with social valuations, internalizing ecological externalities in real time. 395 

As Fig. 2 (Panels a and b) demonstrates, cooperative regimes dynamically adjust harvest effort and 396 

achieve higher cumulative welfare. Under stochastic disturbance (𝜛𝑘 = 0.1), OLNE-Free maintains 397 

a constant harvesting rate and performs poorly, while cooperative regimes strategically delay 398 

extraction - helping stabilize biomass and biodiversity as shown in Fig. 1, and boosting total returns 399 

as shown in Fig. 2. Accordingly, 𝜏(𝑡) should serve not only as a shadow-price correction, but also as 400 

an ecological risk adjustment during periods of ecological volatility. 401 
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 419 

Fig. 1. Temporal Dynamics of States, and Shadow Prices in the Coupled Biomass–Biodiversity–420 
Harvest System. Time evolution of state, and costate under three policy regimes: non-cooperative 421 
with free terminal conditions (OLNE-Free), cooperative regulation with fixed terminal targets (Reg-422 
Fixed), and cooperative regulation with free endpoints (Reg-Free). Panels (A)–(C) show the 423 
trajectories of biomass 𝑥(𝑡), biodiversity 𝐵(𝑡), and cumulative harvest 𝑍(𝑡), respectively. Panels 424 
(D)–(F) depict the corresponding shadow prices: biomass multiplier 𝜆(𝑡), biodiversity multiplier 425 
𝜇(𝑡), and terminal stock multiplier 𝜈(𝑡). Simulations use the following parameters: 𝑔 = 0.2, 𝛾 =426 
0.3, 𝐴 = 2 × 10⁻⁵, 𝜁 = 1, 𝐾 = 1000, 𝜌 = 0.01, 𝑝 = 40, 𝑛 = 15, 𝛿 = 0.1, 𝛼𝐶 = 100, with initial 427 
conditions (𝑥0, 𝐵0, 𝑍0) = (500,10,0.1). Fixed-boundary simulations impose terminal constraints 428 
(𝑥𝑓 , 𝐵𝑓, 𝑍𝑓) = (400,150,10) at horizon 𝑇 =  20. 429 
 430 

 431 
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 438 

 439 

Fig. 2. Optimal harvest strategies and cumulative objective values under alternative governance 440 
regimes. Panel A shows the time path of the optimal harvest rate 𝑢∗(𝑡) for each regime. Panel B 441 
displays the corresponding cumulative present-value objective function aggregated up to time 𝑡. All 442 
simulations use the same parameter set and boundary conditions as in Fig. 1, with consistent linestyle 443 
conventions applied across panels. 444 
 445 

Fig. A1 further reinforces this design. It shows that biomass and biodiversity exhibit regime-446 

dependent sensitivity, with particularly strong responses to cumulative impact coefficient (𝛿) and 447 

biodiversity growth rate (𝑔). OLNE-Free (Panels a–b) exhibits large, monotonic sensitivity profiles, 448 

indicating high ecological fragility. Regulator-Fixed (Panels c–d) shows non-monotonic shifts tied 449 

to terminal constraints, while Regulator-Free (Panels e–f) demonstrates smoother, more stable 450 

responses. These findings suggest that 𝜏(𝑡) should be state-contingent, rising in response to increased 451 

sensitivity, ecological fragility, or slowing biodiversity improvement. Incentive-based instruments - 452 

such as conservation subsidies, PES schemes, or ecological performance bonds - can operationalize 453 

these insights. For instance, a subsidy mechanism of the form ∑𝑝(𝑡)(𝑢𝑅𝑒𝑔
∗ (𝑡) − 𝑢𝑂𝐿𝑁𝐸

∗ (𝑡)), where 454 

𝑢𝑅𝑒𝑔
∗ (𝑡) is the cooperative effort and 𝑢𝑂𝐿𝑁𝐸

∗ (𝑡) is noncooperative behavior, would compensate agents 455 

who harvest less than privately optimal levels, reflecting the value of cooperation. Such instruments 456 

are particularly relevant where regulatory enforcement is limited or property rights are contested. 457 

More broadly, the findings support a shift toward flexible, context-sensitive governance tools that 458 

respond to ecological dynamics and structural indeterminacy. Cooperative regimes that adjust effort 459 

Objectives 
a) b) 

Controls 
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endogenously - particularly under free-terminal designs - offer a path to long-term sustainability. By 460 

stabilizing harvest trajectories and mitigating ecological shocks, such policies help reconcile 461 

individual use with collective ecological sustainability. 462 

 463 

5. Discussion and final remarks 464 

The present analysis explores the dynamic interplay between biomass, biodiversity, and harvesting 465 

activities within an abstract forest ecosystem, emphasizing the critical role of governance regimes in 466 

shaping ecological and economic trajectories. By employing a well-grounded and structurally rich 467 

modeling framework, this study highlights fundamental descriptive patterns that transcend specific 468 

parameter values, consistent with established theoretical bioeconomic modeling principles (Clark, 469 

2010). This approach allows for robust insights into how biodiversity-dependent productivity 470 

influences ecosystem functionality, reflecting existing knowledge that diverse species assemblages 471 

enhance both biomass yield and system stability (Tilman et al., 1996; Cardinale et al., 2012). A central 472 

finding is that governance structures that internalize the ecological contributions of biodiversity 473 

outperform non-cooperative management in sustaining ecosystem stocks and promoting long-term 474 

welfare. Cooperative regimes, through their explicit recognition of biodiversity’s role in ecosystem 475 

growth, maintain higher biomass levels over time and foster more robust biodiversity recovery. This 476 

sustained ecological stock not only buffers the system against stochastic disturbances but also 477 

translates into significantly improved welfare outcomes, even when welfare functions are 478 

conservatively specified to avoid contentious valuations (Barbier, 2011; Costanza et al., 2014). The 479 

qualitative superiority of such cooperative management underscores the importance of integrating 480 

ecological capital into economic decision-making frameworks. The study further elucidates the 481 

mechanisms underlying these outcomes by examining the shadow prices associated with biomass and 482 

biodiversity. These costate variables reveal the implicit values assigned to ecological stocks under 483 

different governance regimes, with cooperative systems consistently attributing higher scarcity values 484 
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to biomass. This valuation gap between private and social optima suggests the need for corrective 485 

economic instruments that can bridge behavioral divergences. Drawing on foundational optimal 486 

control theory and classical resource taxation literature (Reed, 1979), a dynamic, state-contingent 487 

Pigouvian tax emerges as a theoretically sound and practically relevant policy tool. Such a tax, by 488 

reflecting the evolving marginal scarcity of ecological assets, incentivizes harvesters to adjust their 489 

efforts in a manner that aligns private incentives with collective ecological sustainability. Sensitivity 490 

analyses highlight the nuanced ways in which ecological and economic parameters interact with 491 

governance structures to influence system dynamics. Cooperative regimes demonstrate flexible 492 

responses to increased cumulative impact coefficient and biodiversity growth rates, reducing harvest 493 

efforts when ecological stress intensifies and capitalizing on growth opportunities when conditions 494 

improve. In contrast, non-cooperative management tends to exacerbate ecological fragility by 495 

maintaining or increasing harvest pressure under stress, thereby weakening ecosystem stability. These 496 

findings resonate with broader theoretical insights into the vulnerability of unpriced natural capital to 497 

shocks and the challenges posed by discounting future ecological benefits (Dasgupta, 2021). 498 

Importantly, cooperative governance exhibits greater flexibility in adjusting harvest trajectories over 499 

time, mitigating the adverse effects of high discount rates and enhancing intertemporal sustainability. 500 

Institutional design emerges as a pivotal factor in balancing sustainability and flexibility. Fixed 501 

terminal constraints provide clear sustainability targets but may limit responsiveness in the face of 502 

environmental variability and indeterminacy. Conversely, governance frameworks that allow for 503 

endogenous determination of terminal states promote dynamic adjustment and responsiveness to 504 

evolving ecological conditions, reducing inefficiencies associated with rigid mandates (Seierstad and 505 

Sydsæter, 1987). This flexibility aligns with contemporary governance paradigms advocating 506 

polycentric, context-sensitive approaches that empower local actors to respond to ecological feedback 507 

through economic incentives rather than top-down controls (Ostrom, 2009; Arjomandi et al., 2022; 508 

2024). Moreover, systems that accommodate ecological variability enhance robustness, as shown by 509 

our model’s treatment of biodiversity disturbances (Tilman et al., 2006; Hong et al., 2021; Oliveira et 510 
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al., 2022). The practical implementation of flexible, incentive-based instruments such as the proposed 511 

Pigouvian tax requires real-time ecological monitoring and robust data integration. Recent 512 

technological advances enable more timely and detailed ecological monitoring, supporting the 513 

development of flexible and transparent regulatory approaches (Bush et al., 2017). However, while 514 

the model provides a theoretical foundation for time-varying pricing derived from shadow-value 515 

differentials (Reed, 1979), direct implementation of such pricing mechanisms often faces institutional 516 

challenges. Difficulties in monitoring resource use, assigning responsibility, and enforcing ecological 517 

obligations can limit the practical application of dynamic fees (Tilman et al., 2006; Ostrom, 2009; 518 

Hong et al., 2021; Oliveira et al., 2022; Arjomandi et al., 2022; 2024). These findings suggest that 519 

while the tax can follow a known optimal time path, its implementation may still require state-520 

dependent adjustments to account for ecological sensitivity, fragility, or biodiversity changes. 521 

Incentive-based tools - such as conservation subsidies, Payments for Ecosystem Services (PES), or 522 

ecological performance bonds - can translate these principles into practice by rewarding cooperative 523 

behavior that limits harvesting below private optimal levels, thus capturing the value of cooperation. 524 

These mechanisms, by focusing on compensating conservation actions rather than penalizing 525 

resource extraction, offer particularly suitable alternatives in governance settings constrained by 526 

enforcement capacity or contested property rights (Baumgärtner and Quaas, 2010; Farley and 527 

Costanza, 2010; Wunder, 2015). To further enhance the modeling framework, future research could 528 

incorporate disturbance intensity as an endogenous function of ecological state variables - for 529 

example, increasing vulnerability to shocks as forest biomass declines. This extension would capture 530 

critical feedback loops between ecosystem degradation and disturbance exposure. Moreover, 531 

integrating environmental stressors such as climate change and spatial fragmentation would enrich 532 

the realism of simulations. Incorporating ecological nonlinearities - including Allee effects, trophic 533 

cascades, and landscape connectivity - would improve the model’s capacity to evaluate long-term 534 

ecosystem stability and inform the design of robust, precautionary management instruments (Scheffer 535 

et al., 2001; Rockström et al., 2009; Dasgupta, 2021). In summary, this study highlights the 536 
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importance of incorporating ecological values into dynamic decision-making frameworks to promote 537 

sustainable forest use. While it does not prescribe specific policy instruments, it provides a theoretical 538 

foundation for designing interventions that align economic incentives with ecological sustainability. 539 

Flexible, incentive-compatible approaches are essential for translating ecological knowledge into 540 

actionable strategies, supporting global initiatives such as REDD+ and the biodiversity targets 541 

promoted by IPBES (Clark, 2010; Bongaarts, 2019). In practice, conservation efforts often rely on 542 

tools like Payments for Ecosystem Services (PES), which financially reward forest maintenance, and 543 

innovative instruments such as “Amazonia” bonds that link investor returns to tangible conservation 544 

outcomes (Wunder, 2005; Reuters, 2024). Though these instruments are not explicitly modeled here, 545 

the ecological shadow value insights developed in this study offer valuable guidance for designing 546 

and governing such mechanisms within complex ecological and strategic contexts. 547 
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Appendix A. : Sensitivity of State Trajectories Across Scenarios 571 

 572 

 573 

Fig. A1. Local Sensitivity of State Trajectories to Key Parameters Across Policy Scenarios. First-574 
order sensitivity analysis of biomass 𝑥(𝑡) (left column) and biodiversity 𝐵(𝑡) (right column) with 575 
respect to key model parameters under different policy regimes. Panels (A)-(B) correspond to the 576 
OLNE-Free case, (C)-(D) to Regulator-Fixed, and (E)-(F) to Regulator-Free. Each curve shows the 577 
partial derivative of the state variable with respect to one parameter: 𝛿 (ecological depreciation), 𝑔 578 
(biodiversity regeneration rate), 𝜌 (discount rate), 𝛾 (natural recovery rate), 𝑝 (biomass price), and 579 
𝜛𝑘 (stochastic disturbance intensity), evaluated along the baseline solution path. Numerical 580 
derivatives were obtained using a centered-difference scheme with step size 𝜀 = 10−4. The results 581 
illustrate how system responsiveness varies across governance frameworks, with cooperative regimes 582 
and fixed-terminal constraints generally exhibiting dampened sensitivities, indicating enhanced 583 
robustness to parameter indeterminacy. 584 

 585 

Appendix B. : Supplementary code 586 

Supplementary code is available in the attached supplementary file. 587 

a) 

c) 

e) 

b) 

d) 
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