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Abstract 
The intersection of Sustainability and Digital Transformation exemplifies the role of 

Artificial Intelligence in leveraging global efforts toward the United Nations' 17 

Sustainable Development Goals (SDGs). We provide a systematic review of AI's role—

specifically Machine Learning (ML), Deep Learning (DL), Natural Language 

Processing (NLP), and Computer Vision (CV)—in monitoring, modelling, and 

achieving targets across all 17 SDGs. The analysis is contextualized by two different 

approaches: the first relates to AI applications in scientific research, and the second 

explores how AI can be utilized to achieve the targets of an SDG. Regarding the former, 

it is demonstrated how AI-powered tools for sustainability tracking, human security 

analysis, and green workforce skills mapping contribute to the scientific research of the 

Ae4ria research network, a dynamic international scientific research network that 

pursues a multitude of environmental research goals and activities (Ae4ria.org). As for 

the latter, a detailed case study on SDG 7 (Affordable and Clean Energy) illustrates AI's 

technical capability in managing the complexity of modern power systems, using 

dynamic reserve dimensioning, optimization of continuous intraday trading strategies, 

and multi-agent reinforcement learning for computing economic equilibria in balancing 

markets. Yet, despite the breadth and high potential of AI in monitoring, assessing, and 

ultimately achieving the SDGs, we need to address the policy paradox presented by 

AI's rapidly growing environmental footprint, particularly the substantial energy 

demands and carbon emissions associated with data centers and large model training. 

This highlights the need for innovative policy instruments, such as "Green AI" 

incentives and governance frameworks, that can promote circular economies for digital 

infrastructures underpinning the development of AI. Realizing AI's transformative 

potential is ultimately contingent upon addressing critical economic, institutional, and 

ethical dimensions, ensuring that its deployment fosters an equitable and truly 

sustainable digital transition for all. 
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1. Artificial Intelligence for the Sustainable Development Goals 
Artificial intelligence (AI), human well-being, and environmental sustainability are 

converging in significant ways as we strive to address the pressing challenges of our 

time—such as climate change, biodiversity loss, and widening social disparities. 

Utilizing AI in environmental management offers new opportunities to utilize resources 

wisely, make informed decisions, and accelerate progress toward greener economies. 

Recent studies (Koundouri et al., 2025) have shown that machine learning can facilitate 

an understanding of the relationships between various aspects of human security and 

the Sustainable Development Goals (SDGs).  

 

The United Nations’ 17 Sustainable Development Goals (SDGs) demand timely, 

disaggregated data to assess global progress. As traditional monitoring methods—such 

as surveys, censuses, and administrative reports—often lag behind real-world 

developments, AI has become indispensable in extracting, analyzing, and forecasting 

sustainability indicators from complex environmental and socioeconomic datasets. Its 

applications across the SDS are described next.  

 

Regarding the role of AI in SDG 1 (No Poverty), AI methods can be utilized to conduct 

nearly real-time poverty assessments in low-income areas, regions, and countries. 

These can be utilized, for instance, by applying Natural Language Processing (NLP) 

models, such as BERT, to analyze social media or other datasets for employment and 

cost-of-living indicators, or Convolutional Neural Networks (CNNs) trained on 

nighttime lights to predict village-level wealth with high precision (Jean et al., 2016).  

 

In the context of SDG 2 (Zero Hunger), achieving zero hunger entails manifold AI 

applications for agricultural monitoring and early warning. Platforms like the Radiant 

Earth Foundation utilize U-Net-based CNNs on Sentinel imagery to estimate crop 

yields, whereas LSTM and Recursive Neural Networks can be employed to forecast 

food prices and climate-related shocks. For instance, the Famine Early Warning 

Systems Network (FEWS NET) integrates these predictive tools to mitigate hunger 

crises (You et al. 2017). 

 

In terms of AI applied to SDG 3 (Good Health and Well-being), deep learning methods 

can be utilized for disease detection and health surveillance. For instance, ResNet-50 

and EfficientNet can be used to diagnose tuberculosis and COVID-19 from imaging 

data, while LSTM models are useful in epidemiological forecasts. Depending on the 

health and/or well-being sector, GPT-4 and related NLP-driven sentiment models can 

serve in various types of analyses, which may even extend to mental health, i.e., 

assessing depression trends through AI-driven analyses of social media (Esteva et al., 

2019).  

 

Considering the importance of AI for SDG 4 (Quality Education), AI-powered analyses 

of educational data can enhance broader access and equity in learning. UNICEF’s 

“Mapping Schools” project utilized CNNs to locate previously unmapped schools, 

while Random Forest and LSTM models have been found useful for predicting student 

dropout risks. Additionally, NLP helps governments analyze educational quality and 

identify curriculum gaps (Holmes et al., 2021). 

 

Regarding the role of AI in achieving SDG 5 (Gender Equality), NLP and fairness-

aware ML help identify gender bias and representation gaps. UN’s “Global Pulse” 



employed BERT to detect online harassment and stereotypes, while IBM’s “AI Fairness 

360 Toolkit” audits bias in institutional decision-making. Computer vision models also 

estimate gender participation in political or corporate imagery, supporting equitable 

policy interventions (Buolamwini & Gebru, 2018). 

 

In the framework of the targets and indicators of SDG 6 (Clean Water and Sanitation), 

AI enhances water monitoring and sanitation management. The European Space 

Agency (ESA) utilizes CNNs to analyze Sentinel satellite data for tracking freshwater 

quality. Meanwhile, IoT sensors can be combined with Autoencoders to detect 

contamination anomalies in real-time, thereby enhancing global access to safe water 

(see also Mandal et al., 2025).  

 

Regarding the application of AI in SDG 7 (Affordable and Clean Energy), multiple 

companies worldwide incorporate AI-powered optimizers to enhance sound energy 

consumption and renewable energy generation. Google’s “DeepMind” has reduced 

data-center energy use by 40% by utilizing AI methods. Meanwhile, LSTM models 

have been found useful in forecasting solar and wind output, and CNNs applied to 

nighttime lights have estimated electrification levels in remote regions (Rolnick et al., 

2019).  

 

Focusing on the contribution of AI towards SDG 8 (Decent Work and Economic 

Growth), in the same way as with other socioeconomic data, AI has been employed to 

monitor labor markets and productivity. NLP models can analyze millions of job 

postings to map skills demand, while predictive analytics can improve manufacturing 

efficiency. OECD’s “AI Observatory” tracks digital job trends, and computer vision 

can ensure workplace safety through real-time anomaly detection (Brynjolfsson & 

McAfee, 2017). 

 

Regarding AI and SDG 9 (Industry, Innovation, and Infrastructure), AI can serve as a 

foundation for smart manufacturing and infrastructure management 

(Phatthanachaisuksiri et al., 2025). Siemens, for instance, applies LSTM-based 

predictive maintenance for equipment monitoring, and the World Bank’s AI program 

uses U-Net for road mapping. NLP models, such as SciBERT, analyze patent data to 

track innovation patterns, etc.  

 

Addressing the significance of AI for SDG 10 (Reduced Inequalities), AI exposes and 

mitigates inequality through spatial and institutional analysis. Vision Transformers 

detect urban poverty patterns from satellite imagery, while Google’s “What-If Tool” 

can audit bias in public services. GNNs model access to health or transport networks, 

guiding inclusive policymaking (Mehrabi et al., 2021). 

 

Pertaining to the impact of AI on SDG 11 (Sustainable Cities and Communities), urban 

AI systems model traffic, pollution, and housing. Hangzhou’s “CityBrain” utilizes 

reinforcement learning to optimize traffic signals and reduce emissions (Yan and Li, 

2022). CNNs such as the U-Net++ can monitor urban sprawl, and ML-driven sensors 

can assess housing quality and disaster vulnerability. 

 

Although perhaps not immediately evident, AI can be utilized to promote circular 

economies and waste reduction within the context of SDG 12 (Responsible 

Consumption and Production). AI models, such as YOLOv5 and Mask R-CNN, can be 



utilized to automate recycling, achieving high accuracy in material sorting. Blockchain-

integrated ML enhances supply-chain transparency, while generative models design 

sustainable materials (Noman et al., 2022). 

 

In the context of SDG 13 (Climate Action), the contribution of AI to support climate 

modeling, emission estimation, and disaster prediction has been one of the most 

remarkable. NASA’s “Climate AI,” for instance, integrates GNNs and PINNs (Physics-

Informed Neural Networks) for forecasting sea-level rise and glacial melt. Similarly, 

Transformer-based models can predict extreme weather and thus can be used to foster 

resilience to climate change (Reichstein et al., 2019).  

 

As it pertains to AI within the framework of DG 14 (Life Below Water), it has proven 

a powerful ally in marine ecosystem monitoring, supporting efforts to conserve ocean 

health and biodiversity. Computer vision and deep learning techniques enable 

automated identification and classification of marine species and habitats. Platforms 

such as CoralNet, which utilize deep Convolutional Neural Networks (CNNs), analyze 

underwater imagery to monitor species composition, detect coral bleaching, and assess 

reef health (Beijbom et al., 2015; Wäldchen and Mäder, 2018). Characteristically, AI-

driven remote sensing models identify sources of ocean pollution and track zones of 

plastic accumulation by processing satellite imagery and sonar data. Autonomous 

underwater vehicles equipped with AI-powered sensors enhance real-time marine 

surveillance, mapping of seafloor ecosystems, and detection of illegal fishing. With 

these tools, AI significantly reduces the cost and time required for marine biodiversity 

assessments. 

 

In relation to SDG 15 (Life on Land), AI technologies have revolutionized terrestrial 

ecosystem management and biodiversity protection. Machine learning models analyze 

satellite and drone imagery to monitor deforestation, illegal mining, and land-use 

change with near-real-time precision. Platforms such as Google’s “GFW” (Global 

Forest Watch) use CNN-based algorithms to detect deforestation patterns and alert 

authorities before irreversible damage occurs. In parallel, AI-enabled acoustic 

monitoring systems use RNNs (Recurrent Neural Networks) and Transformer-based 

audio classifiers (e.g., YAMNet) to recognize animal (i.e., bird) vocalizations, 

providing useful data on species presence/absence and/or migration. These approaches 

facilitate large-scale, continuous biodiversity assessments across remote regions 

(Hansen et al. 2013). Furthermore, predictive models identify areas in risk of 

desertification or undergoing significant habitat loss, therefore being extremely useful 

to support targeted conservation policies. 

 

In connection with SDG 16 (Peace, Justice, and Strong Institutions), AI contributes to 

building peaceful and just societies by strengthening transparency, accountability, and 

conflict monitoring. NLP models, such as BERT and XLNet, analyze news articles, 

reports, and social media to detect signs of political unrest, hate speech, or 

misinformation in real-time. The “Global Database of Events, Language, and Tone” 

(GDELT) leverages machine learning to track and categorize global events, offering 

actionable insights for peacekeeping and crisis prevention. Additionally, AI-powered 

anomaly detection systems flag irregularities in public procurement or financial 

transactions, helping uncover corruption and fraud. These innovations support 

governments and international organizations in monitoring SDG 16 indicators, such as 

the rule of law, institutional trust, and public safety. However, ethical safeguards and 



explainable AI frameworks are crucial in preventing misuse and ensuring fairness in 

algorithmic governance (Dasandi and Mikhaylov, 2019). 

 

Regarding the influence of AI over SDG 17 (Partnerships for the Goals), AI plays a 

strategic role in strengthening global partnerships for sustainable development by 

facilitating data integration, capacity building, and cross-sector collaboration. 

Advanced ML methods harmonize heterogeneous datasets from national statistics, 

remote sensing, and social media to enhance the comparability of SDG indicators across 

countries. Cloud-based AI platforms, such as Google Earth Engine, enable shared 

access to analytical tools and training resources for governments and NGOs. Moreover, 

AI supports knowledge transfer through collaborative initiatives, such as the 

“Partnership on AI” and “AI for Good” programs, which unite academia, industry, and 

policymakers. By fostering open data ecosystems and equitable access to AI 

technology, SDG 17 ensures that innovation benefits all nations and accelerates 

collective progress toward the 2030 Agenda (Vinuesa et al., 2020), strengthening global 

cooperation (Truby, 2020). 

 

Evidently, there is a wide range of AI methods and models that can be used to aid in 

the monitoring and achievement of each SDG, so a comprehensive tabulation of the 

potential of different AI models and methods for each SDG may aid in navigating the 

very complex set of appurtenances of AI and SDG (Fig. 1).  

 

 



 
 

 

Fig. 1 Assessing the potential of some key AI methods, techniques, and models in 

monitoring and achieving each one of the 17 SDGs (authors’ own elaboration) 



 

 

2. AI-powered Environmental Research: The case of Ae4ria 
Ae4ria utilizes AI-powered text analysis to connect human security with the SDGs, as 

part of a broader effort to track progress on sustainability using AI. In addition, the 

Ae4ria AI Skills Tool takes things a step further by examining how AI can identify the 

skills, jobs, and learning paths associated with sustainability-focused documents. This 

helps us see how digital changes can shape a workforce that’s ready for a greener future. 

All these efforts matter because human security—which covers not just economic well-

being, but also food, health, environment, personal safety, community, and politics—is 

at the heart of lasting development. The real challenge is not just having better 

technology, but ensuring that we have the right institutions and incentives to make 

economic growth and environmental care go hand in hand, while also protecting those 

who are most at risk. Economically, utilizing AI for environmental benefits should be 

viewed as part of a broader perspective that encompasses market failures, hidden costs, 

and the need for informed policies that address both today’s pressing needs and our 

long-term objectives for a safer, more sustainable world (Dasgupta 2021). The seven 

pillars of human security—economic, food, health, environmental, personal, 

community, and political security—are intrinsically linked to environmental 

sustainability and the achievement of the SDGs. Our recent empirical work 

demonstrates that AI-powered text analytics and machine learning can systematically 

map these connections, revealing critical intersections and gaps in current policy 

frameworks (Koundouri et al., 2025). For instance, environmental security directly 

connects to SDGs 13, 14, and 15 (climate action, life below water, and life on land), 

while economic security aligns with SDGs 1, 8, and 10 (poverty reduction, decent work, 

and reduced inequalities). These mappings are not merely academic exercises but 

provide actionable insights for policymakers. By employing machine learning 

algorithms to analyze policy documents, we can identify where human-security 

interventions can simultaneously advance multiple SDGs, creating synergistic effects 

that maximize both economic efficiency and social impact. The development of the 

Ae4ria SDG Tracker¹ exemplifies how AI tools can democratize access to complex 

policy analysis. This web-based application utilizes natural-language processing to 

assess the relevance of documents to the SDGs, enabling policymakers to quickly 

evaluate whether their strategies adequately address the multidimensional aspects of 

human security and sustainability. Complementing this, the Ae4ria AI Skills Tool² 

expands the analytical scope from policy relevance to workforce transformation. By 

mapping the skills, occupations, and learning opportunities embedded in sustainability-

related texts, the tool helps connect environmental and digital strategies with human-

capital development. Its integrated SDG alignment offers a practical framework for 

identifying how digital transformation supports both environmental objectives and the 

evolving competencies required for a green, resilient economy. 

 

Traditional economic approaches to environmental management have relied on static 

instruments such as carbon taxes, emissions trading schemes, and regulatory standards. 

However, the complexity of modern environmental challenges requires dynamic, 

adaptive mechanisms that can respond to rapidly changing conditions and emerging 

threats to human security. AI technologies fundamentally transform our capacity to 

address these challenges in several key ways. First, they enable more accurate pricing 

of environmental externalities (Nordhaus 2019) through machine learning models that 

can process vast datasets, including satellite imagery, sensor networks, and transaction 



data, thereby contributing to more precise estimations of environmental impacts. 

Preliminary research suggests that AI can improve the representation of complex 

system dynamics in environmental-economic modeling, potentially leading to more 

accurate pricing mechanisms. Second, AI technologies optimize resource allocation 

across multiple objectives, which is essential given that the multi-criteria nature of 

sustainable development requires balancing economic growth, environmental 

protection, and social equity. AI algorithms can identify Pareto-optimal solutions that 

maximize welfare across these dimensions while considering the interconnections 

between different aspects of human security. For example, investments in renewable 

energy infrastructure that address environmental security can simultaneously create 

employment opportunities, enhance economic security, and reduce air pollution, 

thereby improving health security. Third, AI enables adaptive management strategies 

that offer significant advantages over traditional policy instruments, which often 

require lengthy legislative processes to modify. AI-powered systems can continuously 

adjust interventions based on real-time data, and this adaptability is crucial for 

maintaining human security in the face of climate change, where conditions can shift 

rapidly and unpredictably. 

 

The successful integration of AI into environmental governance requires addressing 

fundamental questions about equity, accountability, and democratic participation. Our 

preliminary analysis of human security reports suggests that while AI applications show 

strong connections to certain SDGs, significant gaps may remain in addressing 

inequality (SDG 10) and institutional quality (SDG 16). As shown in related empirical 

analyses (see the contributions of the co-authors in this volume), these patterns warrant 

further investigation. Several key policy considerations demand attention in this 

context. First, algorithmic justice and environmental equity must be prioritized, as AI 

systems trained on historical data may perpetuate existing environmental injustices. For 

instance, predictive models for climate adaptation investments might systematically 

undervalue vulnerable communities that have been historically underserved. Policy 

frameworks must ensure that AI applications actively correct for these biases through 

techniques such as fairness-aware machine learning and inclusive data collection 

practices. Second, transparency and explainability represent critical governance 

challenges, as environmental decisions impact entire communities and ecosystems. The 

"black box" nature of some AI algorithms poses challenges to democratic 

accountability; yet, recent advances in explainable AI offer pathways to maintain both 

model performance and interpretability, enabling stakeholders to understand and 

contest algorithmic decisions that affect their environment and livelihoods. Third, data 

sovereignty and privacy concerns arise because environmental monitoring often 

requires extensive data collection about individuals and communities. Balancing the 

need for comprehensive data with privacy rights requires innovative approaches such 

as federated learning, where AI models are trained on distributed data without 

centralizing sensitive information. 

 

Preliminary applications of ML-enhanced integrated assessment models indicate 

promising potential for improving our understanding of climate-economy interactions. 

By applying Random Forest algorithms and advanced NLP techniques to policy 

documents, initial findings suggest previously overlooked connections between human 

security dimensions and climate action (Koundouri et al. 2025). For example, 

preliminary analysis of post-conflict recovery reports suggests that community security 

interventions may be correlated with environmental restoration efforts (SDGs 13, 14, 



15), indicating that peacebuilding and ecological rehabilitation could benefit from 

integrated rather than separate policy approaches. This insight, subject to further 

empirical validation in related sections of this volume, has potential implications for 

the design of climate finance mechanisms and the allocation of adaptation funds. 

 

Another example illustrating how AI tools can be instrumental in exploring and 

implementing environmental policies is the research conducted in Ae4ria related to the 

European Green Deal, which presents a compelling case study of AI integration in 

environmental policy. Machine learning algorithms are being explored and piloted to 

monitor compliance with emissions reduction targets through satellite imagery analysis, 

support the allocation of Just Transition Fund resources to affected regions, model 

potential economic impacts of carbon border adjustment mechanisms, and identify 

opportunities for green innovation and industrial transformation. Beyond these 

environmental applications, AI also plays a growing role in aligning digital 

transformation with workforce adaptation under the Green Deal framework. The Ae4ria 

AI Skills Tool contributes to this effort by analyzing policy and strategy documents to 

identify the specific skills, occupations, and training pathways associated with Europe's 

green transition. Through its AI-enabled mapping of competencies and SDG linkages, 

the tool helps policymakers and educational institutions understand how the goals of 

the Green Deal intersect with labor-market evolution and lifelong learning strategies. 

Together, these applications demonstrate how AI can enhance both the efficiency and 

inclusiveness of environmental policies, ensuring that the transition to sustainability 

supports innovation while fostering equitable access to emerging green and digital 

opportunities (Koundouri et al. 2023). This outlines the economic and policy 

dimensions of this challenge, highlighting the need for continued collaboration across 

disciplines, sectors, and borders. Through such integrated approaches, we may be able 

to harness the transformative potential of AI to address environmental challenges while 

enabling sustainable development and equitable digital transition for all. 

 

Considering these applications and the needs of an NGO, state, region, or other legal 

entity, the applicability of AI in achieving the SDGs varies accordingly. In the case of 

Ae4ria, for instance, the set of AI methods and models that can be used in monitoring, 

assessment, and implementation of the SDGs can be adjusted accordingly to satisfy the 

research priorities and objectives pursued by Ae4ria (Fig. 2). 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

Fig. 2 Assessing the potential of different AI methods and models in the context of the 

research priorities of Ae4ria (authors’ own elaboration) 



 

3. Using AI-powered Research to tackle SDGs: The example of SDG7 
The applications of AI methods in energy research have grown significantly since 2020, 

whereas the fields of economics, political science, law, and business have claimed ever 

higher portions of the research publications (Fig. 3). 

 

 
 

Fig. 3 The main concepts in the literature of AI and energy (top): the larger the node, 

the more sizeable the literature that concerns the corresponding concept, and the thicker 

the link between two nodes, the more the publications that relate to them both. The 

annual growth of this literature by the number of publications (bottom). Source of data: 

Openalex database; 1/1/2000-15/11/2025) 



 

Indeed, there is a wide range of potential applications of AI techniques and models in 

tackling each of the seven targets of SDG7, “Sustainable and clean energy” (Fig. 4). 

Next, it is described how some such AI methods can be useful in analysis and problem-

solving related to SDG7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The potential of some AI techniques and models to tackle each one of the six 

targets of SDG7 “Sustainable and Clean Energy” (authors’ own elaboration) 

 

 

 

Here, we review several initiatives that exemplify the application of artificial 

intelligence in the context of power system operations and electricity market design. 

These applications are largely driven by the confluence of two factors: the rapid 

improvement of machine learning technology as well as the increasing need for 

uncertainty management in the electric power sector, where renewable resources 

introduce novel technological challenges. The specific areas of application include: (i) 

dynamic dimensioning of reserves, (ii) optimization of continuous trading in intraday 

markets, (iii) computation of equilibria in balancing markets, and (iv) hydrothermal 

planning. We also discuss challenges that are emerging as a result of the widespread 

deployment of data centers required to support artificial intelligence infrastructure. 

 



A major challenge in electric power systems is the instantaneous balancing of electric 

power supply and demand. Even short-lived imbalances can induce cascading outages, 

which can bring the entire system to a halt. The dramatic effects of such cascading 

phenomena were experienced in the recent blackout in the Iberian Peninsula in April 

2025. For this purpose, systems carry reserves. This is the headroom in power 

generation units that is left available to allow for certain flexible generation or demand 

technologies to adjust their setpoint of energy production/consumption in real time, 

thereby balancing any instantaneous and unanticipated disturbances in power balance. 

Reserves are costly to secure because the generation headroom that is made available 

to the system operator foregoes opportunities for profitable trades in the energy market. 

An important challenge, therefore, is to secure as much of this headroom as necessary 

in order to achieve certain reliability goals, but not more, since excess reserve capacity 

is economically wasteful. Reliability goals are expressed through probabilistic criteria 

that each European Member State needs to adhere to. For instance, the European 

Commission Regulation 1485/2017 (the so-called System Operation Guideline) 

stipulates that a reliability target of at least 99% should be respected. Traditionally, this 

reliability level is achieved through static dimensioning methods, where a single annual 

reserve target is set for the entire year to ensure that the 99.x% reliability target is met. 

From a methodological standpoint, this amounts to a problem of quantile estimation. 

Concretely, given a historical record of system imbalances, one can estimate a 

probability distribution for imbalances. The minimum number of static reserves 

required to achieve this reliability goal is then the 99.x% quantile of this distribution. 

Static dimensioning has been challenged in recent years as possibly inadequate for the 

needs of modern power systems. This is due to the fact that system conditions vary 

significantly on a daily basis, owing largely to the large-scale integration of renewable 

resources. For instance, a day-ahead forecast of high wind output for the following day 

entails a significant risk of energy shortfall, and a low risk of energy surplus, since 

actual wind generation can only be less than the forecast. This then raises the challenge 

of attempting to adapt the dimensioning of reserve to observable day-ahead conditions, 

so as to ensure a level of reserve requirements that adapts daily to the conditional 

distribution of imbalances given observable day-ahead conditions (e.g., temperature 

forecasts, electric power demand forecasts, solar irradiation forecasts, import forecasts, 

generation commitment forecasts, and so on). This practice is referred to as dynamic 

dimensioning, and it has been shown (de Vos et al., 2019) that this methodology was 

successfully adopted in the electric power system of Belgium. The estimation of 

quantiles for the conditional distributions of imbalances was prototyped and compared 

across three alternative machine learning methods: k-means, k-nearest neighbors, and 

artificial neural networks. The idea is to use these methods in order to create a mapping 

from observable day-ahead conditions to estimates for the 99.x% of the conditional 

distribution of imbalances, which now becomes the dynamic dimensioning decision. 

Prototyping, which subsequently led to adoption, demonstrated lower reserve 

requirements on average without compromising system reliability, as well as a more 

stable risk exposure for the system operator to system imbalances. The latter attribute 

was arguably the major advantage of the method, and an important driver in its adoption 

in Belgium (de Vos et al., 2019). Aside from these, intraday markets are markets for 

trading electric power, which commence one day in advance of electric power delivery 

and conclude a few minutes before real-time operations begin. They enable traders to 

adjust the conditions of their portfolios in response to new information that becomes 

available in real-time. Intraday markets have experienced a surge in liquidity and profit 

opportunities in recent years, largely due to the large-scale integration of renewable 



energy resources. This results in significant price spreads. Such spreads enable flexible 

asset owners, such as batteries, to procure energy at low prices in the intraday market 

and sell it back at periods of high prices, thereby leveling the marginal cost of the 

system and enhancing economic efficiency. The continuous intraday market is a pan-

European trading platform where such trades take place on a continuous basis. In such 

a setting, it becomes important for traders to be able to rapidly lock in favorable trades 

from a continuous order book. A policy function approximation approach based on 

reinforcement learning can be used to define a price threshold for determining when an 

offer in the order book is favorable, allowing it to be locked in immediately (Bertrand 

and Papavasiliou, 2020). The trading algorithm developed by these authors is shown to 

outperform the “rolling intrinsic” trading strategy employed by a multinational energy 

utility. The superior performance of the developed trading algorithm is driven by its 

ability to avoid greedy trades and is reported to produce performance gains of 17.8% 

relative to rolling intrinsic. Balancing markets are the markets used for balancing the 

real-time delivery of electric power. In fact, there is an ongoing effort to integrate the 

design of these markets at the pan-European level, enabling Member States to support 

one another in the real-time balancing of the system. The design of balancing markets 

is crucial, since real-time prices drive all forward markets due to financial arbitrage. 

For this reason, Papavasiliou and Bertrand (2021) employed multi-agent reinforcement 

learning to simulate economic equilibria that emerge from various market design 

proposals. Multi-agent learning confirms equilibria that are computed analytically. This 

informs policy debate, and specifically highlights market design pitfalls that should be 

avoided, thereby offering prescriptive policy guidance. Interesting challenges remain, 

particularly regarding the convergence guarantees and what these multi-agent learning 

algorithms can reveal about settings where analytical characterizations of equilibria are 

not available. Furthermore, in systems with significant amounts of hydro, coordinating 

water storage is a challenging planning process due to the uncertainty of monthly 

rainfall. For instance, batch learning can be used in order to develop a stochastic 

dynamic programming algorithm that is shown to outperform PSR-SDDP, the best-in-

kind commercial algorithm that is available for optimizing water levels in hydrothermal 

systems (Ávila and Papavasiliou 2024), since batch learning allows for dynamic 

programming algorithms to rapidly focus their search on relevant parts of the state 

space, and improve approximations of exact dynamic programming functions in the 

neighborhood of exactly those relevant parts of the space. 

 

 

4. AI, Energy and Environment: The Data Centers Paradox 
Artificial intelligence places significant demands on electric power consumption in the 

form of data centers. It remains to be seen whether these new loads can also exploit 

their temporal and spatial flexibility in power consumption to offer certain balancing 

services to the system. Such data centers are deployed in conjunction with renewable 

energy projects to offset both increased emissions resulting from power production 

requirements and potential increases in electricity prices due to system loading. A 

notable example in the case of Greece is Amazon, which has entered into eight power 

purchase agreements for a total installed capacity of 657 MW, with renewable 

investments planned for Thessaly, Macedonia, and the Peloponnese. 

 

Indeed, the environmental footprint of AI itself presents a policy paradox that demands 

innovative economic instruments. Training large language models can generate 

substantial carbon emissions (Strubell et al., 2019), while data centers consume 



approximately 1.5% of the world's electricity, according to recent estimates from the 

IEA (IEA, 2025). Addressing this challenge requires a multifaceted approach that 

includes both incentive structures and systemic reforms. Governments can implement 

differential tax rates or subsidies based on the energy efficiency of AI systems and their 

contribution to environmental objectives, creating what might be termed "green AI 

incentives." For instance, AI applications that demonstrably reduce emissions in other 

sectors could receive preferential treatment, while purely commercial applications face 

higher computational taxes to reflect their environmental costs. Additionally, applying 

circular economy principles to digital infrastructure represents another crucial policy 

direction, given that the rapid obsolescence of hardware used in AI systems contributes 

to the growing problem of electronic waste. Policy frameworks should mandate 

extended producer responsibility for AI hardware, thereby ensuring that manufacturers 

bear responsibility for the entire lifecycle of their products. These frameworks should 

also incentivize the development of more durable and repairable systems that can 

extend the useful lifespan of hardware, and support research into energy-efficient 

algorithms and neuromorphic computing architectures that could fundamentally reduce 

the energy intensity of AI operations. 

 

 

5. Future Directions and Research Priorities 
The integration of AI, human security, and environmental sustainability requires 

continued innovation in both technology and governance. Preliminary research, 

including the development of the Ae4ria SDG Tracker¹, suggests that machine learning 

approaches can help reveal connections between different dimensions of sustainability, 

potentially enabling more effective and equitable policy design (Koundouri et al., 

2025). Building on this foundation, the Ae4ria AI Skills Tool² extends the application 

of artificial intelligence toward workforce and educational dimensions of sustainability. 

By mapping the skills, occupations, and learning pathways most closely associated with 

sustainability-oriented policies, it bridges environmental objectives with the digital and 

green competencies required for a resilient economy. This complementary perspective 

underscores how AI can support not only data-driven policy formulation but also the 

broader transformation of human capital necessary to implement sustainable strategies.  

 

Several priority areas demand attention in future research. First, there is a pressing need 

to develop context-aware AI systems that can adapt to the significant variations in 

environmental challenges across different geographic and socio-economic contexts. 

These future AI systems must be capable of responding to local conditions while 

simultaneously maintaining global coherence in addressing planetary boundaries. 

Second, while current research identifies important connections between human 

security and the Sustainable Development Goals, considerably more work is needed to 

quantify the magnitude of synergies and trade-offs between these dimensions. This will 

require developing new economic valuation methods that can capture the full spectrum 

of ecosystem services and human well-being indicators in ways that traditional 

approaches have not adequately addressed. Third, building institutional capacity 

represents another critical challenge, as the effective use of AI for environmental 

sustainability requires significant investment in human capital. Educational programs 

must bridge the gap between environmental science, economics, and data science, 

thereby creating a new generation of professionals who can navigate this complex 

interdisciplinary landscape. Ultimately, establishing international cooperation 

frameworks is crucial, as environmental challenges transcend national boundaries and 



necessitate coordinated governance of AI at the global level. This includes developing 

common standards for environmental AI applications, facilitating data sharing 

agreements across borders, and ensuring that the benefits of AI-driven sustainability 

solutions reach developing countries that might otherwise lack access to these 

transformative technologies. 

 

 

6. Conclusion 
Through machine learning (ML), deep learning (DL), natural language processing 

(NLP), and computer vision (CV), AI enables scalable, real-time insight across all 

dimensions of sustainability. Indeed, AI transforms how the world measures and 

advances sustainable development; from “AMP Robotics” sorting waste to “CityBrain” 

optimizing traffic and “IBM Fairness 360” promoting equity, AI offers unprecedented 

tools for global progress. The integration of AI into environmental sustainability 

efforts, viewed through the lens of human security and digital transformation, 

represents both an imperative and an opportunity. However, realizing the potential of 

AI requires careful attention to the economic, institutional, and ethical dimensions of 

AI deployment. The environmental footprint of AI itself must be addressed through 

innovative policy instruments, while governance frameworks must ensure that AI 

applications promote rather than undermine inclusiveness, transparency, and 

sustainability. As we advance, maintaining an integrated perspective that recognizes 

the interconnections between technology, economy, society, and environment will be 

essential.  
 
1 AE4RIA SDG Tracker. Available at: https://Ae4ria.org/Ae4ria-sdg-tracker/ 
2 AE4RIA AI Skills Tool Available at: https://Ae4ria.org/Ae4ria-ai-skills-tool-quick-start-

guide/ 
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