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Abstract

The intersection of Sustainability and Digital Transformation exemplifies the role of
Artificial Intelligence in leveraging global efforts toward the United Nations' 17
Sustainable Development Goals (SDGs). We provide a systematic review of Al's role—
specifically Machine Learning (ML), Deep Learning (DL), Natural Language
Processing (NLP), and Computer Vision (CV)—in monitoring, modelling, and
achieving targets across all 17 SDGs. The analysis is contextualized by two different
approaches: the first relates to Al applications in scientific research, and the second
explores how Al can be utilized to achieve the targets of an SDG. Regarding the former,
it is demonstrated how Al-powered tools for sustainability tracking, human security
analysis, and green workforce skills mapping contribute to the scientific research of the
Aedria research network, a dynamic international scientific research network that
pursues a multitude of environmental research goals and activities (Ae4ria.org). As for
the latter, a detailed case study on SDG 7 (Affordable and Clean Energy) illustrates Al's
technical capability in managing the complexity of modern power systems, using
dynamic reserve dimensioning, optimization of continuous intraday trading strategies,
and multi-agent reinforcement learning for computing economic equilibria in balancing
markets. Yet, despite the breadth and high potential of Al in monitoring, assessing, and
ultimately achieving the SDGs, we need to address the policy paradox presented by
Al's rapidly growing environmental footprint, particularly the substantial energy
demands and carbon emissions associated with data centers and large model training.
This highlights the need for innovative policy instruments, such as "Green Al"
incentives and governance frameworks, that can promote circular economies for digital
infrastructures underpinning the development of Al. Realizing Al's transformative
potential is ultimately contingent upon addressing critical economic, institutional, and
ethical dimensions, ensuring that its deployment fosters an equitable and truly
sustainable digital transition for all.
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1. Artificial Intelligence for the Sustainable Development Goals

Artificial intelligence (Al), human well-being, and environmental sustainability are
converging in significant ways as we strive to address the pressing challenges of our
time—such as climate change, biodiversity loss, and widening social disparities.
Utilizing Al in environmental management offers new opportunities to utilize resources
wisely, make informed decisions, and accelerate progress toward greener economies.
Recent studies (Koundouri et al., 2025) have shown that machine learning can facilitate
an understanding of the relationships between various aspects of human security and
the Sustainable Development Goals (SDGS).

The United Nations’ 17 Sustainable Development Goals (SDGs) demand timely,
disaggregated data to assess global progress. As traditional monitoring methods—such
as surveys, censuses, and administrative reports—often lag behind real-world
developments, Al has become indispensable in extracting, analyzing, and forecasting
sustainability indicators from complex environmental and socioeconomic datasets. Its
applications across the SDS are described next.

Regarding the role of Al in SDG 1 (No Poverty), Al methods can be utilized to conduct
nearly real-time poverty assessments in low-income areas, regions, and countries.
These can be utilized, for instance, by applying Natural Language Processing (NLP)
models, such as BERT, to analyze social media or other datasets for employment and
cost-of-living indicators, or Convolutional Neural Networks (CNNs) trained on
nighttime lights to predict village-level wealth with high precision (Jean et al., 2016).

In the context of SDG 2 (Zero Hunger), achieving zero hunger entails manifold Al
applications for agricultural monitoring and early warning. Platforms like the Radiant
Earth Foundation utilize U-Net-based CNNs on Sentinel imagery to estimate crop
yields, whereas LSTM and Recursive Neural Networks can be employed to forecast
food prices and climate-related shocks. For instance, the Famine Early Warning
Systems Network (FEWS NET) integrates these predictive tools to mitigate hunger
crises (You et al. 2017).

In terms of Al applied to SDG 3 (Good Health and Well-being), deep learning methods
can be utilized for disease detection and health surveillance. For instance, ResNet-50
and EfficientNet can be used to diagnose tuberculosis and COVID-19 from imaging
data, while LSTM models are useful in epidemiological forecasts. Depending on the
health and/or well-being sector, GPT-4 and related NLP-driven sentiment models can
serve in various types of analyses, which may even extend to mental health, i.e.,
assessing depression trends through Al-driven analyses of social media (Esteva et al.,
2019).

Considering the importance of Al for SDG 4 (Quality Education), Al-powered analyses
of educational data can enhance broader access and equity in learning. UNICEF’s
“Mapping Schools” project utilized CNNs to locate previously unmapped schools,
while Random Forest and LSTM models have been found useful for predicting student
dropout risks. Additionally, NLP helps governments analyze educational quality and
identify curriculum gaps (Holmes et al., 2021).

Regarding the role of Al in achieving SDG 5 (Gender Equality), NLP and fairness-
aware ML help identify gender bias and representation gaps. UN’s “Global Pulse”



employed BERT to detect online harassment and stereotypes, while IBM’s “Al Fairness
360 Toolkit” audits bias in institutional decision-making. Computer vision models also
estimate gender participation in political or corporate imagery, supporting equitable
policy interventions (Buolamwini & Gebru, 2018).

In the framework of the targets and indicators of SDG 6 (Clean Water and Sanitation),
Al enhances water monitoring and sanitation management. The European Space
Agency (ESA) utilizes CNNs to analyze Sentinel satellite data for tracking freshwater
quality. Meanwhile, 10T sensors can be combined with Autoencoders to detect
contamination anomalies in real-time, thereby enhancing global access to safe water
(see also Mandal et al., 2025).

Regarding the application of Al in SDG 7 (Affordable and Clean Energy), multiple
companies worldwide incorporate Al-powered optimizers to enhance sound energy
consumption and renewable energy generation. Google’s “DeepMind” has reduced
data-center energy use by 40% by utilizing Al methods. Meanwhile, LSTM models
have been found useful in forecasting solar and wind output, and CNNs applied to
nighttime lights have estimated electrification levels in remote regions (Rolnick et al.,
2019).

Focusing on the contribution of Al towards SDG 8 (Decent Work and Economic
Growth), in the same way as with other socioeconomic data, Al has been employed to
monitor labor markets and productivity. NLP models can analyze millions of job
postings to map skills demand, while predictive analytics can improve manufacturing
efficiency. OECD’s “Al Observatory” tracks digital job trends, and computer vision
can ensure workplace safety through real-time anomaly detection (Brynjolfsson &
McAfee, 2017).

Regarding Al and SDG 9 (Industry, Innovation, and Infrastructure), Al can serve as a
foundation  for smart manufacturing and infrastructure  management
(Phatthanachaisuksiri et al., 2025). Siemens, for instance, applies LSTM-based
predictive maintenance for equipment monitoring, and the World Bank’s Al program
uses U-Net for road mapping. NLP models, such as SciBERT, analyze patent data to
track innovation patterns, etc.

Addressing the significance of Al for SDG 10 (Reduced Inequalities), Al exposes and
mitigates inequality through spatial and institutional analysis. Vision Transformers
detect urban poverty patterns from satellite imagery, while Google’s “What-If Tool”
can audit bias in public services. GNNs model access to health or transport networks,
guiding inclusive policymaking (Mehrabi et al., 2021).

Pertaining to the impact of Al on SDG 11 (Sustainable Cities and Communities), urban
Al systems model traffic, pollution, and housing. Hangzhou’s “CityBrain” utilizes
reinforcement learning to optimize traffic signals and reduce emissions (Yan and Li,
2022). CNNs such as the U-Net++ can monitor urban sprawl, and ML-driven sensors
can assess housing quality and disaster vulnerability.

Although perhaps not immediately evident, Al can be utilized to promote circular
economies and waste reduction within the context of SDG 12 (Responsible
Consumption and Production). Al models, such as YOLOvV5 and Mask R-CNN, can be



utilized to automate recycling, achieving high accuracy in material sorting. Blockchain-
integrated ML enhances supply-chain transparency, while generative models design
sustainable materials (Noman et al., 2022).

In the context of SDG 13 (Climate Action), the contribution of Al to support climate
modeling, emission estimation, and disaster prediction has been one of the most
remarkable. NASA’s “Climate Al,” for instance, integrates GNNs and PINNs (Physics-
Informed Neural Networks) for forecasting sea-level rise and glacial melt. Similarly,
Transformer-based models can predict extreme weather and thus can be used to foster
resilience to climate change (Reichstein et al., 2019).

As it pertains to Al within the framework of DG 14 (Life Below Water), it has proven
a powerful ally in marine ecosystem monitoring, supporting efforts to conserve ocean
health and biodiversity. Computer vision and deep learning techniques enable
automated identification and classification of marine species and habitats. Platforms
such as CoralNet, which utilize deep Convolutional Neural Networks (CNNSs), analyze
underwater imagery to monitor species composition, detect coral bleaching, and assess
reef health (Beijbom et al., 2015; Waldchen and Mader, 2018). Characteristically, Al-
driven remote sensing models identify sources of ocean pollution and track zones of
plastic accumulation by processing satellite imagery and sonar data. Autonomous
underwater vehicles equipped with Al-powered sensors enhance real-time marine
surveillance, mapping of seafloor ecosystems, and detection of illegal fishing. With
these tools, Al significantly reduces the cost and time required for marine biodiversity
assessments.

In relation to SDG 15 (Life on Land), Al technologies have revolutionized terrestrial
ecosystem management and biodiversity protection. Machine learning models analyze
satellite and drone imagery to monitor deforestation, illegal mining, and land-use
change with near-real-time precision. Platforms such as Google’s “GFW” (Global
Forest Watch) use CNN-based algorithms to detect deforestation patterns and alert
authorities before irreversible damage occurs. In parallel, Al-enabled acoustic
monitoring systems use RNNs (Recurrent Neural Networks) and Transformer-based
audio classifiers (e.g., YAMNet) to recognize animal (i.e., bird) vocalizations,
providing useful data on species presence/absence and/or migration. These approaches
facilitate large-scale, continuous biodiversity assessments across remote regions
(Hansen et al. 2013). Furthermore, predictive models identify areas in risk of
desertification or undergoing significant habitat loss, therefore being extremely useful
to support targeted conservation policies.

In connection with SDG 16 (Peace, Justice, and Strong Institutions), Al contributes to
building peaceful and just societies by strengthening transparency, accountability, and
conflict monitoring. NLP models, such as BERT and XLNet, analyze news articles,
reports, and social media to detect signs of political unrest, hate speech, or
misinformation in real-time. The “Global Database of Events, Language, and Tone”
(GDELT) leverages machine learning to track and categorize global events, offering
actionable insights for peacekeeping and crisis prevention. Additionally, Al-powered
anomaly detection systems flag irregularities in public procurement or financial
transactions, helping uncover corruption and fraud. These innovations support
governments and international organizations in monitoring SDG 16 indicators, such as
the rule of law, institutional trust, and public safety. However, ethical safeguards and



explainable Al frameworks are crucial in preventing misuse and ensuring fairness in
algorithmic governance (Dasandi and Mikhaylov, 2019).

Regarding the influence of Al over SDG 17 (Partnerships for the Goals), Al plays a
strategic role in strengthening global partnerships for sustainable development by
facilitating data integration, capacity building, and cross-sector collaboration.
Advanced ML methods harmonize heterogeneous datasets from national statistics,
remote sensing, and social media to enhance the comparability of SDG indicators across
countries. Cloud-based Al platforms, such as Google Earth Engine, enable shared
access to analytical tools and training resources for governments and NGOs. Moreover,
Al supports knowledge transfer through collaborative initiatives, such as the
“Partnership on AI” and “Al for Good ” programs, which unite academia, industry, and
policymakers. By fostering open data ecosystems and equitable access to Al
technology, SDG 17 ensures that innovation benefits all nations and accelerates
collective progress toward the 2030 Agenda (Vinuesa et al., 2020), strengthening global
cooperation (Truby, 2020).

Evidently, there is a wide range of Al methods and models that can be used to aid in
the monitoring and achievement of each SDG, so a comprehensive tabulation of the
potential of different Al models and methods for each SDG may aid in navigating the
very complex set of appurtenances of Al and SDG (Fig. 1).
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Fig. 1 Assessing the potential of some key Al methods, techniques, and models in

monitoring and achieving each one of the 17 SDGs (authors’ own elaboration)



2. Al-powered Environmental Research: The case of Ae4ria

Aedria utilizes Al-powered text analysis to connect human security with the SDGs, as
part of a broader effort to track progress on sustainability using Al. In addition, the
Aedria Al Skills Tool takes things a step further by examining how Al can identify the
skills, jobs, and learning paths associated with sustainability-focused documents. This
helps us see how digital changes can shape a workforce that’s ready for a greener future.
All these efforts matter because human security—which covers not just economic well-
being, but also food, health, environment, personal safety, community, and politics—is
at the heart of lasting development. The real challenge is not just having better
technology, but ensuring that we have the right institutions and incentives to make
economic growth and environmental care go hand in hand, while also protecting those
who are most at risk. Economically, utilizing Al for environmental benefits should be
viewed as part of a broader perspective that encompasses market failures, hidden costs,
and the need for informed policies that address both today’s pressing needs and our
long-term objectives for a safer, more sustainable world (Dasgupta 2021). The seven
pillars of human security—economic, food, health, environmental, personal,
community, and political security—are intrinsically linked to environmental
sustainability and the achievement of the SDGs. Our recent empirical work
demonstrates that Al-powered text analytics and machine learning can systematically
map these connections, revealing critical intersections and gaps in current policy
frameworks (Koundouri et al., 2025). For instance, environmental security directly
connects to SDGs 13, 14, and 15 (climate action, life below water, and life on land),
while economic security aligns with SDGs 1, 8, and 10 (poverty reduction, decent work,
and reduced inequalities). These mappings are not merely academic exercises but
provide actionable insights for policymakers. By employing machine learning
algorithms to analyze policy documents, we can identify where human-security
interventions can simultaneously advance multiple SDGs, creating synergistic effects
that maximize both economic efficiency and social impact. The development of the
Aedria SDG Tracker! exemplifies how Al tools can democratize access to complex
policy analysis. This web-based application utilizes natural-language processing to
assess the relevance of documents to the SDGs, enabling policymakers to quickly
evaluate whether their strategies adequately address the multidimensional aspects of
human security and sustainability. Complementing this, the Aedria Al Skills Tool?
expands the analytical scope from policy relevance to workforce transformation. By
mapping the skills, occupations, and learning opportunities embedded in sustainability-
related texts, the tool helps connect environmental and digital strategies with human-
capital development. Its integrated SDG alignment offers a practical framework for
identifying how digital transformation supports both environmental objectives and the
evolving competencies required for a green, resilient economy.

Traditional economic approaches to environmental management have relied on static
instruments such as carbon taxes, emissions trading schemes, and regulatory standards.
However, the complexity of modern environmental challenges requires dynamic,
adaptive mechanisms that can respond to rapidly changing conditions and emerging
threats to human security. Al technologies fundamentally transform our capacity to
address these challenges in several key ways. First, they enable more accurate pricing
of environmental externalities (Nordhaus 2019) through machine learning models that
can process vast datasets, including satellite imagery, sensor networks, and transaction



data, thereby contributing to more precise estimations of environmental impacts.
Preliminary research suggests that Al can improve the representation of complex
system dynamics in environmental-economic modeling, potentially leading to more
accurate pricing mechanisms. Second, Al technologies optimize resource allocation
across multiple objectives, which is essential given that the multi-criteria nature of
sustainable development requires balancing economic growth, environmental
protection, and social equity. Al algorithms can identify Pareto-optimal solutions that
maximize welfare across these dimensions while considering the interconnections
between different aspects of human security. For example, investments in renewable
energy infrastructure that address environmental security can simultaneously create
employment opportunities, enhance economic security, and reduce air pollution,
thereby improving health security. Third, Al enables adaptive management strategies
that offer significant advantages over traditional policy instruments, which often
require lengthy legislative processes to modify. Al-powered systems can continuously
adjust interventions based on real-time data, and this adaptability is crucial for
maintaining human security in the face of climate change, where conditions can shift
rapidly and unpredictably.

The successful integration of Al into environmental governance requires addressing
fundamental questions about equity, accountability, and democratic participation. Our
preliminary analysis of human security reports suggests that while Al applications show
strong connections to certain SDGs, significant gaps may remain in addressing
inequality (SDG 10) and institutional quality (SDG 16). As shown in related empirical
analyses (see the contributions of the co-authors in this volume), these patterns warrant
further investigation. Several key policy considerations demand attention in this
context. First, algorithmic justice and environmental equity must be prioritized, as Al
systems trained on historical data may perpetuate existing environmental injustices. For
instance, predictive models for climate adaptation investments might systematically
undervalue vulnerable communities that have been historically underserved. Policy
frameworks must ensure that Al applications actively correct for these biases through
techniques such as fairness-aware machine learning and inclusive data collection
practices. Second, transparency and explainability represent critical governance
challenges, as environmental decisions impact entire communities and ecosystems. The
"black box" nature of some Al algorithms poses challenges to democratic
accountability; yet, recent advances in explainable Al offer pathways to maintain both
model performance and interpretability, enabling stakeholders to understand and
contest algorithmic decisions that affect their environment and livelihoods. Third, data
sovereignty and privacy concerns arise because environmental monitoring often
requires extensive data collection about individuals and communities. Balancing the
need for comprehensive data with privacy rights requires innovative approaches such
as federated learning, where Al models are trained on distributed data without
centralizing sensitive information.

Preliminary applications of ML-enhanced integrated assessment models indicate
promising potential for improving our understanding of climate-economy interactions.
By applying Random Forest algorithms and advanced NLP techniques to policy
documents, initial findings suggest previously overlooked connections between human
security dimensions and climate action (Koundouri et al. 2025). For example,
preliminary analysis of post-conflict recovery reports suggests that community security
interventions may be correlated with environmental restoration efforts (SDGs 13, 14,



15), indicating that peacebuilding and ecological rehabilitation could benefit from
integrated rather than separate policy approaches. This insight, subject to further
empirical validation in related sections of this volume, has potential implications for
the design of climate finance mechanisms and the allocation of adaptation funds.

Another example illustrating how Al tools can be instrumental in exploring and
implementing environmental policies is the research conducted in Ae4ria related to the
European Green Deal, which presents a compelling case study of Al integration in
environmental policy. Machine learning algorithms are being explored and piloted to
monitor compliance with emissions reduction targets through satellite imagery analysis,
support the allocation of Just Transition Fund resources to affected regions, model
potential economic impacts of carbon border adjustment mechanisms, and identify
opportunities for green innovation and industrial transformation. Beyond these
environmental applications, Al also plays a growing role in aligning digital
transformation with workforce adaptation under the Green Deal framework. The Ae4ria
Al Skills Tool contributes to this effort by analyzing policy and strategy documents to
identify the specific skills, occupations, and training pathways associated with Europe's
green transition. Through its Al-enabled mapping of competencies and SDG linkages,
the tool helps policymakers and educational institutions understand how the goals of
the Green Deal intersect with labor-market evolution and lifelong learning strategies.
Together, these applications demonstrate how Al can enhance both the efficiency and
inclusiveness of environmental policies, ensuring that the transition to sustainability
supports innovation while fostering equitable access to emerging green and digital
opportunities (Koundouri et al. 2023). This outlines the economic and policy
dimensions of this challenge, highlighting the need for continued collaboration across
disciplines, sectors, and borders. Through such integrated approaches, we may be able
to harness the transformative potential of Al to address environmental challenges while
enabling sustainable development and equitable digital transition for all.

Considering these applications and the needs of an NGO, state, region, or other legal
entity, the applicability of Al in achieving the SDGs varies accordingly. In the case of
Aedria, for instance, the set of Al methods and models that can be used in monitoring,
assessment, and implementation of the SDGs can be adjusted accordingly to satisfy the
research priorities and objectives pursued by Aedria (Fig. 2).
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Fig. 2 Assessing the potential of different Al methods and models in the context of the

research priorities of Ae4ria (authors’ own elaboration)



3. Using Al-powered Research to tackle SDGs: The example of SDG7

The applications of Al methods in energy research have grown significantly since 2020,
whereas the fields of economics, political science, law, and business have claimed ever
higher portions of the research publications (Fig. 3).
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Fig. 3 The main concepts in the literature of Al and energy (top): the larger the node,
the more sizeable the literature that concerns the corresponding concept, and the thicker
the link between two nodes, the more the publications that relate to them both. The
annual growth of this literature by the number of publications (bottom). Source of data:
Openalex database; 1/1/2000-15/11/2025)



Indeed, there is a wide range of potential applications of Al techniques and models in
tackling each of the seven targets of SDG7, “Sustainable and clean energy” (Fig. 4).
Next, it is described how some such Al methods can be useful in analysis and problem-
solving related to SDG7.
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Fig. 4 The potential of some Al techniques and models to tackle each one of the six
targets of SDG7 “Sustainable and Clean Energy” (authors’ own elaboration)

Here, we review several initiatives that exemplify the application of artificial
intelligence in the context of power system operations and electricity market design.
These applications are largely driven by the confluence of two factors: the rapid
improvement of machine learning technology as well as the increasing need for
uncertainty management in the electric power sector, where renewable resources
introduce novel technological challenges. The specific areas of application include: (i)
dynamic dimensioning of reserves, (ii) optimization of continuous trading in intraday
markets, (iif) computation of equilibria in balancing markets, and (iv) hydrothermal
planning. We also discuss challenges that are emerging as a result of the widespread
deployment of data centers required to support artificial intelligence infrastructure.



A major challenge in electric power systems is the instantaneous balancing of electric
power supply and demand. Even short-lived imbalances can induce cascading outages,
which can bring the entire system to a halt. The dramatic effects of such cascading
phenomena were experienced in the recent blackout in the Iberian Peninsula in April
2025. For this purpose, systems carry reserves. This is the headroom in power
generation units that is left available to allow for certain flexible generation or demand
technologies to adjust their setpoint of energy production/consumption in real time,
thereby balancing any instantaneous and unanticipated disturbances in power balance.
Reserves are costly to secure because the generation headroom that is made available
to the system operator foregoes opportunities for profitable trades in the energy market.
An important challenge, therefore, is to secure as much of this headroom as necessary
in order to achieve certain reliability goals, but not more, since excess reserve capacity
is economically wasteful. Reliability goals are expressed through probabilistic criteria
that each European Member State needs to adhere to. For instance, the European
Commission Regulation 1485/2017 (the so-called System Operation Guideline)
stipulates that a reliability target of at least 99% should be respected. Traditionally, this
reliability level is achieved through static dimensioning methods, where a single annual
reserve target is set for the entire year to ensure that the 99.x% reliability target is met.
From a methodological standpoint, this amounts to a problem of quantile estimation.
Concretely, given a historical record of system imbalances, one can estimate a
probability distribution for imbalances. The minimum number of static reserves
required to achieve this reliability goal is then the 99.x% quantile of this distribution.
Static dimensioning has been challenged in recent years as possibly inadequate for the
needs of modern power systems. This is due to the fact that system conditions vary
significantly on a daily basis, owing largely to the large-scale integration of renewable
resources. For instance, a day-ahead forecast of high wind output for the following day
entails a significant risk of energy shortfall, and a low risk of energy surplus, since
actual wind generation can only be less than the forecast. This then raises the challenge
of attempting to adapt the dimensioning of reserve to observable day-ahead conditions,
so as to ensure a level of reserve requirements that adapts daily to the conditional
distribution of imbalances given observable day-ahead conditions (e.g., temperature
forecasts, electric power demand forecasts, solar irradiation forecasts, import forecasts,
generation commitment forecasts, and so on). This practice is referred to as dynamic
dimensioning, and it has been shown (de Vos et al., 2019) that this methodology was
successfully adopted in the electric power system of Belgium. The estimation of
quantiles for the conditional distributions of imbalances was prototyped and compared
across three alternative machine learning methods: k-means, k-nearest neighbors, and
artificial neural networks. The idea is to use these methods in order to create a mapping
from observable day-ahead conditions to estimates for the 99.x% of the conditional
distribution of imbalances, which now becomes the dynamic dimensioning decision.
Prototyping, which subsequently led to adoption, demonstrated lower reserve
requirements on average without compromising system reliability, as well as a more
stable risk exposure for the system operator to system imbalances. The latter attribute
was arguably the major advantage of the method, and an important driver in its adoption
in Belgium (de Vos et al., 2019). Aside from these, intraday markets are markets for
trading electric power, which commence one day in advance of electric power delivery
and conclude a few minutes before real-time operations begin. They enable traders to
adjust the conditions of their portfolios in response to new information that becomes
available in real-time. Intraday markets have experienced a surge in liquidity and profit
opportunities in recent years, largely due to the large-scale integration of renewable



energy resources. This results in significant price spreads. Such spreads enable flexible
asset owners, such as batteries, to procure energy at low prices in the intraday market
and sell it back at periods of high prices, thereby leveling the marginal cost of the
system and enhancing economic efficiency. The continuous intraday market is a pan-
European trading platform where such trades take place on a continuous basis. In such
a setting, it becomes important for traders to be able to rapidly lock in favorable trades
from a continuous order book. A policy function approximation approach based on
reinforcement learning can be used to define a price threshold for determining when an
offer in the order book is favorable, allowing it to be locked in immediately (Bertrand
and Papavasiliou, 2020). The trading algorithm developed by these authors is shown to
outperform the “rolling intrinsic” trading strategy employed by a multinational energy
utility. The superior performance of the developed trading algorithm is driven by its
ability to avoid greedy trades and is reported to produce performance gains of 17.8%
relative to rolling intrinsic. Balancing markets are the markets used for balancing the
real-time delivery of electric power. In fact, there is an ongoing effort to integrate the
design of these markets at the pan-European level, enabling Member States to support
one another in the real-time balancing of the system. The design of balancing markets
is crucial, since real-time prices drive all forward markets due to financial arbitrage.
For this reason, Papavasiliou and Bertrand (2021) employed multi-agent reinforcement
learning to simulate economic equilibria that emerge from various market design
proposals. Multi-agent learning confirms equilibria that are computed analytically. This
informs policy debate, and specifically highlights market design pitfalls that should be
avoided, thereby offering prescriptive policy guidance. Interesting challenges remain,
particularly regarding the convergence guarantees and what these multi-agent learning
algorithms can reveal about settings where analytical characterizations of equilibria are
not available. Furthermore, in systems with significant amounts of hydro, coordinating
water storage is a challenging planning process due to the uncertainty of monthly
rainfall. For instance, batch learning can be used in order to develop a stochastic
dynamic programming algorithm that is shown to outperform PSR-SDDP, the best-in-
kind commercial algorithm that is available for optimizing water levels in hydrothermal
systems (Avila and Papavasiliou 2024), since batch learning allows for dynamic
programming algorithms to rapidly focus their search on relevant parts of the state
space, and improve approximations of exact dynamic programming functions in the
neighborhood of exactly those relevant parts of the space.

4. Al, Energy and Environment: The Data Centers Paradox

Artificial intelligence places significant demands on electric power consumption in the
form of data centers. It remains to be seen whether these new loads can also exploit
their temporal and spatial flexibility in power consumption to offer certain balancing
services to the system. Such data centers are deployed in conjunction with renewable
energy projects to offset both increased emissions resulting from power production
requirements and potential increases in electricity prices due to system loading. A
notable example in the case of Greece is Amazon, which has entered into eight power
purchase agreements for a total installed capacity of 657 MW, with renewable
investments planned for Thessaly, Macedonia, and the Peloponnese.

Indeed, the environmental footprint of Al itself presents a policy paradox that demands
innovative economic instruments. Training large language models can generate
substantial carbon emissions (Strubell et al., 2019), while data centers consume



approximately 1.5% of the world's electricity, according to recent estimates from the
IEA (IEA, 2025). Addressing this challenge requires a multifaceted approach that
includes both incentive structures and systemic reforms. Governments can implement
differential tax rates or subsidies based on the energy efficiency of Al systems and their
contribution to environmental objectives, creating what might be termed "green Al
incentives.” For instance, Al applications that demonstrably reduce emissions in other
sectors could receive preferential treatment, while purely commercial applications face
higher computational taxes to reflect their environmental costs. Additionally, applying
circular economy principles to digital infrastructure represents another crucial policy
direction, given that the rapid obsolescence of hardware used in Al systems contributes
to the growing problem of electronic waste. Policy frameworks should mandate
extended producer responsibility for Al hardware, thereby ensuring that manufacturers
bear responsibility for the entire lifecycle of their products. These frameworks should
also incentivize the development of more durable and repairable systems that can
extend the useful lifespan of hardware, and support research into energy-efficient
algorithms and neuromorphic computing architectures that could fundamentally reduce
the energy intensity of Al operations.

5. Future Directions and Research Priorities

The integration of Al, human security, and environmental sustainability requires
continued innovation in both technology and governance. Preliminary research,
including the development of the Aedria SDG Tracker?, suggests that machine learning
approaches can help reveal connections between different dimensions of sustainability,
potentially enabling more effective and equitable policy design (Koundouri et al.,
2025). Building on this foundation, the Ae4ria Al Skills Tool? extends the application
of artificial intelligence toward workforce and educational dimensions of sustainability.
By mapping the skills, occupations, and learning pathways most closely associated with
sustainability-oriented policies, it bridges environmental objectives with the digital and
green competencies required for a resilient economy. This complementary perspective
underscores how Al can support not only data-driven policy formulation but also the
broader transformation of human capital necessary to implement sustainable strategies.

Several priority areas demand attention in future research. First, there is a pressing need
to develop context-aware Al systems that can adapt to the significant variations in
environmental challenges across different geographic and socio-economic contexts.
These future Al systems must be capable of responding to local conditions while
simultaneously maintaining global coherence in addressing planetary boundaries.
Second, while current research identifies important connections between human
security and the Sustainable Development Goals, considerably more work is needed to
quantify the magnitude of synergies and trade-offs between these dimensions. This will
require developing new economic valuation methods that can capture the full spectrum
of ecosystem services and human well-being indicators in ways that traditional
approaches have not adequately addressed. Third, building institutional capacity
represents another critical challenge, as the effective use of Al for environmental
sustainability requires significant investment in human capital. Educational programs
must bridge the gap between environmental science, economics, and data science,
thereby creating a new generation of professionals who can navigate this complex
interdisciplinary landscape. Ultimately, establishing international cooperation
frameworks is crucial, as environmental challenges transcend national boundaries and



necessitate coordinated governance of Al at the global level. This includes developing
common standards for environmental Al applications, facilitating data sharing
agreements across borders, and ensuring that the benefits of Al-driven sustainability
solutions reach developing countries that might otherwise lack access to these
transformative technologies.

6. Conclusion

Through machine learning (ML), deep learning (DL), natural language processing
(NLP), and computer vision (CV), Al enables scalable, real-time insight across all
dimensions of sustainability. Indeed, Al transforms how the world measures and
advances sustainable development; from “AMP Robotics” sorting waste to “CityBrain”
optimizing traffic and “IBM Fairness 360 promoting equity, Al offers unprecedented
tools for global progress. The integration of Al into environmental sustainability
efforts, viewed through the lens of human security and digital transformation,
represents both an imperative and an opportunity. However, realizing the potential of
Al requires careful attention to the economic, institutional, and ethical dimensions of
Al deployment. The environmental footprint of Al itself must be addressed through
innovative policy instruments, while governance frameworks must ensure that Al
applications promote rather than undermine inclusiveness, transparency, and
sustainability. As we advance, maintaining an integrated perspective that recognizes
the interconnections between technology, economy, society, and environment will be
essential.

1 AE4RIA SDG Tracker. Available at: https://Ae4ria.org/Ae4ria-sdg-tracker/
2 AE4RIA Al Skills Tool Available at: https://Ae4ria.org/Ae4ria-ai-skills-tool-quick-start-
guide/
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