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Here we investigate the statistical properties of two autoregressive normal
asymmetric SV models with possibly time varying risk premia. These, al-
though they seem very similar, it turns out, that they possess quite different
statistical properties. The derived properties can be employed to develop
tests or to check for up to forth order stationarity, something important for
the asymptotic properties of various estimators.

1 Introduction

Empirical investigations in economics and finance have uncovered several ro-
bust statistical regularities, commonly referred to as stylized facts. Among
the most prominent of these is volatility clustering, wherein periods of ele-
vated (or subdued) volatility tend to be succeeded by similar periods. This
phenomenon, first documented in economic time series, has also been ob-
served in the physical sciences, notably in turbulence data—where it is re-
ferred to as indeterminacy (Barndorff-Nielsen 1997 [11]).

The recognition of volatility clustering has led to substantial develop-
ments in time series modeling, beginning with the introduction of the Au-
toregressive Conditional Heteroskedasticity (ARCH) model by Engle (1982)
[25] and its generalization by Bollerslev (1986) [16], the Generalized ARCH
(GARCH) model. These foundational models have since evolved into a wide
range of dynamic heteroskedasticity frameworks (see e.g., Bollerslev, Chou,
and Kroner, 1992 [17], Bera and Higgins, 1993 |12|, and Francq and Zakoian,
2010 [31]).



Financial theory frequently posits explicit relationships between the con-
ditional first and second moments of asset returns. For example, in the
context of equity markets, the conditional mean of excess returns is of-
ten modeled as a function of conditional variance (Merton, 1980 [55], and
Glosten, Jagannathan and Runkle, 1993 [35]). Rational, risk-averse investors
are hypothesized to demand higher expected returns in periods of increased
volatility, implying a positive risk-return trade-off, an association empirically
supported by French et al. (1987) [32], Campbell and Hentschel (1992) [18],
and Poon and Taylor (1992) [61]. To formally capture this relationship, En-
gle, Lilien and Robins (1987) [29] proposed the ARCH-in-Mean (ARCH-M)
model.

Subsequent empirical findings (e.g., Glosten, Jagannathan and Runkle
(1993) [35]; Nelson (1991) [58]) also highlight a negative association between
the unanticipated component of returns and future volatility. French et al.
(1987) [32] interpret this as indirect evidence for a positive correlation be-
tween expected risk premia and ex-ante volatility. According to the volatility
feedback hypothesis, a large unanticipated shock increases expected future
volatility, which, if positively related to returns, leads to an immediate drop
in asset prices (Campbell and Hentschel (1992) [18]).

Another well-documented asymmetry in financial markets is that volatil-
ity tends to increase more following negative unexpected returns than positive
ones of equivalent magnitude. This leverage effect, originally discussed by
Black (1976) [14], can be attributed to increases in financial leverage follow-
ing declines in firm value. Tt is typically modeled within asymmetric GARCH
frameworks such as the Exponential GARCH (Nelson (1991) [58]), Quadratic
GARCH (Sentana (1995) [65]), or the GJR-GARCH model (Glosten, Jagan-
nathan and Runkle (1993) [35]).

These empirical regularities have spurred extensive research, particularly
within empirical finance, focusing on estimating and quantifying these dy-
namics through symmetric and asymmetric GARCH-M specifications, which
offer computational tractability for inference (e.g., Gonzales-Rivera 1996 [36],
Arvanitis and Demos 2004 [6] and 2004a [7], and Bali and Peng 2006 [10]).

The statistical properties of various GARCH-type models have been ex-
plored extensively in the literature (Milhoj (1985) [57]; Karanasos (1999)
[49]; Rodriguez and Ruiz (2012) [63]; He C. and T. Terasvirta [43]; Demos
(2002) [23]; He, Terasvirta and Malmsten (2002) [44]; Tsiotas (2007) [69]).
For GARCH-M models, relevant properties are presented in Anyfantaki and
Demos ((2011) [4], (2016) |5]) and Arvanitis and Demos (2004a,b) |6, 7|.
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While GARCH models are characterized by the influence of past mean
shocks on future conditional variance, an alternative class of models—Stochastic
Volatility (SV) models—introduces an additional innovation term that drives
the conditional variance, which may be correlated with the return innova-
tion (Andersen, 1996 [1]). The archetypal SV model defines volatility as
a log-linear first-order autoregressive process, commonly referred to as the
SV(1) model. Despite their conceptual appeal, SV models have seen limited
practical adoption, largely due to the unobservability of volatility, which ne-
cessitates both filtering and smoothing for inference (Andersen and Benzoni,
2009 [2]).

Fundamental differences exist between GARCH-M and SV-M models not
only in their structural specification—pertaining to the number of innova-
tions affecting the return and volatility processes—but also in their statis-
tical properties and capacity to accommodate stylized facts. Notably, while
GARCH-M models estimate the contemporaneous relationship between con-
ditional mean and variance, SV-M models are equipped to jointly model
ex-ante return-volatility relationships and the volatility feedback mechanism
(Koopman and Uspensky, 2002 [51]).

Classical estimation techniques for SV models are presented in Taylor
(1986) [67] and Harvey, Ruiz, and Shephard (1994) [41]. Bayesian approaches
are found in Jacquier, Polson, and Rossi (1994 [47], 2004 [48]), Kim, Shep-
hard, and Chib (1998) [50], and Koopman and Uspensky (2002) [51]. For
approaches to approximate likelihood estimation, see Bermudez, Marin, and
Veiga (2020) [13] and Romero and Ropero-Moriones (2023) [62], who use
data cloning, as well as Marin, Romero, and Veiga (2024) [52], who apply the
Laplace transformation. Methods based on indirect inference are discussed
in Gallant and Tauchen (1996) [33], Smith (1993) [66], Gourieroux, Monfort,
and Renault (1993) [37], and for the simulated and generalized method of
moments see Duffie and Singleton (1993) [24], Melino and Turnbull (1990)
[54], and Andersen and Sorensen (1996) |3].

In the present study, we examine the statistical properties of asymmetric
SV models with potentially time-varying risk premia, i.e., where the condi-
tional variance, raised to a power, enters the mean equation (SV-PM spec-
ification). The standardized innovations are assumed to be normally dis-
tributed, and correlation between the return and volatility innovations is
permitted. We focus on two autoregressive SV specifications that, while
seemingly similar, exhibit markedly different statistical characteristics.

For foundational statistical properties of SV models, see Taylor (1994)
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[68], Harvey and Shephard (1996) [42], Jacquier, Polson, and Rossi (1994)
|47|, Danielsson (1998) [21], and Harvey, Ruiz, and Shephard (1994) [41].
For asymmetric SV models, see Tsiotas (2012) [70], and for long-memory SV
models, consult Ghysels, Harvey, and Renault [34], Harvey (2007) [39], and
Perez and Ruiz (2003) [59]. Mao et al. (2020) [53] present a Generalized
Asymmetric SV-M model in which asymmetry arises via a transformation of
the mean innovation in the volatility equation. Here, we adopt the classical
approach of modeling asymmetry through a correlation between return and
volatility innovations, as proposed by Jacquier, Polson, and Rossi (2004)
[48] (hereafter, JPR). To our knowledge, the statistical properties of such an
asymmetric SV-PM model are presented here for the first time.

The properties derived herein provide a basis for constructing statistical
tests analogous to those proposed by Horvath, Kokoszka, and Zitikis (2006)
[46], and for checking stationarity of various orders, which is essential for
establishing the asymptotic behavior of estimators. These results can also
inform GMM-based estimation procedures.

In the next section we present the two SV models and derive their static
and dynamic moments. In the final section we compare the properties of the
two models and conclude.

2 The Two SV-PM Models

We consider the following normal Autoregressive Stochastic Volatility in
Power Mean class of models:

Y = c+ Ao + € =c+ Aot + 5,00 where, (2.1)
Inof =w+¢Inol |+ (SV1) and

(2 ) () (o, )

We call this model SV1-M. The estimation of the model above, with
a = 0.5, can be found in Arvanitis and Demos (2024) 8|, whereas restricted
version of it, with ¢ = A = 0, has been estimated by quasi maximum likeli-
hood in Harvey and Shephard (1996) [42], and by MCMC in Meyer and Yu
(2000) [56]. Further, Asai and McAleer (2011) [9] present some properties
of the restricted model concerning mainly the asymmetry and the leverage



effect.!

However, a second model has been considered in applied work. Specifi-
cally, instead of the above conditional variance specification 2.2 the following
one is employed :

Ino? =w-+YIno? | +n, (SV2). (2.3)

We name this one the SV2-M model. A similar model, with p = 0 and
a = 0.5, has been estimated in Koopman and Uspensky (2002) [51] by simu-
lated maximum likelihood, but they add an autoregressive term in the mean.
Further, a model with ¢ = A = 0 and o« = 1, but with non-normal error
distribution, has been employed by Jacquier, Polson and Ross (2004) [48]
(JPR).

Although the two models look very similar, there are important differ-
ences between the statistical properties that they can accommodate. In fact,
notice that for the SV1-M model the mean error and the conditional variance
are contemporaneously uncorrelated, which is not the case for the SV2-M
one. Nevertheless, Yu (2005) [72| proved that the partial derivative of future
volatility with respect to the error is not necessarily negative when p < 0,
i.e. it could be the case that even if p < 0 future volatility could decrease
with a negative error, claiming the the variance specification in 2.2 is a more
“natural” one (see details in Yu 2005 [72]).

Now, form equation 2.1, and for a = 1, we get

Y =c+ AE_ (O'tQ) + A (af —F, (Jf)) + g0y  where,

E, 1 (0?) is the expected volatility given information at time ¢ — 1. Hence
A could also represent the volatility feedback coefficient, as the term o? —
E;_1 (0?) is the unexpected part for volatility. In fact, this is a restricted
version of the model considered in Campbell and Hentschel (1992) [18], where
the risk premium and the feedback coefficients are different. In a GARCH-
M type model, this parameterization is not possible as E;_; (¢2) = o2, and
consequently this constitutes a comparative advantage of the SV-PM model
(see Koopman and Uspensky 2002 [51] for more details).

Let us now explore the properties of these models.

!Notice that the findings of Carnero, Pena and Ruiz (2004) [19] suggest that the as-
sumption of normality is reasonably appropriate for financial time series.



2.1 Properties of the SV1-PM Model

Let us now investigate the statistical static and dynamic properties of the
SV1— M model.

2.1.1 Static Properties

First, it is easy to prove that the variance of €; = ¢;,0; is given by

2
Ve = B (o) = B (o) = e |1+ 5

and its kurtosis coefficient is given by
3E (o o2
/15;:#)2:3@@( n2)>3.
(V (erov)) 1-9

Notice that the kurtosis coefficient is bigger than 3, i.e. the stochastic
volatility increases the kurtosis of the errors, a well known fact of the SV
models. Further the square coefficient of variation of the conditional variance

is given by
Var (02) o2
2 t n
= - = 7 P S 1
CcV 2( t2) exp <1 ¢2

Now

a’o?
a " } (2.4)

+
(I=1)  2(1-9¢?)
Notice that for ¢ = 0 the unconditional risk has the sign of A, positive, as A

represents the price of risk, in Financial Economics, where as for ¢ = A = 0,
as in Harvey and Shephard (1996) |42], the risk premium is zero.

E (y:) :c—l—)\exp{

Now
v = fo [ | e [25 ] e
e [(1 5 2<1U—"w2>] |

It is worth mentioning that the price of risk parameter A increases the vari-
ance of the observed process, independent of the sign of the price of risk
parameter A (see Appendix A).



The skewness coefficient of observed process y; is given by

30202 202 o 30202
A2 {exp [(1 wQ)} 3 exp [( Z)] - 2} exp [(3 5+ o wg)}
sk (yt) = A 3/2
IV () 2.6
aoc? (a+1) (0‘2"’_1)0727

+3A

V ()] ’

where V' (y;) is given in 2.5. Notice that the skewness coefficient has the sign

of A, i.e. positive under the assumption of risk premium positivity, as it is

highly unlikely the first part of the expression to be negative and bigger in

absolute value to the second one. Further, for A = 0 the skewness is zero.
Now the kurtosis coefficient of y; is:

4 6a202 o2 2 o 200
( ) A {exp [(1—1/;2)] 46Xp [(1 2)} + 6€Xp [ 2(1—- ¢2)] - 3} exp [(1—1/)) + 0%
K\Yt) =
[V (yt)] (2‘7)
alatl)o, ao, a+1)w 202+1)02
w {{exp [ El_wl)n} a 2} P [ﬁ] + 1} P {(2( irllb)) + (2(1—w2) ]
_|_
[V (?Jt)]2
40,2]
exXp |:(1 ) + 2(1_¢2)]
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where V' (y,) is, again, given in 2.5. Notice that for & = 0.5 it is possible that
K (y:) — Ker can positive or negative, i.e. the presence of the price of risk,
A, could either increase or decrease the kurtosis coefficient of the data (see
Appendix A).

2.1.2 Dynamic Properties

For the autocovariances of the observed process, y;, we have that:

[ 92020k 5 )
Cou (1) = 3 leXp &U)] _1] 20 ]

Hee T—¢) (1=
_ _(2a +1)w 02 (402 + dapk + 1)
+/\ozpan¢)k Lex _ 21— 0) U S =07




and the correlations are given by dividing the above expression by the vari-
ance in 2.5. It is worth noticing that, provided that A is positive then the
correlations can be either positive or negative, depending on the relative
values of of the parameters. Notice that for p = 0 the Corr (y, y;_) is pro-
portional to A? (see Appendix A), whereas for A = 0 the autocorrelations are
zZero.

In terms of leverage effect we have that

k-1 o
exp [8(1_ qu)an}

(o [ta] 1)

and has the sign of p, i.e. the leverage effect can be satisfied by the model
if and only if p < 0, provided that ¢ > 0 something which is very plausible
due to volatility clustering (see below).

In terms of dynamic asymmetry, as we call Corr (y2, y;_),

2 13 20 ko2 3aw 5a’0?
contia) =2 (exp [W e |55 a0
aw a (Y* + 3a) o, 2a+1)w o (dop® + 1 + 402)

Corr (07,e5_) = poyp™! (2.8)
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Now for A = 0 we get that Corr (y2,y,_1) is proportional to po, "
and consequently has the sign of p, and, of course, it is independent of «
(see Appendix A). Notice that in this case and for p < 0 we have that
Corr (y2,y;—x) > Corr (af, 5;‘_k), i.e. the leverage effect is stronger than the
dynamic asymmetry. In Appendix A we also present the dynamic asymmetry
for p = 0.



Now the volatility clustering is given by (see Appendix A for a proof)

U%wk 1
oxp [ 524] -
Corr (07,07_},) = Sy

(2.9)

o2 ’
exp [—(1_;2)] —1
and it is the same with the SV2-PM specification (see below).
For the dynamic kurtosis, as we call here Cov (yf, yf_k), the formula is
very complicated and presented in Appendix A. However, under the Efficient
Market hypothesis, i.e. for ¢ = 0, the autocovariances are given by:

4ok o? 4 1a2o?
Cov (ygvytz_k) =\ {exp [L] _ 1} exp |:< aw n 2 :|

(1—14?) 1—¢)  (1-9?)

201k a2 1 402 + 1) o2
+2)2 {(1 + 2042;)2021,02’“_2) exp [—OM 0"] — 1} exp {(206 + 1w + (4o )On]

(1—14?) (1—1) 2(1—-9¢?)

2 (8a (2a + 1) % + (2a + 1) + 1602
—|—4)\3ng77¢]€71 exp <6a+ 1)(,{) 077( Of( (07 )¢ ( « ) (6] )

2(1-¢) 8(1—v?)
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Further, for A = ¢ = 0 we get

. 0.2,ka
(1 + pzaggb% 2) exp [(11&)} —1

Corr (yi,yi 1) =

I

0-2
3exp [—(17&2)} —1



which is the same as equation 18 Perez, Ruiz and Veiga (2009) [60] and
equation 5 in Ruiz and Veiga (2008) [64], and again it is positive for any
values of p. Further, it is easy to see that Corr (y7,y7 ;) < Corr (o},07),
in most plausible cases.

In Appendix A we present the autocovariances for A = 0, and p = 0.

2.2 Properties of the SV2-PM Model
2.2.1 Static Moments

Now, in Appendix B we prove that if instead the conditional variance speci-
fication we employ the specification in JPR, equation 2.3, we get

2 .2

B aw a“o po. W &
E(yt)—c+)\exp(1_¢+2(1_zpz)>+ QneXp(2(1_¢)+8(1j¢2))

and

vartn) =3 o (7 Z57) =1 oo (2255 770

i 5 ) - oo (R )

+{(1 +p°0,) exp (4(10—21#2)) N (p(jf)Q } o ((1 c—uw i 4(10—21@) |

Notice that if p = 0 we get that the expected value and variance of y; for
the SV2 model are the same as those for the SV1 one (see equations 2.4 and
2.5). Further, if c = X\ = 0, as in JPR, E (y;) is negative, provided that p < 0
(leverage effect).

The skewness coefficient of the mean error €} = o, is given by

3N I

3 {(3 + (%pan)2> exp (z(lgfg’w)) — (1 + (pa'n)Q)}exp (ﬁ) + % (pgn)2.

sk (¢7) = oo 7
p (0 ) o0 () - (7))

2
It is worth noticing that although the distribution of the standardized errors
is normal the skewness of the mean error is non-zero, and if fact it is negative,
provided that p < 0 due to the leverage effect.
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Now the kurtosis of the mean error is given by

2 4 30’%
13424 (po,)” + 16 (poy)” | exp (2(1—w2>>

2

{(1 + (poy)?) exp [@} - <pgn)2}2

P0n>2 {2 (1 + (,00,7)2) — (3 + (pan%)2> exp <2(1+%¢2)> } exp [&} — (
2 2 o2 o\ 2 2
{1+ (o)) exp |57 | = (252)°}

and for p = 0, as in Koopman and Uspensky (2002) [51],  (¢}) is the same
as for the SV1-M model.

The asymmetry of the observed process, v, is very complicated for the
full model and it is presented in Appendix B. Now for A = 0 the skewness
coefficient of y;, sk (y;), is, of course, the same as this one of ¢}, see equation
2.11, above, whereas for p = 0 we get that sk (y,) for the SV2-M model is
the same as for the SV1-M one (see equation 2.6).

Further, the kurtosis coefficient for y;, x (y;) , is also very complicated
and is provided in Appendix B. However, for A = 0 & (y;) is the same as the
kurtosis coefficient of €}, above, whereas for p = 0 we have that « (y;) is the
same as the one of SV1-M model (see equation 2.7).

+3

2.2.2 Dynamic Moments

The dynamic moments for the SV2-M specification are more complicated

than the SV1-M one. This due to the fact the for the SV2-M model we have

that Cov (g (e¢0¢) , f (61—, 01—1)) # Ofor various functions g (.) and f (.).
Now, the autocovariances the observed process, y;, are given by

2k o2 a’o?
Cov (Y1, yrk) = A° {eXp (uib—w;)> N 1} o ((12%;/1) e 122))

. ayto? 20+ Dw (o + 1oy
+>\p0n{(0¢¢ +1) exp (m) —1}exp<2(1_w) N 8 (1 —1?) )

1 2 k ﬂ —_ ex d 0727
+7 (poy) {(w +1)6Xp<4<1—w2)> 1} p(<1—w)+4<1—w2>>'
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It is possible that, depending on the parameter values, the k' order autoco-
variance can be either positive or negative.

var o =8 o () = ] o (1725 + )

oo (g 8) =1 o0 (S5 S

+{(1 +p°0,) exp (4(10—%%) - (pOZ)Q } o ((1 C—L)w) ' 4(10—3]1/’2))

Now in the model of Koopman and Uspensky (2002) [51] we have p =0
and it follows that that the autocorrelation functions of the SV2-M model
is the same as for the SVI1-M one (see equation 3.8) and consequently,
Corr (Y, yi—k) can be only positive. The same is true in the case of JPR,
where we have that A =0, i.e.

Yro?
1 9 (wk + 1) exp (4(17@&]2)) —1
Corr (yt7 yt—k) == (Pan) 9 o 0.72] (pon)2 )
(1+p Un) eXp (4(1—w2)) 3

4

and Corr (y;, y+—x) can be only positive. However, in this case, i.e. if A =0,
the autocorrelations of the observed process for the SV1-M model is zero.
For the leverage effect we get

k2
2% + 1) exp [@} 1
Corr (0370t_k€t_k> _ 1 ( ) 2(1—12)

which is negative provided that p < 0, something which also is true for the
SV1-M model (see equation 2.8).

For the SV2-M model the dynamic asymmetry is very complicated for
the full model and it is presented in Appendix B (equation 3.15). Now for
the Koopman and Uspensky (2002) [51] model, i.e. for p = 0 and ¢ # 0, we
get that Cov (y?, yi_) for the model are the same as for the SV1-M model.

12

2 idi 2 o2
\/[exp (W) - 1} [(1 + (po,)”) exp <4(an2)> _



For A =0 but p # 0 and ¢ # 0 we get

(20" + 1) exp (%) —~ 1]
e (2 Tt s <15i2>)

Wret)ew (ﬁ) ‘1] o (155 )

+X (pa,)? (20‘—2‘”) { [(2a + 1) 9" + 1] exp <%> — 1} .

(@+ 1w (2a+1)°+1)02
XexP((l—w* 81— v2) )

Cov (yf, yt_k) = % (1 + (pgn)2)

~~

pan)Z
2

+c

and Cov (y?,y;_1) has probably the sign of p.

The stochastic volatility process is the same for the two model. Con-
sequently the volatility clustering is given by equation 2.9 for the SV2-M
model, as well.

Again, the dynamic kurtosis is very complicated. In Appendix B the auto-
covariances, Corr (y?,y? ), and the variance V (y?) are presented. Further
if \=c=0, as in JPR, we get

(1+ (o)) { (14 (0% +1) o)) exp (s ) = (1+ (o)) |

2
9n

[3+24 (po,)’ + 16 (pan)4] exp (W) - (1+ (pan)2)2

Corr (v, yix) =

Y

which is positive for any k.

For ¢ # 0 and p = 0, as in Koopman and Uspensky (2002) [51], the
Covv (y?,y? ) and V (y}) are the same as for the SV1 process and are pre-
sented in Appendix A.. The same applies for the case of ¢ = p = 0.

3 Comparisons and Conclusions

Overall, the SV2-PM model exhibits more intricate static and dynamic mo-
ment structures compared to the SV1-PM model. This added complexity
stems from the contemporaneous correlation between the in-mean error and
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the conditional variance in the SV2-PM specification when p # 0. When
p = 0, however, the two models produce identical static and dynamic mo-
ments, making them observationally indistinguishable.

For the remainder of this section, we assume A > 0 to represent a positive
price of risk, p < 0 to capture the leverage effect, and ¢ = 0 to ensure market
efficiency. Under these assumptions, the expected return F (y;) is positive in
the SV1-M model, while it may be either positive or negative in the SV2-PM
model. Additionally, in the SV2-PM model, the variance of the observed
process is influenced by both A and p.

When A = 0 but p # 0, the skewness of the observed process is zero
in the SV1-M model, yet negative in the SV2-M model. More generally,
when both A # 0 and p # 0, the skewness of the observed series can take
on either sign, though the skewness of the mean error remains definitively
negative. For example, using parameter estimates from JBR (Table 4, weakly
equal-weighted NYSE returns), the skewness of the data is estimated at
—0.54. Notably, JBR assumes a fat-tailed distribution for the mean error,
giving the SV2-PM model a comparative advantage: it can replicate negative
skewness in returns without imposing asymmetry on the standardized error
distribution (see, e.g., Harvey and Palumbo 2023 [40]; Blasques, Francq, and
Laurent 2023 [15]).

Regarding kurtosis, when A = 0, the kurtosis of the observed process
equals that of the mean error in the SV1-PM model. By contrast, in the
SV2-PM model, the kurtosis of the observed process is lower than that of the
mean error.

Autocorrelations, Corr (y;, y;—x), can be positive or negative in both mod-
els depending on the relative magnitudes of p and A\. When A\ = 0, auto-
correlations vanish in the SV1-M model but remain strictly positive in the
SV2-PM model.

The leverage effect, measured by Corr (Uf, Ef_ k), is negative in both mod-
els and disappears when p = 0. Dynamic asymmetries can be either positive
or negative, depending on the interaction between p and A. However, in the
SV1-PM model, if the autocorrelations of the observed process are negative,
dynamic asymmetries are also negative. When A = 0 and p # 0, both models
exhibit negative dynamic asymmetries. Importantly, the two models share
identical expressions for volatility clustering, i.e., Corr (67,0} ).

Table 1 reports estimated moments for the SV1-PM model based on pa-
rameter values treated as true. The first three columns use restricted esti-
mates with ¢ = A = 0, taken from Yu (2005) |72] (Table 1) and Asai and
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McAleer (2011) [9] (Table 2). As predicted by the theory in Sections 2.1.1 and
2.1.2, both skewness and autocorrelations are zero in this setup. Columns 4
and 5 use full-model estimates from Arvanitis and Demos (2024) [8], yielding
non-zero skewness and small positive autocorrelations. Interestingly, both
full-model estimates report positive skewness coefficients.

Table 1. Estimated Moments for SV1-PM Models

Yu AM AD
S&P | S&P | Topix | S&P | DAX
sk () 0 0 0 0.027 | 0.037
K () 4.497 | 3.536 | 4.025 | 5.178 | 5.478
Cor (Ys, Y1) 0 0 0 [-0.004 | -0.003
Cor (s, Yi—_2) 0 0 0 |-0.003 |-0.003
Cor (o},e7_1) | -0.078 | -0.154 | -0.176 | -0.213 | -0.140
Cor (o},e7_,) | -0.075 | -0.152 | -0.166 | -0.197 | -0.139
Cor (y2,y:1) | -0.029 | -0.060 | -0.059 | -0.082 | -0.050
Cor (y2,y:1) | -0.002 | -0.040 | -0.055 | -0.075 | -0.046
Cor (y},y7 1) | 0.139 | 0.071 | 0.110 | 0.163 | 0.169
Cor (y},y7 ,) | 0.134 | 0.070 | 0.104 | 0.150 | 0.159

Table 2 presents moment estimates for several SV2-PM model variants. In
Columns 1 and 2, based on Koopman and Uspensky (2002) [51], where p = 0,
the leverage effect is absent and autocorrelations, though small, are positive.
Koopman and Uspensky originally incorporated an additional AR(1) com-
ponent to capture autocorrelation, which is excluded here. Columns 3 and 4
use restricted estimates from Yu (2005) [72] and Jacquier, Polson, and Rossi
(2005) [48], both with ¢ = A = 0. Consistent with Section 2.2.2, the observed
process shows positive autocorrelations and a negative leverage effect. In all
four SV2-M cases, the estimated skewness is negative.

Table 2. Estimated Moments for SV2-PM Models

15



KU Yu | JPR

FT | S&P | S&P | VW

sk (y,) -0.0234 [ -0.040 | -0.131 | -0.502

% () 5.425 | 4.975 | 4.487 | 5.789
Cor (ys,y;—1) | 0.000 | 0.000 | 0.000 | 0.004
Cor (ys,y:—2) | 0.000 | 0.000 | 0.000 | 0.003
Cor (o}, ;1) 0 0 [-0.061|-0.172
Cor (0}, ;_,) 0 0 [-0.059 | -0.160
Cor (y2,y—1) | -0.003 | -0.007 | -0.023 | -0.063
Cor (y2,y1—2) | -0.001 [ -0.006 | -0.011 | -0.058
Cor (y,y7,) | 0.173 | 0.158 | 0.148 | 0.166
Cor (y},y?,) | 0.169 | 0.153 | 0.138 | 0.153

To summarize, both models can replicate key empirical features of finan-
cial return series, depending on parameter values. However, the SV2-PM
model—particularly in its unrestricted form—exhibits greater moment com-
plexity. A distinct advantage of SV2-PM is its ability to capture negative
return skewness without resorting to asymmetric standardized error distri-
butions.

A potential extension for both models involves introducing autocorrela-
tion in the standardized mean error, such as through an ARMA specification.
While this would further complicate the moment structure, it may enhance
model fit.
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Appendix A

Static Moments

From Demos 2002 23] we get:

Al(cszd = P¢77 (Swz-i-k + dwz) = Szd)

2
et = i 5 (59 + dun)” = ALY

=0
=0
fknz?§p<4ygaw(ﬂ N 4+ cap (20 & (5]

—HW@ﬁ)%@Z("W)

By employing the above formulae we get:

E(c7°0}%,) = exp {(s +d) L@J wl(f’d)/lfk_l) (3.2)
(stdw , o (v*+d)° o’
A (S P
(s+d)w op (2sdp* 4 d?* 4 s> )
(1—4) 2(1—v?)

= exp
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Now from Demos 2002 [23], again,

s 0,s 0,s 0,s 0,s 0,s 0,s
Dy, = A&k—)lq’ (Aé,k—)l) exp <F0(,k:—)1> + B(() k—)l exp (A((),k—)l) i (_B(g,k—)l)

)

S S — ¢2 —
= A[()?,;_)l exp <F()(f),;_)1> = spp, " exp (é’szwzk 2

Ve, = <A(()?,’j_)1> exp (FO(S;S_)I) + exp (A(()?,’C‘Z) ) (—Bé?,;‘?l)

2
oo (1831) = (S

s 0,s 2 0,s 0,s 0,s 2 0,s 0,s
Fi = (A((),k:—)1> ¢ <A((),k—)1> exp <F0(,k:—)1> + (B((),k—)1> exp <A((),k—)1> ¢ (_B((),k—)1>

2 2
= (A(()?If_)l) exp (Féf)k’s_)l) — 82p2¢727¢2k_2 exp <%S2w2k—2)

L (Ufsafilkgtfk) =E (Ut%atzilk) Dy_y (Yks—l)_l and

B (oFotel,) = B (oPolh) [1+ Fioy (Vi) ™|

Hence, employing the above formulae we get

1 - W 0.2 k + 1)
Bl e = for o | 25+ B
3 w O'2 (4wk + 5)
2 o k—1 n
E (Ut Ut—kEt—k) = POy exp 21— T 8 (1 —12)
1 _ 3 w g, 41/1k + 1
E (Utgf_kft—k) = §p0n¢k leXp [_ + ( ) = §E (UEUt—kQ—k)

2 5
n
21 -9 8(1—1?)
2
FE (afaf_ket_k) = pan¢k_1 exp n(
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d 2 k d k—1 9
E (Ufsafdké?t k) = exp <(fl+— z); + O ((51¢_ _1;2 ) exp (Z_O % 2 )

exp <¢n 22— 2>
exp <%82¢2k—2>

(s+d)w op (2sd)p* + d? + %)
(1-4v) 2(1—-4?)

X sppyh* !

= span¢k_1 exp

and
d 2 k d2 k-1 2
sttt —o (G5 ) o (251

X 1+Sp2 2¢2k26p<n2¢2k2>
exp (?S2w2k72>

d 2 (2sdt + & + 57
=1+ 52/)202?#%72) exp (fl‘i‘_ ;;u n o5 ( 32(1/1 -t s%) (3.4)
Now
E W 0-7% E 2\ __ W 0-721
70 =0 |55 ) B D =0 [+ 5
3 w 902 w 202
B@) =[5 5y + rigm | ot Bl =ow o+ o
s202
R ] (39)
Hence it follows that
2
Ve = B (eod) = B(of) = o [+ 502 |
sk(e;)=0
and 35 4) )
*\ Ut . e Un
)= e P {u—w?) -9




Further, employing equation 3.5, we get

. ow 0‘202
Bn) = ot WE () = e+ drewp | 20 4

and

V() = E (e — E ) = E[ M (07" — E(07) + 201 ] =
= NE (0/%) = X{E* (07") + E (07)

=N {eXp [(i%] ) 1} op [(12% N <1a—0w2>} e {u 5 2(10_%] |

NOotice that

2.2 2.2

2a%0, 20w 2a“0;
¥ {ep [siih ] _1} exp 2% + st b
+

> 1.

Now notice that
E (ytz) =F (C"— )\O't2a + EtO't)Q =
="+ NE (0/%) + E (07) + 2cAE (07%)

2 2 2 2
R ) e = RO B e R
+ex{ d —+ 02 1

Pla=v) "20—¢)

Further,

V() =E (v — £ () =
=E(<c+Aafa+stot>“)—<c+v (01) + B (07) +20AE (03)) =
=M [E (07%) = B (0}")] + 4N [E (07) — E* (07")]
+4cX? [E (o)) — E (0}%) E (07%)] + 4°E (07)
+4eA BE (07""?) — E (o)) E (07)] + 3E (07*?) — E (07*) E (07)
+2\* [3E (0{°"?) — E (0/*) E (0})] + 3E (d}) — E* (7).
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Hence

4 2 2 4 2 2
Vi) =X {eXp [(1612"2)] - 1}eXp [(14% t g
[0}

222 522
+4eX3 {exp[ iy }—1}exp [(30M +

(3.6)

]
) 1—1) 2(1—;2)}
+4c)\{3exp[ 2% ]—1}exp{(?1+_1@z)w +(;(21+—11)¢;ﬂ

i {o [<1a—2052>} “fee [ <1a—2052>}

) 2040% L (2a+1)w (4a2+1)(73
2 {3ex"[<l—w2>] 1} p[ a—w 2(1—w2>}
2 o 0727 oxc 0727 1 ey 2w 03
e eXp{u—w*z(l—w?)]*{?’ p{a—w%] 1} p{u—w*(l—wﬂ'
Further
E(y—E@w)’=E[ M0~ E(o 2a>>+A2<e§—1>af+etat}3
= NE[ [(03* = E(o7) ] +3MME | [< E (o)) (2 — 1) 0} ]
+3E[ A (029 — E (o 2,0, ]
+E [3 [\ (o7 = B (07))] [r2 (2 - 1) at+gtat} Do (65— 1) oF + 0]
= N [E (%) — 3 (03°) E (02) + 2% (02°)] + 3\ [E (62°+2) — E (62°) E (02)]

22 30[20'% 3 oe2z7727 9 3aw 30[20'%
{eXp [—u—w?)] — 9 CXp [—u—w?)} + }eXp [( — T 2(1—w2>]

sk (yr) = A

A3/2
ao? (41w (a2+1)‘7727
3{xp |0 | — L} e | G+ S
+A Ve ,
where
a202 2w o2 2 w o2
A:/\Q{exp[ ]—1}exp[ + }—i—exp[ + !
(1 —W) (1-7) (1—¢2) (I—v) 2(1-4?)
Notice that for a = 0 5 or a = 1 we have that the numerator is positive

2.2
e n

provided that exp [(1 } 3exp [(1& ;2)} +2 > 0, which is, in general, true.
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Hence, in this case, the skewness coefficient sk (y;) has the sign of A, i.e.
positive under the assumption of positive price of risk.
Now

By~ E(y) = B (M [o7 = E (o7)]" + 4X° [ = E (7)) c101)
Y E (av (02 — E (02)]* 202 + 4 [0 — E (02°)] 20 + gfgg)
= X [E (05%) —4E (60°) E (62) + 6E (01) E? (62) — 3E* (62°)]
H6A2 [E (01072) — 2B (62°42) E (02°) + E (02) E? (02)] + 3E (o),

and it follows

4 GQQU% a2U% QQU% dow 2&203
A {eXp |:(1_¢2)] —4exp |:(1_¢2):| + 6 exp [m] — 3} exp |:(1_¢) + (1_¢2):|
K (ye) = =
ala+1)o? ac? N " 2024102
o {{exp [ 21_1,,2)”} B 2} °XP [(1—1/72)} T 1} P {(2(1:1&)) + (2(1—w2)n]
+ = |
2w 402
exp |:(17¢) + 2(17;22)i|
+3 e
where now

A= o[ 5] oo [ e [ 2]

Now for a = 0.5we get

02
(M + 6A2 + 3) exp [%}
{()\2 + ].) exp [m} — )\2}
02 302
6 (A + 1) exp [m} —4 (N +3)exp [m} —3\2

{(/\2 + 1) exp [ﬁ} - )\2}2

K (ye) =

+\?

Notice that
—2A3 +3A+3)(A—1)N\?* 4+ 6A
(A2 4 1) A — N2

K (Y) — Ker = A2 (A2 — 1)2 (

here A= %
where = exXp m .

22



It is possible that r (y;) — k.; can positive or negative, i.e. the presence of
the price of risk, A, could either increase or decrease the kurtosis coefficient
of the data. However, for plausible values of the parameters, it is clear that
the price of risk increases the kurtosis of the data.

Dynamic Moments

For the dynamic properties of y; we get that:

Covun,yi-r) = B (A 00" = B(0,)] + e10n) (A [0 = B (02%)] + €0r01-1))
= B (o2  E (o)) [0 - B (02%)] + A o2 — B (0] 2s004)
+FE ()\ [at ) (O’t k)} €104 + E101E4_1LO4— k)
=N [E (07%0;%) — E (67%) E (07%,)] + AE (07 01— k€11

2¢k02 206&) 0520'2
=\ |ex ) — 1] ex [ ]
ep[u—w> il [ R ey
. 20+ 1w oo (40? + da® + 1)
+Aapo, Lexp 21— 1/1) S =07

Notice that for p = Owe have

Corr (yt, yt—k) =
\? {

Now, given that
Cov (07,¢5_) = E (07e;_1) = E (0701-14-1)

_ k— 3w 727 (4¢k + 5)
‘”%¢lﬂpku—wﬁ‘8ﬂ—w>

Y
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the leverage is given by

w o2 (4yk 45
pogtt 16Xp[%( ot %%—w%)]

\/V o?)

k
poy bt exp [sﬁ} w%) g]

%exp [s] -1

Corr (af, 8:7k) =

Dynamic Asymmetry
First notice that
Cov (yt27yt—k) =L ([th - L (ytz)} Yer — E (yt—k:)]) =
=N (B (0/%072%) = B (01%) B (072%)) + ME (0701%,) = E (07) E (072))
+2cX* (E (07%07%) — E (07%) E (07%,)) + NE (0{%€1-101—)
+FE (at 5t_kat_k) + 2cAE (O't et_kat_k) ,

and employing equations 3.2, 3.3 and 3.4 we get

2 2,k <2 3 5 5 o
Cov (?J?:?/t—k) = )\3 (exp [M] _ 1) exp |:( aw n o 0‘77 :|

(1—1¢?) 1—1v)  2(1-19?)
. (do+1)w o2 (8ar® 4+ 1+ 16a2)
+2X2apo, " exp 20— ) U ST 07

2a+Dw o2 (dop% + 1+ 40?)
2(1=9) 8(1—¢?)

_1) exp{(a—i—l)w_l_(a +1)o ﬂ

+2chapo, bt exp
a¢k02
Moexp | —
i (ep[(l—w‘ (1=9) = 201 -y
a2¢k0,27 20w 0‘202
+2e)? <6Xp [(1 — ¢2>] N 1) P {(1 V) - (1— ¢2)}
o

—l—panwk_l exp [

200 81—
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For A = 0 we get

w 02(4wk+1)
exXp [2(1—@ + S }

Corr (y}, yer) = poy ™! 2 —
\/402 + {Sexp [u‘j—ipg)] = 1}exp [(1:"—1@ + ﬁ]

For p =0 we get

2 = 2 [ ex W — ex saw SQQU%
Cov (y;,y1-k) = A ( p [(1 — ¢2)] 1) P [(1 — ) * 2(1— ¢2)(L9)

Oﬂ/’k@% (a+Dw (®+1) 072]
+A (exp [(1_ 2)] —1) exp{ + }
Fo

(1—1v) = 2(1—1v?)
e (exp [g%—b wj)] ) 1) exp | s + <1a_2052)} '
Forc=20
(] ) w22 2

)
(da+1)w N ol (hayh + 7a? + 1)

+2)\2o¢panwk_1 exp

2(1—-4) 8(1—9?)
2 4 k 5
ooy exp [2 (13:0 i UEEK ;_2))

Notice that it is possible to have Cov (y2,y;—1) > 0 for p < 0, i.e. to have
the leverage effect, but positive dynamic asymmetry.
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Volatility Clustering
As

O.Qk:

contoeo) = {exp [WI i 1} | )

2,1k 5 2
Cov (af,at_k) = {exp [2((17"—%] - 1} exp [2 (fi ) + 50 in;b?)} =Cov (Jt,af,k)

and

2 2 ka —13ex e i
C’ov(at,at k) {exp [<1_¢2)] 1} p{(l_w)‘i‘(l_wz)}»

and it follows that

0.2 k
exp [(1332)] -1

o2 ’
exp | 70 —1

Corr (af, af_k) =

Further

Cov (g% 6,_%) = Cov (ef07,e}_ro7_) = E (g]07¢] o)) — E* (e]07)

=k (O‘t €7 0% k) E? (Ut)

o 252.%=2) ex L@Dk — ex 2 0727
_{(prw ) p[u—w] 1} p[(l—dfﬂ—#ﬂ)1

and

b 0.2,[/)16 2
{(1+p20,%1/12 ?) exp [—ij)} —1}exp[ )—l—( w)]
0-2
{3exp [—(1_2}2)} — 1} exp [1 ot ¢2 }
(1+ pPo2y® ) exp | 7t -1

0.2
3exp [—(1_’122)] —1

Corr (g%, e1_,°) =
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Dynamic Kurtosis
Now as

Cov (g0, f (e4—k,04-1)) =0, Cov (5tafa, f (5t,k,at,k)) =0 and
Cov (8?03, f (e—k, at,k)) = Cov (af, f(e—k, at,k)) ,

we get that

Cov (yt,yt k) = \MCo (ot ,at k) + A2Cov (at ,0',52 kst k) + 2eN3Cov (at ,af"‘k)

+2eN°E (0)%01_re—k) + 2X°E (007  eri) + N2Cov (07, 01%,) + Cov (07,07 _e71)

+2cACov (07, 07%,) + 2¢E (0701-k€1-1) + 2AE (afafa,jlgt k) + 2eX*Cov (077, Ufak)
+2cACov (07, 07_e7_1) +4NCov (07%,07%,) + ACNE (07 04—k

AN E (0202 e, )

and employing equations 3.2, 3.5, 3.3 and 3.4 we get
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da2yho? Aavw 4’0
Cov (4}, yis) =N {eXp [(1 - w2)] - 1} o {(1 —o) - W)]

2k ol 1 4o? +1) 02
+2)2 {(1 + 2a2p202¢2k_2) exp [—OM 0"] — 1} exp {(206 + 1w + (4o )On]

(1 _ wz) (1 — w) 2 (1 - 1/12)
2,1k 2 202
L AeN? {exp [204 Yo, B 1}exp [( 3aw N 5o }

(1=¢?) 1—¢)  2(1-¢?)
_ 6o + 1 02 (8o (200 + 1) % + (200 + 1)* + 1602
+A  apo ! exp <2((X1 —z)b;d 2l 8(1—¢?) )]

(ot Yo of (davt +1+80%)
2(1—1v) 8(1—4?)

) v 2 9
i 2
+2@)\{(2+a2p202¢2k2) exp [ oo ] — Q}exp {(a—i— DHw (a?+1) Un}

+4eXNapo, Tt Aexp

(1—4?) (1—1 2(1—19?)
_ aw a(2¢* +a+1)o7 3w 7 (40" +9)
+2p0, 1" 1{)\exp [(1—¢) + 2(1— 2 +C}exp [2(1_¢) + g(1—¢2)

- Oé2¢k0127 - o 20w o,
+4c* A {GXP [<1 _1/)2)] 1} P {(1 — 1) * (1 —1?2)}

2a+Dw o (4ot +1+4a?)

—|—462)\Oé)00'77¢k71 exp 2 (1 — 1) * 8(1—1v?)

)

where
a (¥ +20) o)
2(1—19?)

A:eXp[

o (2000 + 1) Ug]

+ exp 5 (1 — ¢2)

28



For A = 0 we get

k2 2
Cov (v}, y71,) = {(1+P205¢2k_2)exp [(11#_(222 ] _1}6Xp {( AR }

~—

oo g+
and
Vi) = dctexp [(1 Sk 2(10—31@] ’ {3‘”{" [(1 ﬁm] - 1}6"p [(fw T fngﬂ '

Now for p = 0, we get:
[ 102k o2 doww 4a’c?
Cov (yr',yix) = A" { exp 1 expl ! :
(2.020) | G- " T

: 200f0; 1 | [Ra+Dw  (da’+1)op
+2A {exp [(1_1/}2)_ 1} Xp[ =) + 2(1—¢?) }

_l’_
B
o
>~
W
—_——
[©]
3
o)
| p—|
=3
<
S
— S
| I |
|
—_
N——
[©]
3
o}
| —|
=l
]2
\%E
_l_

504203
2(1— w}

wko.?? 2w O-s
ayol b (a+Dw (®+1)o;
+4c/\{exp [(1_¢2)] 1} p{ 1= + 2(1—¢2)]

aito? 200w a?o?
42\ {exp [W} - 1} oXp {(1 o) - @ZQ)} ’
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Vi) =3 foo [T ] e [ e gy e

o {om [7E58 -1fom [1285 + o]
o] 28 0
i o [0 | <1 e [ 255+ 0

ot o[ 2] o B 2

2
U77

+4c* exp [(1 C_uw + 2(10_3]¢2)] + {3exp {(1 iip?)} — 1}exp l(12_w¢) +

Further, if additionally p = 0 as well, i.e. p =c =0, we get:

[ 402k 02 Aavw 4a’c?
va(yiyi%)::A4{eXp }1-—¢ﬂ;]__1}exp{(1—-w)_%(1——¢gi

) 204@[)’“(7%_ (a+ 1w (4a2+1)a72,
2 {exp[<1—w2__1}exp[ i—v) 2(1—w2>}

Yoy 2w &
+{6Xp [(1—w2>] ‘1}6"" [(1—w> " (1—w2>} |

~—
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Appendix B
The SV2-M is given by

Yt = c+ )\O’?a + E¢O¢,

Ino? =w+Yno | +mn = er;l/} Me—i-

First, form Perez, Ruiz and Veiga (2009) [60] we have that

A2 2
U”} , (3.12)

E [erexp (An:)] = po,Aexp [

and as ® (3,1:2)=2(2+3) ®(3,3:2) = 2(2+3)exp(z) see Gradshteyn
and Ryzhik (1994) [38], formula 9.212.4, where ® (., .; z) is the confluent hy-
pergeometric function, and from Perez, Ruiz and Veiga (2009) [60], equation

19, we get

E (2 exp (An)) = (1+ (po,A)?) exp [Azgﬂ .
Additionally,
B (e (4n) = B (8 exp (4n) ) = exp | 0% i (e o )
— exp [AQ;’%} \/%/(x—(panfl))gexp —% dz
+exp {A?ﬂ \/LQ_W / [3 (poy A) 22 — 3 (poy A)* 1 + (poryA)*] exp [—% dx
= (poyA) (3 + (poyA)?) exp [A%%}

Now notice that

w > ;
1 2 _ E % »
nat 1— w + pars w ur
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then form equation 3.2 we have

Cw 020727
1—w+2(1—w2>)

It follows that F (oy), E(c2), E(c}) and E (0}) are the same as for the
SV1-M model.

E (%) = E [exp (Clno?)] = exp ( (3.13)

Static Moments

First,

Bw B B
E(cle)=E (exp (T + E@DIH or + 577,5) 624)

- (exp (%7) “ ) e <% i it é@t) (314

and employing equation 3.12 we get

2
poy 1 w o
FE =7 Z '
(i) =757 oxp (2 1-9) 8- w2>)
It follows that

E (yt) =c+ AE (at2a) + E (EtO't) =C
2

aw a’o? po w o
TAexp (1—w * 2(1—2&2)) e (2(1—w> TR —%2))

Notice that depending on the parameter values the unconditional risk pre-
mium can be either positive or negative.

Now to find Var (y;) we need FE (o?¢;) and F (¢70?). Hence employing
equations 3.14 and 3.12 we get

V() =V (g0,) = {(1 + (poy)”) exp (4(10—%> - (%)2}

e ((1 5+ 4(10—?%2)) |
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Hence,
Var (y;) = NV (Utm) + V (e404) +2Cov (Uthy 5t0t)

and employing the formulae above we get the result of the main text.
From formula 9.212.4 in Gradshteyn and Ryzhik (1994) [38] we get

2.2 2 2.2 2 2.2 2 2.2 2
o0 L Aron _2f( Aoy 5N g8 1 Aptoyy g1 1 Ao
2 2 2 3 2 2 2 2 2 22 2

and from Perez, Ruiz and Veiga (2009) [60], equation 19, we get

202

"1 [3+6 (po,A)? + (panA)ﬂ .

E (5? exp (Ant)) = exp [

Now, employing equation 3.14, we have that the skewness and kurtosis
coefficients, of the mean error €f = €,0,, are as given in the main text.
The asymmetry of the observed process, v, is given by

E(y — E ()’ = E (A2 + &0, — [\E (67%) + E (2,01)])”
= NE (0)) 43N E (0/°"'e;) + 3\E (07°%]) + E (¢]07})
—3NE (07*) E (0}*) — 6X°E (07*) E (07°"'e;) — 3AE (07%) E (£}07)
—3X’E (0/%) E (g101) — 6AE (0;°"'e;) E (e101) — 3E (g}07) E (g40%)
2N E? (07%) 4+ 6N E? (07%) E (210¢) + 6AE (07%) E? (e,0¢) + 2E° (e40v) .
It follows that

302 2 2 3 30202
Bl =50 = [ow (7275) s (7))o (25 4 5770
(4@ " 1) exp <a(a+1) n)

3 (1—1/)2)2
—|—§)\2pan —2(2a+ 1) exp (%) exp

2 .2
— exp ((1 w2)> +2

+3) {(1 + (poy (ar+ 1))*) exp ((10:—0:2/12)) - (pan)Z)} o <(((11t11i) (a(1+—11)?2>72]>

n
+g)\(p0_n)2 [1 (20t Dexp <O‘—Uz))] exp ((a+1) (20° + 1) )

(da+1D)w (Ba*+1)0;
(2(1—@ " 8(1—w2>)

2(1—y? 1—¢) = 401 —9?)

3 <3 + (pan%)2> exp < 13 > > 3w
RELaCN (1+ (po,)?) exp <4(1—2¢2)(> jﬁ ; L (poy)? o (2 i—) 8- wz)) .
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Now for p = 0, as in Koopman and Uspensky (2002), the asymmetry can
be only positive, whereas for A = 0, as in JPR, we get that sk (y;) = sk (¢})
and the asymmetry of the observed process can be only negative.

Now

E(y.— E(y))" = N'E (08*) — 4\'E (07%) E (67%) + 6X'E? (62%) E (0}°)
=3XN'EY (07%) + AN E (07 ey) — 12X°E (07%) E (0% 'ey) — AN E (07%) E (g40v)
+12X°E? (07%) E (07°M'e) — 12X°E® (07%) E (g400) + 12X°E (07%) E (e40) E (07%)
+6X’E (0/°T%}) — 12X°E (07%) E (07°T%}) — 12X°E (0/°"'e,) E (540¢)
+OXE? (07%) E (e07) + 24N°E (07%) E (510¢) E (07°T"e;) + 6X*E (0/*) E* (40¢)
—18N2E? (07%) E? (e100) + 4NE (07°7%€}) — 120E (07°%€}) E (e401) — 4ME (07°) E (g]0?)
+12)E (07%) E (e40¢) E (e]07) + 12AE” (g404) E (07°T &) — 120E (07%) E® (540¢)
+E (gf0}) — AE (g]0}) E (e10¢) + 6E” (e404) E (e707) — 3E* (404) .

Hence
. i doww 20°07; )
E(y: — E (y)) AAep((l_w)—i_(l—z/ﬂ)
6o+ 1w  (120°+1)0;
+2X°poy B exp ( 21—v) 81— )
2 20+ 1w (4a*+1)0; (20 +3)w  (4o”+3)0y
+3)\ Cexp( 1= + (1= ) + 2Apo, D exp ( (1= ) + S(1—¢?) >

T { 13+ 24 (po,)? + 16 (po,)"] exp (2“3;%) 136 (pan)4} exp ((12_“’w) - (10—%@&2))

o2

_3([)077)2{ (3+(pan2) >exp< _ % ) }exp( w)+4(303, ))

—3 (1 + (/)‘777) )

where

6a%o 30202 o202
A= eXp((1 w2)>—4exp((1 1Z}2)>—i-6exp((17w2) -3,
3a(2a + 1) o2

B:(6a+1)exp( (1= 42 n) —3la+lew (%) - (501—2;‘/’3]2))

OéO'g « O'%
+3 (20& + ].) exXp (m) + 3€Xp (m) — 3,
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and

C =2 (1+ (po, (2a + 1)) exp <[4a (5(1_21;)1] U”) +2[1+ (po,)?] exp (4 a

%) +2(poy)” (20 + 1) exp ( (1ai%w2))

a(a+1)o? 1

— (poy)” (4a + 1) exp ((1——1/))77) + 5 (po ) [exp (%) - 3} :

(2a+3))2 . (3(2@—&-1)03
4(1—14?)
(4o +

p
2

=3 (14 (poy, (a+ 1))*) ex (4(1 1121 )

ofvem) - o (m2) Yo ) o ()

+Z(,00) {(2a+1) ;{ﬁ) 1}.

Autocorrelation

—4 (14 (po, (@ +1))?) exp (

(\V]

D = (2a + 3) <3+ (pa

n
exp
4

First, notice that

e (ot = (oo ()t o (B L )

—ow (244 5575+ 5

B B
E (gfafaﬂk) =F <€;4 exp (57715)) exp (§w>
2

X exp ((Bw D) 2DByY* + D? + (BW))

Rl
= (et (Gn) ) oo (54 D) g7 + 8(10—3102) D+ D+ ()

2ABY" + A* + B2))
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B B B
B(ofof el s) = £ (o0 (Gu+ Fumot, + Su) <€ o2

.820'2 BQ 20.2 B2 2k—20.2
1/} + +L]

B B Bk 1 U
2w+21/1w+...—|-2@/1 w + 3 + S 3

B
) (exp (Ewk In af_k) 5tc_katD_k)

B 1—¢F B?021—q%* C  _ByF4+D
T T s 1w B (45 "7)

By* + D
(o (220) )

2
o <(B D) g + (B4 (07 = 1) B2 4 2BDYM? + D) 8 (10_77 ¢2)>

B wB B
E (5{‘055—:? Nond k) E (EtA exp <577t>) exp (7) E (exp (E@Dln af_1> Ef_katD_k)
B By* + D
- {sten () ) (o0 (B350 1)

2
X exp <(B + D) ﬁ + ((Bw)2 + (2 — 1) B2 + 2BDyM? + D2y?) ﬁ)

= exp

— e |

It follows that

Cov (Y4, Yr—x) = Cov (c + A2 4 40, ¢+ Ao + €4 kOr k,)
= \Cov (at Lo k) + ACov (O't  Et— O k) + ACov (stat,at k) + Cov (e404, €4 0y—)

and the result of in the main text follows.

Leverage Cov (07,01 k&)
Now
Cov (O't2, O't,kgt,k) =F (O'?O't,ké‘t,k) - F (O't2) FE <O't,k€t7k)
B 2k + 1 W 02 X 1 3w 502
= e 35+ g ()]~ g (S +
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and

k
2% 4 1) exp [ 7 } 1
Corr (Ufﬂtikgtik) — 1 ( ) 2(1—¢2)

POy )
o (a2) =1 [+ ) s (i) ()

which has the sign of p, for any k, provide that ¥ > 0 due to volatility
clustering.

Dynamic Asymmetry Cov (yf, yt_k)
First notice that

Cov (y7,ye-x) = E (v, yi—k) — E (v}) E (ye—r) =
=\ [E (07%,0/%) — E (67%) E (0/%)] + N[E (67%¢}07) — E (67%) E (¢707)]
+2cA? [E (07%07%) — E* (07%)] 4 2cX [E (07%&10¢) — E (07%,) E (5104)]
+20° [E (07%,07°Tey) — E (07%,) E (67" 'et)]
+X* [E (0/%1_104—1,) — E (0/*) E (e4-101—k)] + E (e}07e1-k01—1) — E (€}07) E (4-k0t—)

+2C)\ |:E (U?agt_kgt_k) — E (O‘?a) E (Et_ko't k)i| —+ 2c [E (Eto'tf‘:t_k;at_k) — E (Eto-t) E (St—k‘gt—k)]

+2>\ |:E <U1;2a+16t5t—kgt—k) —F ( 2a+15t) E (St_ko't_k-)}
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It follows that

2(12’17Z)k0'2

2 _\3 n Saw 50520‘7%
oot = oo (G25) - o (225 5575),

+A(1+ (PUn)Q) [exp <2a;/) 7n ) - 1] exp ((a e + o +1) Un)

(1—14?) 1= 2(1—¢?)

a*Yror 20w o’o?
eW(u—w%)‘4em(l—w+u—w%)
k afo? 2a+1)w (4a*+1)0?
s (s (575 ) 1o (S5 G555
(da+1w (B +1) o—g)
21-v)  8(1-v?)

+% (1+ (poy)?) [(21//6 + 1) exp (2 = ¢2)> —1

+2c)\?

+M?pa, F exp (

)
Vo

op (2 <13°—J DK <15T27w2>)

Ao (2a2+ D G exp (%J:lqi)w ((2a84(r11)_2;)1) 072;) |
where
Pt o (A2 05) o ()
+5 | (o 1) exp ((iﬂﬁ—;‘w) e <<1a—2052>> |
GZKM+UW+”“pC?J?$ﬁ)_

Volatility Clustering

It is easy to prove that Corr (07,07 ;) is the same as for the SVI-M model.
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First, notice that

E ((c + A2 + 5t0t)2 (c + A2 + 6t_k0't_k)2> =
="+ NE (0/%) + PE (67,07 _4) + 2°ANE (07%,) + 2°F (e4-101—s)
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LN (£0202 ey) + 20N () + 26N°E (620%%,) 4+ 2AE (022,07,
TACNE (02°02%,) + APNE (0%2,_101_1) + AeN°E (0262 1e,_,)
+2¢°E (10) + 2cN°E (£40001%,) + 2¢E (e4048)_,07_1) + ACAE (2404077,
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FONE (02 6,01,) 1 20E (026,22 02 ,) + 4N E (02 e102,)

+4C)\E (O't2a+1€t€t,k0't,k) + 4)\2E (U§a+1€t0't2§]:rl€t,k) .
It follows that

Cov (y7,yi) = X' [E (0/%0}%) — E* (01%)] + 4cA® [E (07%0}%) — E (0/%) E (07%)]
120 [E (01%07%  err) + E (07 e0l,) — 2B (0/%) E (07°M'ey)]
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Hence,
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and

— k ayto; —1]ex o,
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