
Energy Balance Climate Models and the Spatial
Structure of Optimal Mitigation Policies

William Brock∗, Gustav Engstrom†and Anastasios Xepapadeas‡

January 23, 2012

Abstract
We develop a one-dimemsional energy balance climate model with

heat transportation across locations. We introduce the concept of po-
tential world GDP at time t, and we introduce, through the temper-
ature function, spatial characteristics into the damage function which
make damages latitude dependent. We solve the social planner’s prob-
lem and characterize the competitive equilibrium. We define optimal
taxes on fossil fuels and profit taxes on firms that extract fossil fuels.
Our results suggest that if the implementation of international trans-
fers across latitudes is not possible, then optimal taxes are spatially
non homogeneous and tend to be lower at the poor latitudes. The
degree of spatial differentiation of optimal taxes depend on heat trans-
portation. We also locate suffi cient conditions for optimal mitigation
policies to have rapid ramp-up initially and then decrease over time.
By employing the properties of the spatial model and approximating
solutions, we show how to study the impact of thermal transport across
latitudes on welfare inequality.
Keywords: Energy Balance Climate Models, Heat Diffusion, Tem-

perature Distribution, Spatial Optimal Taxes
JEL Classification: Q54, Q58

1 Introduction

The impact of climate change is expected to have a profound regional struc-
ture in terms of temperature and damage differentials across geographical
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regions.1 The spatial dimension of damages can be associated with two main
factors: (i) Natural mechanisms which produce a spatially non-uniform dis-
tribution of the surface temperature across the globe. These mechanisms
relate mainly to the heat flux that balances incoming and outgoing radia-
tion and in the differences among the local heat absorbing capacity - the
local albedo - which is relatively lower in ice covered regions; (ii) economic
related forces which determine the damages that a regional (local) economy
is expected to suffer from a given increase of the local temperature. These
damages depend mainly on the production characteristics (e.g. agriculture
vs services) or local natural characteristics ( e.g. proximity to the sea and
elevation from the sea level). The interactions between the spatially non-
uniform temperature distribution and the spatially non uniform economic
characteristics will finally shape the spatial distribution of damages.

Existing literature and in particular the DICE/RICE models (e.g. Nord-
haus and Boyer 2000, Nordhaus, 2007, 2010, 2011) provide a spatial distrib-
ution of damages where the relatively higher damages from climate change
are concentrating in the zones around the equator.2 These models as well as
the big majority of Integrated Assessment Models (IAMs) do not account
however for the first factor, the natural mechanism generating temperature
distribution across the globe. DICE/RICE type models do not include the
spatial transportation of heat, or albedo differentials across locations, and
perform their analysis in terms of the global mean surface temperature which
does not vary across regions during their planning horizons.

In climate science terminology the IAMs with a carbon cycle are zero-
dimensional models and they do not include spatial effects due to heat dif-
fusion across space. This can be contrasted to the one- or two-dimensional
energy balance climate models (EBCMs) developed by climate scientists
which model heat diffusion across latitudes or across latitudes and longitudes
( e.g. Budyko 1969, Sellers 1969,1976, North 1975 a,b, North et al. 1981,
Kim and North 1992, Wu and North 2007). One-dimensional EBCMs pre-
dict a concave temperature distribution across latitudes with the maximum
temperature at the equator. This non uniform temperature distribution is
important for understanding the so called “temperature anomaly”which is
the difference between the temperature distribution at a given benchmark
period and the current period. Data indicate (NASA) that since 1880 the
anomaly has been higher in high latitude zones, relative to zones around the
equator, which suggest spatial non-uniformity in the distribution of temper-

1Detailed reports of climate change effects on different parts of the world can be found
at
http://www.metoffi ce.gov.uk/climate-change/policy-relevant/obs-projections-impacts

2For example, Nordhaus’s RICE 2010 divides the world into US, EU, Japan, Russia,
Eurasia, China, India, Middle East, Africa, Latin America, Other high income, Other
developing Asia.

2



ature.
The temperature anomaly is however the basis for estimating regional

damages. Regional damages are obtained by mapping a given change in the
temperature of a region relative to a benchmark period - the temperature
anomaly - to the damages that this change is expected to bring given the
characteristics of the region’s economy. In the context of a zero-dimensional
model this temperature anomaly will be spatially homogeneous, or flat across
regions, since climate change acts on the global average temperature which
is spatially homogeneous. In the context of a one- or two-dimensional model
climate change acts on the spatially non homogeneous temperature distribu-
tion. This is expected to result in a spatially non homogeneous distribution
of the temperature anomaly which in turn will differentiate the distribution
of damages from those implied by a zero dimensional model.

In this paper we study the economics of climate change by coupling a
one-dimensional EBCM with heat diffusion and albedo differentiation across
latitudes, with an economic growth model. We believe that this approach
that integrates solution methods for one-dimensional spatial climate models,
that may be new to economics, with methods of solving economic models,
can provide new insights regarding issues such as the spatiotemporal of
optimal mitigation policy and the spatial distribution of damages, relative
to the more conventional integrated assessment models with carbon cycle
but without heat diffusion.

Thus, in the context described above the main contribution of our paper
is to couple spatial climate models, with economic models, and use these
spatial climate models in order to achieve three objectives.

The first objective is to show how heat transport across latitudes matters
regarding the prediction of the spatial distribution and the corresponding
temporal evolution of temperature, damages and optimal mitigation efforts.
In pursuing this objective we endogenously derive temperature and damage
distributions, climate response functions that describe the impact of in-
creasing atmospheric carbon dioxide stock on temperature and damages at
a specific latitude, as well as measures of spatial inequalities across latitudes.
As our result show heat transport explicitly affects the spatial distribution
of temperature and damages, thus its omission by zero-dimensional models
introduces a bias. Using the coupled one-dimensional model we derive a well
defined distribution of the surface temperature with higher temperature in
zones around the equator. Furthermore the dynamic nature of our model
allows us to study the temporal evolution of this distribution. In contrast
zero-dimensional models provide the global average temperature and its evo-
lution. We also derive the spatial distribution of damages resulting from the
interactions between heat transport and local economic characteristics. As
far as we know, this is the first time that the spatial distribution of surface
temperature and damages, and their temporal evolutions are determined
endogenously in the conceptual framework of a coupled EBCM - economic
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growth model. We therefore believe that this aspect is a contribution of
our paper relative to the traditional IAM with regional disaggregation but
without the natural mechanism of heat transport across locations.

The second objective is to provide insights regarding the optimal spatial
and temporal profile for current and future mitigation, when thermal trans-
port across latitudes is taken into account. Regarding the spatial profile of
fossil fuel taxes our result suggest higher tax rates for wealthier geographical
zones due to practical inability of implementing the international transfers
needed to implement a competitive equilibrium associated with the Pareto
optimum that is attained when welfare weights are Negishi weights. Our
one-dimensional model allows us to show how heat diffusion across geo-
graphical zones impacts the size of the spatial differentiation of fossil fuel
taxes between poor and wealthy regions. The result that in the absence of
international transfers a spatially uniform optimal mitigation is not possible
has first noted by Chichilnisky and Heal (1994), our result provides new
insights into this issue by characterizing the spatial distribution of fossil fuel
taxes and linking the degree of spatial differentiation of optimal fossil fuel
taxes to the diffusion of heat.

Regarding the temporal profile of optimal mitigation, It seems that
among economists dealing with climate change on the mitigation side the
debate has basically settled on whether to increase mitigation efforts that
is, carbon taxes, gradually (e.g. Nordhaus 2007, 2010, 2011), or whether we
should mitigate rapidly (e.g. Stern 2006, Weitzman 2009 a,b). Carey (2011)
quotes Robert Mendelsohn as stating that:

"The debate is how much and when to start. If you believe that
there are large damages, you would want more drastic immedi-
ate action. The Nordhaus camp, however, says we would start
modestly and get tougher over time".

In this paper we locate suffi cient conditions for profit taxes on fossil fuel
firms to be decreasing over time and for unit taxes on fossil fuels to grow
over time less than the rate of return on capital. We also locate suffi cient
conditions for the tax schedule to be increasing according to the gradualist
approach.

The third objective is to introduce the economics profession to the spatial
EBCMs with heat transport as a potentially useful alternative for study-
ing the economics of climate change relative to the simple carbon cycle
models. By deriving the spatiotemporal profile for optimal taxes from the
one-dimensional coupled climate economic model, we show how the spatial
EBCMs can contribute to the current debate regarding how much to mit-
igate now, whether mitigation policies should be spatially homogeneous or
not, and how to derive geographically specific information regarding dam-
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ages and policy measures.3

A popular class of EBCMs which we focus upon, are the models of North
(North 1975 a, 1075b, North et al. 1981, Wu and North 2007).4 A common
feature among these models is (i) the explicit incorporation of the spatial
dimension into the climate model in the form of heat diffusion or transport
across latitudes, and (ii) the spatial dependency of earths albedo due to the
presence of an endogenous ice line where latitudes north (south) of the ice
line are solid ice and latitudes south (north) of the ice line are ice free.

Since these models are new in economics we proceed in steps that we be-
lieve make this methodology accessible to economists. In section 2 we present
a basic energy balance climate model5 which incorporates human impacts on
climate which result from carbon dioxide accumulation due to the use of fos-
sil fuels, that blocks outgoing radiation. In developing the model we follow
North (1975 a,b) and use his notation. We use the model to expose solution
methods and especially the two mode approach which transforms systems of
partial differential equations (PDEs) in infinite dimensional spaces resulting
from the spatial modeling, into systems of ordinary differential equations

3Another issue that can be addressed by latitude dependent climate models is damage
reservoirs. Damage reservoirs in the contest of climate change can be regarded as sources
of climate damages which will eventually cease to exit when the source of the damages is
depleted. Damage reservoirs are latitude dependent and ice lines and permafrost can be
regarded as such reservoirs.
As the ice lines move closer to the poles, due to climate change, we might expect that

marginal damages from this moving will be large at first and then diminish as the ice line
approaches the Poles. When there will be no ice left at the Poles this damage reservoir
would have been exhausted. The presence of an endogenous ice line in the EBCM allows
us to model these type of damages explicitly given the relevant information
Permafrost is soil at or below the freezing point of water for two or more years. The

permafrost feedback suggests that permafrost carbon emissions could affect long-term
projections of future temperature change. Studies indicate that up to 22 % of permafrost
could be thawed already by 2100. Once unlocked under strong warming, thawing and
decomposition of permafrost can release amounts of carbon until 2300 comparable to the
historical anthropogenic emissions up to 2000 (approximately 440 GTC) (Schneider et al.
2011).
EBCMs by explicitly introducing the spatial dimension in the climate module of the

problem can help in the understanding of these type of latitude dependent damages which
may have an important effect on the temporal and spatial structure of policy instruments,
because of the ‘front loading’character of damages and the possible relations with tipping
points and thresholds.
Judd and Lontzek (2011) have formulated a dynamic stochastic version of DICE -

the SDICE - which includes stochastic tipping points possibilities. They show that this
complexity affects the optimal policy results in comparison to RICE. The modeling of
damage reservoirs is beyond the purpose of this paper, but we think that it represents an
important area for further research.

4Although the EBCMs that we use are simple climate models, many useful insights
into climate dynamics can arise from these simple models (Pierrehumbert 2008).

5For more on EBCMs see for example Pierrehumbert (2008) (chapters 3 and 9, espe-
cially sections 9.2.5 and 9.2.6 and surrounding material). North et al (1981) is a very
informative review of EBCMs while Wu and North (2007) is a recent paper on EBCMs.
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(ODEs) in finite dimensional spaces. The two mode approach will be used
to solve, and numerically approximate latitude dependent temperature and
damage functions.

Section 3 couples the spatial EBCM with an economic growth model,
where a finite stock of fossil fuel is an essential input along with capital and
labour. Fossil fuels are extracted by fossil fuel firms which pay taxes on
profits and used by firms producing consumption goods which pay per unit
of fossil fuel used. We solve the model for the social planner and for the
competitive equilibrium with taxes. We derive the optimal taxes and their
spatial structure and their temporal profiles. We show that if international
transfers among regions are not possible, poor regions should pay relatively
lower fossil fuel taxes, and that under a mild assumption about a slow decay
of the CO2 in the atmosphere the profit tax on fossil fuel firms decline over
time and the unit taxes on extracted fossil fuels grow at rate less than the
rate of return on capital. Furthermore we derive the latitude dependent
temperature function and the impact of heat transport on damages across
latitudes.

In section 4 we use approximate solutions, we simulate the climate and
the economic model and we derive explicit numerical solutions for the lati-
tude dependent temporal and damage functions. The last section concludes.

2 An Energy Balance Climate Model with Human
Inputs

In this section we develop a one-dimensional Energy Balance Climate Model
with human inputs. The term “one-dimensional” means that there is an
explicit one dimensional spatial dimension in the model so that our unified
model of the climate and the economy evolves both in time and space.6 We
follow North (1975a,b) and North et al. (1981) in this development.

Let x to denote the sine of the latitude. We shall abuse language and
just refer to x as “latitude”. Following North (1975a,b) let I(x, t) denote
outgoing infrared radiation flux measured in W/m2 at latitude x at time t,
T (x, t) denote surface (sea level) temperature measured in ◦C at latitude x
at time t. The outgoing radiation and surface temperature can be related

6 In contrast, a “zero-dimensional ”model does not explicitly account for the spatial
dimension. On the other hand more complicated spatial structures could include two-
dimensional spherical models. Our methods can be readily applied to a two dimensional
spherical worlds as in Wu and North (2007).

6



through the empirical formula.7

I(x, t) = A+BT (x, t), A = 201.4W/m2, B = 1.45W/m2 (1)

The basic energy balance equation developed in North (1975a, equation
(29)) can be written, with human input added, as:

∂I(x, t)

∂t
= QS(x)α(x, xs(t))− [I(x, t)− h(x, t)] +D

∂

∂x

[
(1− x2)

∂I(x, t)

∂x

]
(2)

where units of x are chosen so that x = 0 denotes the Equator, x = 1
denotes the North Pole, and x = −1 denotes the South Pole; Q is the solar
constant8 divided by 2; S(x) is the mean annual meridional distribution
of solar radiation which is normalized so that its integral from -1 to 1 is
unity; α(x, xs(t)) is the absorption coeffi cient or co-albedo function which
is one minus the albedo of the earth-atmosphere system, with xs(t) being
the latitude of the ice line at time t; and D is a thermal diffusion coeffi cient
that has been computed as D = 0.649Wm−2oC−1 (North at al.1981)

Equation (2) states that the rate of change of outgoing radiation is de-
termined by the difference between the incoming absorbed radiant heat
QS(x)α(x, xs(t)) and the outgoing radiation [I(x, t)− h(x, t)] . Note that
the outgoing radiation is reduced by the human input h(x, t). Thus the hu-
man input at time t and latitude x, can be interpreted as the impact of the
accumulated carbon dioxide that reduces outgoing radiation.

We define h (x, t) = σ (x) ξ ln M(t)
M0

where M0 denotes the preindustrial
and M (t) the time t stock of carbon dioxide in the atmosphere, ξ = 5.35
(IPCC 2001) is a temperature-forcing parameter (◦C perW per m2), and
σ (x) is a weighting function that capture latitudinal differences in the im-
pact of the stock of the atmospheric carbon dioxide on latitude x’s temper-
ature via (1) and (2). The stock of the atmospheric carbon dioxide evolves
according to

Ṁ (t) =

∫ x=1

x=−1
β (x, t) q (x, t) dx−mM (t) , M (0) = M0 (3)

where β (x, t) q (x, t) are emissions generated at latitude x, with emissions
being proportional to the amount of fossil fuels used by latitude x at time

7 It is important to note that the original Budyko (1969) formulation cited by North
parameterizes A,B as functions of fraction cloud cover and other parameters of the climate
system. North (1975b) points out that due to non-homogeneous cloudiness A and B should
be functions of x. There is apparently a lot of uncertainty involving the impact of cloud
dynamics (e.g. Trenberth et al. 2010 versus Lindzen and Choi 2009). Hence robust
control in which A,B are treated as uncertain may be called for but this is left for further
research.

8The solar constant includes all types of solar radiation, not just the visible light. It is
measured by satellite to be roughly 1.366 kilowatts per square meter (kW/m2).
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t. The coeffi cient β (x, t) reflects emission intensity of the fossil fuels used at
latitude x and its dependence on time represents the possibility of technical
progress in emission intensity, finally m is the carbon decay rate.

We assume that the total stock of fossil fuel available is fixed or,∫ x=1

x=−1
q (x, t) dx = q (t) ,

∫ ∞
0

q (t) = R0 (4)

where q (t) is total fossil fuels used across all latitudes at time t, and R0 is the
total available amount of fossil fuels on the planet. Thus in this model use of
fossil fuels generates emissions, emissions increase the stock of atmospheric
carbon dioxide, which in turn increases the temperature by blocking the
outgoing radiation.

As pointed out by North (1975b), in equilibrium the incoming absorbed
radiant heat at a given latitude is not matched by the net outgoing radiation
and the difference is made by the meridional divergence of heat flux which is

modelled by the term D ∂
∂x

[
(1− x2)∂I(x,t)∂x

]
. This term explicitly introduces

the spatial dimension stemming from the heat transport, into the climate
model.

Returning to the description of (2), the ice line is determined dynamically
by the condition (Budyko 1969, North 1975 a,b):

T > −10oC no ice line present at latitude x
T < −10oC ice present at latitude x

(5)

and ‘below’the ice line absorption drops discontinuously because the albedo
jumps discontinuously. For example North (1975a) specifies, discontinuous
co-albedo function as:

α(x, xs) =

{
α0 = 0.38 |x| > xs
α1 = 0.68 |x| < xs

(6)

2.1 Approximating Solutions for the Basic Energy Balance
Equation

We turn now to a more detailed analysis of the solution process. Equation
(2) is a PDE. One might think that we are going to have to deal with the
complicated mathematical issues of the solution or the optimal control of
PDEs when we need to discuss the economic optimization problems over
space and time. But, as we shall see, the climate problem reduces to the
optimal control of a small number of “modes”where each “mode”follows a
simple ODE. We believe this decomposition is another important and new
contribution of our paper to the study to coupled economic and climate
models. Let us continue with the development of the solution procedure for
equation (2) before turning to optimization.
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North (1975b) approached the solution of (2) by using approximation
methods.9 In this case the solution is approximated as Î(x, t) =

∑
n even In(t)Pn(x),

where In(t) are solutions to appropriately defined ODEs and Pn(x) are even
numbered Legendre polynomials. A satisfactory approximation of the so-
lution for (2) can be obtained by the so called two mode solution where
n = {0, 2} . We develop here a two mode solution given the human forcing
function h(x, t). Since we are going to use the temperature as the basic state
variable we redefine (2) using (1), in terms of temperature T (x, t) and we
have

B
∂T (x, t)

∂t
= QS(x)α(x, xs)− [(A+BT (x, t))− h(x, t)] + (7)

DB
∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]
Using the approximation T̂ (x, t) =

∑
n even Tn(t)Pn(x), where now Tn(t) are

solutions to appropriately defined ODEs the two mode solution is defined
as:

T̂ (x, t;D) = T0(t) + T2(t;D)P2(x) (8)

B
dT0(t)

dt
= −A−BT0(t) +∫ 1

−1

[
QS(x)α(x, xs) + ξ ln

M (t)

M0
σ (x)

]
dx (9)

B
dT2(t)

dt
= −B(1 + 6D)T2(t) +

5

2

∫ 1

−1

[
QS(x)α(x, xs) + ξ ln

M (t)

M0
σ(x)

]
P2(x)dx(10)

T0 (0) = T00, T2 (0) = T20, P2(x) =
(3x2 − 1)

2
(11)

S(x) = 0.5 [1 + S2P2(x)] , S2 = −0.482 (12)

The derivation of the solution is presented in Appendix 1.10 Given the
definitions of the functional forms the two mode solution is tractable and
can be calculated given initial conditions T00, T02 which are determined by
the initial climate state.

9For a general approach to approximation methods see for example Judd (1998).
10The two mode solution is an approximating solution. We can develop a series of

approximations of increasing accuracy by solving this problem for expansions using a
“two mode”solution, a “three mode”solution and so on. North’s results suggest that the
two mode solution is an adequate approximation for nonoptimizing models. We use the
two-mode approximation in our optimal control setting. A topic of further research could
be an investigation of how many modes are needed for a good quality approximation in
an optimal control setting.
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In the two-mode solution, the ice line function xs(t) which determines
the co-albedo solves the equation Is = I(xs(t), t). In terms of temperature
and using the two-mode solution, the ice line function solves

T̂ (x, t;D) = T0(t) + T2(t;D)P2(xs(t)) = Ts, Ts = −10oC (13)

and the ice line function is given by a solution of (13), i.e.

xs(t) = P−1
+

(
Ts − T0(t)

T2(t;D)

)
(14)

Where the subscript “+” denotes the largest inverse function of the
quadratic function P2(x) := (1/2)(3x2−1). Notice that the inverse function
is unique and is the largest one on the set of latitudes [−1, 1]. Thus there
exist a nonlinear feedback from changes in temperature to the co-albedo
thought the endogeneity of the ice line. This feedback can be simplified by
making the co-albedo function α (x, xs) a smooth function of the temper-

ature, α
(
x, T̂ (x, t;D)

)
which can be highly nonlinear around −10oC.11 A

more simplified and tractable specification of the co-albedo is the one in-
troduced by North et al. (1981, p.95 equation (18), where the co-albedo
depends only on geographical location or

a (x) = 0.681− 0.202P2 (x) (15)

In this case the co-albedo function retains its latitude dependence and
provides a significant simplification that helps tractability.

2.1.1 Use of global mean temperature and potential bias

The two-mode solution defines the climate module by (8)-(12), and (3),(4).
Although the climate module does not contain the PDE (7) that incorpo-
rates temperature diffusion, spatial interactions are incorporated through
the mode-2 part of the solution the ODE (10). Thus the contribution of the
second mode into the full solution can be regarded as the “importance of
space”through heat transport, in the analysis of climate change. This can
be seen by the following argument.

The size of diffusion coeffi cient D determines the speed of spatial diffu-
sion in (7). If D = 0 then are no spatial interactions, if D →∞ then we have
instantaneous mixing and spatial homogeneity and thus the heat transport
across latitudes is not relevant for our problem. In this case, the mode two
solution vanishes. To show this note that since the total amount of fossil fuel
is finite and the contributions to the stock of atmospheric carbon dioxide is
due to the use of fossil fuels, the stock of the atmospheric carbon dioxide
M (t) must be bounded above. Thus the second term of the right hand side
of (10) is bounded above. Then the following proposition can be stated
11For example the co-albedo function α (x, T (x, t)) = c0 + c1 tanh (T (x, t) + 10) for

(c0, c1) = (.525, .195) provides a good approximation of the discontinuous function (5).
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Proposition 1 Assume that
∫ 1
−1

[
QS(x)α(x, xs) + ξσ(x) ln M(t)

M0

]
P2(x)dx =

Φ (t) ≤ UB < ∞, and that D → ∞. Then the solution T2 (t) of (10) van-
ishes.

For the proof see Appendix 2. Thus for a given diffusion D < ∞ the
relative contribution of T2 (t) to the solution T̂ (t) can be regraded as an a
measure of whether the heat transport is important in the solution of the
problem.

This result can be used to suggest that the use of the global mean tem-
perature alone in IAMs may introduce a bias. From the two mode ap-
proximation of the temperature, we obtain the global mean temperature as
mT = T0(t).12 This result, along with proposition 1, indicates that the zero
- dimensional IAMs can be regarded as a special case of a one-dimensional
model when D → ∞.Thus the second mode that provides that spatial dis-
tribution of temperature is omitted in the zero - dimensional IAMs. Since
scientific evidence indicate that D is small (less than one according to North
et al. 1981) our result suggest that omitting the second mode introduces a
bias. In our paper we correct for this underlying bias by keeping that second
mode, and we also provide a basis for a quantitative representation of this
bias. The variance of the global mean temperature is:

VT =

∫ 1

−1

[
T̂ (x, t;D)− T0(t)

]2
dx =

∫ 1

0
(T2(t;D)P2(x))2dx =

2

5
(T2(t;D))2

(16)
In an IAM this variance will be zero since the second mode is dropped.

Local temperature means at latitudes (x, x+ dx) and the mean of tem-
perature over the set of latitudes Z = [a, b] are defined by

[T0(t) + T2(t;D)P2(x)] dx,m [a, b] =

∫ b

a
[T0(t) + T2(t;D)P2(x)] dx (17)

while the variance of temperature over the set of latitudes Z = [a, b] is

V [a, b] =

∫ b

a
[T0(t) + T2(t;D)P2(x)−m [a, b; t]]2 dx (18)

It might be plausible to assume that utility in each area [a, b] depends
upon both the mean temperature and the variance of temperature in that
area. For example we may expect increases in mean temperature and vari-
ance to have negative impacts on output in any area Z, if it is located in
tropical latitudes. Whereas mean temperature increases in some areas Z
(e.g. Siberia) may increase utility rather than decrease utility.13

12This is because mT =
∫ 1
−1 T̂ (x, t)dx =

∫ 1
−1 [T0 (t) + T2 (t)P2(x)] dx and

∫ 1
−1 P2(x)dx =

0.
13 In a stochastic generalization of our model, we could introduce a stochastic process to
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3 An Economic EBC Model

3.1 Potential world output and damages from climate change

Output at each location of our economy is produced according to a standard
neoclassical production function which is assumed to be of the Cobb Douglas
form with constant returns to scale and exponentially growing total factor
productivity, or

Y (t, x) = A(x, t)Ω(T (x, t))F (K(x, t), L(x, t), q(x, t))
= eatA(x, 0)Ω(T (x, t))K(x, t)αKL(x, t)αLq(x, t)αq

= e(a+nαL)tA(x, 0)L(x, 0)αLΩ(T (x, t))K(x, t)αKq(x, t)αq

≡ e(a+nαL)tΨ(x, T (x, t))K(x, t)αKq(x, t)αq

(19)

where K(x, t), L(x, t), q(x, t) denote capital, labour and fossil fuels respec-
tively used at latitude (location) x, and time t, a is TFP growth, n is pop-
ulation growth, and Ω(T (x, t) are damages to output due to climate change
at latitude x and time t as a function of temperature at the same latitude,
with ∂Ω(T (x,t))

∂T < 0.
In this economy we define by Ftotal(K(t), q(t), {T (x, t)}x=1

x=−1 ; t) the “po-
tential world GDP at date t”. This concept represents the maximum output
that the whole world can produce given total world capital K(t) available
and total world fossil fuel q(t) used, for a given distribution of temperature
T (x, t) across the globe, with labor growing at a constant rate n, and treated
as realistically immobile.14 Thus Ftotal can be regarded as a natural base line
under ideal world conditions where there’s no barriers to capital and fossil
fuel flows to their most productive uses across latitudes.15 We abuse nota-
tion and write Ftotal(K(t), q(t), {T (x, t)}x=1

x=−1 ;x, t) = Ftotal(K(t), q(t), T ; t).
The overall resource constraint for the economy can then be defined as:

C(t) + K̇(t) + δK(t) = Ftotal(K(t), q(t), T ; t) (20)

where total consumption, capital and fossil fuel are defined over all latitudes
as: j (t) =

∫ x=1
x=−1 j (x, t) dx, j = C,K, q respectively. The potential world

GDP can be analytically defined in the following way:

represent “weather,”i.e. very high frequency fluctuations relative to the time scales we are
modeling here. Here the “local variance”of high frequency phenomena like “weather”may
change with changes in lower frequency phenomena such as mean area Z temperature and
area Z temperature variance. We leave this task to future research. Existing dynamic
integrated models of climate and economy, (e.g. Nordhaus’s well known work (2007,
2010)) can not deal with these kinds of spatial elements, such as impacts of changes in
temperature variance, generated by climate dynamics over an area Z.
14Labor immobility at a global scale could be regarded as a reasonable approximation

given restrictions on labor mobility relative to capital and fossil fuel mobility.
15This notion can be regarded as similar to the notions of “potential GDP”“potential

output”etc used by macroeconomists.
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Using Ψ(x, T (x, t)) from (19), define damages at a specific location x
and global damages as:

J (x, t;D) =
Ψ(x, T (x, t))1/αL[∫

x′ Ψ(x′, T (x′, t)1/aLdx′
]aK+aq

(21)

J
(
{T (x, t)}x=1

x=−1

)
= J(t;D) ≡

∫
x
J (x, t;D) dx (22)

respectively. Potential world GDP Ftotal(K(t), q(t), T ; t), can be computed
through the following optimization problem:

Ftotal(K(t), q(t), T ;x.t)

≡ max{
∫
x e

(a+nαL)tΨ(x, T (x, t))K(x, t)αKq(x, t)αqdx,
s.t.

∫
xK(x, t)dx ≤ K(t),

∫
x q(x, t)dx ≤ q(t)}.

(23)

The Lagrangian associated (23) is:

L =

∫
x
e(a+nαL)tΨ(x, T (x, t))K(x, t)αKq(x, t)αq)dx+ (24)

µK (t)

[
K(t)−

∫
X
K(x, t)dx

]
+ µq (t)

[
q(t)−

∫
X
q(x, t)dx

]
(25)

which leads to

aKe
(a+nαL)tΨ(x, T (x, t))K(x, t)αK−1q(x, t)αq = µK (t) (26)

aqe
(a+nαL)tΨ(x, T (x, t))K(x, t)αKq(x, t)αq−1 = µq (t) (27)

which means that the marginal product of capital and the marginal product
of the fossil fuels are equated across latitudes for all times t, in the context
of the potential world GDP notion. Furthermore, since F is Cobb-Douglas
it follows that

K(x, t) = [Ψ(x, T (x, t;D))1/αL/

∫
x′

Ψ(x′, T (x′, t)1/aLdx′]K(t) (28)

q(x, t) = [Ψ(x, T (x, t;D))1/αL/

∫
x′

Ψ(x′, T (x′, t)1/aLdx′]q(t) (29)

Ftotal(K(t), q(t), T ; t) =
[
e(a+αLn)tK(t)αKq(t)αq

]
J(t;D) (30)

As it can be seen from (30) the Cobb-Douglas specification allows the
“separation” of the climate damage effects on production across latitudes,
as the “index” J(t;D), which depends on thermal diffusion coeffi cient D,
multiplies a production function that is independent of x. Thus popu-
lation growth and technical change affect the “macrogrowth component”
e(a+αLn)tK(t)αKq(t)αq , while changes in the size of D have a direct effect
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on the “climate component”. The combination of the macrogrowth and the
climate component determine the potential world input. This separability
property allows a more tractable analytical and numerical work regarding
the importance of the spatial dimension in the economic-climate model.

From the consumer side, the idea of working at the global scale suggests
a welfare optimization problem that can be interpreted as the maximization
of the welfare of an “aggregate dynastic consumer family” subject to an
aggregate production function. This problem can be set in the following
way:. Allocate C(t) to solve the problem

max{
∫
x
(e(−ρ+n(1−γ))tL(x, 0)1−γC(x, t)γ

γ
)dx,

∫
x
C(x, t)dx ≤ C(t)} (31)

to obtain:

C(x, t) =
L(x, 0)∫

x L(x, 0)dx
C(t) (32)

Allowing for per capita damages in utility due to climate change given by
ΩC(T (x, t), with ∂ΩC(T (x, t))/∂T > 0. the economic part of the social wel-
fare problem in the “Ramsey-like” form for the “aggregate dynastic con-
sumer family”can be written as:,

max

∫ ∞
t=0

e(−ρ+n(1−γ))tC(t)γ

γ

∫
x

[
L(x, 0)∫

x′ L(x′, 0)dx′

]γ
dxdt−[∫ ∞

t=0
e(−ρ+n)t

∫
x
L(x, 0)ΩC(T (x, t)dx

]
dt, (33)

subject to

C(t) + K̇(t) + δK(t) = e(a+αLn)tK(t)αKq(t)αqJ(T ;D) (34)∫ ∞
t=0

q(t)dt ≤ R0 (35)

with R0 denotes the total available amount of fossil fuel on the planet.

3.2 Global welfare maximization

Given the economy described above and the climate described by the EBCM,
we analyze the welfare maximization problem considered by a social planner.
This economic part of this problem is defined in terms of the potential world
GDP and the aggregate dynastic consumer family as

max

∫ ∞
0

e−ρt
∫
x
υ (x)L(x, t)

[
U

(
C(x, t)

L(x, t)

)
− ΩC(T (x, t))

]
dxdt (36)

subject to (20),(35),(3),(7) the total consumption and total fossil fuel con-
straints, along with the appropriate initial conditions, where υ (x) are ex-
ogenously given welfare weights such that

∫ x=1
x=−1 υ (x) dx = 1. Varying the
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weights all the Pareto effi cient allocations can be traced. A standard weight
independent of x for our case is υ = 1. Assuming zero extraction cost for
the fossil fuels,16 denoting by λ costate variables by µ Lagrangian multipli-
ers and assuming β (x, t) = β to avoid corner solutions, the current value
Hamiltonian for this problem can be written as:

H =

∫
X
υ (x)L(x, t)

[
U

(
C(x, t)

L(x, t)

)
− ΩC(T (x, t))

]
dx+ (37)

λK (t) [Ftotal(K(t), q(t), T ; t)− C(t)− δK(t)]

+µR

[
R0 −

∫ ∞
0

q (t)

]
+ λM (t)

[∫ 1

−1
β (t) q (x, t) dx−mM (t)

]
+λT (t, x)

[
1

B
[QS(x)α(x, T (x, t))− (A+BT (x, t))

+σ (x) ξ ln
M (t)

M0
+DB

∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]]
+µC (t)

[
C (t)−

∫
X
C (x, t) dx

]
+µq (t)

[
q(t)−

∫
X
q(x, t)dx

]]
In this problem the state variables are v = (K (t) , R (t) ,M (t) , T (t, x)) ,

while we use as control u = (C (t) , C (x, t) , q (t) , q(x, t))
The maximum principle implies for the controls:17

C (t) , C (x, t) : λK (t) = µC (t) = υ (x)U
′
(
C(x, t)

L(x, t)

)
(38)

q (t) : λK (t)F ′total,q = µR − µq (t) (39)

q(x, t) : λM (t)β (t) = µq (t) (40)

or F ′total,q =
µR − λM (t)β (t)

λK (t)
, (41)

For weights independent of x (38) implies that per capital consumption
should be equated across locations. For the costates we have:

16This simplifying assumption does not affect the validity of our results.
17Since problem (36) is non autonomous, we assume that the discount rate suffi ciently

high and that the functions of the problem satisfy the growth conditions required to apply
the Pontryagin maximum principle (Malysh 2008). To ease notation sometimes we denote
derivatives by the subscript for the relevant variable and a (′) .
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λ̇K (t) =
[
ρ+ δ − F ′total,K(K(t), q(t), T ; t)

]
λK (t) (42)

λ̇M (t) = (ρ+m)λM (t)− ξ

BM (t)

∫ 1

−1
σ (x)λT (t, x) (43)

λ̇T (t, x) = (ρ+ 1)λT (t, x) + υ (x)L (t, x) Ω′c,T (T (t, x)) (44)

−λK (t)F ′total,T (K(t), q(t), T ; t)−

QS(x)
λT (t, x)

B

∂α(x, T (x, t))

∂T
−D ∂

∂x

[
(1− x2)

∂λT (x, t)

∂x

]
The last term on the RHS of (44) is obtained by applying the maximum

principle. It requires, in the derivation of the conditions of the maximum
principle, to differentiate by part twice with respect to x, in order to express
the derivatives of T with respect to x in terms of derivatives of λT with
respect to x. A detailed argument is presented in Appendix 3.

A solution of the welfare maximization problem, provided it exists and
satisfies the desirable stability properties, will determine the optimal tem-
poral and latitudinal paths for the states, the controls and the costates.
From (44) and the dependency of the solutions of the dynamical system on
parameters it follows that the optimal time paths will be dependent on the
thermal diffusion coeffi cient D. Denoting optimality by a (∗) these paths can
be written as:

{K∗ (t;D) ,K∗ (t, x;D)R∗ (t;D) ,M∗ (t;D) , T ∗ (t, x;D)}x=1
x=−1

{C∗ (t;D) , C∗ (x, t;D) , q∗ (t;D) , q∗(x, t;D)}x=1
x=−1

{λ∗K (t;D) , λ∗R (t;D) , λ∗M (t;D) , λ∗T (t, x;D)}x=1
x=−1 (45)

Substituting these paths into (21) and (22) will determine the "optimal"
damages from climate change on a global or on a location basis.

3.3 Market Equilibrium with Fossil Fuel Taxes

The model presented in the previous section is general enough for studying
optimal taxation problems in a general equilibrium setup, it requires however
working with systems of PDEs in infinite dimensional spaces. In order to
provide tractable results we use this model as a basis but we simplify the
climate dynamics by using the two-mode approximation developed in section
2.1. To study the optimal taxation problem we consider a global market
economy with each latitude x considered as a country. In each country the
representative consumer maximizes utility subject to a permanent income
constraint by considering as parametric damages due to climate change, the
representative firm maximizes profits by considering as parametric fossil fuel
world prices and taxes on fossil fuel use. World fossil fuel firms maximize
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profits by considering as parametric taxes on their profits. The central
planner, given the optimizing choices of firms and consumers, chooses the
amount of fossil fuel q (x, ·) to be used in each location, by taking onto
account climate change damages and climate dynamics. The choice of fossil
fuel allocation determines optimal taxes.

3.3.1 Consumers

Consumers at latitude (or country) x are a “dynastic family” that takes
ΩC(T (x, t)) as parametric beyond their control and can borrow and lend on
world bond markets at the rate r (t) to solve the following problem18

max
{C(x,t)}

{
∫ ∞
t=0

e−ρtL(x, t)U

(
C(x, t)

L(x, t)

)
− ΩC(T (x, t;D))dt} (46)

subject to

C(x, t) + K̇(x, t) + Ḃ(x, t) = r(t)(K(x, t) +B(x, t)) + I(x, t) (47)

B(x, 0) = 0,K(x, 0) = K0(x) (48)

I(x, t) ≡ w(x, t)L(x, t) + sFF (x, t)πFF (t) + sTax(x, t)Tax(t) (49)

where B(x, t) denote bonds held at location x and time t. After tax profits
from fuel firms are redistributed lumpsum to latitude x consumers in the
fraction sFF (x, t) and proceeds from fuel taxes are redistributed lump sum
to latitude x consumers in the fraction sTax(x, t).19 Set R (t) =

∫ t
s=0 r(s)ds

and multiply both sides of (47) by exp(−R (t)), integrate over t, and impose
the “solvency”constraints

B(x, t)e−R(t)→ 0, K(x, t)e−R(t) → 0 , t→∞. (50)

Observe that we can write (47) in the present discounted value form∫ ∞
t=0

e−R(t)C(x, t)dt = K0(x) +

∫ ∞
t=0

e−R(t)I(x, t)dt (51)

which leads to the FONC

U ′
(
C(x, t))

L(x, t

)
= Λ(x)e(ρt−R(t)) (52)

where Λ(x) is the Lagrange multiplier for the permanent income constraint
(51) and expresses the marginal utility of capitalized income at location x.

18One might think that one could put the term +δK(x, t) in (47) but this will lead
immediately to bonds crowding out capital or other kinds of corner solution problems.
Therefore we treat +δK(x, t) as an expense paid by firms on the firm side of the model.
19 In baseline analysis using Arrow Debreu private ownership economies, it is standard

to assume perfect markets (borrowing and lending with no frictions, defaults, etc.) with
profits and taxes redistributed lump sum to consumers.
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Note that per capita consumptions will not be equated across latitudes unless
Λ(x) = Λ(x′) for all x, x′. For equality of the marginal utility across latitudes
we will need to assume, following the theory of the Second Welfare Theorem,
that intertemporal endowment flows are adjusted so that Λ(x) = Λ(x′) for
all x, x′.

By setting Ḃ = Z, The consumer optimum can be alternatively charac-
terized by the following Hamiltonian function.

Hc = L(x, t)(U(C(x, t)/L(x, t))− ΩC(T (x, t;D)) + (53)

λK (x, t) [r(t)(K(x, t) +B(x, t)) + I(x, t)− C (x, t)− Z (x, t)] +

λB (x, t)Z (x, t)

with optimality conditions

(U ′(C(x, t)/L(x, t)) = λK (x, t) = λB (x, t) (54)

λ̇K (x, t) = (ρ− r (t))λK (x, t) (55)

along with transversality conditions. Thus, competitive equilibrium with
borrowing and lending forces leads to:

λ̇K(x, t)/λK(x, t) = ρ− r(t) = λ̇K(x′, t)/λK(x′, t) (56)

for each x, x′ for all t, where λK(x, t) is the current shadow value of capital at
location x. However this is not enough to force λK(x, t) = λK(x′, t) for each
x, x′, and the implied equation of per capita consumption across latitudes,
for all dates t, unless intertemporal endowment flows are adjusted.

3.3.2 Consumption Goods Producing Firms

Firms producing consumption goods located at latitude x solve the problem

max {A(x, t)Ω(T (x, t))F (K(x, t), L(x, t), q(x, t))− (57)

(r(t) + δ)K(x, t)− w(x, t)L(x, t)− (p(t) + τ (x, t)) q(x, t)}

where p (t) is the world price for fossil fuels, w (x, t) is the wage at location
x and time t,20 and τ (t, x) is a tax on fossil fuels paid by the representative
firm located at point (country) x, and F (K,L, q) is constant returns to scale.
Hence profits will be zero at each x for firms that produce consumption
goods. The optimality conditions for the optimal choices for K and q imply:

A(x, t)Ω(T (x, t;D))F ′K(K(x, t), L(x, t), q(x, t)) = r (t) + δ (58)

A(x, t)Ω(T (x, t;D))F ′q(K(x, t), L(x, t), q(x, t)) = p (t) + τ (x, t) (59)

20Wages are not equated across locations due to labour immobility.
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Thus in any decentralized problem latitude x firms will choose demands
K(x, t) and q(x, t) according to (58) and (59). Note that these marginal
value products are equated across x′s for every date t only if taxes on fossil
fuels are equal across locations or τ (x, t) = τ (t).

From (55) and (58) it follows that in market equilibrium

λ̇K (x, t) =
(
ρ+ δ − F ′K

)
λK (x, t) (60)

3.3.3 Fossil fuel firms

World fossil fuel firms solve the problem

max
q(t)

∫ ∞
t=0

exp

[
−
∫ t

s=0
r(s)ds

]
[(p(t)q(t)(1− θ(t))])dt, (61)

subject to
∫ ∞
t=0

q(t)dt ≤ R0 (62)

where, θ(t) denotes profit tax on fossil fuel firms. Let µ0 denote the Lagrange
multiplier on the resource constraint (62). Hence µ0 is constant in time.
After tax profits are redistributed lumpsum to latitude x consumers in the
fraction sFF (x, t) and proceeds from taxes are redistributed lump sum to
latitude x consumers in the fraction sTax(x, t).

The FONC conditions for the fossil fuel firms are

p(t)(1− θ(t)) = µ0 exp(

∫ t

s=0
r(s)ds), or (63)

[
AΩF ′q − τ (x, t)

]
(1− θ(t)) = µ0 exp(

∫ t

s=0
r(s)ds) (64)

3.4 Equilibrium

In any decentralized problem consumption goods firms at latitude x will
choose demands K(x, t) and q(x, t) to set

r(t) + δ = AΩF ′K , p(t) + τ (x, t) = AΩF ′q (65)

Conditions (58) and (64), for a multiplier value µ̄0 that exhaust the fossil
fuels reserves, along with the optimality conditions for immobile labour will
determine the equilibrium temporal and latitudinal paths for K and q. Since
firms take temperature and taxes as parametric these paths can be written,
denoting by (e) equilibrium, as:21

{Ce (x, t;D, τ, θ, p) ,Ke (x, t;T, τ , θ, p) , qe (x, t;T, τ , θ, p)}x=1
x=−1 (66)

21Since firms take taxes as parametric the paths will also depend on taxes.
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4 Optimal Fossil Fuel Taxation

We consider a social planner the seeks to internalize the climate externality,
by choosing paths for fossil fuel taxes or profit taxes on world fossil fuel firms
in order to maximize the social welfare measure defined by (36) subject to
the constraints for the evolution of the temperature and the carbon dioxide
concentration, the global fossil fuel constraint and the resource constraint
at each location or

C(x, t) + K̇(x, t) + δK(x, t) = A(x, t)Ω(T (x, t))F (K(x, t), L(x, t), q(x, t))
(67)

In order to provide a more clear picture of the impact of thermal diffusion
on fossil fuel taxes we simplify climate dynamics following section 2.1 by
assuming that the temperature dynamics are modelled by the two-mode ap-
proximation, that the co-albedo function is independent of the temperature
field or α (x, T (x, t)) = α (x) , and that σ (x) = σ and β (t) = β. From (8)-
(12) it can be seen that the zero-mode depends on the concentration M (t)
but not on the thermal diffusion coeffi cient D, while the the second mode
depends on D but not on M (t) .22 Then from (8) the zero mode dynamics
can be written as

Ṫ0 = −T0 −
A

B
+

∫ x=1

x=−1
QS (x)α (x) dx+

2σξ

B
ln

(
M (t)

M0

)
(68)

Ṫ0 = −T0 + Z1 ln

(
M (t)

M0

)
+ Z0, (69)

Z1 =
2σξ

B
,Z0 = −A

B
+

∫ x=1

x=−1
QS (x)α (x) dx (70)

The temperature field can then be written as T (x, t) = T0 (T )+T2 (t,D)P2 (x) .
The Hamiltonian for the planner is:

H =

∫
x

{
υ (x)L(x, t)

[
U

(
C(x, t)

L(x, t)

)
− ΩC(T0 (t) + T2 (t,D)P2 (x))

]
(71)

+λK (x, t) [A(x, t)Ω(T0 (T ) + T2 (t,D)P2 (x)))F (K(x, t), L(x, t), q(x, t))

−C(x, t)− δK(x, t)]} dx+ λM (t)

[
−mM (t) + β

∫
x
q (x, t) dx

]
+λT0 (t)

[
−T0 + Z1 ln

(
M (t)

M0

)
+ Z0

]
+ µR

[
R0 −

∫ ∞
0

∫
x
q (x, t) dxdt

]
22This is because from (10) when σ (x) = σ we have that

∫ 1
−1 ξσ ln

M(t)
M

P2 (x) dx = 0

since
∫ 1
−1 P2 (x) dx = 0.
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The optimality conditions imply:

υ (x)U ′
(
C(x, t)

L(x, t)

)
= λK (x, t) (72)

λK (x, t)AΩF ′q + βλM (t) = µR (73)

λ̇K (x, t) =
(
ρ+ δ − AΩF ′k

)
λK (x, t) (74)

λ̇M (t) = (ρ+m)λM (t)− λT0 (t)
Z1

M (t)
(75)

λ̇T0 (t) = (ρ+ 1)λT0 (t) + υ (x)L(x, t)Ω′C,T0 − λK (x, t)AΩ′T0F (76)

Using the market equilibrium conditions (52, 58, 59, 63) we obtain
υ (x) Λ(x)e(ρt−R(t)) = λK (x, t) and the optimal fossil fuel and profit taxes
respectively as:

τ∗ (x, t) =
µR − βλM (t;D)

υ (x) Λ(x)e(ρt−R(t))
− p (t) =

µR − βλM (t;D)

λK (x, t;D)
− p (t) (77)

p (t) =
µ0e

Γ(t)

1− θ∗ (t)
(78)

The dependence of the tax functions on the thermal diffusion coeffi cient
follows from the fact that damage functions depend on D through their
dependence on the temperature field which is given by T (x, t) = T0 (T ) +
T2 (t,D)P2 (x) . The climate externality is captured by the costate variable
λM (t;D) . As we will show in the next section λ∗M (t;D) < 0, therefore
as expected, when we account for the climate externality fossil fuel taxes
increase. From (77) and (78) the following result follows:

Proposition 2 The optimal tax on fossil fuel is uniform across latitudes if
υ (x) Λ(x) = 1. If υ (x) = 1 then the poorer latitudes should pay a relatively
lower tax on fossil fuel use.

From (77) it is clear that if υ (x) Λ(x) = 1, that is the welfare weights are
the inverse of the present value of the marginal utility at location x, then
we see that taxes are independent of x. If υ (x) = 1, then (77) implies for a
latitude x and the temperate latitude 0 that

p (t) + τ∗ (x, t)

p (t) + τ∗ (0, t)
=

Λ(0)

Λ(x)
(79)

Since it is plausible to assume that Λ(0) > Λ(x) because the Equator is
poorer, it follows that τ∗ (0, t) < τ∗ (x, t) for all t.

The case where υ (x) Λ(x) = 1 can be regarded as the solution when the
Negishi weights are used. Another way to obtain spatially uniform fossil
fuel taxes is to assume that intertemporal endowment flows are adjusted so
that Λ(x) = Λ(x′) and λK (x, t) = λK (x) and set υ (x) = 1. In both cases
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the spatially uniform fossil fuel taxes will implement the global welfare op-
timum of section 3.2. Thus this proposition suggests that if international
transfers across locations are not possible or the Negishi solution cannot be
implemented then fossil fuel taxes should not be uniform across latitudes.
This result was first noted by Chichilnisky and Heal (1994), while similar
results have been obtained by Sandmo (2006), Anthoff (2011), Keen and
Kostogiannis (2011). Our result which is obtained in the context of an one-
dimensional EBCM, provide an explicit spatial structure for the fossil fuel
taxes and imply that these taxes depend on the thermal diffusion coeffi cient
D through the second mode. In fact it would be more accurate to write
τ∗ (x, t;D) . An important policy issue is the size of bias introduced on op-
timal taxes when heat transportation is ignored. The bias can be defined
as

|τ∗ (x, t;D)− τ∗ (x, t;D →∞)| (80)

since when D → ∞ the second and all higher modes vanish and it is that
average global temperature and distribution of temperature across latitudes
that determined damages.

4.1 The Temporal Profile of Optimal Taxes

As stated in the introduction one of the purposes of this paper was to provide
insights regarding the optimal time profile for current and future mitigation.
In terms of the model developed this means the study of the temporal pro-
files of spatially uniform optimal taxes on fossil fuels τ(t) and the profits
tax θ(t) that implements a competitive equilibrium that is the same as the
solution of the global social welfare problem. This means that we assume
that international transfers have been implemented so that Λ (x) = Λ (x′)
and λK (x, t) = λK (x′, t) = λK (t) for all x.

If we take the time derivative of (63) we obtain

d [p(t)(1− θ∗(t))] /dt
p(t)(1− θ∗(t)) = r (t) = AΩF ′K − δ (81)

which is the Hotelling’s rule indicating that after tax marginal profits in-
crease at the rate of interest.

Let us examine the cases of profits taxes and unit fossil fuel taxes sepa-
rately. We examine profit taxes by setting τ(t) = 0 and unit taxes by setting
θ (t) = 0 respectively. From (81) the optimal profit tax function should sat-
isfy

− θ̇
∗
(t)

1− θ∗(t)= r(t)− ṗ(t)
p(t)

, (82)

while the optimal unit tax function should satisfy

(ṗ(t)− τ̇∗(t))
(p(t)− τ∗(t))= r(t) (83)
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The policy ramp under the gradualist approach suggests that τ̇∗(t) > 0, θ̇
∗
(t) > 0.

To examine the validity of this result in the context of our model, we seek
to locate suffi cient conditions so that profit tax and/or the unit tax will
decline through time. In order to have a declining tax schedule through
time equation (82) implies that (84) below must hold.

r(t)− ṗ(t)

p(t)
> 0, (84)

Note that a declining tax schedule through time contrast dramatically with
the gradualist tax schedule which increases through time. Since we are im-
plementing the global welfare optimum we use the optimality conditions of
section 3.1 without the two-mode approximation of the temperature dynam-
ics. We denote by (*) the global welfare optimizing paths.

Lemma 1 ζ (t) ≡
∫
x σλ

∗
T (t, x;D)dx < 0, λ∗M (t;D) < 0.

For the proof see Appendix 4. The lemma states an intuitive result. If
we denote by V ∗ the maximum value function for the welfare maximization
problem, we know from optimal control results that if V ∗ is differentiable,
∂V ∗

∂T (x,t) = λ∗T (x, t;D) . That is λT (x, t;D) can be interpreted as the shadow

value of temperature at time t and latitude x. Thus ζ (t) ≡
∫
x σλT (t, x;D) <

0, for fixed σ, can be interpreted as the global shadow cost of temperature
at time t across all latitudes, which means that an increase in temperature
across all latitudes will reduce welfare. In a similar way λ∗M (t;D) < 0
means that an increase in atmospheric accumulation of CO2 at any time t
will reduce welfare.

Proposition 3 If m < δ, then the optimal profit tax decreases through time,
or θ̇

∗
(t) < 0. Furthermore, the optimal unit tax on fossil fuels grows at a

rate less than the rate of interest, or τ̇∗(t)
τ∗(t) < r∗ (t) .

Proof. Set τ (t) = 0. For a decreasing θ (t) (84) should hold. At the global
social welfare maximizing path, after omitting (x, t;D) to ease notation, we
have that

p∗ (t) = (F ∗total)
′
q =

µ∗R−βλ∗M
λ∗K

(85)

r∗ = ρ− λ̇
∗
K

λ∗K
(86)
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then

r∗− ṗ
∗

p∗
=ρ− λ̇

∗
K

λ∗K
−d[(µ∗R−βλ∗M )/λ∗K ]/dt

[(µ∗R−βλ∗M )/λ∗K ]
, (87)

or using the optimality conditions for the costate variables

r∗− ṗ
∗

p∗
= (88)

βλ∗M (m− δ)− (βξ/BM (t))
∫
X σλ

∗
Tdx

(µ∗R − βλ
∗
M )

To show that θ∗ (t) decreases through time we need to show that the nu-
merator and the denominator of (88) are both positive. If the decay of
atmospheric carbon dioxide is slow so that m− δ < 0, then by lemma 1 the
numerator is positive. From the Kuhn-Tucker conditions µ∗R is non-negative
and λ∗M < 0 by lemma 1. Therefore θ̇

∗
(t) < 0. To examine the time path of

the optimal unit tax we use (83) to obtain

τ̇∗(t) = ṗ∗(t)− r∗(t)p∗(t) + r∗(t)τ∗(t) (89)

We want to locate suffi cient conditions for ṗ∗(t)− r∗(t)p∗(t) < 0. But this is
true if and only if r∗ − ṗ∗/p∗ > 0 which was our previous result. Therefore
τ̇∗(t)/τ∗ (t)< r∗ (t) .

Thus, we have essentially produced suffi cient conditions for rapid ramp-
up of profit taxes and for unit taxes to rise at a rate less than the net of
depreciation rate of return r∗(t) on capital.23

Condition (88) provides also suffi cient conditions for an increasing tax
schedule according to gradualist approach.

Proposition 4 If m > δ and λ∗M (m − δ) −
(

ξ
BM(t)

) ∫
X σλ

∗
Tdx > 0 then

θ̇
∗

(t) > 0 and τ̇∗(t)
τ∗(t)= ṗ∗(t)−r∗(t)p∗(t)

τ∗(t) +r∗(t) > r∗(t).

The first part of the proposition follows directly from lemma 1 and
Proposition 2. For the second part note that when θ̇

∗
(t) > 0, r∗− ṗ∗/p∗ < 0

and ṗ∗(t)− r∗(t)p∗(t) > 0. Thus a gradualist tax schedule requires, in the
context of our model, rapid decay of the atmospheric carbon dioxide, and a
relatively small global shadow cost of temperature at time t across all lati-
tudes. In this case profit taxes on fossil fuel firms are increasing, and unit
taxes on fossil fuels increase higher than the rate of interest.

4.1.1 The impact of co-albedo and thermal transportation

The welfare optimum, the market equilibrium and the optimal taxes were
obtained by explicitly accounting for the co-albedo function and the thermal
23For similar results on discrete time model with full depreciation of capital in one

period see Golosov et al. (2011).
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diffusion across latitudes. An emerging question is whether this complication
in modeling is significant and whether we can trace, in a tractable way, the
impact of thermal diffusion across latitudes. We provide two preliminary
results here.

(i) The discounting function effect. As it is shown in the proof of
Lemma 1 if we denoted by

∫
x σλT (t, x) dx ≡ ζ the global shadow cost of

temperature across latitudes, then ζ̇ = υζ − Ξ (t) , where

υ ≡ ρ+ 1−Q
B

(∫
x σλT (x, t;D)S (x) (∂a/∂T ) dx∫

x σλT (x, t;D) dx

)
Thus the impact of T on co-albedo (since ∂a/∂T > 0) causes the dis-

counting function υ to fall which will make the forward discounted costs of
climate change induced by burning an extra unit of fossil fuels higher than
when the co-albedo function is independent of temperature, or ∂a/∂T =
0. This could be very important quantitatively if the impact of T on
a(x, T (x, t)) can vary by latitude as well as be quite large due to effects
on types of plant growth and other determinants of co-albedo besides ice.

(ii) The damage effect.This effect relates to the impact of thermal
transportation on damages across locations. To explore this impact we use
(21), (22) and the two-mode approximation. Note first that if D goes to
infinity, as we have shown in Proposition 1 only the mode zero remains and
thermal transportation does not affect damages across latitudes. Hence if
Ω(x, T (x, t)) does not depend explicitly upon x but only on T (x, t)24, then
we have:

J(t;∞) =

∫
x

{
[A(x, 0)L(x, 0)αLΩ(T0(t;∞))]1/αL∫

x′ A(x′, 0)1/αLL(x′, 0)Ω(T0(t;∞))1/αLdx′]αK+αq

}
dx

= Ω(T0(t;∞))

∫
x

{ ∫
x[A(x, 0)1/αLL(x, 0)]∫

x′ A(x′, 0)1/αLL(x′, 0)dx]αK+αq

}
dx (90)

because 1 = αL + αK + αq by the assumption of constant returns. When
D is finite this convenient factoring will not take place because in the two
mode case Ω(T0(t;D) + T2(t;D)P2(x)) even when damages to production
do not depend upon x independently of T (x, t). Therefore one measure of
how much heat transport, as reflected by damages D, matters at date t is
|J(t;∞)− J(t;D)|.

5 Approximations and Numerical Simulations

In the previous section we derived general results regarding the optimal
mitigation policies and their time profiles, and the relative importance of
24This means that damages depend on location, only through the latitude dependent

temperature function.
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introducing heat transport into the model. In this section we try to use
approximating solutions and in particular the two mode-solution along with
some additional simplifications of the climate and the economic model, in
order to provide analytically tractable results regarding the latitude depen-
dent temperature and damage functions.

5.1 Simplifications of the Climate Model

We use the two-mode approximating solution with the simplifications: that
the co-albedo function does not explicitly depend on T (t) and can be written
as a (x) = a0 − a1P2 (x); that S(x) = 0.5 [1− s0P2 (x)] , with (a0 = 0.681,
a1 = 0.202, s0 = 0.477) (North at al. 1981); and that σ (x) = σ independent
of x. The two-mode approximating ODEs become

dT0

dt
= −A

B
− T0(t) +

1

B

[
〈QS(x)α(x), 1〉+ ξ ln

M (t)

M0
〈σ, 1〉

]
(91)

dT2

dt
= −(1 + 6D)T2(t) +

5

2B
〈QS(x)α(x), P2(x)〉 (92)

Assume that T0 and T2 are evolving in faster time scale than M and that
they relax fast to their respective steady states, so we assume dT0dt = dT2

dt = 0.
Then temperature can be expressed as a function of M as:

T̂ (x, t;D) = C0 + C1 ln
M (t)

M0
− C2

(1 + 6D)
P2 (x) , C0, C1, C2 > 0 (93)

We approximate this temperature function, which is shown in figure 1 with
t = 0 corresponding t0 year 2011. The parameterizations based on North
and exogenous emissions growth at 1,026% per year according to the IPCC-
A1F1 scenario was assumed.25

This temperature function implies a current average temperature of ap-
proximately 24◦C for the equator and -25◦C for the poles. It is worth noting
that similar temperature functions have been derived by climate scientists
(e.g. Sellers 1969, 1976), but without the impact of human activities on cli-
mate. In our case this impact is realized by the increase in the concentration
of atmospheric carbon dioxide. When D → ∞ the temperature function is
spatially homogeneous or ’flat’across latitudes The distinction between a
latitude dependent and a flat temperature field provides a first sign of the
impact of thermal transport on the estimation of the temperature function.

To approximate damages for a given damage function we need to map
changes in temperature measured from a benchmark period to numbers indi-
cating the level of damages. Define the temperature anomaly as T+ (x, t;D) =
T̂ (x, t;D)−T0 (x, t) , where T0 (x, t) is the distribution of temperature across

25We use A = 203.4;B = 2.09;Q = 310;σ = 0.7; ξ = 5, 35,
D = 0.649, M0 = 583GTC.
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1

1.jpg

Figure 1: A latitude dependent temperature function

latitudes as implied by existing data for a benchmark period. The temper-
ature anomaly is shown in figure 2, with t = 0 corresponding to 2011.26

Figure 2 indicates that and approximation of a spatial dependent temper-
ature anomaly between the average of 1890-1900 and the current period
suggests 0.8◦C for the equator and 1.7◦C for the Poles.

Then the damage function can be defined as function of the temperature
anomaly T̂ (x, t;D)− T0 (x, t) as Ω (T+ (x, t;D))

To derive a damage function for the latitude dependent model we use a
functional form for a damage function associated with production losses due
to climate change, which is similar to the one used in the recent version of
the DICE model (Nordhaus 2007c, Appendix B), or

Ω
(
T+ (x, t;D)

)
=

1

1 + ω (x) θ2 (T+ (x, t;D))2 θ2 = 0.0028388. (94)

26To approximate the temperature anomaly T+ (x, t;D) we used as benchmark the
increase in temperature for eight zonal latitudes (90N-64N, 64N-44N, 44N-24N, 24N-
Equator, Equator-24S, 24S-44S, 44S-64S, 64S-90S) which is reported by NASA, be-
tween the average of the years 1880-1900 and 1951-1980. The results indicate that the
temperature has increased more at high altitudes relative to the equator. The data
for calculating the change in the concentration of atmospheric CO2, between average
1880-1900, 1950-1980, and 2001, which were used to calibrate the temperature field,
were taken from the annual series of concentrations in ppm of the Mauna Loa data
(ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_mlo.txt) and . Etheridge et al.
(1998) ice cores data.
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2.jpg

Figure 2: The temperature anomaly

Using this temperature anomaly, the resulting damage function is pre-
sented in figure 3 in the form 1−Ω, that is damages are measured in terms
of proportional losses in GDP across latitudes.27

3

3.jpg

Figure 3: Latitude dependent damages

27ω (x) is a concave function with a maximum at x = 0. This function reflects the gen-
erally accepted fact that damages as proportion is GDP are expected to be higher at low
latitudes (Nordhaus and Boyer 1999, Chapter 4, Nordhaus 2007b). This latitude depen-
dence of the parameters of the damage function, makes marginal damages from a given
increase in temperature higher around the equator. ω (x) was calibrated in the following
way. Let a damage function g (x, t) =

(
1− αx2

)
θ2T

+ (t)2 . Then relative marginal dam-
ages between the equator (x = 0) and a given lattitude y will be 1

1−αy2 . In our simulation
α = 0.85, which implies that marginal damages around the equator zone will be twice the
marginal damages around 50◦ North for the same change in temperature.
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This damages function predicts relative high damages as proportion of
GDP around the equator. The damage function described here can be also
used to incorporate damage reservoirs, Any source of damages that acts
like a "damage reservoir" where the reservoir can be exhausted and once it
is exhausted there is no further damages emanating from that source can
motivate a damage function capturing damage reservoirs. As we have seen
above, polar ice or permafrost can be regarded as a damage reservoir, i.e.
a "pool" of potential damages that’s latitude dependent. The established
relative higher temperature anomaly at high latitudes suggests the possi-
ble existence of such damage reservoirs. A damage function incorporating
damage reservoirs should have two components. The first, approximating
the damage reservoir, will show high damages initially which will decline
with time as temperature increases and the reservoir is exhausted. As the
reservoir is exhausted the second conventional component of the damage,
e.g. the one shown in figure 4 will dominate. The use of existing scientific
data to approximate a damage function incorporating damage reservoirs is
an interesting area of further research, with potentially important policy
implications.

5.2 Climate Response Functions

In the simplified climate model with an exogenous growth of the atmospheric
CO2 concentration, M (t) = M0 exp (gt) , we can define climate response
functions (CRF). CRFs are functions that determine the changes in tem-
perature and damages at latitude x and time t resulting from an exogenous
changes of the atmospheric CO2 concentration. To obtain a CRF, consider
the steady state of the two-mode approximation ODEs in the more general
case where the co-albedo function depends on temperature:

0 = −A
B
− T0(t) + (95)

1

B

[
〈QS(x)α(T0 (t) + T2 (t)P2(x)), 1〉+ ξ ln

M (t)

M0
〈σ (x) , 1〉

]
0 = −(1 + 6D)T2(t;D) + (96)
5

2B

[
〈QS(x)α(T0 (t) + T2 (t)P2(x)), P2(x)〉+ ξ ln

M (t)

M0
〈σ (x) , P2(x)〉

]
A CRF can be defined in two stages. First for a change in M (t) deter-
mine the change in T0 (x, t) and T2 (x, t) , and then for the changes in T0

and T2 determine the change in Ω (T (x, t)) ≡ Ω (T0 (t) + T2 (t)P2(x)) . To
determine the first stage changes the comparative static matrix of (95), (96)
is[
−1 + 1

B
∂〈QSα,1〉
∂T0

1
B
∂〈QSα,1〉
∂T2

5
2B

∂〈QSα,P2〉
∂T2

−6D ∂〈QSα,P2〉
∂T0

] [
dT0
dM
dT2
dM

]
=

[
− ξ
M(t) 〈σ (x) , 1〉
− 5

2B
ξ

M(t) 〈σ, P2〉

]
(97)
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Assuming that the determinant ∆c of the comparative static matrix is not
zero and denote by , ∂T0,M , ∂T2,M the comparative static derivatives the
changes in T0 and T2 and temperature T are given by

dT0 (t) = (∂T0,M ) dM (t) , dT2 (t) = (∂T2,M ) dM (t) (98)

dT (t, x) = dT0 (t) + P2 (x) dT2 (t) = (99)

[(∂T0,M ) + (∂T2,M )P2 (x)] dM (t)

The impact on damages will then be determined as:

dΩ (T (x, t)) = Ω′T [dT0 (t) + P2 (x) dT2 (t)] = (100)

Ω′T [(∂T0,M ) + (∂T2,M )P2 (x)] dM (t)

In the simplified climate model (91), (92) and(93), DT0,M = C1/M (t) and
DT2,M = 0 and

dT (t, x) = C1
dM (t)

M (t)
, dΩ (x,M(t)) = Ω′TC1

dM (t)

M (t)
, or (101)

dT (t, x) = 5.11962
∆M (t)

M (t)
(102)

using our parametrization. The CRFs can be constructed for both the
utility related damages ΩC (T (x, t)) and the production related damages
ΩF (T (x, t)) . The new element that we provide relative to the existing lit-
erature (e.g. Mendelsohn 1999 ) is that our spatial models allows us to
predict the spatial damages in specific locations and thus answer questions
regarding the geographical distribution of the impacts from an increase in
atmospheric carbon dioxide.

6 Concluding Remarks

In this paper we develop a model of climate change consisting of a one-
dimensional energy balance climate model which is coupled with a model of
economic growth. In our economy output is produced by capital, labour and
a globally finite amount of fossil fuels. The use of fossil fuels in production
generates emissions which accumulate in the atmosphere and block outgoing
solar radiation, increasing thus the temperature. In our one-dimensional
model heat diffuses across latitudes.

We believe that modeling heat diffusion in the coupled model is the main
contribution of our paper since it allows, for first time as far as we know, the
derivation of latitude dependent temperature, damage and climate response
functions, as well as optimal mitigation policies which are all determined
endogenously through the interaction of climate dynamics with optimizing
forward looking economic agents.
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Our results suggest that if the international transfers required to attain a
globally Pareto optimal solution cannot be implemented, then taxes on fos-
sil fuels should be lower in relatively poorer geographical zones. The degree
of geographical tax differentiation depends on the heat diffusion across lati-
tudes. The issue of whether international transfers of consumption goods to
compensate for climate damages can be implemented is far from settled. If
we consider a world with two goods, consumption goods and environmental
services, where utility is modeled by a CES function, then the magnitude of
the elasticity of substitution between consumption and environment is im-
portant regarding the possibility of compensations.28 Even if consumption
of material goods is growing exponentially, utility growth is bounded in the
long run by the growth in climate services which in the long run are bounded
and likely to be declining if global climate change is not controlled. If the
elasticity of substitution between material consumption and environment is
less than one, it will not be possible in the long run for wealthy latitudes to
compensate damaged latitudes. Without appropriate implementation of in-
ternational transfers taxes should be latitude specific and there sizes should
depend on the heat transfer across locations.

We also provide results indicating that if the decay of atmospheric CO2

is lower than the depreciation of capital then profit taxes on fossil fuel firms
will decline over time and unit taxes on fossil fuels will grow at a rate
less then the rate of interest. These results, which can be contrasted with
the gradually increasing policy ramps derived by IAM models like DICE
or RICE indicate that mitigation policies should be stronger now relative
to the future. Increasing policy ramps so that mitigation is stronger in
the future require rapid decay of the atmospheric carbon dioxide, and a
relatively small global shadow cost of temperature increase. Since the decay
of the atmospheric carbon dioxide is an empirical issue we hope that our
analysis provides a basis for justifying the gradualist or the early mitigation
approach.

Our model is a surface EBCM where the impact of oceans is reflected
in the carbon decay parameter m, but not further modeling is undertaken.
EBCMs can be augmented with a deep ocean component that redistributes
vertically the heat energy via uniform vertical diffusion (Kim and North
1992). Our methodology can be easily extended to include the deep ocean
component with vertical diffusion. This is another important task for future
research.

The one-dimensional model allows the exploration of issues which can-
not be fully analyzed in conventional zero-dimensional models. In particular
one-dimensional models with spatially dependent co-albedo allow the intro-
duction of latitude depended damage reservoirs like endogenous ice-lines and

28For a detailed analysis of this argument in the economics of climate change see Sterner
and Persson (2008), Heal (2009).
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permafrost. We believe that if further research leads to a realistic parame-
trization of damage reservoirs or thresholds the type of coupled models dis-
cussed here could lead to sensible calibrations of damage function and policy
ramps. Since reservoir damages are expected to arrive relatively early and
diminish in the distant future - because the reservoir will be exhausted - the
temporal profile of the policy ramp could be declining, enforcing the result
obtained for profit taxes, or even U-shaped. A U-shaped policy ramp could
explained by the fact that as high initial damages due to the reservoir will
start declining as the reservoir is exhausted, giving rice to a declining policy
ramp, damages from the increase of the overall temperature will dominate
causing the policy ramp to become increasing. This is another potentially
interesting and important area of further research.
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Appendix 1: The two mode solution
In this appendix we show how to derive the two mode solution (8-(12).

We start with the basic PDE with temperature as the state variable which
is defined using (1) as:

B
∂T (x, t)

∂t
= QS(x)α(x, T (x, t))−[(A+BT (x, t))− h(x, t)]+DB

∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]
(103)

The two mode solution is defined as:

T̂ (x, t) = T0(t) + T2(t,D)P2(x), P2(x) =
(3x2 − 1)

2
(104)

then, after dropping D to ease notation

∂T (x, t)

∂t
=
dT0(t)

dt
+
dT2(t)

dt
P2(x) (105)

∂T (x, t)

∂x
= T2(t)

dP2(x)

dx
= T2(t)3x (106)

Substitute the above derivatives and using the definition of h (x, t) into (103)
to obtain:

B
dT0(t)

dt
+B

dT2(t)

dt
P2(x) = QS(x)α(x, xs)− (107)[

(A+B (T0(t) + T2(t)P2(x)))− σ (x) ξ ln
M (t)

M0

]
+

BD
∂

∂x

[
(1− x2)T2(t)

∂P2(x)

∂x

]
, or (108)

B
dT0(t)

dt
+B

dT2(t)

dt
P2(x) = QS(x, t)α(x, xs)−A− (109)

BT0(t)−BT2(t)P2(x) + σ (x) ξ ln
M (t)

M0
− 6DBT2(t)P2(x)

Use: ∫ 1

−1
Pn(x)Pm(x)dx = 〈Pn(x), Pm(x)〉 =

2δnm
2n+ 1

(110)

δnm = 0 for n 6= m, δnm = 1 for n = 1

and note that P0(x) = 1, P2(x) = (3x2−1)
2
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Multiply (109) by P0(x) and integrate from -1 to 1 to obtain

B
dT0(t)

dt
+B

dT2(t)

dt
〈P0(x), P2(x)〉 =

∫ 1

0
QS(x, t)α(x, T̂ (x, t))P0(x)dx−A

BT0(t)−BT2(t) 〈P0(x), P2(x)〉+ ξ ln
M (t)

M0

∫ 1

−1
σ (x) dx−

6DBT2(t) 〈P0(x), P2(x)〉 , or

B
dT0(t)

dt
= −A−BT0(t)+∫ 1

−1

[
QS(x, t)α(x, xs) + ξ ln

M (t)

M0
σ (x)

]
dx (111)

Multiply (109) by P2(x) and integrate from -1 to 1 noting that
∫ 1
−1 P2(x)dx =

0, and 〈P2(x), P2(x)〉 = 1
5 to obtain

B
dT0(t)

dt

∫ 1

−1
P2(x)dx+B

dT2(t)

dt
〈P2(x), P2(x)〉 =∫ 1

−1
QS(x, t)α(x, xs)P2(x)dx−A−BT0(t)

∫ 1

−1
P2(x)dx−BT2(t) 〈P2(x), P2(x)〉+

ξ ln
M (t)

M0

∫ 1

−1
σ (x)P2(x)dx− 6DBT2(t) 〈P2(x), P2(x)〉 , or

2

5

dT2(t)

dt
=

[∫ 1

−1
QS(x, t)α(x, xs) + ξ ln

M (t)

M0
σ(x)

]
P2(x)dx−

2

5
BT2(t)− 12

5
DBT2(t) , or

B
dT2(t)

dt
= −B(1 + 6D)T2(t)+

5

2

[∫ 1

−1
QS(x, t)α(x, xs) + ξ ln

M (t)

M0
σ(x)

]
P2(x)dx (112)

The ODEs (111) and (112) are the ODEs of the two mode solution. The
solutions of these ODEs shown in follow from standard methods.�

Appendix 2: Proof of Proposition 1
Differential equation (10) can be written as Ṫ2 = −(1+6D)T2+(5/2B) Φ (t) .

As D → ∞ any steady state of (10) defined as T+
2 = 5Φ(t)

2B(1+6D) → 0. Fur-
thermore, consider the ODE

dT̄2

dt
= −(1 + 6D)T̄2 + (5/2B)UB. (113)

Since Ṫ2 ≤ −(1 + 6D)T2 + (5/2B)UB, then by Gronwall’s inequality the
solution of (10) will be bounded above by the solution T̄2 (t) of (113). This
solution however goes to zero as D →∞. Therefore T2 (t)→ 0 as D →∞.�
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Appendix 3: Proof of (44)
The relevant part for the Maximum Principle derivation associated with

the Hamiltonian (37) is

...+

∫
X
λT (t, x)

1

B

[
QS(x)α(x, T (x, t))−

[
(A+BT (x, t))− σ (x) ξ ln

M (t)

M0

]
+

DB
∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]]
dx (114)

Put

v ≡ ∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]
, u ≡ λT (t, x) (115)

Then∫
X
λT (t, x)

∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]
dx = uv|x=1

x=−1 −
∫ x=1

x=−1
vdu =

−(1− x2)
∂T (x, t)

∂x
∂λT (t, x) dx = −

∫ x=1

x=−1

[
(1− x2)∂λT (t, x)

] ∂T (x, t)

∂x
dx

since the term

uv|x=1
x=−1 = ∂/∂x[(1− x2)∂λT (x, t)/∂x]dx

∣∣x=1

x=−1
= 0 (116)

is zero because it is zero at x = −1 and x = 1.
Put

v ≡ T (x, t), u ≡ (1− x2)∂λT (t, x) (117)

and integrate by parts once more to obtain:

−
∫ x=1

x=−1

[
(1− x2)∂λT (t, x)

] ∂T (x, t)

∂x
dx =

∫ x=1

x=−1
T (x, t)

∂

∂x

[
(1− x2)

∂λT (t, x)

∂x

]
dx

(118)
If we take the partial derivative of the Hamiltonian (37) with respect to
T (x, t) for each (x, t) , we will obtain (44).�

Appendix 4: Proof of Lemma 1
The costate variables for the welfare maximization problem satisfy

λ̇M (t) = (ρ+m)λM (t)− ξ

BM∗ (t)

∫ 1

−1
σ (x)λT (t, x) (119)

λ̇T (t, x) = (ρ+ 1)λT (t, x) +
υ (x)L (t, x) ∂Ωc (T (t, x))

∂T
− λK (t)

∂Fto
∂T
−(120)

λT (t, x)

B

∂QS(x)α(x, T (x, t))

∂T
−D ∂

∂x

[
(1− x2)

∂λT (x, t)

∂x

]

We know that ∂Fto
∂T < 0, since ∂Ω(x, T (x, t))/∂T (x, t) < 0 by assumption,
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also by assumption ∂ΩC(x, T (x, t))/∂T (x, t) > 0 and ∂a(x, T (x, t))/∂T (x, t) >
0. To show that λ∗M (x, t) < 0, It is enough to locate suffi cient conditions for∫
x σ(x)λ∗T (x, t)dx < 0. This is easy to do for the case σ(x) constant in x.
Multiply the costate equation for T (x, t) by σ and integrate with respect to
x to obtain:

d

dt
(

∫
x
σλT (t, x) dx)= (121)[

ρ+ 1− Q

B

(∫
x σλT (t, x)S (x) a′Tdx∫

x σλT (t, x) dx

)]∫
x
σλT (t, x) dx

+

∫
x
σ
(
υ (x)LΩ′C,T − λKF ′to,T

)
dx−

∫
x
σ∂/∂x[(1− x2)∂λT (x, t)/∂x]dx

Note that the term ∫
x
σ
∂

∂x

[
(1− x2)

∂λT (x, t)

∂x

]
dx = 0 (122)

is zero since it is an integral of a derivative of a term from x = −1 to x = +1
and that term is zero at x = −1 and x = 1. Put

∫
x σλT (t, x) dx ≡ ζ (t) and

rewrite (121) as:

ζ̇ =

[
ρ+ 1− Q

B

(∫
x σλT (x, t)S (x) a′T∫

x σλT (x, t) dx
dx

)]
ζ (123)

+

∫
x
σ
(
υ (x)LΩ′C,T − λKF ′to,T

)
dx (124)

or as:

ζ̇ (t) = φ (t) ζ (t) +

∫
x
σ
[
υ (x)LΩ′C,T − λKF ′to,T

]
dx (125)

where

φ (t) ≡ ρ+ 1− Q

B

(∫
x σλTS (x) a′Tdx∫

x σλTdx

)
(126)

is a time varying discount factor. Since F ′to,T < 0,Ω′C,T > 0 by assumption,
we see that σ

∫
x λT (t, x) dx ≡ ζ (t) < 0 for all t by forward integration, since:

ζ (t) = −
(

exp

∫ t

0
φ (s) ds

)∫ t

0

[
exp

(
−
∫ t

0
φ (s) dt

)
Z (s)

]
ds(127)

Z (t) =

∫
x
σ
[
υ (x)LΩ′C,T − λKF ′to,T

]
dx (128)

From (43)

λ̇M (t) = (ρ+m)λM (t)− ξ

BM (t)
ζ (t) (129)

which implies

λM (t) = e(ρ+m)t

∫ t

0
e−(ρ+m)s ξζ (s)

BM (s)
ds
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Thus solving (129) forward for each t shows that λM is a forward integral
of negative quantities for each t, therefore λM (x, t) < 0 for each t.�
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