
Energy balance climate models and the economics of climate change

By William A. Brock, Gustav Engström and Anastasios Xepapadeas∗

Draft: April 4, 2011

Abstract

Spatial energy balance models are used by climate scientists to help understand climate dynamics and to

assist in construction of more complex general circulation models. In this paper we present the first, to

our knowledge, coupled spatial energy balance and economic growth model. This leads to new insights

regarding: (i) The contentious issue of whether a gradualist approach to mitigation, is preferable to an

initially more aggressive approach, (ii) The effect of polar ice melting on optimal policy, (iii) Robustness of

optimal climate policy to spatial damage uncertainty, and (iv) Economic justice considerations raised by

variation in latitude specific damages.
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This paper presents the first, to our knowledge, coupled spatial energy balance cli-

mate model (EBCM) integrated with an economic growth model. It introduces solution

methods for spatial climate models that may be new to economics and it integrates these

methods with the standard methods of solving economic models. Before we proceed fur-

ther we believe that it is useful to point out why this is worth doing by providing an

important example at the outset.

It appears that much of the current scientific discussion about climate change concen-

trates around the calculation of the true costs of global climate change and the implica-

tions of these calculations for policy design, an issue which relates directly to the decision

to undertake or not policy action and its time profile. It seems that among economists

there is no longer a debate on whether action should be taken or not. Carey (2011) quotes

Robert Mendelsohn as stating that:

”The debate is how much and when to start. If you believe that there are

large damages, you would want more drastic immediate action. The Nordhaus

camp, however, says we would start modestly and get tougher over time”.

Thus the debate among economists in dealing with climate change on the mitigation

side has basically settled on whether to increase mitigation efforts (e.g. carbon taxes)
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gradually (e.g. Nordhaus (2007, 2010, 2011)) versus those who believe we should mitigate

rapidly. Stern (2006) justifies the call for immediate action on the normative grounds

of using a low discount rate to discount the future costs of climate change. Weitzman

(2009a) and in his rebuttal of Nordhaus (Weitzman, 2009b) argues that the possibility of

low probability climate catastrophes strengthens the case for quick action now to mitigate

potential catastrophic climate change. His argument is based on bad fat tails in the

distribution of future damages from climate change. Sterner and Persson (2008) justify

strong and urgent action by accounting for non-market damages from climate change,

while Weitzman (2010) based on two risk aversion axioms discusses policy implications

stemming from the distinction between additive and multiplicative dis-utility damages.1

This paper attempts to provide new insights regarding the debate of “how much

and when to start” using as starting point the temporal and the spatial structure of

damages from climate change which is implied by the science of climate change, without

resorting to arguments regarding the choice of discount rate, the structure of uncertainty,

or the rising relative prices for environmental amenities. Although all these factors are

important in deciding “how much and when to start”, we believe that by framing the

problem in a way that climate science implies the structure, the spatial, and the time

profile of damages provides a sound and potentially empirically justified approach to

policy making. Thus the coupling of dynamic economic growth models with dynamic

spatial EBCMs that we undertake in this paper enables us, as we will make clear in the

rest of the paper, to obtain new insights about the inter temporal shape and the spatial

shape of the distribution function of damages and to translate these insights into policy

rules regarding the time and spatial paths of mitigation efforts.2

A popular class of EBCMs which we focus upon, are the models of North (North

(1975a), North (1975b)), North, Cahalan and Coakley (1981), and Wu and North (2007).3

A common feature among these models, is the presence of an endogenous ice line where

latitudes north (south) of the ice line are solid ice and latitudes south (north) of the ice

line are ice free. There has been a lot of concern about the effects of ice melting, i.e. the

ice lines being pushed closer to the North and South Poles by global warming,4 and how

the incorporation of these effects into economic models might affect decisions to engage

1Judd and Lontzek (2011) have formulated a dynamic stochastic version of DICE which they call,
DSICE. They also extend their model to include stochastic tipping point possibilities. They show how
this additional real world complexity substantially affects the optimal policy results in comparison to
DICE. See also Nævdal (2006) for an optimal control version featuring an uncertain threshold with
application to the instability and possible disintegration of the West Antarctic ice sheet.

2We hasten to add that the basic argument of economists, e.g., Nordhaus (2007), that taxing carbon
in a harmonized manner is the efficient policy still stands in our spatial setting.

3Although the EBCMs that we use are simple climate models, many useful insights into climate
dynamics can arise from these simple models (Pierrehumbert, 2008).

4Of course these simple models do not capture elements of potentially abrupt changes in ice melting
and its impact on coastlines that are stressed by, for example, Michael Oppenheimer and his co-authors
(Oppenheimer and Alley (2000); Oppenheimer (2005), Little, Gnanadesikan and Oppenheimer (2009),
but nevertheless they provide useful insight into the expected effects of climate change.
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in large scale mitigation efforts now.

To be more precise, when the ice lines move closer to the poles marginal damages

from moving will be large at first and then diminish as the ice line approaches the Poles.5

This makes sense. When there is a lot of ice to melt damages would be larger than when

there is almost no ice left to melt. Hence marginal damages are plausibly higher when

the polar ice caps are larger i.e. there’s a larger source of ice to melt. Let us explain

this argument in more detail. Suppose human effects are causing the ice lines to move

closer to the Poles. Suppose damages from this effect are proportional to the amount of

ice melting. Let x denote the sine of the latitude as in North (1975a,b) and assume that

the ice line is at latitude xs from the North Pole (at the the North Pole x = 1). Let us

consider now damages from moving the ice line by dx towards the North Pole. The ice

area lost in the Northern Hemisphere when the Northern ice line is at xs is approximately

proportional to 2π(1 − xs)dx for small dx. Thus as human activities move the ice line

towards the North Pole the ice area lost diminishes and marginal damages diminish also.

Apart from the arguments concerning changes in the mass of ice, the actual damage,

in terms of sea level rise, will also depend upon the characteristics of the coastline and

the economic activities located there. Li et al. (2009) apply GIS methods to assess and

visualize the global impacts of potential inundation from sea level rise. They find an

approximately logarithmic relationship between inundation and sea level rise i.e. that

the first meter of sea level rise will affect a larger area of land than the following and so

on. Coastal regions also have the greatest concentration of economic activities (Nicholls

and Tol, 2006; Nicholls and Cazenave, 2010).

Using the arguments sketched above, we investigate how the damages imposed by

a moving ice line affect decisions on optimal mitigation policy. We test this using two

different types of damage functions having functional properties consistent with evidence

and apply these using both additive and multiplicative damage structures in order to

assure the robustness of the qualitative results we obtain in this paper.6 The analysis done

so far supports arguments for a rapid ramping up of mitigation efforts (e.g. Weitzman,

Stern) and is thus suggestive of the value added from developing unified economic and

energy balance climate models.7

5The damages which we refer to here are damages caused by sea level rise due to the release of water
from melting glacial ice sheets. The presence of an endogenous ice line allows us to model this explicitly.
Further sea level rise can also be caused by thermal expansion of warming oceans, as a direct result of a
rising global temperature. Which of these effects that dominate will depend upon the time scale studied.
For example, the Intergovernmental Panel on Climate Change’s Fourth Assessment Report (IPCC, 2007)
concluded that thermal expansion can explain about 25 percent of observed sea-level rise for 1961−2003
and 50 percent for 1993 − 2003, but with considerable uncertainty. There may of course also be other
damages caused by the increasing loss of the ice caps and their role in regulating the climate.

6See Weitzman (2010) for a good discussion on additive and multiplicative damages.
7Scientific evidence seems to support the argument that ice sheets might be seriously affected with

relatively low increases in temperature. Oppenheimer (2005) reports a number of results suggesting
that both the Greenland Ice Sheet (GIS) and the West Antarctic Ice Sheet (WAIS) could be highly
vulnerable to temperature rise within the range studied by the current integrated assessment models
(IAMs). Oppenheimer and Alley (2004) report that a 2 − 4◦C global mean warming could be justified
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Another issue that economic-EBCMs could provide new insights relates to the argu-

ment that the gradualist policy ramp may not be robust to other plausible specifications

is the economic justice argument of Rawls, i.e. that global policy should be to maximize

the welfare of the worst off region. For example, Nordhaus (2007) and Dell, Jones and

Olken (2008) point out that poorer (and more tropical) regions are projected to suffer

more damages from climate change than wealthier (and more temperate) regions. A

Rawlsian objective would maximize the welfare of the least well off region. In our spatial

model this objective could be formalized by maximization of the least well off latitude.8

Remaining with the spatial aspects of the EBCMs this is a good point to further

discuss what kinds of questions we may hope to address with a spatial climate model in

coupled climate economic modeling that can not be addressed with models like that of

Nordhaus (2007, 2010). For example, Nordhaus’s RICE 2010 divides the world into US,

EU, Japan, Russia, Eurasia, China, India, Middle East, Africa, Latin America, Other

high income, Other developing Asia. The climate dynamics of RICE 2010 are

“mass of carbon in reservoir for atmosphere, upper oceans, and lower oceans,. . . global

mean surface temperature, of upper oceans, temperature of lower oceans.”

Nordhaus (2010)

Dynamics of these quantities are distributed lag equations of past quantities and the

global mean surface temperature dynamics is also a function of current radiative forcing,

but there is no spatial geography. It is probably useful to think of Nordhaus’s quantities

on the climate side of the model as some sort of aggregates over spatial dimensions. In his

book, Nordhaus (2007) states that the damage function continues to be a major source

of modeling uncertainty in the DICE model. A recent study of climate damages due to

for WAIS. Carlson et al. (2008) conclude that geologic evidence for a rapid retreat of the Laurentide ice
sheet, which is the most recent (early Holocene epoch) and best constrained disappearance of a large
ice sheet in the Northern Hemisphere, may describe a prehistoric precedent for mass balance changes of
the Greenland ice sheet over the coming century. In a recent report, from the European Energy Agency
(EEA, 2010) it was stated that one of the potential large-scale changes likely to affect Europe is the
deglaciation of the WAIS and the GIS and that there is already evidence of accelerated melting of the
GIS. Further, a sustained 1− 2◦C, respectively 3− 5◦C, global warming above 1990 temperatures could
be tipping points leading to at least partial deglaciation of the GIS and WAIS thus implying a significant
rise in sea levels. Hansen (2005) discusses ice sheet disintegration as a wet process, spurred by positive
feedbacks, which once underway can be explosively rapid. Concerning the terminology ”explosively” he
refers to Kienast et al. (2003) which find that in melt-water pulse 1A, about 14,000 years ago, sea level
rose about 20 meters in approximately 400 years, which is an average of 1 meter of sea level rise every
20 years. Many studies of global sea-level rise also discuss how the contribution from melting ice to sea
level rise will decrease over time as the amount of ice diminishes (See Rahmstorf and Vermeer (2009) for
a good discussion).

8To do a more accurate job of finding the optimal policy ramp of, say, carbon taxes, under a Rawlsian
objective, we would need an spherical type model like that of Brock and Judd (2010). However the models
considered here provide useful insights at a much lower degree of complexity. Rawlsian objectives may
strike the reader as rather “starry eyed” from the point of view of wealthier parts of the world. However,
elements such as national security concerns may drive enlightened self interest on the part of wealthier
regions to act more like Rawlsians. At the very minimum one should design policy to be robust against
uncertainty in the specification of the proper policy objective function as well as uncertainty in climate
and economic dynamics.
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temperature and precipitation changes is Dell, Jones and Olken (2008) which found that

levels and growth rates of the economies of poorer parts of the world were damaged more

than levels and growth rates of the wealthier parts of the world. The wetter regions of

the world are expected to become wetter and the dryer regions of the world are expected

to become dryer (GFDL, 2008). We proxy this kind of effect of climate change in this

paper by a damage function for an area where damages increase as the mean temperature

of the area increases and the temperature variance of the area increases. More will be

said about this below.

To summarize we believe that the main contribution of our paper is to couple spatial

climate models having endogenous ice lines, with economic models, and use these spatial

climate science models to discipline the structure and the shape of potential damage

functions, in order to provide new insights regarding the optimal time profile for current

and future mitigation. To put it another way this paper couples the economic models

we use all the time in economics with a class of spatial climate models used by climate

scientists. We believe this endeavor apart from being valuable in its own right, provides

new insights regarding the temporal and spatial paths of policies designed to address

climate change.

Since energy models are new in economics we proceed in steps that we believe make

this methodology accessible to economists. In section I we present a basic energy balance

climate model9 which incorporates human impacts on climate. In developing the model

we follow North (1975a,b) and use his notation. We use the model to expose solution

methods and especially the two mode approach which transforms systems of partial dif-

ferential equations (PDEs) in infinite dimensional spaces resulting from spatial modeling,

into systems of ordinary differential equations (ODEs) in finite dimensional spaces. The

two mode approach will be extensively used to solve the integrated economic-EBCM. In

section II we couple a simplified version of the energy balance model, with a simple eco-

nomic model and show that ice line damages explicitly introduced through the EBCMs,

suggest even at this very simple level, the possibility of multiple steady states, history

dependence in the optimal paths and a rapid now, instead of gradual mitigation policy.

Section III uses the insights of the previous sections to couple a spatial EBCM with an

economic model that has the structure of the well known integrated assessment model

RICE (Nordhaus and Boyer, 2000; Nordhaus, 2010). We use this approach to discipline

the temporal and spatial shape of the damage function. In this more traditional, on the

part of the economics modeling, we obtain results similar to the more simplified model of

section II, regarding multiple steady states and history dependence of the optimal paths,

and insights about the spatial and temporal structure of optimal mitigation policies. Mo-

tivated by this modeling exercise we turn, in section IV to the analysis of DICE, the most

9For more on EBCMs see for example Pierrehumbert (2008) (chapters 3 and 9, especially sections
9.2.5 and 9.2.6 and surrounding material). North, Cahalan and Coakley (1981) is a very informative
review of EBCMs while Wu and North (2007) is a very recent paper on EBCMs.
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popular of the integrated assessment models. We provide numerical results by running

the DICE model with explicit ice line damages which have a time profile consistent with

the profile implied by the EBCMs we have developed earlier in the paper. Our numer-

ical results suggest a U-shaped optimal policy ramp with rapid immediate mitigation,

to defend against the ice-cap loss, which then slow down as damages from the ice caps

are reduced and then once again increases when damages from the overall increase in

temperature starts to catch up. The final section concludes.

I. A Basic Energy Balance Climate Model

In this section we develop a one-dimensional Energy Balance Climate Model with hu-

man inputs. The term “one-dimensional” means that there is an explicit one dimensional

spatial dimension in the model so that our unified model of the climate and the economy

evolves both in time and space.10 We follow North (1975a,b) and North, Cahalan and

Coakley (1981) in this development.

Let x to denote the sine of the latitude. We shall abuse language and just refer to x as

“latitude”. Following North (1975a,b) let I(x, t) denote outgoing infrared radiation flux

measured in W/m2 at latitude x at time t, T (x, t) denote surface (sea level) temperature

measured in oC at latitude x at time t. The outgoing radiation and surface temperature

can be related through the empirical formula.11

(1) I(x, t) = A+BT (x, t), A = 201.4W/m2, B = 1.45W/m2

Following North (North (1975a), equation (29)) the basic energy balance equation

with a human input can be written as:

(2)
∂I(x, t)

∂t
= QS(x, t)α(x, xs(t)) − [I(x, t) − h(x, t)] +D

∂

∂x

[

(1 − x2)
∂I(x, t)

∂x

]

where units of x are chosen so that x = 0 denotes the Equator, x = 1 denotes the North

Pole, and x = −1 denotes the South Pole; Q is the solar constant12 divided by 4; S(x, t)

is the mean annual meridional distribution of solar radiation which is normalized so that

its integral from 0 to 1 is unity; α(x, xs(t)) is the absorption coefficient which is one

minus the albedo of the earth-atmosphere system, with xs(t) being the latitude of the

ice line at time t; and D is a thermal diffusion coefficient that has been computed as

10In contrast, the “zero-dimensional ”model does not explicitly account for the spatial dimension.
11It is important to note that the original Budyko (1969) formulation cited by North parameterizes

A,B as functions of fraction cloud cover and other parameters of the climate system. North (1975b)
points out that due to non-homogeneous cloudiness A and B should be functions of x. There is apparently
a lot of uncertainty involving the impact of cloud dynamics (e.g. Trenberth et al. (2010) versus Lindzen
and Choi (2009)). Hence robust control in which A,B are treated as uncertain may be called for but
this is left for further research.

12The solar constant includes all types of solar radiation, not just the visible light. It is measured by
satellite to be roughly 1.366 kilowatts per square meter (kW/m2).
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D = 0.649Wm−2oC−1 (North, Cahalan and Coakley (1981))

Equation (2) states that the rate of change of outgoing radiation is determined by

the difference between the incoming absorbed radiant heat QS(x, t)α(x, xs(t)) and the

outgoing radiation [I(x, t) − h(x, t)] . Note that the outgoing radiation is reduced by the

human input h(x, t). Thus the human input at time t and latitude x, can be interpreted

as the generation of greenhouses gases (GHGs) that reduce outgoing radiation. Since

GHGs can be regarded as a function f of produced output at latitude x, we may write

h(x, t) = f(Y (x, t)) where Y (x, t) is produced output at (x, t). As pointed out by North

(1975b), in equilibrium at a given latitude the incoming absorbed radiant heat is not

matched by the net outgoing radiation and the difference is made by the meridional

divergence of heat flux which is modelled by the term D ∂
∂x

[

(1 − x2)∂I(x,t)
∂x

]

. This term

explicitly introduces the spatial dimension into the climate model. The energy balance

equation (2) incorporates, for the first time to our knowledge, economic variables - output

production - in an energy balance model. The importance of this is that by modeling

ice line damages and discontinuous albedo, issues which are not taken into account in

standard integrated assessment models (IAMs), we identify the existence of nonlinearities

and multiple steady state for the unified economy-climate model which could be important

in policy design and the identification of new policy ramps.13

Returning to the description of (2), above the ice line absorption drops discontinuously

because the albedo jumps discontinuously. We will follow North (1975b), page 2034,

equation (3) and put

(3) α(x, xs) =























b0 = 0.38 x > xs

α0 + α2P2(x) x < xs

α0 = 0.697

α2 = −0.0779

where P2(x) = (3x2 − 1)/2 is the second Legendre polynomial.14 In this set up the ice

line is determined dynamically by the condition: (Budyko (1969), North (1975a), North

(1975b))

(4)
T > −10oC no ice line present

T < −10oC ice present

The ice line function xs(t) solves the equation Is = I(xs(t), t). Thus the latitude of the

ice line can move in time in response to changes in human input since the ice line solution

depends on h(x, t). Moving of the ice line towards the poles generates the damages we

13Note that at this stage output is regarded as an exogenous forcing parameter in order to introduce
the EBCM in a clear way. Output will be endogenized in the unified economy-EBCMs that we develop
in the next sections

14A smoothed version of (3) is Equation (38) of North, Cahalan and Coakley (1981), (p. 98).
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discussed in the introduction. Using 1 and 4 the outgoing radiation at the latitude of the

ice line for each date t is

(5) I(xs) = Is = 186.8 W/m2

A steady state for the outgoing radiation is a function of latitude Ī(x) which satisfies

the equation

(6) 0 = QS(x)α(x, x̄s) −
[

Ī(x) − h̄(x)
]

+D
∂

∂x

[

(1 − x2)
∂Ī(x)

∂x

]

for a steady state human input h̄(x) while the steady state ice line will satisfy Is = Ī(x̄s)

with Is determined by (5).

The way to approach this problem would be to solve (2) for a given human input

function h(x, t) and to obtain a solution function I(x, t). Then using (1) the temperature

and the ice line at each date and latitude can be determined. When human input changes,

this solution can then be used to trace the impact of the human input on outgoing

radiation, the surface temperature and the ice line at each latitude. Since temperature

and ice line changes are associated with damages this type of modeling allows us to

incorporate spatial impacts and different sources of climate damages into the damage

functions used in the economics of climate change.

We turn now to a more detailed analysis of the solution process. Equation (2) is a

PDE. One might think that we are going to have to deal with the complicated mathe-

matical issues of the solution or the optimal control of PDEs when we need to discuss

the social optimization problems over space and time. But, as we shall see, the climate

problem reduces to the optimal control of a small number of “modes” where each “mode”

follows a simple ODE. We believe this decomposition is another important and new con-

tribution of our paper to the study to coupled economic and climate models. Let us

continue with the development of the solution procedure for equation (2) before turning

to optimization.

North (1975b) approached the solution of (2) by using approximation methods (Judd

(1998) Chapter 6). Thus the solution is approximated as:

(7) I(x, t) =
∑

n even

In(t)Pn(x)

where In(t) are solutions to appropriately defined ODEs and Pn(x) are even numbered

Legendre polynomials. A satisfactory approximation of the solution for (2) can be ob-

tained by the so called two mode solution where n = {0, 2} . We develop here a two mode

solution given the human forcing function h(x, t). We do it for the Northern Hemisphere

8



only since, following North, we treat the Southern Hemisphere symmetrically.15 The two

mode solution is defined as

Î(x, t) = I0(t) + I2(t)P2(x)(8)

dI0
dt

= −I0(t) +

∫ 1

0

[QS2(x)α(x, xs(t)) + h(x, t)] dx, I0(0) = I00(9)

I0(t) = e−t

[

I00 +

∫ t

0

eu [QS0(xs(u)) + h0(u)] du

]

(10)

dI2
dt

= −(1 + 6D)I2(t) + 5

∫ 1

0

[QS2(x)α(x, xs(t)) + h(x, t)]P2(x)dx,(11)

I2(0) = I02(12)

I2(t) = e−(1+6D)t

[

I02 +

∫ t

0

e(1+6D)u [QS2(xs(u)) + h2(u)] du

]

(13)

Sn(xs) =

∫ 1

0

S(x)α(x, xs)Pn(x)dx , hn(t) =

∫ 1

0

h(x, t)Pn(x)dx, n = 0, 2(14)

S(x) = 1 + S2P2(x) , S2 = −0.482, n = 0, 2(15)

P0(x) = 1, P2(x) =
(3x2 − 1)

2
(16)

The derivation of the solution is presented in Appendix A.16 Given the definitions of the

functional forms the two mode solution is tractable and can be calculated given initial

conditions I00, I02 which are determined by the initial climate state. As shown below, the

two mode solution can be used to obtain tractable solutions regarding the ice line and

temperature T (x, t).

A. The two mode approximation of ice line function

This is a function xs(t) that solves

(17) Is = I0(t) + I2(t)P2(xs(t))

To determine the two mode ice line function through (17) the discontinuity in the

albedo expressed by (3) and (4) should be taken into account. This can be done by

applying to the two mode solution for the ice and the ice free areas, value matching,

smooth pasting and appropriate boundary conditions at the pole and the equator North

(1975a). This function, which may not be unique, will depend on the human input h(x, t).

15Of course the two hemispheres are very different in reality, but we abstract from that complexity
here.

16The two mode solution is an approximating solution. We can develop a series of approximations of
increasing accuracy by solving this problem for expansions using (a “two mode” solution) and using (a
“three mode” solution) and so on. North’s results suggest that the two mode solution is an adequate
approximation. Approximations will be denoted with a ˆ sign here on after.
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To obtain the two mode approximation steady-state ice line (9) and (11) are used.

The steady state values for the I ′s are given by

(18) Ī0 = QS0(x̄s) + h̄0 , Ī2 =
5
[

QS2(x̄s) + h̄2

]

1 + 6D

where it is assumed that

(19) as t→ ∞,

∫ 1

0

h(x, t)dx→ h̄0 and

∫ 1

0

h(x, t)P2(x)dx→ h̄2.

The two mode steady state ice line is the solution of Is = Ī0 + Ī2P2(x̄s),and can be

obtained by using value matching, smooth pasting and appropriate boundary conditions.

It is important to note that there may be more than one solution to the ice line.

B. The two mode approximation of the surface temperature

In the context of the two mode approximation, we may use the two mode expression

for I(x, t) to obtain a two mode expression for surface (sea level) temperature T (x, t), i.e

T̂ (x, t) = T0(t)+T2(t)P2(x) where T0(t) and T2(t) solve the ordinary differential equations.

BdT0

dt
= −(A+BT0(t)) +

∫ 1

0

[QS2(x)α(x, xs(t)) + h(x, t)] dx(20)

BdT2

dt
= −(1 + 6D)BT2(t) + 5

∫ 1

0

[QS2(x)α(x, xs(t)) + h(x, t)]P2(x)dx(21)

T0(0) = T00, T2(0) = T02(22)

The ice line function xs(t) in terms of the temperature solves

(23) T0(t) + T2(t)P2(xs(t)) = Ts, Ts = −10oC

and can be determined using the value matching conditions described above. From the

two mode approximation of the temperature, we obtain the global mean temperature

mT = T0(t), which is the integral of T̂ (x, t) over x from zero to one17, and the variance

of the temperature,

(24) VT =

∫ 1

0

[

T̂ (x, t) − T0(t)
]2

dx =

∫ 1

0

(T2(t)P2(x))
2dx =

(T2(t))
2

5

Local temperature means at latitudes (x, x + dx) and the mean of temperature over

the set of latitudes Z = [a, b] are defined by

(25) [T0(t) + T2(t)P2(x)] dx,m [a, b] =

∫ b

a

[T0(t) + T2(t)P2(x)] dx

17This is because
∫ 1

0
P2(x)dx = 0.
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while the variance of temperature over the set of latitudes Z = [a, b] is

(26) V [a, b] =

∫ b

a

[T0(t) + T2(t)P2(x) −m [a, b; t]]2 dx

When the area Z = [a, b] is introduced, It is plausible to assume that utility in each

area [a, b] depends upon both the mean temperature and the variance of temperature in

that area. For example we may expect increases in mean temperature and variance to have

negative impacts on output in any area Z, if it is located in tropical latitudes. Whereas

mean temperature increases in some areas Z (e.g. Siberia) may increase utility rather

than decrease utility.18 Existing dynamic integrated models of climate and economy,

(e.g. Nordhaus’s well known work (2007), (2010)) can not deal with these kinds of

spatial elements, such as impacts of changes in temperature variance, generated by climate

dynamics over an area Z.

The two mode approximate solutions (8)-(16) and (20)-(22) are equivalent because

they are related by I = A+BT. Since the existing models of climate and economy, model

climate in terms of temperature we are going to use this equivalence to develop energy

balance models of economy and climate using temperature as the state variable directly

associated with climate. We introduce such a model in the next section.

II. A Simple Integrated Dynamic Economic - Climate Model

In this section we develop a simplified integrated model of economy and climate, with

the climate part motivated by the energy balance models described above. The climate

part should incorporate state variables related to the two mode temperature solution and

an ice line equation. The two-mode temperature solution is T̂ (x, t) = T0(t) + T2(t)P2(x).

Wang and Stone (1980) argue that an approximation for this solution equation can be

achieved by replacing T2(t) by an appropriate constant, which we shall denote by T̄ . Then

dT̂ (x, t)/dt = dT0(t)/dt. Recall that T0(t) is global mean surface (sea level) temperature.

Then the evolution of the mean temperature is given by (20) or, by setting T0(t) = T (t)

(27)
dT (t)

dt
= −A

B
− T (t) +

1

B

∫ 1

0

[QS2(x)α(x, xs(t)) + h(x, t)] dx

Thus the Wang-Stone approximation reduces the state variables from two, in the model

(20)-(21), to one whose evolution is described by (27). Wang and Stone (1980) (equa-

tion 3) calibrate the model by best fitting the two mode solution to data and use this

18In a stochastic generalization of our model, we could introduce a stochastic process to represent
“weather,” i.e. very high frequency fluctuations relative to the time scales we are modeling here. Here
the “local variance” of high frequency phenomena like “weather” may change with changes in lower
frequency phenomena such as mean area Z temperature and area Z temperature variance. We leave this
task to future research.
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approximation to get a simple equation for the ice line

(28) xs(t) = (aice + biceT (t))1/2, aice = 0.6035, bice = 0.02078

Damages from climate change emerge both from temperature increase and movement

of the ice line towards the north. Let us define these damages by two functions D1(T (t))

and D2(xs(t)), where 1 denotes damages due to temperature rise and 2 denotes dam-

ages due to ice line movement. A simplified integrated economic climate model can be

developed along the following lines.

We associate human input with greenhouse gas emissions on a one-to-one basis and

thus denote emissions by h(x, t). These emissions affect the temperature dynamics of

our simplified climate model. We further assume, as is plausible, that at each latitude

emissions disperse rapidly, relative to the longer time scale of our analysis across latitudes,

so that
∫ 1

0
h(x, t)dx = h(t). We consider a simplified economy with aggregate capital stock

K. An amount K2 from this capital stock is diverted to alternative “clean technologies”.

Output in this economy is produced by capital and emissions h according to a standard

production function F (K − K2, h + φK2), where φ is an efficiency parameter for clean

technologies.19 The cost of using a unit of h is Ch(h),with Ch(0) = 0, C
′

h > 0, C
′′

h > 0.

The use of emissions can be reduced by employing clean technologies at an effective rate

φK2. Denoting consumption by C, net capital formation in our simplified economy is

described by

(29)
dK

dt
= F (K −K2, h+ φK2) − C − Ch(h) − δK

where δ is the depreciation rate on the capital stock. Assuming a linear utility function

or U(C) = C the problem of a social planner that seeks to maximize discounted life

time consumption subject to (27), (28), and (29) can be described, in the context of

an integrated economic/climate model, in terms of the following Most Rapid Approach

19See Xepapadeas (2005) for different ways in which emissions and environment can be modeled as
production factors.
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Problem (MRAP) problem.20

V (T (0)) = max

∫ ∞

0

e−ρt [F (K −K2, h+ φK2) − Ch(h) − (δ + ρ)K(30a)

−D1(T (t)) −D2(xs(t))] dt

subject to (28) and

dT (t)

dt
= −A

B
− T (t) +

γ

B
h(t) +

1

B
Ψ(T (t)),(30b)

Ψ(T (t)) =

∫ 1

0

[QS2(x)α(x, xs(t))] dx , T (0) = T0(30c)

where V (T (0)) is the current value state valuation function, ρ is the subjective rate of

discount on future utility,and the nonlinear function Ψ(T (t)) is an increasing function

of T (North (1975a)). Problem (30a)-(30c) after the successive approximations we have

made, has practically been reduced, regarding the climate part, to a zero-dimensional

model as found in North, Cahalan and Coakley (1981). We still believe that this exercise

is of value because it outlines a pathway to extensions to one-dimensional models and

is even suggestive via the Legendre basis method of how one might potentially extend

the work to two-dimensional models on the sphere.21 Problem (30a)-(30c) is in principle

tractable to one dimensional phase diagram methods with the costate variable on the

vertical axis and the state variable on the horizontal axis.

At this point, it should be noted that technical change and population growth could

also have been introduced in the form of Harrod neutral (labor augmenting) technical

change, a formulation which is required for consistency with balanced growth in the

neoclassical context. Balanced growth formulations allow us to conduct phase diagram

analysis as in the text below. In this case the production function might be written

as F (K − K2, h + φK2, AL), where F is a constant returns to scale production func-

tion and dA/dt = gA, dL/dt = nL, where g is the rate of exogenous labor augmenting

technical change and n is the population rate of growth. Output, capital, consumption,

emissions and the capital accumulation equation (29) can thus be defined in per effective

worker (AL) terms. However the temperature dynamics (30c) and (31b) now have a non-

autonomous term due to exponentially growing emissions. Dealing with this problem and

staying within a framework of autonomous dynamics, requires introduction of emission

20The assumption of linear utility allows one to write a capital accumulation problem as a MRAP
problem. Problem (30a) is an approximation of the MRAP problem for very large B and −B ≤ dK

dt
≤ B.

In problem (30a) capital, K, can thus be eliminated as a state variable. It should also be noted that in
this section, damages are modeled using an additive functional form as explained in Weitzman (2010).
In section III we will revert to the more common multiplicative form. The main qualitative results hold
for both these forms.

21Brock and Judd (2010) are developing a two-dimensional spherical coupled climate/economic dy-
namics model by using a basis of spherical harmonics as in Wu and North (2007). This approach, as
well as the Legendre basis approach we are using in this paper for one-dimensional models fits in nicely
with the general approach to approximation methods in Judd’s book (Judd (1998), Chapter 6)
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reducing technological progress at an appropriate rate in order to be able to transform

the temperature dynamics into a stationary form so that phase diagram techniques of

analysis of autonomous systems can still be applied. However, this is beyond the scope

of the current paper. In the current paper we wish to show how spatial energy balance

models can be integrated with capital accumulation models in economics while preserving

analytical tractability. We plan to undertake future research where we introduce realistic

technical change and thus solve non-stationary versions of our model using a combina-

tion of analytical and computational methods. The time stationary analysis developed

here indicates that a full analysis of more realistic non-stationary systems is potentially

tractable now that we have pointed the way in this paper.

Returning to our time stationary framework, we feel that insights are gained more

rapidly by analyzing the following qualitatively similar problem that is strongly motivated

by the problem (30a)-(30c).

V (T (0)) = max

∫ ∞

0

e−ρt [F (K −K2, h+ φK2) − Ch(h) − (δ + ρ)K(31a)

−D1(T ) −D2(T )] dt

s.t.
dT

dt
= aT − bTT + cTh , (aT , bT , cT ) > (0, 0, 0)(31b)

where D
′

1(T ) = a1T, implying increasing marginal damages due to temperature increase,

while D
′

2(T ) is a function increasing at low T reaching a maximum and the decreasing

gradually to zero. The shape of D2(T ) is intended to capture initially increasing marginal

damages from ice line rise (induced by temperature rise) which reach a maximum, as

temperature increases, and eventually vanish once the polar ice caps are gone.22 Define

(32) π(h) = max
K≥0,K2≥0

{F (K −K2, h+ φK2) − (δ + ρ)K}

Since we assume that F (·, ·) is concave increasing, π(h) is an increasing concave function of

h.23 We may now write down the current value Hamiltonian and the first order necessary

22Assuming a quadratic or a higher degree power function for damages D1(T ) due to temperature
increase is consistent with damages related to falling crop yields or reduction to ecosystem services, and
this has been the shape adopted in many IAMs. To consider a plausible shape for D2(T ) we have argued
in the introduction that as the ice line moves towards the north, there is initially a large quantity of
ice to melt which can generate high melt per unit time. As the ice cap is reduced the melt is reduced
and eventually tends to zero when the ice cap disappears. A potential damage function invoking these
properties is the gamma function (see Appendix B) which we will be using throughout the paper to
capture this type of effect. Another function having similar properties is the S-shaped function used in
Brock and Starrett (2003) to describe internal loading of phosphorous in a lake system. This functional
form proved to give very similar qualitative results to the ones obtained with the gamma function.
Further discussion regarding the shape of D2(T ) can be found in Appendix B.A. Furthermore, we argue
that the combination of these two damage functions, D1(T ) and D2(T ), each one associated with climate
change impacts having different time profiles and being disciplined by scientific evidence provides a more
comprehensive description of the problem.

23Note that π′(0) <∞ if φ > 0 for the alternative “clean” technology.
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conditions for an optimum,

H(h, T, λT ) = π(h) − Ch(h) −D1(T ) −D2(T ) + λT (aT − bTT + cTh)(33)

π′(h) = C ′
h − λT cT ⇒ h = h∗(λT ) , h∗

′

(λT ) > 0(34)

where it is understood in (34) that the inequality conditions of boundary solutions are

included, and

dT

dt
= aT − bTT + cTh

∗(λT ) , T (0) = T0(35)

dλT

dt
= (ρ+ bT )λT + a1T +D′

2(T )(36)

We know that since λT (t) = ∂V (T (t))
∂T (t)

:= V ′(T (t)) < 0 the costate variable can be inter-

preted as the shadow cost of temperature. We also know that if a decentralized represen-

tative firm pays an emission tax then the path of the optimal emission tax is −λT (t). We

can study properties of steady states of the problem (30a)-(30c) by analyzing the phase

portrait implied by (35)-(36). The isocline dT/dt = 0 is easy to draw for (35). Along this

isocline we have dλT

dT
= bT

cT h∗
′ > 0, by using (34), thus along this isocline λT is increasing

in T. There is a value λTc such that if λT (t) < λTc then h∗ = 0 and aT/bT = T . If there

are no ice line damages, the dλT/dt isocline is just a linear decreasing function of T that

is zero at T = 0, or λT = − a1

(ρ+bT )
T, which implies that λT < 0 for all T > 0. Now add

the ice line damage to this function. The isocline is defined as

(37) λT |dλT
dt

=0
= −a1T +D′

2(T )

(ρ+ bT )
.
dλT

dT
= −a1 +D

′′

2 (T )

(ρ+ bT )

With a gamma function representation of D2(T ), D
′′

2 (T ) is positive and decreasing, it

becomes negative, reaches a minimum and vanishes after becoming positive again. This

induces a nonlinearity to the dλT/dt = 0 isocline. In general it is expected that this

isocline will have an inverted N-shape, which means that with an increasing dT/dt = 0

isocline if a steady state (T̄ , λ̄T ) exists, there will be either one or three steady states.

To study the stability properties of these steady states we form the Jacobian matrix of

(35)-(36)

(38) J(T̄ , λ̄T ) =

[

−bT cTh
∗′(λ̄T )

a1 +D
′′

2 (T̄ ) bT + ρ

]

If at a steady state a1 +D
′′

2 (T̄ ) > 0 so that the dλT/dt = 0 isocline is decreasing then

det J(T̄ , λ̄T ) < 0 and the steady state is a local saddle point. If a1 +D
′′

2 (T̄ ) < 0 so that
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the dλT/dt = 0 isocline is increasing the steady state is an unstable spiral.24 Thus when

a unique steady state exits it will be a saddle point. The case of three candidate optimal

steady states T̄1 < T̄2 < T̄3 is of particular interest. In this case given the shapes of the

two isocline’s the smallest one and the largest one are saddles and the middle one is an

unstable spiral. Thus we have a problem much like the lake problem analyzed by Brock

and Starrett (2003). Following an argument like that in Brock and Starrett (2003) it

can be shown (under modest regularity conditions so that the Hamiltonian is concave-

convex in T ) that there are two value functions, call them, Vmitigate(T ) and Vadapt(T ), and

a “Skiba” point Ts ∈ (T̄1, T̄3)such that Vmitigate(Ts) = Vadapt(Ts) and for T0 < Ts, it is

optimal to follow the costate/state equations associated with Vmitigate(T ) and converge to

T̄1, while for T0 > Ts it is optimal to follow the costate/state equations associated with

Vadapt(T ) and converge to T̄3. In Figure 1 we present this situation for an appropriate

choice of functional forms and parameters.25 Besides the solution path the figure also

plots the isocline’s both with and without ice line damages. Without ice line damages we

have the case when the λ̇T -isocline is a linear decreasing function of T implying that we

get a unique global saddle point at the crossing of the λ̇T = 0, Ṫ = 0 isocline’s denoted

by T̄n. For the case with ice line damages on the other hand, we get the inverted N-

shaped λ̇T , isocline giving us a “Skiba” point Ts lying just between the unstable spiral

T̄2 and the local saddle point T̄3. Hence, for low initial T0 < T̄1, it will be optimal to

levy a low initial carbon tax even though there is a polar ice cap threat (but it is not

discontinuous as in Oppenheimer and his coauthors’ work) and then gradually increasing

the carbon tax along a gradualist policy ramp. However, if T0 ∈ (T̄1, Ts) it is optimal

to tax carbon higher at T0 and let the tax gradually fall. But if initial temperature is

large enough the ice caps are essentially already trashed and the optimal thing to do is

to tax carbon initially quite modestly but along an increasing schedule through time to

deal with the rising marginal damages due to temperature rise. Figure 1 thus shows how

the qualitative picture changes completely when a different shape for the ice line damage

function is considered. In particular, the area T ∈ (T̄1, Ts) is of interest since, if ice line

damages go unaccounted for, the optimal strategy will be levy a low carbon tax which

eventually will raise temperature to T̄n, while in a model with ice line damages included

the exact opposite will be true implying a decrease in temperature to T̄1.

It is important to note that this stationary model is not rich enough to capture the

eventual rather sharp increase along the “gradualist” policy ramp of Nordhaus (2007,

2010) because in Nordhaus’s case the Business as Usual (BAU) emissions path would be

growing because of economic growth. Thus the damages from temperature rise alone,

24The eigenvalues of J are: 1

2
(ρ±

√
∆), where ∆ = ρ2 + 4

[

(a1 +D
′′

2
(T̄ ))cTh

∗
′

+ bT (bT + ρ)
]

. When

a1 +D
′′

2
(T̄ ) > 0 then ∆ < 0 and we have two complex eigenvalues with positive real parts which implies

an unstable spiral.
25The assumed functions, parameters and calculations used in figure 1 are provided in Appendix B.
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Figure 1. Phase diagram for the system (35)-(36).

growing quadratically as the quantity of emissions grows, would lead to the gradualist

path of carbon taxes “taking”off in the future. However, this simple stationary model

does expose the “new” behavior of a higher initial carbon tax for T0 ∈ (T̄1, Ts). Our

runs of the DICE model in section IV below exhibit a sharply higher carbon tax at the

beginning due to the “extra” ice line damages added to Nordhaus’s damages.26

III. Spatial Energy Balance Integrated Assessment Models

In this section we incorporate the framework of the energy balance models developed

above into a framework similar to well established IAMs such as the DICE/RICE mod-

els proposed by Nordhaus. We use notation close to that of Nordhaus (2010) for the

DICE/RICE part of the model. Consider the continuous time spatial analog of Nord-

haus’s equations (2007 Appendix 1 or 2010, A.1-A.20) where we have made some changes

to be consistent with our notation and have suppressed (x, t) arguments to ease typing,

unless (x, t) is needed for clarity

(39) W =

∫ ∞

0

e−ρt

∫ 1

0

φ(x)U(C)dxdt

26Note that Nordhaus does include damages from ice melt, but the climate model above with moving
ice line adds another component of ice melt that has a declining marginal damage function.
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where U(C) is utility and C is aggregate consumption at (x, t), and φ(x) is a Negishi

weight function.27 Furthermore,

Yn = C +
dK

dt
+ δK(40)

Yn = Ω(1 − Λ)Y, Y = F (K)(41)

where, Yn(x, t) : output of goods and services at latitude x and time t, net of abatement

and damages, Ω(T (x, t)) : damage function (climate damages as fraction of output) as

a function of temperature at (x, t), Λ(x, t) abatement cost function (abatement costs as

fraction of output)28 at (x, t) and F (K(x, t)) is a concave production function of capital.

δ is the usual depreciation rate of capital.As explained in the previous section, technology

and labor have been removed from the production function in order to avoid problems of

non-stationarity in the temperature equation.

Aggregate emissions at time t are defined as:

(42) E(t) =

∫ 1

0

σ(1 − µ(x, t))Y (x, t)dx

where σ : ratio of uncontrolled industrial emissions to output (metric tons carbon per

output at a base year prices), µ(x, t) : emissions-control rate (fraction of uncontrolled

emissions) at (x, t). Climate dynamics in the context of the ECBM developed in the

previous sections are defined as:

B
∂T (x, t)

∂t
= QS(x)α(x, xs) − [A+BT (x, t) − E(t)] +D

∂

∂x

[

(1 − x2)B
∂T (x, t)

∂x

]

(43)

Ts = T (xs(t), t)(44)

Notice that we have replaced Nordhaus’s climate equations (2010, equations A.14-

A.20) with the spatial climate dynamics, (43), (44). Maximization of objective (39)

subject to the constraints above is a very complicated and difficult optimal control prob-

lem of the PDE (43) on an infinite dimensional space x ∈ [0, 1]. We reduce this problem

to a much simpler approximate problem of the optimal control of a finite number of

“modes” using the two mode approach described earlier.

For the two mode approximation equations T (x, t) = T0(t) + T2(t)P2(x), (43) and

(44). reduce to the pair of ODEs.

27The maximization of objective (39) with the “Negishi” φ(x)weighting function is a way of computing
a Pareto Optimum competitive equilibrium allocation across latitudes as in Nordhaus’s discrete time non-
spatial formalization in Nordhaus (2010). For a presentation of the use of the Negishi weights in IAMs
see Stanton (2010).

28With our spatial approach abatement costs could be made site specific which would enable a more
comprehensive analysis of issues concerning e.g. geoengineering. This goes beyond the scope of the
current paper and is left for future research.
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dT0

dt
=

1

B

[

−(A +BT0) +

∫ 1

0

QS2(x)α(x, xs(t))dx+ E

]

, T0(0) = T00(45)

dT2

dt
=

1

B

[

−(1 + 6D)BT2 + 5

∫ 1

0

QS2(x)α(x, xs(t))P2(x)dx

]

, T2(0) = T02(46)

T0(t) + T2(t)P2(xs(t)) = Ts, Ts = −10oC(47)

Before continuing notice that North’s two mode approximation has reduced a problem

with a continuum of state variables indexed by x ∈ [0, 1] to a problem where the climate

part has only two state variables. We can make yet a further simplification by assuming,

as in section II, that the utility function is linear, i.e. U(C) = C . This will allow us to

write (39) as the MRAP problem:

(48) W =

∫ ∞

0

e−ρt

∫ 1

0

φCdxdt =

∫ ∞

0

e−ρt

∫ 1

0

φ [Ω(1 − Λ)F − (ρ+ δ)K] dxdt

Note that for the two mode approximation, the damage function should be defined

as:

(49) Ω(T (x, t)) = Ω(T0(t) + T2(t)P2(x))

To ease on the notation we introduce the inner product notation 〈f, g〉 =
∫ 1

0
f(x)g(x)dx.

We may now write down the current value Hamiltonian for the optimal control problem

(48) and show how we have drastically simplified the problem by using a two mode

approximation,29

H =

∫ 1

0

φ

[

Ω(1 − Λ)F − (ρ+ δ)K +
λ0

B
σ(1 − µ)F

]

dx(50)

λ0

B
[〈QSα, 1〉 −A−BT0] +

λ2

B
[5 〈QSα, P2〉 − (1 + 6D)BT2]

For the simplified problem (48) the capital stock and the emissions control rateK∗(x, t), µ∗(x, t)

are chosen to maximize H for each (x, t), which is a relatively simple problem. However

there is one complication to be addressed. The absorption function α(x, xs(t)) depends

upon the ice line xs(t) where the ice line is given by a solution of (47), i.e.

(51) xs(t) = P−1
+

(

Ts − T0(t)

T2(t)

)

29The important thing to note about this Hamiltonian compared to the Hamiltonian of the original
problem (39) is this. The original problem would generate a Hamiltonian with a continuum of costate
variables one for each x ∈ [0, 1]. The two-mode approximation approach developed could be quite
easily extended to an n-mode approximation approach. Since however North argues that a two mode
approximation is quite good, we continue with a two mode approximation here.

19



Where the subscript “+” denotes the largest inverse function of the quadratic function

P2(x) := (1/2)(3x2 − 1). Notice that the inverse function is unique and is the largest one

on the set of latitudes [0, 1]. Equation (51) induces a nonlinear dependence of equations

(45) and (46) through the absorption function , but no new state variables are introduced

by this dependence. An additional dependence induced by equations (45) and (46) as

well as equation (51) is on the damage function which we parameterize as:

(52) Ω = Ω(T0(t), T
2
2 (t)P 2

2 (x); xs(t), x)

The first term in (52) represents damages to output at latitude x as a function of av-

erage planetary temperature as in Nordhaus (2007,2010), the second term is an attempt

to capture extra damages due to climate “variance”, Note that the component P 2
2 (x) is

larger at x = 0 and x = 1 than it is at the “temperate” latitude x = (1/3)1/2 where P 2
2 (x)

is zero. This is an admittedly crude attempt to capture the component of damages due

to “wetter places getting wetter” and “dryer places getting dryer” as well as damages

to arctic latitudes compared to temperate latitudes. But some of this dependence can

be captured also in the “x” term in the parameterization (52). Finally the impact on

damages at latitude x due to shifts in the ice line is captured by inclusion of the ice

line in (52). This is a fairly flexible parameterization of spatial effects (i.e. latitude spe-

cific effects) that are not captured in the received non-spatial formulations of integrated

assessment models.

A. Optimal mitigation and location specific policy ramp in a spatial climate model

Let us first illustrate optimal mitigation using our two mode simplification of our

original “infinite mode” problem with linear utility by considering a version of the problem

where the impact of policy {µ(x, t)} on the location of the ice line xs(t) is ignored. I.e.

there is no ice line dependence of any functions of the problem including the absorption

function. In this simplified case the albedo function depends only upon x and thus the

terms 〈QSα, 1〉 , 〈QSα, P2〉 do not depend upon T0(t), T2(t) in (45) and (46). Hence the

two costate ODEs would become

dλ0

dt
= (ρ+ 1)λ0 −

∂H
∂T0

= (ρ+ 1)λ0 −
∫ 1

0

φ
∂Ω

∂T0
(1 − Λ)Fdx(53)

dλ2

dt
= (ρ+ 1 + 6D)λ2 −

∂H
∂T2

= (ρ+ 1 + 6D)λ2 −
∫ 1

0

φ
∂Ω

∂T2
(1 − Λ)Fdx

Wang and Stone (1980) argue that one can even get a fairly good approximation of

T2 by exploiting how fast mode 2 converges relative to mode zero in equation (46) as

compared to (45). Hence we can further simplify the problem by assuming that T2 has
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already converged to:

(54) T2 =
5 〈QSα, P2〉
(1 + 6D)B

for each T (t).30 The Hamiltonian (50) for the case when the absorption function and T2

are constant can thus be written as31

H =

∫ 1

0

[

φ(Ω(1 − ψµ)F − (ρ+ δ)K) +
λ0

B
σ(1 − µ)F

]

dx(55)

+
λ0

B
[Qα− A− BT0](56)

In this case we obtain the following switching decision rule for µ∗(x, t)32

µ∗(x, t)











= 0

∈ [0, 1]

= 1











for − λ0(t)











<

=

>











φ(x)ψB

σ(x)
Ω(57)

Ω = Ω(T0(t), (T2P2(x))
2, x)(58)

λ0(t) =

∫ ∞

s=t

e−(ρ+1)(s−t)

[
∫ 1

0

Ω(1 − ψµ∗)F
∂Ω

∂T0
dx

]

ds(59)

Suppose some type of institution wanted to implement this social optimum. One way

to do it would be to impose a tax τ(λ) = −λ0(t)
B

on emissions when individual agents solve

the static problems

(60) max
{µ∈[0,1],K≥0}

{Ω(1 − ψµ)F − (ρ+ δ)K − τ(λ)σ(1 − µ)F}

We see right away that the first order necessary conditions for the problem (60) are the

same with those resulting from the Hamiltonian function (55). Since F (K) is a concave

increasing function, then setting τ(λ) = −λ0(t)
B

implements the social optimum. Note that

the socially optimal emissions tax is uniform across all locations as one would expect from

Nordhaus (2007, 2010).

The reader might ask at this point: What substantive difference does the spatial

climate model coupled to the economic model add that is not already captured by non-

spatial climate models? There are several important differences regarding policy impli-

cations.

The emission reduction policy ramp µ∗(x, t), is location specific and dictates µ∗(x, t) =

30Note that in the case where the absorption function does not depend upon xs(t) that the RHS of
(54) is constant.

31Note that with a constant absorption function, 〈QSα, 1〉 = 〈Q(1 + S2P2(x))α, 1〉 =
〈Qα+QS2αP2(x), 1〉 = 〈Qα, 1〉 = Qα, since 〈QS2αP2(x), 1〉 = 0.
32Here, we have also assumed that abatement costs (Λ = ψµ, ψ > 0) are linear implying that the

solution is of bang-bang type. In section III.B we will consider a nonlinear version of abatement costs.
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1 for all (x, t) where the relative “Negishi” weight φ(x) on welfare at that location is small

(recall that
∫ 1

0
φ(x)dx = 1 by normalization). For example, if a Rawlsian social objective

is imposed, as mentioned in the introduction, where the social welfare of the worst off

latitude, call it x0, is maximized, then φ(x) = 0 for all latitudes different then x0. Hence

all latitudes other than x0 would be immediately ordered to reduce their emissions to

zero. Consider a more plausible scenario. Assume that Ω = Ω(T0(t), (T2P2(x))
2, x) =

Ω(T0(t), (T2P2(x))
2) is decreasing in both arguments. This crudely captures the idea that

damages increase at each latitude as average planetary temperature, T0(t) increases and

as a measure of local climate “variance” (T2P2(x))
2 increases. Let R denote a set of

“at risk latitudes” with low values of Ω(T0(t), (T2P2(x))
2), i.e. with high values of the

arguments. The set R is a crude attempt to capture latitudes that would be relatively

most damaged by climate change. A more plausible type of “Rawlsian” objective would

be to solve the social problem above but with φ(x) > 0, x ∈ R, φ(x) = 0, x /∈ R . We see

right away that this social problem would require all x’s not in R to reduce all emissions

immediately. In general we have,

(61) µ∗(x, t) = 1, for − λ0(t) >
φ(x)ψB

σ(x)
Ω

and vice versa. This makes good economic sense. The marginal social burden on the

planet as a whole of a unit of emissions at date t, no matter from which x it emanates

is, −λ0(t). Locations x where the “Negishi” weight on the location is small, where emis-

sions per unit of output are relatively large (relatively large σ(x)), and that are already

relatively heavily damaged (Ω(T0(t), (T2P2(x))
2, x) is high ) are ordered to stop emit-

ting. Thus our modeling allows plausible specifications of the economic justice argument

stemming from geography to shape policy rules.

In the following section, can now use this framework to extend our results in the

presence of an discontinuous absorption function that changes at the ice line. This is a

more realistic model which introduces ice line damages which we will now develop in the

context of a DICE/RICE-type integrated assessment model.

B. Optimal mitigation in a spatial IAM-type climate model

We introduce now as the absorption function the version proposed in North (North

(1975a)) where

(62) α(x, xs) = 1 − α(x) =

{

α1 = 0.38 x > xs

α0 = 0.68 x < xs

where α(x) is the albedo. With this absorption function the dynamics T0(t) in (45) and

the T2 approximation in (54) become respectively
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dT0

dt
=

1

B

[

−(A +BT0) +Q(α0 − α1)

∫ x=xs(t)

x=0

(1 + S2P2(x))dx+ E +Qα1

]

(63)

T2 =
1

(1 + 6D)B

[

5Q(α0 − α1)

∫ x=xs(t)

x=0

(1 + S2P2(x))P2(x)dx+Qα1S2

]

(64)

where the equation for the ice line is, using (51):

(65) xs(t) =

[

2

3

Ts − T0(t)

T2

+
1

3

]
1

2

The objective (39) and the constraints (62)-(65) determine optimal mitigation over

time and latitude. The discontinuous absorption function can create a strong nonlinearity

where a small change in T0 can cause a large change in damages at some latitudes. This

nonlinearity makes it however difficult to proceed with analytical solutions. To obtain

a qualitative idea of the impact of the nonlinearity due to the absorption function and

the ice line we use the climate parametrization used by North (1975a) (α0 = 0.68, α1 =

0.38, A = 201.4, B = 1.45, S2 = −0.483, Ts = −10, Q = 334.4). The heat transport

coefficient D is found to be approximately 0.2214 by calibrating the ice line function to

the current ice line estimate (xs = 0.95).33

The system (63)-(65) is highly nonlinear and can be simplified by deriving a poly-

nomial approximation of xs as a function of T0(t). We proceed in the following way.

If we substitute xs(t) from (65) into (64), then T2 results as a fixed point of (64). We

solve numerically the fixed point problem (64) for values of T0 ∈
[

−T̄0, T̄0

]

, obtaining

the solution T̂2(T0). Substituting this back into equation (65) gives us the x̂s(T̂2(T0), T0)

which is then used to fit using least squares, a quadratic curve on (T0, x̂s). Thus x̂s is

approximated by a convex curve x̂s = ζ0 + ζ1T0 + ζ2T
2
0 = ζ(T0), (ζ0, ζ1, ζ2) > 0,.34 Making

use of this approximation the system (63)-(65) can thus be written as:

dT0

dt
=

1

B
[−(A +BT0) +Q(α0 − α1)θ(T0) + E +Qα1](67)

where θ(T0) :=

[

x̂s +
S2

2
(x̂3

s − x̂s)

]

with x̂s := ζ0 + ζ1T0 + ζ2T
2
0

33The calibration procedure is explained in detail by North (1975b) p.2035-2037.
34The estimated quadratic function was

(66) x̂s = 0.7126 + 0.0098T0 + 0.0003T 2

0
, R2 = 0.99
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Assuming once again, linear utility, the Hamiltonian can thus be written as:

H =

∫ 1

0

[

φ[KβΩ(T0)(1 − Λ) − (ρ+ δ)K] +
λ0

B
σ(1 − µ)Kβ

]

dx(68)

+
λ0

B
[−A−BT0 +Q(α0 − α1)θ(T0) +Qα1]

We now assume that abatement costs are increasing in abatement activities: Λ = ψµ2.

The optimal µ and K will thus be defined as:

µ∗(x, t) = − λ0σ

2BφψΩ(T0)
(69)

K∗(x, t) =

(

ρ+ δ

β

)
1

β−1
[

Ω(T0)(1 − ψµ∗2) − λ0

φB
σ(1 − µ∗)

]
−1

β−1

(70)

∀x ∈ [0, 1] and the canonical system becomes:

dT0

dt
=

[

−A− BT0 +Q(α0 − α1)θ(T0) +

∫ 1

0

σ(1 − µ∗)K∗βdx

]

(71)

dλ0

dt
= (ρ+ 1 − Q

B
(α0 − α1)θ

′(T0))λ0 −
∫ 1

0

[

K∗βΩ′(T0)(1 − ψµ∗2)
]

dx(72)

which can be solved numerically given a specific shape of φ(x).

To proceed further we need a more detailed specification for the damage function,

which as explained above should contain a ’temperature component’ denoted by D1(T0)

and an ’ice line component’, denoted by D2(T0). We specify the damage function in

the following way. Lost output from temperature induced damages is: Y − Y
1+D1(T0)

=
Y D1(T0)
1+D1(T0)

:= Y d1(T0). Lost output from ice line moving towards the poles written as a

function of T0 is: Y − Y
1+D2(T0)

= Y D2(T0)
1+D2(T0)

:= Y d2(T0). The sum of lost output from both

sources is: LostY = Y d1(T0) + Y d2(T0). Thus net output available for consumption and

mitigation is: Y − LostY = (1 − d1(T0) − d2(T0))Y .

If we define Ωi(T0) = 1
1+Di(T0)

, i = 1, 2, then the term (1 − d1(T0) − d2(T0)) can be

written as the damage function Ω of the system (69)-(72) in the form

(73) Ω(T0) = Ω1(T0) + Ω2(T0) − 1

As the global warming problem concerns damages resulting from temperature increases,

rather than decreases, we restrict the state space to include only temperatures T0 > 15◦C

i.e. in the vicinity of the present average global temperature level.35 In the spatial model

used in this section this temperature level is found by setting E = 0 and solving (67),

35During the development of many energy balance models in the 1960’s and 70’s the main concern was
usually not that of global warming but rather that of drastic global cooling that could result due to a
slight decrease in the solar constant. This hypothesis was later coined ’Snowball earth’ by Kirschvink
(1992).
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which gives us T0 ≈ 15.27. Hence, 15◦C can thus be thought of as a rough ballpark esti-

mate of the preindustrial global temperature average. Damages are assumed to start at

15◦C and we will thus write our normalized damage function as Ω(T0−15). Furthermore,

we will use the same functional forms for the damage functions as used in section II.36
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λ

 

 

solution path

λ̇-isocline

Ṫ -isocline

no iceline dam.

T̄03T̄02T̄01 T̄n Ts

Figure 2. Phase diagram for the system (71)-(72).

The energy balance spatial climate model that we presented in this section as the result

of the concepts developed in the earlier part of the paper, has many similarities to the

traditional IAMs but also two potentially important differences. The first is that of the

discontinuous absorption function, the second is an alternative shape for ice line damages

as opposed to other temperature related damages. Together they introduce complex

nonlinearities into the temperature dynamics. The question of whether these differences

imply significant deviations of the model’s predictions, cannot be answered analytically

due to the high complexity of the models. So we resort to numerical simulations.

Figure 2 shows the results for the spatial climate model we have presented in this

section. As in section II this model also gives us 3 candidate optimal steady states

T̄01 < T̄02 < T̄03 where the largest and the smallest ones are saddles while the middle one

is an unstable spiral.37 Between the unstable spiral T̄2 and the saddle T̄3 we have a Skiba

36The parameters estimates are taken to be ρ = 0.02, a1 = 0.002, a2 = 0.4, ψ = 0.01, σ = 0.2, β =
0.5, δ = 0.1 and the temperature and ice line components are D1(T0) = a1T

2
0 and D2(T0) = a2e

−2T0T 2
0 .

37The corresponding eigenvalues are approximated numerically as e01 = [−0.3974, 0.4174], e02 =
[0.0100± 0.2045i] and e03 = [−0.1946, 0.2146].
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point T̄s similar to that of section II.38 Hence, for low initial temperatures T00 < T̄1 a low

but gradually increasing carbon tax is optimal, while for T00 < Ts we get the case where

it is optimal to levy a high carbon tax at T00 and then gradually decrease it. Further, the

figure also depicts the case when ice line damages are omitted T̄n. As opposed to section

II both of the isocline’s are now affected and in order to to keep the figure from getting

too messy we have chosen only to plot the single equilibrium at the crossing of these

isocline’s, which is denoted by the black dot at T̄n of figure 2. The qualitative behavior is

however the same as in section II, i.e. the “no ice line damage equilibrium ” is a saddle

having a positive slope for the Ṫ -isocline and a negative slope for the λ̇-isocline.

IV. DICE model results with ice line damages

Both the relative simple model of section II and the more complex model of section

III strongly suggest that the implications of explicitly modeling ice line damages is to call

for strong mitigation now. In order to further demonstrate that this result is robust to

the choice of model we now turn to the DICE model. The purpose of this exercise is to

show how the introduction of ice line damages into the damage function, along the lines

suggested by the EBCMs will affect the optimal emission policy implied by DICE the

most well know of the IAMs. The DICE model assumes that all damages to the economy

evolve according to the quadratic equation (A.5) of Nordhaus (2007). This equation has

been calibrated to a 2.5 degree warming based upon an aggregate of impact studies from

a variety of different sources.39 In order to separate out the ice line component from the

total amount of damages we follow the procedure shown in section III.B. We thus simply

replace (A.5) with equation (73) from this section. Hence, we have two separate damage

components D1(T ) and D2(T ) that can be calibrated independently according to different

impact assessments. Nordhaus (2007) finds the aggregate impact of a 2.5 degree warming

to be roughly 2% of GDP. Since, it is not possible to back out exactly how much of this

2% fall in GDP from a 2.5 degree warming is due to ice line specific damages, we simply

make a crude assumption that approximately 50% of these damages are attributable to

the ice line component D2(T ).40 Next, we make the following assumptions regarding the

shapes of the temperature and ice line specific components, i.e. we set D1(T ) = a1T
5 and

D2(T ) = a2e
−2TT 2. In a manner consistent with Nordhaus (2007) we then proceed by

calibrating the parameters a1 and a2 so that D1(2.5) = 0.01 and D2(2.5) = 0.01. In this

38Greiner, Grüne and Semmler (2009) find multiple equilibria in a zero-dimensional EBM, where
albedo is modeled by a continuous S-shaped function of temperature. The derived multiple-equilibria
and Skiba planes, however, only apply for fixed levels of abatement i.e. there is just a single control
variable (consumption). If however, the social planner can control both consumption and abatement
then there exists only a single stable saddle. Our approach apart from explicitly addressing the more
appropriate one-dimensional model also differ in the sense that we obtain multiple equilibria and Skiba
points when controlling both consumption and abatement.

39See Nordhaus (2007) accompanying notes (p.23-25).
40On page 24 of the accompanying notes of the DICE 2007 model there is an impact assessment by

region and impact type. These are then weighted based on GDP estimates for 2105. As these weights
are not provided it is thus not possible to back out a specific region or impact type.
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way our new damage function produces an equivalent amount of damage at a 2.5 degree

warming as in the original model but will differ for all other temperature levels. This
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Figure 3. Optimal emission control rate with and without ice line damages for a set

of different discount rates (left) and damage exponents (right). The U-shaped paths

correspond to the case when ice line damages are included while the upward sloping

paths are the original DICE model paths. The damage exponents of D1 vary from 1.5-2.5

for the Nordhaus case and 4.5-5.5 for the ice line damages (in parenthesis).

new damage function thus has the property that the temperature component, having a

larger exponent than the original quadratic function, punishes GDP to a much larger

extent when temperature levels start to rise above 3 degrees. When temperature levels

on the other hand are lower, the damages from the ice line are the ones that dominate.41

Figure 3 plots the optimal emission control rate the in the DICE-2007 model with and

without ice line damages. As can be seen from this graph the separation of different

damage structures gives us a U-shaped policy where it is optimal to mitigate harder

initially as opposed to the normal gradualist policy ramp. The figure also displays a

simple robustness check showing how the results are affected by changing the values for

the discount rate and damage exponent. As can be seen from the left graph, raising the

discount rate seems to strengthen the case for an act now policy as opposed to the more

gradualistic path at the same level of discounting. Although, these results remain specific

to our assumptions regarding the shape of the damage function for the ice line as well as

the temperature component, it still exemplifies the sensitivity of the model to structural

41See Ackerman et al. (2009) for a discussion regarding different values for the exponent of the damage
function used in DICE.
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changes in the damage function and the impact of incorporating insights from energy

balance models.

V. Summary, Conclusions, and Suggestions for Future Research

In this paper we introduce the economics profession to spatial Energy Balance Cli-

mate Models (EBCMs) and show how to couple them to economic models while deriving

analytical results of interest to economists and policy makers. While we believe this

contribution is of importance in its own right, we also show how introduction of spatial

considerations leads to new ways of looking at climate policy.

In particular, by accounting for an endogenous ice line and paying attention to the

associated ice line damages and albedo effects we show that due to nonlinearities even

simple economic-EBCMs generated multiple steady states and policy ramps which do not

in general follow the “gradualist” predictions. These results carry over to more complex

models where the economic module has an IAM structure. The interesting issue from

the emergence of multiple steady states, is that when the endogenous ice line and dis-

continuous albedo are ignored, as in traditional IAMs, the policy prescription of these

models could be the opposite of the policy dictated by the economic-EBCMs. Further-

more the spatial aspect of the EBCMs allows economic justice argument associated with

the spatial structure of climate change damages to shape policy rules. When we applied

the damage function implied by the EBCMs and calibrated appropriately simulations

in the DICE model gave results interpretable as a U-shaped policy ramp indicating an

important deviation from the gradualist policy ramp derived from the standard DICE

model. Thus a rapid mitigation policy can be justified on the new insights obtained by

coupling the economy with the EBCMs.

We consider this paper as a first attempt to bring together EBCMs and economic

models and to show how these models can provide new insights which have not been

obtained by the traditional IAMs, and furthermore that these new insights could be

important for policy design. Being a first attempt also means that there are many areas

for future research. These areas range from making the economics more sophisticated

by abandoning the simplifying assumption of linear utility; allowing for technical change

and knowledge spillovers across latitudes; or introducing strategic interactions among

regions,42 to extending the EBCMs. Future work that needs to be done regarding EBCMs

is extension to two-dimensional spherical EBCMs because Earth is a sphere, not a line.

Brock and Judd (2010) are attempting to make a dent in this problem. They frame the

problem as a recursive dynamic programming problem where the state vector includes

a number of “spherical modes” that are analogs of the modes in this paper as well as

economic state variables. Another possible extension could be the consideration of new

42These extensions will undoubtedly increase the complexity and the computational needs for solving
the economic-EBCMs.
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policy instruments. Emissions reduction acts on the outgoing radiation in the sense that

by reducing emissions the outgoing radiation increases through the second term of the

right hand side of (2). Another kind of policy could act on the first term of the right hand

side of (2) in the sense of reducing the incoming radiation. This type of policy might

be associated with geoengineering options. Finally a policy which acts on the damage

function in the sense of reducing damages for any given level of temperature and radiation

balance might be associated with adaptations options. Unified economic-EBCMs might

be a useful vehicle for analyzing the structure and the trade offs among these different

policy options.
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A. Appendix: The two mode solution

In this appendix we show how to derive the two mode solution (8)-(16). We start

with the basic PDE

(74)
∂I(x, t)

∂t
= QS(x, t)α(x, xs(t)) − [I(x, t) − h(x, t)] +D

∂

∂x

[

(1 − x2)
∂I(x, t)

∂x

]

The two mode solution is defined as:

(75) Î(x, t) = I0(t) + I2(t)P2(x), P2(x) =
(3x2 − 1)

2

then

∂I(x, t)

∂t
=
dI0(t)

dt
+
dI2(t)

dt
P2(x)(76)

∂I(x, t)

∂x
= I2(t)

dP2(x)

dx
= I2(t)3x(77)

Substitute the above derivatives into (74) to obtain:

dI0(t)

dt
+
dI2(t)

dt
P2(x) = QS(x, t)α(x, xs(t))−(78)

[I0(t) + I2(t)P2(x) − h(x, t)] +D
∂

∂x

[

(1 − x2)I2(t)
∂P2(x)

∂x

]

, or

dI0(t)

dt
+
dI2(t)

dt
P2(x) = QS(x, t)α(x, xs(t))−(79)

I0(t) − I2(t)P2(x) + h(x, t) − 6DI2(t)P2(x)

Use:

∫ 1

0

Pn(x)Pm(x)dx = 〈Pn(x), Pm(x)〉 =
δnm

2n + 1
(80)

δnm = 0 for n 6= m, δnm = 1 for n = 1

and note that P0(x) = 1, P2(x) = (3x2−1)
2

Multiply (79) by P0(x) and integrate from 0 to 1 to obtain

dI0(t)

dt
+
dI2(t)

dt
〈P0(x), P2(x)〉 =

∫ 1

0

QS(x, t)α(x, xs(t))P0(x)dx−(81)

I0(t) − I2(t) 〈P0(x), P2(x)〉 +

∫ 1

0

h(x, t)dx−

6DI2(t) 〈P0(x), P2(x)〉 , or

dI0(t)

dt
= −I0(t) +

∫ 1

0

[QS(x, t)α(x, xs(t)) + h(x, t)] dx(82)
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Multiply (79) by P2(x) and integrate from 0 to 1 noting that
∫ 1

0
P2(x)dx = 0, and

〈P2(x), P2(x)〉 = 1
5

to obtain

dI0(t)

dt

∫ 1

0

P2(x)dx+
dI2(t)

dt
〈P2(x), P2(x)〉 =(83)

∫ 1

0

QS(x, t)α(x, xs(t))P2(x)dx−(84)

I0(t)

∫ 1

0

P2(x)dx− I2(t) 〈P2(x), P2(x)〉−(85)

∫ 1

0

h(x, t)P2(x)dx− 6DI2(t) 〈P2(x), P2(x)〉 , or

1

5

dI2(t)

dt
=

[
∫ 1

0

QS(x, t)α(x, xs(t)) + h(x, t)

]

P2(x)dx−

1

5
I2(t) −

6

5
DI2(t) , or

dI2(t)

dt
= −(1 + 6D)I2(t) + 5

∫ 1

0

[QS(x, t)α(x, xs(t)) + h(x, t)]P2(x)dx(86)

The ODEs (82) and (86) are the ODEs (9), (11) of the two mode solution (8)-(16).

The solutions of these ODEs shown in (10) and (13) follow from standard methods.
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B. Appendix: derivations and assumptions

This section drafts some of the more specific assumptions on which figure 1 is based.

The production function in (32) is assumed to take the following form:

(87) F (K −K2, h+ φK2) = (K −K2)
β1(h + φK2))

β2

with β1 > 0, β2 > 0. The solution to problem (32) is derived from the first order condi-

tions:

∂F

∂K
= β1(K −K2)

β1−1(h+ φK2))
β2 − (δ + ρ) = 0(88)

∂F

∂K2
= −β1(K −K2)

β1−1(h + φK2))
β2 + β2φ(K −K2)

β1(h+ φK2))
β2−1 = 0(89)

Solving the system (88) and (89) for K and K2 gives the solution to problem (32).

K∗
2(h) =

1

φ

(

(δ + ρ)

β1

(

β1

φβ2

)1−β1

)
1

β1−1+β2

− h

φ

K∗(h) =
β1

φβ2

h+

(

1 +
β1

β2

)

K∗
2(h)

Plugging these values back into (32) allows us to write π(h) as a linear function of h:

π(h) = Ã+ B̃h

with

Ã :=

(

β1

φβ2

)β1

(

(δ + ρ)

β1

(

β1

φβ2

)1−β1

)

β1+β2
β1−1+β2

− (δ + ρ)
(1 + φ)

φ

(

(δ + ρ)

β1

(

β1

φβ2

)1−β1

)
1

β1−1+β2

B̃ := −(δ + ρ)

(

β1

φβ2
− (1 + φ)

φ

)

which is increasing in h given that β1/β2 < (1 + φ). Assuming also that D1(T ) = a1T
2,

D2(T ) = a2 exp(−2T )T 2 and Ch(h) = chh
2, where a1, a2, ch > 0. 43 Substituting this

into (33) and using the first order condition we can thus derive the canonical system:

dT

dt
= aT − bTT + cT

B̃ + λT cT
2ch

, T (0) = T0(90)

dλT

dt
= (ρ+ bT )λT + a1T − 2a2e

−2T (T − 1)T(91)

43The shape of D1(T ) has become fairly standard in the literature. Still, in a recent review by
Ackerman et al. (2009), they uncovered no rationale, whether empirical or theoretical, for adopting a
quadratic form for the damage function. The shape of D2(T ) is motivated in the text and in appendix
B.A.
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From (90) and (91) it is easy to confirm the shape of the isoclines depicted in figure 1. For

the numerical calculations of the solution paths and the Skiba point we used numerical

methods described in Grass et al. (2008); Grass (2010). The parameter values used for

the numerical calculations are given in the table below:

Parameter Value Description
ρ 0.02 discount rate
β1 0.3 elasticity of capital with respect to output
β2 0.6 elasticity of energy with respect to output
δ 0.1 depreciation rate of capital
φ 0.9 efficiency parameter of clean energy
a1 0.09 damage parameter of D1(T )
a2 0.7 damage parameter of D2(T )
aT 0.8 parameter of temperature equation
bT 0.6 parameter of temperature equation
cT 0.85 parameter of temperature equation
ch 0.05 parameter of cost function

Table 1—The parameter values of figure 1.

We also tested the following S-shaped functional form for ice line damages:

D2(T ) = θ
T γ

ϕ+ T γ
, with {γ, θ, ϕ} > 0

For appropriate values of the parameters we got the same qualitative results as displayed

in the phase plots of both section II and III.

A. Ice line damages

Although we have already provided some intuitive arguments regarding the shape

of D2(T ) and strengthened these arguments with empirical findings from the literature,

further rigor might be called for. Consider the following line of argumentation:

Define xs(T ) = min{1, (ai + biT )0.5} to modify the Wang/Stone equation (28) for the

ice line so it can’t go above 1 where the ice caps are completely gone. Tune the ai, bi

parameters of Wang/Stone so that xs(T ) reaches one at a very large value of T , call

it T ∗. Note that D2(T
∗) is very small for T > T ∗. This is good enough to motivate

the right hand part of the specification of D2(T ) for large T . Now motivate D2(T ) by

specifying a function g(·) such that D2(T ) is an approximation to g(xs(T )). Note that

since g(xs(T )) must be zero for T > T ∗, D2(T ) can’t be exactly represented by g(xs(T ))

but is close enough for T > T ∗ to serve as a ”good enough” approximation in return for

its tractability as shown by our phase diagrams in section II and III.

One could also argue for an alternative formulation of the D2(T ) that does not include

adaptation abilities to damages which are implicitly assumed in our current formulation.
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Such a damage function, would look similar to the gamma function in our paper except

that damages would not go to zero but instead level off at some T ∗ implying that a certain

fraction of output is lost forever for T > T ∗. Such an S-shaped function has been used

frequently in the literature describing non-convexities adherent in ecosystems, see e.g.

Brock and Starrett (2003). We tested such an S-shaped functional form which proved to

give very similar qualitative results to the ones we present in this paper. From a technical

point of view the choice between this form and the gamma function is thus only a matter

of preference.

Of course, no one really knows exactly what the damages to world welfare as a whole

are as the ice lines retreat from their present position to the poles, but it seems plausible to

expect the damages to initially increase, perhaps at an increasing rate as people struggle

to deal with the large adjustment costs of dealing with melting of a large ice mass, but

as the ice mass gets smaller, the adjustment costs should get smaller until the costs

start dropping due to smaller and smaller ice masses melting. As the remaining ice mass

shrinks to zero with increasing T one could thus argue that D2(T ) goes to zero.
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