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Abstract

Scientific evidence suggests that anthropogenic impacts on the en-

vironment such as land use changes and climate change promote the

emergence of infectious diseases in humans. We develop a two-region

epidemic-economic (epi-econ) model which unifies short-run disease

containment policies with long-run policies which could control the

drivers and the severity of infectious diseases. We structure our pa-

per by linking a susceptible-infected-susceptible (SIS) model with an

economic model which includes land use choices for agriculture and

climate change. In the SIS model the contact number depends on

short-run containment policies (e.g., lockdown, social distancing, vac-

cination), and the long-run policies affecting land use and the preser-

vation of the natural world, and climate change. Utility in each region

is determined by a composite consumption good produced by labor,

land devoted to agriculture, and energy. Climate change and land

use changes which reduce the natural world have an additional cost

in terms of infectious disease since they might increase the contact

number in the long run. We provide a deterministic solution as a

benchmark and we compare it with outcomes derived under ambigu-

ity associated with important parameters of the epi-econ model and

ambiguity aversion.
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1 Introduction

The COVID-19 crisis represents both a human health emergency and a

severe economic and social threat. The economic aspect of the pandemic

has been analyzed mainly in terms of ways of controlling the pandemic

– lockdowns, social distancing, vaccine development – and the associated

benefits and costs of these policies (see, for example, Eichenbaum et al.

2020, Thunström et al. 2020, Berger et al. 2021).

In a more general context, the problem of controlling an infectious disease

can be analyzed both in a short-run and a long-run context. The short-

run problem is associated with the control and the eventual containment-

elimination or even eradication of an epidemic which has already emerged.

The long-run problem is associated with the control of factors contributing

to the emergence of an infectious disease (ID) and therefore represents a

prevention policy aiming at reducing the probability of arrival of an ID.

In exploring the mechanisms underlying the emergence of IDs and con-

sequently providing a basis for the design of efficient prevention policy, the

anthropogenic impact has been identified as an important factor. Scientific

evidence suggests that the total number and diversity of outbreaks and rich-

ness of IDs have increased significantly since 1980 (Smith et al. 2014). Jane

Goodall (2020, p. 1):

“...blamed the emergence of Covid-19 on the over-exploitation

of the natural world, which has seen forests cut down, species

made extinct and natural habitats destroyed. The coronavirus

is thought to have made the jump from animals to humans late

last year, possibly originating in a meat market in Wuhan, China.

Intensive farming was also creating a reservoir of animal diseases

that would spill over and hurt human society ... .”

ENSIA (2020), in a recent report, attributes the emergence of IDs such

as COVID-19 to the destruction of habitats and loss of biodiversity, while

Evans et al. (2020, p. 1) point out that:
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• Degradation has significantly altered ecological systems worldwide and

continues to expand into new areas.

• The majority of emerging ID threats are zoonotic, originate from

wildlife, and often cause major social and economic impacts.

• Ecological degradation increases the overall risk of zoonotic disease

outbreaks originating from wildlife. The key “ingredients” that ac-

centuate the risk of an emerging ID spillover event are activities (e.g.,

land conversion, creation of new habitat edges, wildlife trade and con-

sumption, agricultural intensification) in or linked to areas of high

biodiversity that elevate contact rates between humans and certain

wildlife species.

Almada et al. (2017) stress the need to recognize that the relationship be-

tween humanity and natural systems is becoming an urgent global health

priority. Watts et al. (2021), in the 2020 report of the LANCET countdown

on health and climate change, emphasize that the changing climatic condi-

tions are increasingly suitable for the transmission of numerous IDs, while

the recent statement of the LANCET COVID-19 Commission (Lancet 2021,

p. 21) points out that:

“...most known emerging diseases have originated in non-human

animals, usually wildlife, and have emerged due to environmental

and socioeconomic changes, such as land use change, agricultural

expansion, and the wildlife trade.”

A recent report on COVID-19 (The Independent Panel for Pandemic Pre-

paredness and Response 2021, p. 19) stresses that:

“Most of the new pathogens are zoonotic in origin. Driving their

increasing emergence are land use and food production practices

and population pressure. ... Accelerating tropical deforestation

and incursion destroys wildlife health and habitat and speeds in-

terchange between humans, wildlife and domestic animals. The

threats to human, animal and environmental health are inextri-

cably linked, and instruments to address them need to include

climate change agreements and “30x30” global biodiversity tar-

gets.”
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In the context of associating anthropogenic activities with the emergence of

IDs, the contribution of climate change is also significant. Scientific evidence

(e.g., Wyns 2020) suggests that infections which are transmitted through wa-

ter or food, or by vectors such as mosquitoes and ticks, are highly sensitive

to weather and climate conditions. The warmer, wetter and more variable

conditions resulting from climate change are therefore making it easier to

transmit diseases such as malaria, dengue fever, chikungunya, yellow fever,

Zika virus, West Nile virus and Lyme disease in many parts of the world.

Furthermore, permafrost thaw, caused by climate change, also carries con-

sequences in terms of increased risks of ID outbreaks at the hands of live

pathogens liberated from thawed permafrost (Walsh et al. 2018, Meredith

et al. 2019).

Nova et al. (2022, section 5) state that:

“The activities that lead to anthropogenic disturbances of the

environment – primarily, climate change, land-use change, ur-

banization, and global movement of humans, other organisms,

and goods – affect societies and ecosystems in ways that favor

the emergence of novel infectious diseases in human populations,

expansions or shifts of diseases to new geographic regions, or re-

emergence of diseases in various places.”

They also explicitly provide links between disease transmission and changes

in temperature and rainfall as well as between changes in land use and

disease incidence. For example, intensification of agriculture and indus-

trial agriculture promotes Aedes-born viruses (e.g., dengue, Zika and yellow

fever), Lyme disease and the Hendra virus.

The above discussion makes clear that in order to have efficient manage-

ment of an emerging ID in both the short and the long run, there is a need

for the development of coupled models of the economy and the natural world

which will include links associated with the ID reservoirs. This approach

parallels the development of coupled models of the economy and climate

through the appropriate integrated assessment models (IAMs). Augeraud-

Véron et al. (2020) develop such a model in which the reduction of biodi-

versity increases the probability of emergence of zoonotic IDs. Boppart et

al. (2020) propose “epi-econ IAMs” and discuss economic instruments for

controlling the epidemic after its emergence.
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The discussion regarding emergence of IDs indicates that the disease

reservoirs are located mainly in the tropical-subtropical climate zones in

the Koepen-Geiger classification system (with the notable exception of per-

mafrost). These climate zones contain hot spots for the natural world in

terms of natural habitats, tropical forests, biodiversity. A disease outbreak

which might emerge from the anthropogenic pressure on the disease reser-

voirs and the impact of climate change in these zones, if it occurs, diffuses to

the rest of the world through transportation channels. In this paper we will

identify the tropical-subtropical zones as region 1 and the temperate-snow

zones as region 2. Sachs (2001) points out that agricultural technologies

and health conditions are weak in the tropical relative to temperate zone,

inducing a development gap. Thus a distinction between the two regions

when land use and disease impacts are concerned is relevant.

We consider two stages of analysis. In the first stage, which we call the

short run, the outbreak of the ID has occurred. After the outbreak, both

regions introduce policies to contain/eliminate the epidemic. Throughout

the paper we assume that containment policies in the short run are decided

in each region in a non-cooperative way. This assumption draws on the fact

that national health policies during the COVID period are decided by an

independent national health system based on the specific characteristics of

each country and not by a supranational authority. In designing containment

policies in the short run, the regions do not consider any anthropogenic im-

pacts (encroachment in the natural world or climate change) on the specific

characteristics of the ongoing ID.

In the second stage, which we will call the long run, the regions take

into account the evolution of climate change and the encroachment on the

natural world by agricultural activities on the specific characteristics related

to the transmission of the ID. Changes in land use and encroachment in the

natural world are induced mainly by industrial agriculture and by the need,

for example, to satisfy the demand in wet markets, or the clearing of tropical

forests to satisfy demands for products such as palm oil, meat or soybeans, or

the establishment of industrial concentrated animal feeding operations. The

long-run policy relates, therefore, to the regulation of land use which directly

affects disease reservoirs as well as to the adequate control of temperature

increase relative to the preindustrial period through climate policy. In the

long run we also assume that the regions commit to decisions about land-use
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and climate policy that maximize own welfare.1 This implies that long-run

analysis will be conducted in a noncooperative context.

The contribution of our paper consists of developing an epi-econ IAM

which unifies disease containment policies which are appropriated when

a disease has already occurred with long-run policies which could control

the drivers and the severity of IDs. We structure our paper by linking

a susceptible-infected-susceptible (SIS) model (e.g., Hethcote 1989, 2000)

with an economic model which includes land-use choices for agriculture and

climate change.

In the SIS model, the contact number – which is the average number of

adequate contacts (with both susceptibles and others) of an infective during

the infectious period – is not a fixed number as is standard in epidemio-

logical models, but rather depends on policy parameters which in the short

run could be containment policies (e.g., lockdown, social distancing, vacci-

nation), and the long-run policies affecting land use and the preservation of

the natural world, and climate change. For the economy part, utility in each

region is determined by a composite consumption good produced by labor,

land devoted to agriculture, and energy. Climate change induced by energy

use not only harms the composite consumption good but has an additional

cost in terms of ID since it might increase the contact number in the long

run. Reduction of the natural world through changes in land use to expand

agriculture also has a disease-cost in terms of the long-run contact number.

Given the high uncertainty associated with structure and the parametriza-

tion of such a model, we provide a deterministic solution as a benchmark

and we compare it with outcomes derived under ambiguity associated with

important parameters of the epi-econ model and ambiguity aversion.

2 An SIS model with containment

We follow Hethcote (1989) in considering a simple two-region SIS model,

with regions indexed by i = 1, 2 for Tropics and Temperate zones respec-

tively. In the SIS model, infection does not confer immunity and individu-

als return to the susceptible class when they recover from infection. Since

1Note that in the implementation of the Paris accord, countries commit to carbon
emissions paths. It is reasonable to assume that these paths are decided with reference to
own welfare.
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naturally-occurring births or deaths do not affect the behavior of the so-

lution, we exclude them from the model for the sake of simplicity. Let

susceptibles be denoted by S and the infective by I. Then the simple SIS

model in terms of fractions of the total population can be written, in discrete

time, as:

Ṡi (t) = −λi (t) Ii (t)Si (t) + γiI (t) , S(0) > 0 (1)

İi (t) = λi (t) Ii (t)Si (t)− γiIi (t) , Ii(0) > 0 (2)

Ii (t) + Si (t) = 1 , i = 1, 2, (3)

where λi (t) is the regional contact rate, γi is the recovery or removal rate,

and σi (t) = λi (t) /γ is the regional contact number. From (3), the dynamic

system can be written as

İi (t) = λi (t) Ii (t) [1− Ii (t)]− γIi (t) = γIi (t)

[
λi (t) (1− Ii (t))

γ
− 1

]
İi (t) = γI (t) [σi (t) (1− Ii (t))− 1] . (4)

From Hethcote (1989, theorem 4.1) we know that the solution for Si (t)

approaches 1/σi (t) as t → ∞ if σi > 1 and approaches 1 as t → ∞ if

σit ≤ 1. In the context of an infinite-time planning horizon, the containment

policy for an emerging ID takes place within a relatively small period of

time. This implies that the SIS dynamics can be regarded as operating in

fast time and the SIS system relaxes to the steady state Ii (t) = 1− 1/σi (t)

or Si (t) ≡ 1/σi (t) for any point in time. The contact number σi (t) is the

threshold quantity with the critical threshold value 1. We consider a time

dependent contact number σi (t) since it could refer to different emerging

IDs at different points in time, or change over time in response to policies.

It is natural to assume that short-run containment and long-run pre-

vention policies will target the contact number σ. The containment policies

adopted for the COVID-19 pandemic included policies such as lockdowns,

social distancing, quarantine and vaccination. In further specifying the con-

tact number, we assume costly containment such as vaccination will reduce

the contact number, and that the output-producing labor force includes

workers who are asymptomatic in the sense that, although infected, they do

not have symptoms that require treatment, so they are neither in the in-

fected class nor in quarantine but they can spread the disease and increase
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the contact number. The fraction of susceptible individuals should be in-

creasing both in short-run containment policies once the disease emerges,

but also in long-term prevention policies.

2.1 Coupling the epidemic model with the economy

Let R (t)) represent the natural world. In the sense of Goodall (2020), the

natural world includes the viral-host reservoir. Human encroachment and

destruction of the natural world emerges through changes in land use due

to land-intensive agriculture, LLI , and hydroponic/greenhouse high energy

intensity agriculture, LH . The two agricultural technologies introduce a

trade-off between output production and ID emergence. Land-intensive agri-

culture will reduce the natural world, while high energy agriculture might

increase emissions of greenhouse gasses (GHGs). These effects might in-

creases the transmission of IDs.2 Let R in each region i = 1, 2 be defined

as:

Ri (t) = L̄i (t)− Li,LI (t)− Li,H (t) , Ri (t) ≥ 0, (5)

where L̄i(t) represents aggregate land availability in each region. Reduction

ofR, as agricultural activities expand, indicates a reduction in the “distance”

between human activities and disease reservoirs.

In considering the impact of climate change, we assume that energy

production by fossil fuels generates emissions of GHGs. Let X (t) denote the

stock of GHGs at time t relative to the preindustrial period with temporal

evolution according to:

Ẋ (t) = E1 (t) + E2 (t)− dX (t) , X (0) = Xpreindustrial, (6)

where Ei(t) denotes emissions of GHGs from each region and d is a small

GHG depreciation parameter. The accumulation of GHGs increases global

average temperature relative to the preindustrial level (the temperature

anomaly). Using Matthews et al.’s (2009) approximation with Λi represent-

ing the regional transient climate response to cumulative carbon emissions

(RTCRE)(Leduc et al. 2016), the temperature anomaly in each region can

2Restoration activities, such as reforestation, REDD+ policies and payments for ecosys-
tem services, could increase R and reduce the probability of emergence. We do not include
such activities in order to simplify the model.
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be defined as

Ti (t) = ΛiX (t) . (7)

To incorporate the impacts of disease reservoirs and climate change in

the evolution of the ID, we assume that once the disease emerges, the speed

of the evolution of the infection could be variable, so we write (4) as:

˙ϵSi (t) = (1− Si (t)) [λi(t)Si(t)− γ] ,

where ϵ is a small positive parameter. To provide a clear picture of a short-

run containment policy, when both the land allocation and the regional

temperature are for all practical purposes fixed, we assume that ϵ → 0 so

that when the infection emerges it relaxes fast to a steady state in which

the fraction of susceptibles is determined as:

Si (t)) ≡ 1

σi (t))
= (8)

ϕ0i (Ri(t), Ti(t)) + ϕ1i [biv (t))−miSi (t))− qj (1− Sjt)]

Ij(t) = 1− 1

σj(t)
, i, j = 1, 2, i ̸= j. (9)

In (8), ϕ0i is the part of the contact rate λi(t) (and contact number

σi(t)) which is exogenous relative to short-run containment policies. Its

value is determined by the current state of the natural world in the regions

R(t) = (R1(t), R2(t)), which includes the disease reservoirs, along with the

current temperature anomaly. In the long run, encroachment in the natural

environment due to changes in land use and agricultural expansion – which

“reduces” the natural world – along with global warming increase the contact

number. We assume, therefore,

ϕ0i (Ri(t), Ti(t)) = ϕ0iR(Ri(t)) + ϕ0iT (Ti(t)) ≥ 0, (10)

where ϕ0iR(R1(t)), ϕ0iT (T (t)) are convex decreasing, concave increasing re-

spectively. The function is decreasing in R since it is assumed that augment-

ing the natural world (i.e., reducing the relative size of the disease reservoirs

and increasing their distance from human activities) reduces the contact

number of any specific epidemic, while global warming increases the contact

number.

On the other hand, ϕ1i characterizes the effectiveness of the containment
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policy in each region. In the short run, containment effort vi (t)) reduces the

contact number λi (t)) , with effectiveness bi and convex costs ci (vi (t)) . The

contact number increases by the potential spread of the disease by asymp-

tomatic susceptible workers at the rate mi ≥ 0. We assume no migration

between regions,3 but individuals from one region can make short visits to

the other by regular means of transportation (e.g., airplanes, ships). In-

fected individuals from region j traveling to region i infect individuals in

region i proportional to those infected in region j and vice versa, with pro-

portionalities (qj , qi) respectively.

To link the economy with the epidemic model we introduce a composite

good Ci(t). This good is produced by labor, energy and land devoted to

land-intensive or hydroponic/greenhouse agriculture.4

Labor is offered by susceptible individuals – who are not contained be-

cause of lockdowns – and is allocated among the non-agricultural part of the

composite, and the land-intensive and hydroponic agricultural parts. Costs

related to energy, cj,E,i, containment of the epidemic, cvi, and climate dam-

ages, ωi, fractionally lower the composite good. After dropping t to ease

notation, the composite good can be defined as:

Ci =
[(
l
βl,c,i
c,i E

βc,E,i

ci

)αc,i
]
×
[(
l
βl,LI,i

LI,i (γLI,iLLI,i)
βL,LI,i E

βE,LI,i

LI,i

)αLI,i
]
×[(

l
βl,H,i

H,i (γH,iLLI,i)
βL,H,i E

βE,H,i

H,i

)αH,i
]
×

exp

[
−

(∑
h

ch,E,iEhi

)]
× exp

[
−cvi(v2i /2

]
× exp

(
−ωiT 2

i /2
)

(11)

Si = lc,i + lLI,i + lH,i , i = 1, 2 (12)

Ri = L̄i − LLI,i − LH,i. (13)

Let the utility function in each region be

Ui (t) = logCi (t) + ψi logRi , ψi ≥ 0, (14)

where the term ψi logRi captures potential concave existence values in each

region for the part of the natural world not used for human activities.5

3Considering the possibility of infections from large scale migration flows between the
two regions is beyond the scope of this paper, but it is an interesting area for further
research.

4To simplify the model, we do not include capital formation.
5REDD+ activities can be introduced by adding a term RD for REDD+ to the right
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We study the optimal management of the epi-econ model in the context

of two different time frames. In the first – the short-term management –

the epidemic has emerged and the objective is to choose containment con-

trol, labor allocation and energy use to maximize discounted utility. In this

time horizon the regional natural world and temperature anomaly (Ri, Ti)

are considered as fixed, since their evolution is slow relative to the the evo-

lution of the pandemic and the primary objective is the containment of

the pandemic. In this time frame, the short-term optimal controls depend

parametrically on (Ri, Ti).

In the second – the long-term management – it is assumed that the

epidemic, which is the fast system, has been optimized and relaxed to a

steady state which depends parametrically on the natural world Ri and the

evolution of regional temperature Ti which is slow relative to the evolution of

the epidemic. As (Ri, Ti) evolve, the optimal controls for the management of

the epidemic system also evolve. The relation between the epidemic system

and the natural world is reflected in (10), which is the policy-independent –

in the short-run – component of the contact number.

For reasons explained in the introduction, we focus on non-cooperative

solutions in which each region maximizes own welfare. For a social optimiza-

tion management problem, a social planner would maximize global welfare

defined as

W = log
(
Cw1 C

1−w
2

)
. (15)

3 Short-run disease containment

We study the optimal containment problem in regions i = 1, 2 once the epi-

demic has emerged. In this case the planners take the natural world Ri(t)

and the temperature anomaly Ti(t) as exogenous, and decide about the con-

tainment policy vi(t), along with labor allocation and energy use. Thus the

controls for the short-run problem are ui = (lc,i, Ec,i, lLI,iELi,i, lH,i, EH,i, vi).

The solution concept for containment policy will be a non-cooperative Nash

equilibrium solution in which the region’s planner maximizes own regional

welfare taking the actions of the other region as given. Given that during

the COVID pandemic, countries have been designing containment policies

hand side of (13) and including a cost for these activities which fractionally reduces the
composite good.
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mainly unilaterally though their own health systems, the Nash equilibrium

concept might be a more realistic representation.

3.1 Non-cooperative solutions

Assuming that the objective is to contain and/or eliminate the epidemic,

then the short-run time problem with fixed Ri, dropping t to ease notation,

is:

max
ui

logCi (t) (16)

subject to

Si(t) = lc,i + lLI,i + lH,i (17)

Ŝi(t) = φ̄0i + φ1i [bivi − qj (1− Sj)] (18)

Si(t) = min
{
Ŝi, 1

}
(19)

φ̄0i =
ϕ̄0i

1 + φ1imi
, φ1i =

ϕ1i
1 + φ1imi

, (20)

with φ̄0i being the part of the contact number which is independent of short-

term policies.

The optimality conditions for problem (16), in which infections Ijt in

region j are taken as given, imply that:

v∗i =
ζiφ1ibi
cvi

(21)

ac,iβl,c,i
l∗c,i

=
aLi,iβl,LI,i

l∗LI,i
=

aH,iβl,H,i

l∗H,i
= ζi (22)

ac,iβc,E,i

E∗
c,i

=
aLI,iβLI,E,i

E∗
LI,i

=
aH,iβH,E,i

E∗
H,i

= cEi , (23)

where ζi is the Lagrangian multiplier associated with constraint (18) and

cEi is the common marginal cost of energy for all uses. Containment pol-

icy vi (e.g., vaccinations) is positive as long as its effectiveness is positive.

Condition (22) indicates that the optimal labor allocation across the three

possible land uses implies equalization of marginal products, while (23) in-

dicates that, at the regional optimum, the marginal cost of energy equals

regional marginal costs. Substituting (22) into (17) and solving for ζi we

obtain:
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v∗i =

(
φ1ibi
cvi

)(
Bi
Si

)
, Bi = ac,iβl,c,i+aLi,iβl,LI,i+aH,iβl,H,i , ζi =

Bi
Si
, (24)

where Bi can be interpreted as an indicator of average labor productivity in

each region.

Substituting conditions (21) and (22) into (18), we obtain the best re-

sponse (or reaction) function of each region to the susceptibles of the other.

The best response functions are nonlinear of the form

Si(t) = Ωi(t) + φ1iqjSj(t), i, j = 1, 2, i ̸= j (25)

Ωi(t) = φ̄0i + φ1i [biv
∗
i − qj ] . (26)

A Nash equilibrium solution for the two regions will exist if the system (25)

has a solution in (0, 1] . In this case, the susceptibles (i.e., non-infected in

each region) act as strategic complements, so the containment effect in one

region will help the other region. This is shown in figure 1.

Figure 1: Nash equilibrium

If a Nash equilibrium solution exists, then from the definition of ζi in (24)

and (21), labor allocation is a function of the equilibrium level of susceptibles

13



(
SN1 , S

N
2

)
.

Another way of looking at the short-run solution is to assume that both

regions’ objective is to eliminate the disease and seek control instruments

ûi such that Si(t) = Sj(t) = 1. The disease-eliminating instruments are

obtained using (24) for Si(t) = Sj(t) = 1.

Finally, we can explore the question of what is the minimum size, R̂i, for

the natural world so that a disease, if it emerges, will not spread because

the contact number is below 1 (i.e., σi(t) < 1, i = 1, 2). In such a case, no

containment is required and v∗it = 0. Using (18) and setting Si(t) = Sj(t) =

1, R̂ =
(

ˆ
R1, R̂2

)
can be defined, for any given temperature anomaly, as

R̂ =

{
min

(Ri,R2)
: (φ̄01 (R1(t), ;Ti(t)) , φ̄01 (R2(t);T2(t))) > (1, 1) for all t

}
.

We will call these values the Goodall thresholds. If Ri(t) < R̂i for some

time t, an emerging ID will spread in at least one of the two regions and

may invade the second region through transport. The containment of the

disease in this case requires costly interventions.

3.2 A cooperative solution

The cooperative solution corresponds to the case in which a social planner

decides containment policy for both regions by maximizing an unweighted

sum of regional utilities. The problem is therefore

max
u

{W = w logC1 + (1− w) logC2} , (27)

subject to the relevant constraints for i, j = 1, 2, i ̸= j.

The optimality conditions, dropping t when appropriate to ease notation,

imply:

vCi (t) : w

(
∂Ci
∂vi

)
+ (1− w)

(
∂Cj
∂vi

)
= 0,

∂Cj
∂vi

=
∂Cj
∂Si

∂Si
∂vi

(28)

vCi (t) = wv∗i + (1− w) (φ1iφ1jbiqi)
Bj
Sj
. (29)
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4 Containment policy in the short run under aver-

sion to ambiguity and model misspecification

A major issue in the design of containment policies is uncertainty regarding

certain crucial parameters of the epi-econ model and concerns about mis-

specification of the model. Following Hansen and Miao (2018), we explore

the implications of aversion to ambiguity and concerns regarding possible

misspecifications of the epi-econ model from the regulators’ point of view.

4.1 Robustness and entropy penalization

Assume that a parameter ν of the epi-econ model, such as bi, ui, φ0i, or φ1i,

i = 1, 2, has a prior density π, with ν ∈ V. In the context of Hansen and

Miao’s (2018) approach to ambiguity and model misspecification aversion,

the regulator solves the problem:

max
ui(t)

min
π

∫
V
Ui (Ci; ν)π (ν) dν + κi

∫
V
[log π (ν)− log π̂ (ν)]π (ν) dν, (30)

where ui = (lc,i, Ec,i, lLI,iELi,i, lH,i, EH,i, vi). In (30), aversion to ambiguity

and model misspecification is modeled by introducing a fictitious adversarial

or minimizing agent (MA) who distorts the baseline prior density of an

uncertain parameter, in order to impose a cost on the regulator who is the

maximizing agent. This cost reflects the impact of aversion to uncertainty

and model misspecification. By designing regulation based on (30), the

regulator derives a decision rule which incorporates this aversion.

In (30), π̂ (ν) is the baseline density for the parameter ν,and κ > 0

is a parameter which penalizes deviations from the baseline density π̂ (ν)

with
∫
V [log π (ν)− log π̂ (ν)]π (ν) dν being the relative entropy discrepancy

from the baseline density. For κ → ∞, the regulator is committed to the

baseline density, which can be interpreted as the case in which, when the

cost of distorting the prior to the MA is infinite, then decision making is

based on the baseline. As κ → 0, the distortion tends to the worst case

prior. In problem (30), the regulator maximizes utility using the controls

of the epi-econ model, while “Nature”, acting the MA, distorts the baseline

prior density of parameters associated with the controls. The regulator is

concerned about the distortion of the prior of the epi-econ model parameters

and follows robust control regulation. The solution of the minimization part
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of problem (30) is given by (see Hansen and Miao 2018):

π∗ (ν) =
exp

[
− 1
κUi (Ci; ν) π̂ (ν)

]∫
V exp

[
− 1
κUi (Ci; ν) π̂ (ν)

]
dν
. (31)

Substituting π∗ (ν) into (30), the objective to be maximized by the regulator

becomes

Ji = max
ui(t)

{
−κ log

∫
V
exp

[
−1

κ
Ui (Ci; ν) π̂ (ν)

]
dν

}
. (32)

We set θ = 1/κ and interpret θ as the robustness parameter. When θ → 0

(κ→ ∞), the regulator optimizes using the baseline prior; when θ → ∞
(κ→ 0), the regulator optimizes by taking into account the worst case prior.

Expanding (32) around θ = 0 and using the cumulant generation function,

we obtain the expansion

Ki (θ, ν) = Eπ̂ [Ui (Ci; ν)]−
θ

2
Varπ̂ [Ui (Ci; ν)] . (33)

Assume for the stochastic parameter that ν ∈ V =
[
ν, ν̄
]
with mean µν

and variance σ2ν in the baseline density. Expanding the Ki (θ, ν), we obtain:

Eπ̂ [Ui (Ci; ν)] ≈ Ui (Ci;µν) +
U ′′
i (Ci;µν)

2
σ2ν (34)

Varπ̂ [Ui (Ci; ν)] ≈
(
U ′
i (Ci;µν)

)2
σ2ν , (35)

where the derivatives are taken with respect to the stochastic parameter ν.

Then the maximization problem for the regulator in region i becomes

Ji = max
ui(t)

{
Ui (Ci;µν) +

U ′′
i (Ci;µν)

2
σ2ν −

θ

2

(
U ′
i (Ci;µν)

)2
σ2ν

}
. (36)

If we disregard second-order terms, the optimization problem described

by (36) suggests that the utility of the decision maker is penalized by a

term defined by the marginal utility of a small change in the mean of the

ambiguous parameter by the variance of the baseline prior and the robust-

ness parameter θ. When θ → 0, the decision maker is an expected utility

maximizer and uses the baseline prior.
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4.2 Regulation under aversion to ambiguity and model mis-

specification

Keeping regional Ti and Ri fixed, we study the impact of increasing the

robustness parameter θ on the optimal choice of controls by comparative

statics. Increasing the robustness parameter θ means that regulation takes

into account distorted priors which deviate from the baseline and, at the

limit as θ → ∞, they tend to the worst case scenario.

Proposition 1. Consider the epi-econ model (16) and assume that the pa-

rameter bi, which reflects the effectiveness of the containment control, is

uncertain with a baseline prior π̂ (bi) . Then the Nash equilibrium under am-

biguity can be defined, while an increase in the robustness parameter θ will

reduce containment policy in region i.

For the proof, see the Appendix.

Since the ambiguous parameter is on the effectiveness of control efforts

against the emerging ID (that is, bi), if the worst case value of bi is zero, then

when it costs zero for the adversarial agent to harm the regulator through

the ambiguous parameter bi, the best reply of the regulator in the zero sum

game is to set v∗i = 0. The intuition is that as θ increases and the aversion

of the regulator induces him/her to consider distorted priors regarding the

effectiveness or the cost of the containment policy which are worse relative

to the baseline, less control is exercised, since its effectiveness tends to zero

in the worst case scenario. Since the setup can be generalized to a vector of

controls represented by a linear combination of specific controls determining

containment policy (that is, bivi =
∑J

j=1 bijvij , i = 1, 2), Proposition 1

suggests that high aversion to ambiguity regarding the effectiveness of a

specific control will reduce the use of this control and will potentially increase

the use of other controls which are less ambiguous.

4.3 Strong preferences for robustness and ambiguity-adjusted

Nash equilibrium

Optimal containment policies can be obtained by maximizing (70) and using

first-order condition (71) for the optimal choice of v. To simplify, assume

that the baseline prior for the effectiveness of parameter bi is a uniform
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distribution with

bi ∈ [mbi ,Mbi ] ,mbi < bi < Mbi

µ̂bi =
mbi +Mbi

2
, σ̂2bi =

(Mbi −mbi)
2

12
.

Using this assumption in (70) and the moment-generating function of the

uniform distribution, we obtain

−1

θ
ln (E exp [(−θ)φ1ibivi]) =

−1

θ
log

(
exp [(−θ)φ1iζiMbivi]− exp [(−θ)φ1iζimbivi]

θφ1iMbivi − θφ1imbivi

)
= h (θ, vi)

with

lim
θ→∞

h (θ, vi) = φ1iζimbivi , lim
θ→0

h (θ, vi) = φ1iζiµ̂bivi.

Thus when θ → ∞, the regulator is infinitely robust and uses the worst case

scenario, while when θ → 0, the regulator uses the baseline prior. With

b-ambiguity, the optimal control for the worst case is

va,wi (t) =
φiζimbi

ci
=
φimbi

ci

Bi
Si
. (37)

Since mbi < µ̂bi , the worst case prior for the policy effectiveness implies less

control relative to the baseline prior. Considering the b-ambiguity case, the

best response function at a fixed time t is defined as:

Si = Ωai + qjSj , i, j = 1, 2, i ̸= j (38)

Ωai = φ0i

(
R̄
)
+ φ1i [biv

a,w
i − qj ] . (39)

Since va,wi is less – relative to the deterministic or the baseline case – the

impact of increased aversion to ambiguity regarding the effectiveness of con-

tainment policies is a shift of the best response function towards the origin in

figure 1 which implies an increase in the Nash equilibrium share of infected.

Thus ambiguity regarding the effectiveness of containment measures

leads, in a Nash equilibrium, to an increase in the share of infected. The

effectiveness of containment measures could be related to technical char-

acteristics such as weak effectiveness of vaccines but also to social charac-

teristics such as opposition to social distancing or vaccination. Reduced
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vaccinations and opposition to containment measures in parts of the world

during the COVID pandemic could suggest increased ambiguity regarding

the vaccinations associated with the containment policy v.

Consider now the case where the regulator of a region expresses aversion

to ambiguity regarding φ̄0i, the part of the contact number that does not

depend on short-run policies. Then from (70) the regulator’s problem for

region i can be written as

Ji = max
ui(t)

{
logCi −

1

θ
ln (E exp [(−θiζiφ̄0i)])

}
.

Assume that the baseline prior for the policy-independent part of the

contact number is a uniform distribution with the worst case being φ̄0i = 0,

and parameteres in the following intervals:

φ̄0i ∈ [0,Mi] , 0 ≤ φ̄0i ≤Mi

µ̂i =
Mi

2
, σ̂2i =

(Mi)
2

12
.

Then, using the moment-generating function for the uniform distribution,

hi (θ) = −1

θ
log (E exp [(−θφ̄0i)]) = −1

θ
log

(
exp [(−θ) ζiMi]− 1

θζiMi

)
.

If the regulator in region i is infinitely robust, then limθ→∞ h (θ) = 0.

This means that if aversion to ambiguity regarding the effectiveness of the

short-run containment measures bi tends also to infinity and the worst case

is associated with mbi = 0, then va,wi (t) = 0. In this case the the inverse of

the contact number

Ŝi =
1

σi
= φ̄0i + φ1i [bivi − qj (1− Sj)] → 0,

which implies that at the limit the whole population will be infected in the

Nash equilibrium. This observation leads to the following proposition:

Proposition 2. When the ambiguity of the regulator about the the policy-

independent, in the short-run, component of the contact number is very high

(θ → ∞) , the only route for reducing the contact number is to reduce am-

biguity about the effectiveness of the short-run containment policy. When

this short-run ambiguity cannot be reduced for voluntary-based containment
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policies, strong command-and-control policies might be necessary.

Consider now the case in which in region i, say i = 2, the worst cases

for φ̄02 and b2 imply at the limit that Ŝ2 → 0. In this case optimizing

region j = 1 will not respond to region 2’s choices but will unilaterally

adopt containment control policies. The optimal containment policy for

this region will be:

va,wj =
φ1jµ̂bj
cj

Bj
Sj
.

From (38) and (39), setting φ01 = 0, we obtain for j = 2:

Sj = φ1j

φ1jµ̂bj
cj

Bj
Sj

⇒ Sj =

√
φ2
1jµ̂bjBj

cj
.

This result could explain differences in infection and policy effectiveness

across regions observed during the COVID-19 pandemic.

4.3.1 A generalization

To more clearly provide a picture of the non-cooperative equilibrium between

the two regions for more general baseline priors, we use approximations (33)-

(36) and consider ambiguity in the effectiveness of the containment policy,

bi, i = 1, 2. Applying (33)-(36), we consider the problem:

Ji = max
ui(t)

{
logCi −

θ

2
σ̂2bi (ζiφ1ivi)

2

}
,

subject to the constraints of problem (16) where ζi is the Lagrangian mul-

tiplier of constraint (17). The optimality condition implies

v∗ai =
ζiφ1iµ̂bi

ci + θbi
(
ζ2i σ̂biφ1i

)2 , ζi =
Bi
Si
, (40)

where µ̂bi , σ̂
2
bi
are the mean and variance of the baseline prior for ambiguous

parameters corresponding to the effectiveness of the containment policy. If

we assume that the baseline prior is uniform with bi ∈ [mbi ,Mbi ], 0 ≤ mbi ≤
Mbi , then (40) can be further simplified by setting µ̂bi =

mbi
+Mbi
2 , σ̂2bi =

(Mbi
−mbi)

2

12 .

Along the lines of Proposition 1, differences across regions in concerns

regarding the effectiveness of instruments in reducing the contact number
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differentiate the optimal values for the containment instruments. The re-

gion for which ambiguity about the effectiveness of a costly instrument is

stronger will use less of this instrument relative to a region in which am-

biguity about the effectiveness of the instrument is relatively smaller. This

result can differentiate between containment policies which are based on vol-

untary behavior versus command-and-control policies. If the effectiveness

of command-and-control policy is characterized by less ambiguity, it will be

used more relative to voluntary containment policies. Thus ambiguity differ-

entials differentiate the optimal intensity of use of the containment policies

and introduce policy trade-offs. Furthermore, in line with the theory, as

θ → 0 the optimal controls are designed on the baseline prior, while if regu-

lation is designed on the basis of the worst case regarding the effectiveness

of the control and θ → ∞, then no control is undertaken.

5 Disease prevention in the long run: climate change

and natural world preservation

In the previous section we studied disease containment in the short run

by assuming that the disease has already emerged and that the infected-

susceptible dynamics move fast towards their steady-state values. In the

short run, the allocation of the regional land use among agricultural and

human activities, and temperature anomalies (T1, T2)), were treated as ex-

ogenous parameters. In a long-run perspective, land use can change, while

temperature will evolve as a slow variable responding to the use of energy.

Changes in land use which might reduce the natural world (R1, R2) and

bring human activities closer to disease reservoirs, along with an increase in

regional average temperatures, will affect the long-run path of the contact

rate, φ0i, which is independent of short-term containment.

5.1 Non-cooperative long-run prevention

To study non-cooperative solutions in the long run, we assume that each

region takes as given the initial temperature anomaly and commits to the

emission path that optimizes own welfare function, given the best response

of the other region. The solution of this problem will characterize an open

loop Nash equilibrium (OLNE). The consumption flow for the slow time
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scale problem is obtained by substituting the fast-time (short-run) optimal

controls for containment v∗i into Ŝi and the short-run Nash equilibrium levels

of susceptibles SNi . Then the control problem for region i in the time scale

of the climate change can be written as:

JNi = max
{ui(t),Ri(t}

∫ ∞

0
e−ρt [logCi(t) + ψi logRi(t)] dt, (41)

subject to (5)-(7) and (17)-(20), with ρ > 0 the utility discount rate and

controls

ui (t) = (lc,i(t), lLI,i(t), lH,i(t), LLI,i(t), LH,i(t), Ec,i(t), ELI,i(t), EH,i(t)) , Ri(t) , i = 1, 2.

In this optimization problem, after dropping t to ease notation, the following

conditions apply:

Ŝi = φ0i (Ri, Ti) + φ1i

[
biv

∗
i

(
SNi
)
− qj

(
1− SNj (t)

)]
(42)

Si = min
{
Ŝi, 1

}
(43)

φ0i (Ri, Ti) =
ϕit (Ri, Ti)

1 + ϕ1imi
, φ1i =

ϕi
1 + φ1imi

(44)

L̄i = Ri + LLI,i + LH,i (45)

Si = lc,i + lLI,i + lH,i (46)

Ei = Ec,i + ELI,i + EH,i (47)

Ti (t) = ΛiX (t) , (48)

where φ1i

[
biv

∗
i

(
SNi
)
− qj

(
1− SNj (t)

)]
= φ̄1i is fixed at the solution of the

short-run problem and aggregate regional energy or, equivalently, use of

GHGs is Ei = Ec,i+ELI,i+EH,i. Each region takes the action paths of the

other region as fixed and solves problem (41). The current value Lagrangian

(or generalized Hamiltonian) for the problem is:

Li = Hi + µi
[
L̄i −Ri − LLI,i − LH,i

]
κi [Si − lc,i − lLI,i − lH,i]

Hi = [logCi + ψi logRi] + λi [E1 (t) + E2 (t)− dX] ,
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where Hi is the current value Hamiltonian. The Lagrangian multipliers

(µi, κi) should be interpreted as the sensitivity of the optimal solution to

changes in the constrained constants
(
L̄i, φ̄1i

)
, while the costate variable λi

has the usual interpretation as the shadow cost of the GHGs accumulation or

the regional social cost of carbon (SCC). This is an optimal control problem

with mixed constraints and the optimality conditions (e.g., Seierstad and

Sydsaeter 1986, chapter 4) can be written as:

ac,iβl,c,i
lc,i

=
aLI,iβl,LI,i

lLI,i
=

aH,iβl,H,i

lH,i
= κi (49)

ac,iβc,E,i

Ec,i
=

aLI,iβLI,E,i

ELI,i
=

aH,iβH,E,i

EH,i
= cEi + λi (50)

aLI,iβL,LI,i

LLI,i
=

aH,iβL,H,i

LH,i
= µi (51)

ψi

Ri
+ κi

∂φoi(Ri,Ti)
∂Ri

= µi (52)

λ̇i = (ρ+ d)λi + ωiΛiX − κi
∂φoi(Ri,Xi)

∂X (53)

Ẋ = E∗
1 + E∗

2 − dX (54)

E∗
i = Γi

cEi
+λi

, Γι = ac,iβc,E,i + aLI,iβLI,E,i + aH,iβH,E,i. (55)

Conditions (49)-(52) characterize demand for inputs ui (t) and “natural

world” Ri as functions of the regional climate change Ti(t) and the SCC

λi(t) along with the regional overall land availability L̄i and the short-term

optimized containment parameter φ̄1i. Proposition 3 follows directly from

the above conditions regarding the overall land allocation among agricultural

activities and natural world preservation.

Proposition 3. Conditions (51) and (52) indicate that the overall land

allocation between land-intensive agriculture, LLI , hydroponic/greenhouse

high energy intensity agriculture and natural world preservation should be

determined such that the marginal product of each type of agriculture and

marginal existence values plus the marginal contribution of the natural world

to reduction of the contact number are equated. Thus an additional positive

externality – over and above existence values – emerges for the natural world.

This positive externality which is given by κi (Ri, Ti;Bi, φ̄1i)
∂φoi(Ri,Ti)

∂Ri
eval-

uated at Ri = hRi (Ti, µi) , µi = µi
(
Ti; ∆i, L̄i

)
should be accounted for in

cost-benefit analysis regarding land allocation decisions. This positive exter-

nality depends on the evolution of temperature and the labor productivity (Bi)

and productivity in agriculture (∆i) of the regional economies. The overall
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land allocation between agriculture and preserved natural world depends also

on climate change.

For the proof, see the Appendix.

Given the interpretation of the Lagrangian multipliers (κi, µi), Proposi-

tion 3 makes clear the quantitative link of the natural world’s social value,

in the context of an emerging ID, with climate change. The path of climate

change at the OLNE is determined by the Hamiltonian system (53)-(54).

5.1.1 The OLNE steady state

To study the Hamiltonian system (53)-(54) that determines the OLNE, we

first define the optimal controls as functions of the state variable Ti and the

costate variable λi.

From (50), (51), (52), (49) and Proposition 3, we obtain respectively :

E∗
h,i =

ah,iβh,E,i
cEi + λi

, h = c, LI,H (56)

L∗
h.i =

ah,iβL,h,i

µi
(
Ti; ∆i, L̄i

) , h = LI,H (57)

R∗
i = hRi

(
Ti, µi

(
Ti; ∆i, L̄i

))
(58)

l∗h.i =
ah,iβl,h,i

κi (R∗
i , Ti;Bi, φ̄1i)

. (59)

These are optimal feedback controls since they depend on the state-costate

paths (Ti, λi). To make clear the impact of climate change on the natural

world preservation at an OLNE, we consider a simplified example in which

φ0i (Ri, Ti) = b0i + bRiRi − bTiTi. (60)

Then the following proposition can be stated when temperature is regarded

as exogenous at any point in time.

Proposition 4. An increase in the regional temperature at a point in time

should increase the preservation of the natural world in this region if optimal

non-cooperative land-use policies are followed even when existence values are

not taken into account.

For the proof, see the Appendix.
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Using the linear representation of φ0i (Ri, Ti), the feedback controls can

be further characterized. From (45),

L̄i =
BibRi + µi (b0i + φ̄1i + bTiTi)

bRiµi
+

∆i

µi
.

Then, solving for µi, we obtain

µ∗i =
BibRi + bRi∆i

b0i + bRiL̄i − φ̄1i − bTiTi
,

and after substituting µ∗i into (57) and (72), we obtain the land allocation

as a function of climate change and the productivity parameters

L∗
LI,i(Ti; ∆i, L̄i), L

∗
H,i(Ti; ∆i, L̄i), R

∗
i (Ti; ∆i, L̄i). (61)

Using (49) and (72) to define κi from Proposition 3 (see the proof of the

proposition) as κ∗i = κi (Ri, Ti;Bi, φ̄1i), we obtain labor allocation as a func-

tion of climate change and the productivity parameters

l∗h,i
(
Ti;Bi, φ̄1i∆i, L̄i

)
, h = c, LI,H, (62)

while energy use is directly related to the SCC through (50). Conditions

(61), (62) and (50) characterize the feedback controls for land-labor allo-

cation, energy use and natural world preservation as functions of climate

change, the productivity of the economy, the exogenous land availability

and the short-term disease-containment parameter. By substituting these

controls into (53)-(54), the evolution of the OLNE potentially towards a

steady state can be studied.

Open loop Nash equilibrium The OLNE for the two regions will be

characterized by the system

Ẋ =
Γ1

cE1 + λ1
+

Γ2

cE2 + λ2
− dX (63)

λ̇1 = (ρ+ d)λ1 + ω1Λ1X − κ∗1
∂φo1(R

∗
1,Λ1X)

∂X
(64)

λ̇2 = (ρ+ d)λ2 + ω2Λ2X − κ∗2
∂φo2(R

∗
2,Λ2X)

∂X
. (65)
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Proposition 5. Assume that φ0i (Ri, Ti) is given by (60) and

κ∗i (X) =
Bi

b0i + bRiR
∗
i (ΛiX; ∆i, L̄i)− bTiTi + φ̄1i

> 0,

Θi (X) = Λi

(
bRi

∂R∗
i (ΛiX; ∆i, L̄i)

∂X
− bTi

)
< 0

for the relevant range of regional temperature anomalies Ti = ΛiX, and that

a steady state for the system (63)-(65) exists. Then at this steady state,

state and costates are defined as:

X∞ =

(
Γ1

cE1 + λ∞1
+

Γ2

cE2 + λ∞2

)
1

d

λ∞1 =
− [ω1Λ1X + κ∗1 (X)Θ1 (X)]

(ρ+ d)

λ∞2 =
− [ω2Λ2X + κ∗2 (X)Θ2 (X)]

(ρ+ d)
.

Taking into account the link between climate change and the emerging ID will

increase the regional steady-state SCC at an OLNE. The steady state will

either be completely unstable or will exhibit saddle point stability with a one-

dimensional stable manifold in the space (X,λ1, λ2) . In the case of saddle

point stability, for any initial value for the GHGs, X0, in the neighborhood

of this steady state, control paths can be chosen by each region so that the

system will converge to the OLNE.

For the proof, see the Appendix.

Proposition 5 suggests that the regional SCC, and therefore any climate

policy based on this concept, should include an additional component related

to the impact of climate change on the contact number of the emerging ID.

This component is reflected in the term κ∗i (X)Θi (X) . The positivity of the

term κ∗i (X) is reasonable because it implies that optimal containment policy

in the very short run will improve the overall performance of the system,

since this term reflects the sensitivity of the optimal solution to a small

change in the short-run optimal containment parameter. The negativity of

the term Θi (X) means that the impact of climate change on the contact

number is sufficiently strong to counterbalance any positive effects on that

contact number that emerge because an increase in regional temperature

increases preservation incentives, which will have a favorable impact on the
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contact number.

As shown in the proof of Proposition 5, the saddle point stability implies

that for any initial value of GHGs in the neighborhood of the steady state,

the OLNE paths converging to this steady state can be approximated as:

X(t) = A1c11e
−ϱ1t +X∞ , X(0) = X0 (66)

λ1(t) = A1c21e
−ϱ1t + λ∞1 (67)

λ2(t) = A1c31e
−ϱ1t + λ∞2 , (68)

where the parameters (A, c, ϱ) are calculated at the solution. Substitution

of the paths (66)-(68) into (61), (62) and (50) will determine the OLNE

time paths for the controls which will drive the system to the OLNE steady

state.

Optimal short-run containment In the analysis of the optimal short-

term disease containment in section 3, Ri and Ti were treated as fixed ex-

ogenous parameters. The solution of the long-run problem implies that if

the regions follow OLNE policies, then the fixed Ri and Ti in the short run

will be determined by the corresponding OLNE paths at each point in time.

Thus the short-run optimal containment policy v∗i will follow the OLNE path

v∗i (t) at the time scale of the climate change and will eventually converge to

the OLNE steady state.

6 Ambiguity in the long run and robust control

The impact of ambiguity in the short run was examined in section 4. In

this section we study the impact of ambiguity on the contact number of the

disease which affects the evolution of the average temperature in each region.

Since the impact of climate change on the emergence of IDs is an issue of

current investigation, it is natural to associate ambiguity with this impact.

This argument suggests that the regulator in each region is concerned about

possible misspecification of the function ϕ0iT (Ti(t)). These concerns can be

introduced by allowing additive distortions to this function of the form

√
ϵσT0i

(
ηTi + z

)
,
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where σ0 is volatility and ϵ is a small noise parameter, z is i.i.d and η

represents distortions of the contact number. If we consider a multiplier

robust control problem (e.g., Hansen et al. 2006, Hansen and Sargent 2011),

the penalty associated with the distortion relative to the benchmark model

can be expressed as (
ηji

)2
2θji (ϵ)

. j = R, T,

where θji (ϵ) is the robustness parameter. It has been shown (Campi and

James 1996) that if θji (ϵ) = θji0ϵ, then as ϵ → 0, the stochastic robust

control problem is reduced to a simpler deterministic robust control problem.

Assume that part of the contact number which includes misspecification

concerns can be specified as

φ0i (Ri, Ti) = b0i + bRiRi −
(
bTi + σT0iη

T
i

)
ΛiX. (69)

Then the regional optimal control problems can be written as

JNi = max
{ui(t),Ri(t}

min
{ηTi }

∫ ∞

0
e−ρt

[
logCi(t) + ψi logRi(t) +

θTi
(
ηTi
)2

2

]
dt,

subject to (5)-(7) and (17)-(20). The condition for the choice of the distor-

tion ηTi by the fictitious adversarial (or minimizing) agent is:

ηTi = κi
1

θTi
σT0iΛiX.

When the regional regulator is not concerned about misspecifications, θTi →
∞ and ηTi → 0. Then from (64) and (65),

λ∞i =
−
[
ωiΛiX + κ∗i (X) Θ̂i (X)

]
(ρ+ d)

, i = 1, 2,

where Θ̂i (X) =

[
ΛibRi

∂R∗
i (ΛiX;∆i,L̄i)

∂X − bTi −
(

1
θTi
σT0iΛi

)2]
.

Therefore, under the assumptions of Proposition 5, misspecification con-

cerns about the impact of climate change on the contact number will further

increase the regional SCC.
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7 Concluding remarks

We developed a two-region epidemic-economic model with the objective of

studying short-term containment policy and long-term policies which focus

on land-use changes and climate change as drivers of the emergence of IDs.

The insights emerging from this model suggest that non-cooperative con-

tainment policies in the short-run, in which land use and climate change

effects are considered as fixed, could lead to a Nash equilibrium outcome

in the level of susceptibles. Ambiguity regarding the effectiveness of con-

tainment policies implies that increased concerns about the effectiveness of

containment policies leads to weaker policies. The presence of strong ambi-

guity regarding the part of the containment number that depends on land

use and climate change and which is exogenous in the short run could make

necessary the introduction of command-and-control policies to supplement

containment policies which are implemented on a voluntary basis.

In the long run the objective is to characterize an OLNE when the con-

trols are land-use allocation between agriculture and the natural world, and

carbon emissions in each region. In this equilibrium an additional positive

externality – over and above existence values – emerges for the natural world

while the SCC should be increased relative to the case when the emerging

IDs are not taken into account. These adjustments result from the link be-

tween land use and climate change and the contact number of the emerging

ID and should be taken into account in cost-benefit analysis. Ambiguity and

concerns about model misspecification lead to further increase in the SCC.

Further elaboration of the model could analyze productivity differences

as well as differences in the quality of aggregate land endowments among

regions and the associated impacts on regional policies, while a calibration

of the model can be based on the parameters defined in Appendix 8.2. In-

troduction of accumulation of produced capital into the economic model is

another area of further research.
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8 Appendix

8.1 Proofs of Propositions

Proposition 1

Proof. Disregarding ēit and Rt which are constants in the short run and

using (32) after replacing κ with 1/θ, the objective of the regulator in region

i = 1, 2 for the noncooperative case becomes

Ji = max
ui(t)

{
logCi −

1

θ
ln (E exp [(−θ) ζiφ1ibivi])

}
, (70)

subject the constraints of problem (16). The first-order conditions for the

optimal containment policy vi imply

v∗i =
1

ci

E exp [(−θ) ζiφ1ibivi] ζiφ1ibi
E exp [(−θ) ζiφ1ibivi]

= g (θ, vi; ζi) . (71)

Since ζi = B
Si , the Nash equilibrium under ambiguity can be defined by

substituting (71) into (25).

Assume that a Nash equilibrium for a given value of the robustness

parameter θ exists. Taking the total derivative of both sides of (71) with

respect to v and θ, we obtain

cidvi = gθdθ + gvitdvi ⇒ (ci − gvit)
dvi
dθ

= gθ ,with

gθ =
∂
[
E exp[(−θ)ζiφ1ibivi]φ1ibi

E exp[(−θ)ζiφ1ibivi]

]
∂θ

= −φ1iζiviσ̂
2
bi

gvi = −φ1iθσ̂
2
bi
.

Then it follows that

dvi
dθ

=
−φ1iviσ̂

2
bi(

ci + φ1iζiθσ̂2bi

) < 0.

Proposition 3
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Proof. From (42) and (46),

φ0i (Ri, Ti) + φ̄1i −
Bi
κi

= 0 ⇒ κi =
Bi

φ0i (Ri, Ti) + φ̄1i
= κi (Ri, Ti;Bi, φ̄1i) .

From (51), (52) and (45),

aLI,iβL,LI,i
µi

= LLI,i ,
aH,iβL,H,i

µi
= LH,i

Ri = hRi (Ti, µi)

L̄i = hRi (Ti, µi) +
∆i

µi
⇒

µi = µi
(
Ti; ∆i, L̄i

)
∆i = aLI,iβL,LI,i + aH,iβL,H,i.

Then the result follows.

Proposition 4

Proof. From the proof of Proposition 3 it follows that

b0i + bRiRi − bTiTi + φ̄1i −
Bi
κi

= 0 ⇒

κi =
Bi

b0i + bRiRi − bTiTi + φ̄1i
.

From (52)

ψi
Ri

+

(
BibRi

b0i + bRiRi − bTiTi + φ̄1i

)
= µi.

Assuming no existence values in order to simplify and focus on the impact

of climate change, then

Ri =
BibRi + µi (b0i + φ̄1i + bTiTi)

bRiµi
(72)

∂Ri
∂Ti

=
bTi
bRi

> 0. (73)

Proposition 5

31



Proof. A steady state for system (63)-(65) will be the solution of

X∞ =

(
Γ1

cE1 + λ∞1
+

Γ2

cE2 + λ∞2

)
1

d

λ∞1 =
− [ω1Λ1X + κ∗1 (X)Θ1 (X)]

(ρ+ d)

λ∞2 =
− [ω2Λ2X + κ∗2 (X)Θ2 (X)]

(ρ+ d)
.

Assume that such a steady state exists. The Jacobean matrix for system

(63)-(65), evaluated at the steady state, will be

J =


−d Γ1

(cE1
+λ∞1 )

2
Γ2

(cE2
+λ∞2 )

2(
−ω1Λ1 +

∂[κ∗1(X∞)Θ1(X∞)]
∂X

)
ρ+ d 0(

−ω2Λ2 +
∂[κ∗2(X

∞)Θ2(X
∞)]

∂X

)
0 ρ+ d

 .

The eigenvalues for this system are{
ρ+ d,

1

2

(
ρ±

√
4d2 − 4 (J21J12 + J31J13) + 4dρ+ ρ2

)}
,

where Jij are the corresponding elements of the Jacobean matrix. Thus, the

system could have at the most one negative real eigenvalue.

If such a negative eigenvalue, ϱ1, exists, then linearizing the system at

the steady state and setting the constants of the positive eigenvalues equal

to zero, we obtain for an initial value X0 for the GHG concentration:

X(t) = A1c11e
−ϱ1t +X∞ , X(0) = X0

λ1(t) = A1c21e
−ϱ1t + λ∞1

λ2(t) = A1c31e
−ϱ1t + λ∞2 ,

where (c11, c21, c31) is the eigenvector associated with the negative eigen-

value. Given X0, the constant A1 and the initial values for (λ1, λ2) can be

determined. The paths for (X,λ1, λ2) can be used to obtain the optimal

paths for the control toward the OLNE steady state. Note the these paths

are valid in the neighborhood of the steady state, since they correspond to

the the linear manifold which is tangent to the nonlinear true stable manifold

at the steady state.
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8.2 Model parameters

1. Consumption Composite

Ci =
[(
l
βl,c,i
c,i E

βc,E,i

ci

)αc,i
]
×
[(
l
βl,LI,i

LI,i (γLI,iLLI,i)
βL,LI,i E

βE,LI,i

LI,i

)αLI,i
]
×[(

l
βl,H,i

H,i (γH,iLLI,i)
βL,H,i E

βE,H,i

H,i

)αH,i
]
×exp [− (

∑
h ch,E,iEhi)]×exp

[
−cvi(v2i /2

]
×

exp
(
−ωiT 2

i /2
)

Parameter Description Value Region 1 Value Region 2

αc,i Elasticity of Consumption Composite (ECC)

βl,c,i ECC

βc,E,i ECC

αLI,i ECC

βl,LI,i ECC

βL,LI,i ECC

βE,LI,i ECC

αH,i ECC

βl,H,i ECC

βL,H,i ECC

βE,H,i ECC

ch,E,i cost of energy h = c, LI,H

cυi cost of containment

ωi climate damages

L̄ natural world in each region

ψiR
ψi exponent of existence values in Rψi

2. The SIS model

Si (t)) ≡ 1
σi(t))

= ϕ0i (R(t), T (t)) + ϕ1i [biv (t))−miSi (t))− qj (1− Sjt)]

Parameter Description Value Region 1 Value Region 2

ϕ1 short-run impact on contact number

b effectiveness of containment policy

m infected asymptomatic

q regional flow infected

ϕ0i (Ri(t), Ti(t)) = b0i + bRiRi − bTiTi
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Parameter Description Value Region 1 Value Region 2

b0i exogenous component

bRi natural world impact

bTi climate change impact

θi robustness parameter

3. Climate model

Ẋ (t) = E1 (t) + E2 (t)− dX (t) , X (0) = Xpreindustrial

Ti = ΛiX

Parameter Description Value Region 1 Value Region 2

Λi regional TCRE

d GHG depreciation
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