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Abstract

We introduce spatial spillovers as an externality in the produc-

tion function of competitive firms operating within a finite spatial do-

main under adjustment costs. Spillovers attenuate with distance and

the overall externality could contain positive and negative components

with the overall effect being positive. We show that when the spatial

externality is not internalized by firms, spatial agglomerations may

emerge endogenously in a competitive equilibrium. The result does not

depend on increasing returns at the private or the social level and loca-

tion advantages, but on the complementarity between capital and the

spatial externality, existence of positive and negative local spillovers,

and relatively large deviations between own and other-locations effects

on the aggregate externality. No agglomerations emerge at the social

optimum when spillovers are internalized and diminishing returns both

from the private and the social point of view prevail. Numerical exper-

iments with Cobb-Douglas technology and isoelastic demand confirm

our theoretical predictions.
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1 Introduction

A central result in the investment theory of the firm (Scheinkman (1978))

states that in a perfect foresight competitive equilibrium where firms take

the price function as given and face convex adjustment cost in net invest-

ment, each firm’s capital stock converges to a unique steady state which is

independent of initial conditions. When firms are identical, all firms will

converge in the long run to the same stock of capital.

In this paper we examine whether in a perfect foresight equilibrium for

a competitive industry operating in a finite spatial domain with spatial in-

teractions among firms, identical firms will end up with the same capital

stock in the long run, or whether agglomeration emerges. Spatial interac-

tions among firms are expressed as a spatial externality which in general

attenuates with distance. One way of interpreting spatial interactions is

to consider them as knowledge spillovers effects from one firm to another.

Knowledge spillovers are regarded as a positive intra-industry Marshalian

externality which is bounded in space, the main idea being that innova-

tion and new productive knowledge flows more easily among agents which

are located within the same area (e.g. Krugman (1991), Feldman (1999),

Breschi and Lissoni (2001)). Thus proximity is important in characterizing

spatial spillovers (Baldwin and Martin (2004), Breinlich et al. (2013)). We

incorporate knowledge spillovers by interpreting the capital stock of each

firm in a broad sense to include knowledge along with physical capital (e.g.

Romer (1986)). Following Quah (2002) we assume that the effect of capital

on each firm’s output, at any given point in time, does not depend just on

the accumulated stock by the firm up to this time, but on capital accumu-

lated in nearby locations by other firms. Thus the spatial externality takes

the form of a Romer (Romer (1986)) externality where, by keeping all other

factors in fixed supply, output is determined by own capital stock and by an

appropriately defined aggregate of capital stocks of firms across the spatial

domain. The capital stock aggregate is determined by a distance-response
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function1 that measures the strength of the spatial spillover on the output

of a firm in a certain location associated with the capital stock accumulated

by a firm in another location.

A positive distance-response function that attenuates with distance can

be interpreted as reflecting knowledge spillovers. A distance-response which

is negative indicates a negative externality such as generalized congestion

effects. Thus, by combining a distance-response function, centripetal and

centrifugal responses can be introduced. These forces are localized in the

sense that their strength - positive or negative - diminishes with distance.2

Our purpose is to study whether optimal investment policy by forward-

looking competitive firms combined with localized spatial spillovers gener-

ated from accumulated investment induce endogenous agglomerations and

spatial clustering of firms.

It is known that spatial clusters may appear with localized knowledge

spillovers when there are increasing returns. In this case the increasing

returns activity concentrates to one location (e.g. Grossman and Help-

man (1991)). Actually increasing returns underlie the generation of cen-

tripetal forces that favor cumulative causation and thus spatial clustering

(e.g. Nocco (2005)). In our model the production function of each firm ex-

hibits diminishing marginal productivity with respect to own capital for any

fixed value of the spatial externality. To put it differently, private returns

to capital are diminishing. The production function is strictly concave with

respect to own capital and the spatial externality, that is, there are dimin-

ishing returns with respect to the spatial externality, for fixed levels of own

capital. However, increasing social returns, in the sense of Romer (1986),

are possible.

Our main result indicates that when diminishing returns from both the

private and the social point of view prevail, then endogenous agglomeration

may emerge at a perfect foresight rational expectations competitive equilib-

rium (PF-RECE). This agglomeration result does not depend on increasing

returns, or the shape of the spatial domain,3 but on the structure of the spa-

1See Papageorgiou and Smith (1983) for an early use of distance - response functions.
2This is consistent with Prager and Thisse’s second law of geography that states that

what happens close to us is more important than what happens far from us (Prager and
Thisse (2012)).

3We assume that the spatial domain is a circle to avoid the creation of agglomeration
by the boundary conditions at the edge of the domain.
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tial externality and in particular on the simultaneous existence of positive

and negative spatial spillovers. The emergence of agglomeration may lead

to a long-run steady state for the competitive industry where the distribu-

tion of capital stocks and outputs across space is not uniform On the other

hand, at a social optimum (SO) where a planner fully endogenizes spatial

spillovers, agglomerations do not emerge and all firms converge to the same

stock of capital irrespective of location. The possibility of a potential ag-

glomeration at a PF-RECE is related to the incomplete internalization of

the spatial externality by optimizing firms, while the “no agglomerations”

result at the SO stems from the full internalization of the spatial externality

by a social planner and the strict concavity of the production function.

Our contribution is twofold. First we provide a conceptual framework

that explains dynamic endogenous emergence of spatial clustering in a com-

petitive industry with optimizing forward-looking agents. Our model in-

cludes only the spatial externality and not other features of economic geogra-

phy models such as transport costs, product differentiation or forward/backward

linkages. We believe that this is a reasonable trade-off for being able to study

agglomeration emergence in a fully dynamic optimizing model. Second, we

show how convexity arguments and spectral theory can be used to study

PF-RECE problems and SO problems in infinite horizon spatiotemporal

economies, by properly decomposing the spatial and the temporal behav-

ior. These provide valuable insights regarding the endogenous emergence (or

not) of optimal agglomerations at a PF-RECE and the SO of a competitive

industry.

2 Spatial Externalities and Adjustment Costs

We consider an industry consisting of a large number of small firms with

each firm located at point x of a one-dimensional bounded spatial domain

X = [−L,L].4 We further assume that X is discretized, i.e., it is divided

into N cells or intervals Ii, i = 1, · · · , N , such that X = ∪Ni=1Ii. To save

space we will denote by N := {1, 2, · · · , N} and use the compact notation

i ∈ N in lieu of i = 1, · · · , N .

Each firm produces at time t ∈ R+ and location x ∈ X a single homoge-

4Most of our results can be extended to general domains of characteristics X ⊂ Rd,
d ≥ 1.
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nous output y (t, x). To simplify the model we assume that the output is

uniform within each cell, i.e. y(t, x) = yi(t) for every x ∈ Ii, so that the state

of the system at time t is given by a vector y(t) = (y1(t), · · · , yN (t)) ∈ RN .

Local output y(t, x) is produced according to a production function f :

R+ × R+ → R+ ; y(t, x) = f (k (t, x) ,K (t, x)) , which is strictly increasing

in both arguments, strictly concave and sufficiently smooth with ∂2f
∂k∂K > 0.

The arguments are: (i) broadly defined local capital stock k(t, x) which in-

cludes knowledge that cannot be patented in full, and (ii) a spatial aggregate

K(t, x) of the broadly defined local capital stocks K(t, x) which incorporates

spatial externalities.5 Strict monotonicity implies that the spatial external-

ity acts as a productive input, i.e. it is a positive externality, while strict con-

cavity implies that marginal productivities with respect to own capital and

the spatial externality are diminishing. Thus for any fixed K the marginal

productivity of capital from the private point of view is declining. Similarly

for output, we assume that the inputs are uniform within each cell, so that

k(t, x) is replaced by a vector k(t) = (k1(t), · · · , kN (t)) ∈ RN , and similarly

K(t, x) is replaced by a vector K(t) = (K1(t), · · · ,KN (t)) ∈ RN . Therefore,

the production at time t and at cell i is given by yi(t) = f(ki(t),Ki(t)).

The spatial externality K(t) plays the role of a productivity variable

in a production function. The basic assumption is that the externality at

time t and spatial point i is a weighted average of the broadly defined cap-

ital stocks at neighboring sites with weights declining with distance.6 The

weights determine the distance-response function. Thus local capital stock

at each point j contributes to the total spatial spillover at site i according

to a distance-response or weight function wij , and the total externality at

location i is:

Ki(t) =

N∑
j=1

wijkj(t).

We will also use the alternative compact notation K = Wk where W =

(wij), i, j = 1, · · · , N is an RN×N matrix. The rows of matrix W are called

the kernel associated with location i, or simply the kernel. If wij = 0 for

a pair (i, j), that means that location j does not contribute at all to the

5To simplify the exposition we assume that all other factors of production are in fixed
supply.

6See for example Lucas (2001) or Lucas and Rossi-Hansberg (2002) for a similar type
of externality where the productivity variable is defined as the average of employment at
neighboring sites.

5



total spillover at location i. Since the second law of geography suggests that

distance is fundamental in the determination of spatial effects, we write

wij = w̄(|i− j|) for some function w̄, indicating that spatial impacts depend

on distance and not on specific location. Note that the matrix W defines

the connectivity of the “spatial network”7 where the connectivity of sites 1

and N is related to the choice of boundary conditions. In order to eliminate

the possibility of agglomeration creation by the edges of the one-dimensional

spatial domain [−L,L], periodic boundary conditions are imposed so that

we consider the network as situated on a circle. Then site 1 interacts with

site N that is now considered as its neighbor. We wish to emphasize that our

analysis is valid for a general choice of networks, i.e., for a general choice

of matrix W . See Figure 1 for an illustration of the network modelling

the spatial economy. However, the choice of a circle or a torus, for a two-

dimensional spatial domain, eliminates the impact of boundary conditions on

the formation of spatial patterns, which means that if agglomerations emerge

they are emerging endogenously and not because of boundary conditions.

[ Figure 1]

An illustration of an economy with spatial connections

An important class of networks (equivalently connectivity matrices W )

are those that satisfy the condition
∑

j wij = w̄, independent of the choice

of i. We will call such a coupling, diffusive type coupling. Diffusing coupling

means that if the capital stock is the same at all locations, say k̄, then the

spatial externality will be w̄k̄ which is the same for all locations. Since our

spatial domain is a circle, this assumption ensures that any agglomeration

emergence is endogenous and not the result of boundary conditions, or a

location advantage for a specific site.

The spatial externality Ki(t) will have different interpretations in dif-

ferent contexts. If Ki(t) embodies a type of knowledge which is produced

proportionately to capital usage, it is natural to assume that the distance-

response function wij , considered as a function of ζ = i− j which expresses

a positive externality, is single peaked and bell-shaped with a maximum at

ζ = 0, and of possibly sufficiently fast decay to 0 for sufficiently large |ζ|. If

7If, for example, wij = δj,i+1 + δj,i−1− 2δj,i, where δi,j is the Kronecker delta (δii = 1,
δij = 0, for all i 6= j), we have a linear connectivity of the knowledge network, according
to which site i interacts only with sites i+ 1 and i− 1.
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the spatial externality Ki(t) embodies damages to production at (t, i) from

usage of capital at (t, j), then a composite externality can be created with

wij = w1
ij + w2

ij .
8 If w1

ij is a bell-shaped positive externality and w2
ij is an

inverted bell-shaped negative externality, which also decays to zero as |ζ|
becomes large, then non-monotonic shapes of wij are possible with, for ex-

ample, a single peak at ζ = 0 and two local minima located symmetrically

around ζ = 0, with negative values indicating negative externality to pro-

duction at i from usage of capital at j. Examples of such kernels are given

in Section 6 and in Figures 2 and 8 respectively. We will assume through-

out the paper that in the case of either single or composite externality, the

overall effect is positive, that is, w̄ > 0. A production function incorporating

these externalities could be considered as a spatial version of a neoclassical

production function with Romer/Lucas externalities modelled by geograph-

ical spillovers given by a Krugman (see e.g., Krugman (1996)) or Chincarini

and Asherie type specification (see e.g. Chincarini and Asherie (2008)).

Net investment in each location i is given by the derivative with respect

to time, k′, of the vector valued function k : R+ → RN . The firm faces the

cost of changing the capital stock, which is a function of net investment k′.

This adjustment cost at time t and location i is expressed by a quadratic

adjustment function Ci(t) = α
2 (k′i(t))

2, α > 0. Capital stock depreciates at

the same rate η in all locations.

The output of the firms is sold at a market price determined by a demand

function D : R+ → R+.

p (t) = D(Q) = D (Q (k,K)) , D > 0, D′ ≤ 0 (1)

Q := Q (k,K) =
N∑
i=1

f (ki(t),Ki(t)) . (2)

The k and K dependence is stated explicitly to emphasize that D can be

understood as a functional D : RN × RN → R. That is, given a vector k of

capital stocks across locations and a kernel W = (wij), i, j = 1, · · · , N , we

obtain K = Wk, and calculate the total output Q that determines p.

We are assuming a large number of identical small firms in the spatial

domain X and identical agents at each cell Ii of X . The nature of a positive

8See also Papageorgiou and Smith (1983) for more details regarding composite distance-
response functions.
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spatial externality can described in the following way. Firms produce a

specific output along with knowledge related to the production processes

which may increase productivity. Small firms and agents in each cell take

the actions of the other firms at each location as given and beyond each firm’s

and agent’s control within each location as well as across each location. Not

all in-house knowledge is patented, so the public knowledge generated by

the firms is combined together and creates an external knowledge aggregate

that helps producers to increase their productivity. From the point of view

of a certain location, the contribution of other locations to this knowledge

aggregate attenuates with distance. The agents are however myopic and

when they accumulate new knowledge they do not take into account their

own contribution to this aggregate, but consider the aggregate as fixed and

beyond their own control. This is a positive spatial externality.9 A social

planner, who is not myopic, realizes however that knowledge accumulation

in each firm increases the knowledge aggregate, and benefits the productivity

of each firm in the spatial domain.

Therefore, small agents in cell i optimize without taking into account

own contribution as well as other agents’ contributions within the cell and

across locations on the aggregate externality Ki, taking thus the aggregate

level of Ki affecting their cell as given. The assumption that each agent

treats Ki as given could be rationalized in a model with a continuum of

agents. Here we make the usual approximation of a large but finite number

of small agents. Assuming furthermore perfect capital markets and that the

unit price of capital is q, independent of time, the objective of a firm located

at i ∈ N is to maximize the present value of profits by considering spatial

spillovers as exogenous Ki = Ke
i . The firm’s problem can be written as:

max
k′i

∫ ∞
0

e−rt
[
p (t) f (ki,K

e
i )− α

2

(
k′i
)2 − q (k′i + ηki

)]
dt (3)

ki (0) = ki0, ki (t) ≥ 0, i ∈ N . (4)

In this set-up we define the industry equilibrium and derive conditions

under which endogenous spatial clustering could emerge.

9A negative externality and a composite externality can be described in a similar way.
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3 Industry Equilibrium and Social Optimum

Following (Lucas Jr and Prescott (1971), Brock (1974), Brock and Scheinkman

(1977)) we define a PF-RECE as the price function p (t) given by (1) where

ki (t) solves (3) for all i ∈ N with optimality conditions evaluated at Ke =

Wk. If the price path p (t) is predicted by the competitive firms, this path

will result in an aggregate output Q over the whole spatial domain such that

the market is cleared at each t by p (t.)

The long-run properties of the industry equilibrium can be obtained by

exploiting the concept of maximization of consumer surplus, that is the area

under the demand curve (Lucas Jr and Prescott (1971), Brock (1974), Brock

and Scheinkman (1977)), which in the present model can be defined by:

S (k,K) =

∫ Q(k,K)

0
D (s) ds. (5)

Using the concept of consumer surplus, we consider two optimization

problems leading to two different concepts of equilibrium:

(A) The problem of maximizing consumer surplus when firms regard knowl-

edge spillovers as exogenous, that is when they do not internalize the

spatial externality and they set Ki(t) = Ke. This problem is defined

as:

max
k′

∫ ∞
0

e−rt

{
S (k,Ke)−

N∑
i=1

[α
2

(
k′i
)2

+ q
(
k′i + ηki

)]}
dt. (6)

The solution to this problem determines the PF-RECE.

(B) The problem of maximizing consumer surplus when a social planner

fully internalizes the spatial externality, which is defined as:

max
k′

∫ ∞
0

e−rt

{
S (k,Wk)−

N∑
i=1

[α
2

(
k′i
)2

+ q
(
k′i + ηki

)]}
dt. (7)

The solution to this problem determines the SO.

The Euler equations for these two problem can be obtained in a straight-

forward manner, using the Pontryagin maximum principle. For problem (6)

9



by setting k′i (t) = ui (t), the current value Hamiltonian is:

H (k, u, µ) = S (k,Ke)−
N∑
i=1

[α
2

(ui)
2 + q (ui + ηki)

]
+

N∑
i=1

µiui (8)

with optimality conditions

ui =
µi − q
α

= k′i (9)

µ′i = rµi + qη − ∂

∂ki
S (k,Ke) (10)

and transversality conditions at infinity

lim
t→∞

e−rt
N∑
i=1

µi (t) ki (t) = 0. (11)

Using k
′′
i = µ′′i /α from (9) and substituting into (10) we obtain the Euler

equations:

k
′′
i − rk′i +

1

α

[
∂S(k,Ke)

∂ki
− q (r + η)

]
= 0, i ∈ N . (12)

Thus each firm treats the spatial externality Ke as parametric when

deciding about its investment decisions. However the actions of all firms

generate the “actual” value of the realized spatial externality which is Wk.

Equilibrium requires that the spatial externality be consistent with the level

that is assumed when firms make decisions about k. Thus in a PF-RECE,

Ke = Wk and the Euler equation that characterizes this equilibrium be-

comes:

k
′′
i − rk′i +

1

α

[
∂

∂ki
S(k,Ke)

∣∣∣∣
Ke=Wk

− q (r + η)

]
= 0, i ∈ N , (13)

where the notation ∂
∂ki
S(k,Ke)

∣∣∣
Ke=Wk

means that we first take the gradient

of S(k,Ke) with respect to k, treating Ke as fixed, and then substitute

Ke = Wk into the resulting function to determine the PF-RECE. Equation

(13) can be expressed in a more explicit form as

k
′′
i − rk′i +

1

α

[
D(Q(k,Wk))fk(ki,

∑
r

wirkr)− q (r + η)

]
= 0, i ∈ N , (14)

10



where Q(k,Wk) =
∑

i f(ki,
∑

r wirkr). By fk we denote the partial deriva-

tive of the production function f with respect to the first variable, and we

employ the notation (Wk)i =
∑

r wirkr for the i-th component of the vector

Wk.

For the SO, problem (7), the corresponding Euler equation is:

k
′′
i − rk′i +

1

α

[
∂

∂ki
S(k,Wk)− q (r + η)

]
= 0, i ∈ N . (15)

Equation (15) can be expressed more explicitly as:

k
′′
i − rk′i +

1

α

[
D(Q(k,Wk))

[
fk(ki,

∑
r

wirkr)−

∑
l

wlifK(ki,
∑
r

wirkr)

]
− q (r + η)

]
= 0, i ∈ N . (16)

By fK we denote the partial derivative of the production function with

respect to the second argument. This leads to the following definition:

Definition 1 We call the solution k : R+ → RN of (13), with Ke = Wk, a

PF-RECE and the solution of (15) an SO.

Note that in the SO, ∂
∂ki
S(k,Wk) are the components of the true gradient

of the consumer surplus function S, treated as a function of k only, i.e., the

true gradient of the function S(k,Wk). This is in contrast to what happens

for the PF-RECE where ∂
∂ki
S(k,Ke)

∣∣∣
Ke=Wk

no longer correspond to the

components of a “true” gradient of a function. This remark will play a very

important role in the qualitative long-term behavior of the two systems, and

leads to important differences between them.

We close this section by noting that both the rational expectations and

the SO Euler equations may be expressed in a single form, using the param-

eter σ, which takes the value σ = 0 if we are studying the PF-RECE and

the value σ = 1 if we are studying the SO. The Euler equation thus takes
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the form:

k
′′
i − rk′i +

1

α

[
D(Q(k,Wk))

[
fk(ki,

∑
r

wirkr)−

σ
∑
l

wlifK(ki,
∑
r

wirkr)

]
− q (r + η)

]
= 0, i ∈ N . (17)

4 The Steady State of the Social Optimum: A

Global Result

The Euler equations characterizing the SO and the PF-RECE can be used to

explore the emergence of agglomerations in the competitive industry. First

we provide a global result about the possibility of agglomerations as a long-

run outcome at the SO when the spatial externality is fully internalized.

Assumption 1 D is a strictly decreasing function and the production func-

tion f(k,K) is a strictly concave function of (k,K).

Theorem 1 Let Assumption 1 hold. If the system of equations

∂

∂ki
S(k,Wk)− q (r + η) = 0, i ∈ N , (18)

admits the spatially uniform, or flat, k1 = · · · = kN = k̄ solution, then no

spatial patterns are admissible in the long-run equilibrium for the SO.

Proof: The function S(x) =
∫ x

0 D(s)ds is strictly concave as the integral

of a strictly decreasing function (see Lemma 1 in the Appendix, see Section

A.1), and by the properties of the production function the function S(k,Wk)

a strictly concave function of k. Therefore, function S̄(k) := S(k,Wk) −
q (r + η) k is strictly concave. The Euler equation can be written as

k′′ − rk′ = −∇S̄,

and by the convexity of −S, the operator −∇S̄ is a monotone operator

on RN . By the results of Rouhani and Khatibzadeh (2009), any bounded

solution of these systems converges to the steady state which is a solution

of (18). The solution of this equation is recognized as the minimum of the
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function −S̄, since at the steady state −∇S̄ = 0, which is unique by strict

convexity. Therefore, the result follows. QED

Theorem 1 asserts that if there exists a steady state for the competi-

tive industry at which all firms have the same capital stock, then no other

steady state is possible. This eliminates the possibility of a steady state with

spatially heterogeneous capital stock and thus eliminates the possibility of

agglomerations at the SO. The result is an extension of Scheinkman’s result

(Scheinkman (1978)) in a spatial context and suggests that if the spatial

externality is fully internalized it cannot induce spatial clustering in a com-

petitive industry with diminishing returns with respect to both own capital

and the spatial externality. It should be noted that the result of theorem

1 could have been shown by using Scheinkman’s separable Hamiltonian ap-

proach (Scheinkman (1978)). The approach used here is more general in the

sense that it does not require assumptions about the derivatives of the value

function of the problem and provides insights for analyzing the PF-RECE,

a case where the separable Hamiltonian approach cannot be applied.

To examine conditions under which such a spatially homogeneous or flat

steady state at the SO exists, we make the following assumption:

Assumption 2 The coupling is of diffusive type, i.e. that
∑

j wij = w̄ for

any i ∈ N , and the production function is homogeneous of degree γ.

The first part of the assumption combined with the assumption that

our spatial domain is a circle eliminates the possibility that agglomerations

may emerge as a result of exogenous factors such as the shape of the spatial

domain and the location advantage of one or more sites. The second part is a

common assumption that simplifies the problem and allows us to determine

solutions.

The following proposition provides a general result about the existence

of a spatially homogeneous steady state and therefore about the absence of

agglomerations in the long-run of the SO.

Proposition 1 Let Assumptions 1 and 2 hold. If the scalar algebraic equa-

tion

γN
1−γ
γ ρ

1
γD(s)s

γ−1
γ − q (r + η) = 0, ρ := f(1, w̄) (19)

admits a solution s∗ ∈ R+, then no agglomeration patterns will appear in

the long-run equilibrium for the SO and the industry relaxes to a spatially
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homogeneous (flat) state k1 = · · · = kN = k∗ =
(
s∗

Nρ

) 1
γ

.

Proof: The steady state is given by the solution of the system of equations

D(Q(k,Wk))

fk(ki,∑
j

wijkj) +
∑
r

wrifK(ki,
∑
j

wrjkj)

−q (r + η) = 0,

(20)

i ∈ N , which for a spatially uniform solution k1 = · · · = kN = k∗ and using

Assumption 2 reduces to a single algebraic equation, which is equivalent to

(19), in terms of the variable s = Nρ(k∗)γ . Then using Theorem 1 we

obtain the stated result. QED

For a standard Cobb-Douglas production function with γ = γ1 +γ2 < 1,

the spatially homogeneous steady state can be easily obtained by following

the calculations of the proof to this proposition. Thus in a competitive

industry with identical firms with Cobb-Douglas technology which is strictly

concave in own capital and the spatial externality, and no location advantage

or effects from the boundaries of the spatial domain, no agglomeration will

occur if the spatial externality is fully internalized

5 Agglomeration Emergence in the Perfect Fore-

sight Rational Expectations Equilibrium

Our “no agglomeration” result holds for the SO (σ = 1) under the strict

concavity Assumption 1 of the production function. This means agglomera-

tions do not emerge when the spatial externalities are fully internalized, the

production function is strictly concave and the demand function is strictly

decreasing. Therefore, agglomerations may emerge if any of the above as-

sumptions is not satisfied.

When the spatial externality is not fully internalized in a PF-RECE,

the no agglomeration result is no longer sustained,10 and a result similar

to Theorem 1 cannot be obtained for the PF-RECE. Thus, even if a flat

steady state exists for the PF-RECE, we cannot exclude the existence of

10To see this, note that in terms of the Euler equation characterizing the PF-RECE,

the term ∂
∂ki

S(k,Ke)
∣∣∣
Ke=Wk

is no longer a gradient, which means that a firm does not

take into account the impact of its investment policy on the spatial externality.
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other spatially heterogeneous steady states. Spatial heterogeneity, however,

means agglomerations.

In this section we provide explicit conditions under which agglomerations

may occur either for the PF-RECE (σ = 0) or for the SO (σ = 1) if As-

sumption 1 does not hold.11 We examine the potential emergence of spatial

agglomerations by perturbing a spatially homogeneous, or flat steady state,

in a fashion which is similar (but different in mechanism) to the celebrated

Turing instability (Turing (1952)).12 To simplify the exposition we use the

following definitions:

Definition 2 Define the real numbers

ρ := f(1, w̄), ρk := fk(1, w̄), ρK := fK(1, w̄),

ρkk := fkk(1, w̄), ρkK := fkK(1, w̄), ρKK := fKK(1, w̄).

ρ denotes the output of a firm at a flat steady state where capital stock is

normalized to one, ρk, ρK are the corresponding marginal products, ρkk, ρKK

are the slopes of marginal products, while ρkK > 0 denotes the shift in the

marginal product of capital from a small change in the spatial externality and

reflects the complementarity between them. All derivatives are evaluated at

the flat normalized steady state.

Definition 3 Define the stability matrix

Tσ = C1I + C21 + C3W + C4W
2, σ = 0 or 1 (21)

11To ease the exposition, if σ = 0 the stated results correspond to the PF-RECE,
whereas if σ = 1 the stated results correspond to the SO. When a quantity carries the
subscript σ, this implies that it depends on the value of σ chosen, i.e., that it differs
between the PF-RECE and the SO.

12The use of conditions under which a spatially homogenous steady state becomes un-
stable to spatially heterogeneous perturbation in order to establish the emergence of ag-
glomerations has been used in spatial economics. See for example Papageorgiou and Smith
(1983) or Krugman (1996). Our difference with this literature is that the perturbed steady
state in our model is the outcome of actions of forward-looking optimizing agents.
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where

C1 :=
1

α
D(Nρk̄γσ)ρkkk̄

γ−2
σ ,

C2 :=
1

α
(ρk + w̄ρK)(ρk + σw̄ρK)k̄2(γ−1)

σ D
′
(ρNk̄γσ),

C3 :=
1

α
(1 + σ)ρkKD(Nρk̄γσ)k̄γ−2

σ ,

C4 :=
1

α
σρKKD(Nρk̄γσ)k̄γ−2

σ ,

and 1 is the N ×N matrix whose every entry is equal to 1.

Definition 4 Let {φ`, λ`}, ` = 1, · · · , N , be the corresponding eigenvectors

and eigenvalues of the stability matrix Tσ (see (21) in Definition 3), and

define the sets

A :=

{
` ∈ N :

r2

4
< λ`

}
,

B :=

{
` ∈ N : 0 < λ` <

r2

4

}
.

Theorem 2 Let Assumption 2 hold, let Tσ be the stability matrix defined

in Definition 3 and A,B the sets defined in Definition 4.

(a) If the scalar algebraic equation

(
1

ρN

) γ−1
γ

(ρk + σw̄ρK))D(sσ)s
γ−1
γ

σ − r(q + η) = 0 (22)

admits a solution s∗σ ∈ R+, then a spatially homogeneous steady state k̄σ =(
s∗σ
Nρ

) 1
γ

exists.

(b) The following results hold concerning the linear stability of spatially

homogeneous steady states:

(i) If A 6= ∅, i.e., if Tσ has eigenvalues greater than r2

4 , then pattern for-

mation (agglomerations) may appear around the spatially homogeneous

steady state k̄σ.

(ii) If B 6= ∅, i.e, if Tσ has positive eigenvalues but less than r2

4 , then

a temporally oscillating spatial agglomeration may appear around the

spatially homogeneous steady state k̄σ.
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Equation (22) is the steady-state equation for a flat steady state resulting

from the Euler equation (17). If it has a solution then this solution is

the spatially homogeneous steady state for PF-RECE (σ = 0) or the SO

(σ = 1). If such a steady state exists, part (b) of the proposition presents

the conditions under which it can be destabilized by spatial spillovers and

agglomerations may emerge.

Remark 1 While both regions A and B lead to linear instability of the flat

steady state, we consider as a viable agglomeration pattern for the system

only those patterns that correspond to region B, for the following reason.

Our system is a controlled system which is subject to a transversality con-

dition at infinity. Only the patterns corresponding to region B satisfy the

transversality condition, thus only these patterns are viable agglomeration

patterns. We therefore consider as a condition for the occurrence of pattern

formation instability the condition that at least one of the eigenvalues of the

stability matrix Tσ lies in the interval (0, r
2

4 ].

Remark 2 Since the instability is emerging as the optimal solution of the

problem, we call this instability optimal spillover induced spatial instability.

This type of instability is different from the celebrated Turing instability,

or the instabilities identified in earlier models of economic geography (e.g.

Papageorgiou and Smith (1983), Krugman (1996)) because it is the result of

forward-looking optimizing behavior.

Proof of Theorem 2: We provide a short version of the proof which is

instructive of the way in which we can explore whether the spatial externality

may induce agglomerations. Full details and definitions are presented in the

Appendix. We linearize (31) around a homogeneous steady state k̄. Note

that k̄ changes with σ, so we denote it as k̄σ. Consider κ = k̄σ+εk (meaning

that κi = k̄σ + εki for every i). The linearized equation becomes:

k′′ − rk′ + Tσk = 0,

where

Tσ = C1I + C21 + C3W + C4W
2.

Having obtained the linearized system, we may now study the evolution of

a spatially nonhomogeneous perturbation of this homogeneous steady state.
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Consider a solution of (13) of the form ki = k̄σ + εpi, i ∈ N , where ε is a

small parameter. We substitute into (13) and linearize with respect to ε.

The above results show that the vector p = (p1, · · · , pN ) evolves according

to the second order linear evolution equation

p′′ − rp′ + Tσp = 0, (23)

where Tσ is the matrix given in (21). Since W is a symmetric matrix,

the same is true for the matrix Tσ, so by the spectral theorem there ex-

ists an orthonormal basis of RN consisting of the eigenvectors of Tσ, each

corresponding to real eigenvalues. Let {φ`, λ`}, ` = 1, · · · , N , be the corre-

sponding eigenvectors and eigenvalues. The general solution of (34) can be

expressed as

p(t) =
N∑
ν=1

qν(t)φν

so by substituting into (34), we obtain

N∑
ν=1

q
′′
ν (t)φν − r

N∑
ν=1

q
′
ν(t)φν +

N∑
ν=1

qν(t)λνφν = 0,

and taking inner products with φ`, ` ∈ N and using the orthogonality of

the eigenvectors, 〈φν , φ`〉 = δν,`, yields

q′′` − rq′` + λ`q` = 0, ` ∈ N .

Now the system is decoupled. This implies that the general solution of (34)

can be expressed as

p(t) =

N∑
`=1

(
a` exp(s+

` t) + b` exp(s−` t)
)
φ`, (24)

where a`, b` ∈ R are constants related to the initial conditions p(0), p′(0) ∈
RN and

s±` =
1

2
(r ±

√
r2 − 4λ`), ` ∈ N . (25)

In the solution (24), each component pi of the vector p will determine the

temporal evolution of the perturbation in each location near the spatially

homogeneous steady state k̄σ. Note that the eigenvalues (25) are symmetric
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around r/2 and they could be either real and positive, or real one positive

and one negative, or complex with positive real parts. Because the dynam-

ical system (34) has been derived from the optimal control problem (6),

satisfaction of the transversality conditions at infinity requires setting the

constant corresponding to the eigenvalue that is larger than r/2 equal to

zero. Therefore if all the eigenvalues s` < r/2 are negative, pi (t) tends to

zero for all i and the spatial perturbation will die out. In this case the flat

steady state is stable and no agglomeration emerges. If however for some

` ∈ N there are eigenvalues in the interval (0, r/2), then the spatial per-

turbation will not die out as t increases while transversality conditions at

infinity are satisfied. In this case the flat steady state is not locally stable

and this a sign of agglomeration emergence.

More precisely (25) implies three possibilities:

a: r2

4 < λ`, so that s±` = r
2 ± iσ, i.e., a pair of complex conjugate roots.

This leads to oscillatory behavior compatible with the transversality

condition (Hopf type behavior).

b: 0 < λ` <
r2

4 , so that s−` < r
2 < s+

` , i.e., a pair of real roots, one

larger and one smaller than r
2 . The root which is larger than r

2 is

incompatible with the transversality condition and the corresponding

constant is set to zero, while the root s−` , as long as s−` > 0, leads to

an instability which is optimal and satisfies transversality conditions.

Agglomeration emerges at the PF-RECE.

c: λ` < 0, so that s−` < 0 < r
2 < s+

` , i.e., a pair of real roots, one

negative and one positive larger than r
2 . The root s+

` does not satisfy

the transversality condition and the corresponding constant is set to

zero. For the negative root s−` , the perturbation is suppressed in the

long run and the flat steady state is stable. No agglomeration emerges

at the PF-RECE.

Thus case B leads to agglomerations. QED

Theorem 2 provides general conditions for agglomeration emergence. In

the remainder of this section we try to identify the key economic parame-

ters that may (or may not) induce agglomerations by further specifying our

model. First we provide conditions for the existence of a flat steady state

that can be destabilized by spatial perturbations according to Theorem 2.
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Assumption 3 The elasticity of the demand is uniformly bounded and neg-

ative, i.e., if we define the quantities

ED := inf
s>0

(
sD
′
(s)

D(s)

)
, ĒD := sup

s>0

(
sD
′
(s)

D(s)

)
,

then it holds that

−∞ < ED ≤ ĒD < 0.

For the isoelastic demand this assumption holds and ED ≤ ĒD = −δ.

Proposition 2 (Flat steady state existence and agglomeration at the PF-RECE)

Define the matrix

T0 = C1I + C21 + C3W

where C1, C2, C3 are derived from Definition 3 for σ = 0.

(i) Let γ < 1 and assume that

lim
s→0

D(s)s
γ−1
γ >

(
1

ρN

)− γ−1
γ r(q + η)

ρk
. (26)

Then, a unique spatially homogeneous steady state k̄0 exists, which can

be destabilized and give rise to agglomerations if the matrix T0, defined

as in (21) in Definition 3 calculated at k̄σ = k̄0, has eigenvalues in the

interval (0, r
2

4 ].

(ii) Let γ > 1, D satisfy Assumption 3 with ĒD < − γ
γ−1 and assume

existence of an s > 0 such that

D(s)s
γ−1
γ >

(
1

ρN

)− γ−1
γ r(q + η)

ρk
.

Then, a unique spatially homogeneous steady state k̄0 exists, which can

be destabilized and give rise to agglomerations if the matrix T0, defined

as in (21) in Definition 3 calculated at k̄σ = k̄0, has eigenvalues in the

interval (0, r
2

4 ].

Agglomeration emergence is related to γ, the degree of homogeneity of

the production function. At a flat steady state, γ > 1 indicates increasing

returns from a social point of view, while γ < 1 indicates diminishing returns
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and is consistent with a strictly concave production function f (k,K). Thus

the above proposition combined with Theorem 2 covers all possible cases

in which agglomeration is possible in the PF-RECE case, but requires the

numerical calculation of the spectrum of the matrix T0. This is straightfor-

ward even for the case of large dimensional systems (large N). However this

does not provide us with sufficient intuition regarding the forces and the

parameters which are important in inducing agglomerations. To this end,

in Proposition 3 we provide some explicit analytical estimates of parameter

values for which agglomeration emergence (or not) can be ascertained in

the PF-RECE. The proof of Proposition 3 can be found in the Appendix

(Section A.4):

Proposition 3 (Emergence (or not) of agglomeration at the PF-RECE)

Let σ = 0 and assume that a spatially homogeneous steady state k̄0 > 0 ex-

ists, that Assumption 3 holds and that wij > 0 for all i, j, which means that

the externality is positive, that is, the impact on site i from all sites j is

beneficial.

(i) If the industry fundamentals are such that

wii < −
ρkk
ρkK

− 1

ρN

ρk
ρkK

(ρk + w̄ρK)ĒD, i ∈ N ,

wij ≥ −
1

ρN

ρk
ρkK

(ρk + w̄ρK)ED, i 6= j, i, j ∈ N ,

then no agglomeration may emerge in the PF-RECE case.

(ii) If the industry fundamentals are such that

wii ≥ −
ρkk
ρkK

− 1

ρN

ρk
ρkK

(ρk + w̄ρK)ĒD, i ∈ N ,

wij ≥ −
1

ρN

ρk
ρkK

(ρk + w̄ρK)ED, i 6= j, i, j ∈ N ,

then agglomerations will emerge. The top eigenvalue of the stability matrix

is

λ∗ =
q(r + η)

αk̄0ρk

(
ρkk +

ρk
ρ

(ρk + w̄ρK)
sD
′
(s)

D(s)
+ ρkKw̄

)
.

The right hand side of all inequalities are positive numbers which are

defined in terms of the production function structure, and the elasticity of

demand, while the terms wii, wij reflect “own” impact on the externality
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affecting site i, and impact of site j on the externality affecting site i respec-

tively. Thus no agglomeration requires small own impact but large impact

from other sites. Agglomeration emerges when λ∗ > 0. From its definition

it is clear that this depends on how strong the complementarity between

k and K is, and how large the aggregate externality w̄ is, since these ef-

fects are combined to form the term ρkKw̄ which is the only term that can

make λ∗ positive. We will encounter the strength of complementarity as an

agglomeration-inducing force in other cases as our analysis proceeds

While Proposition 2 is more general in scope than Proposition 3, in the

sense that Proposition 3 does not provide the whole range of parameters for

which agglomeration or nonagglomeration is expected (this means that the

conditions of Proposition 3 are sufficient but not necessary), it still provides

explicit results for the parameters and offers economic intuition.

This is because Proposition 3 provides explicit conditions on the spatial

interaction matrix W and the production function which prevent generation

of agglomerations in the PF-RECE case. This result is a local analogue of the

global result we have provided in Theorem 1 for the SO case. It also provides

important qualitative information concerning agglomeration emergence in

the PF-RECE. For example, if wij < 0 for some i, j (as is the case of

the composite externality) then condition (ii) of Proposition 3 will never

hold, and we expect formation of agglomerations due to linear instability.

Therefore, agglomeration formation in the PF-RECE case is easier to emerge

in the case of composite kernels exhibiting positive and negative spatial

externalities. In fact, this result is supported by the numerical experiments

on the Cobb-Douglas example. Furthermore, for agglomeration emergence

for case (ii) of Proposition 3, we may obtain a simplified condition in terms

of

ρkK > −ρkρK
ρ

ED,

w̄ > − ρρkk + ρ2
kED

ρkρKED + ρρkK

which again indicates more clearly the strength of complementarity and the

size of externality as an agglomeration-inducing factor. The no agglomera-
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tion emergence condition with an isoelastic demand implies

wii − wij < −
ρkk
ρkK

, i, j ∈ N .

Thus a small deviation between own impacts and other sites’ impacts acts as

an agglomeration-suppressing force. Note that if we are dealing with a bell-

shaped kernel, this condition is always satisfied since the LHS is negative and

the RHS is positive, but the condition is not necessarily satisfied if we are

dealing with a composite kernel where wij < 0 for some j. Thus composite

externalities can be regarded as an agglomeration-inducing factor.

It is possible to obtain sharper conditions for the non-emergence of ag-

glomeration in the PF-RECE case using more detailed eigenvalue localiza-

tion estimates, but this is beyond the scope of the current work.

Proposition 4 (Flat steady state existence and agglomeration in the SO case)

Define the matrix

T1 = C1I + C21 + C3W + C4W
2,

where C1, C2, C3, C4 are derived from Definition 3 for σ = 1.

Let γ > 1, D satisfy Assumption 3 with ĒD < − γ
γ−1 and assume exis-

tence of an s > 0 such that

D(s)s
γ−1
γ >

(
1

ρN

)− γ−1
γ r(q + η)

ρk + w̄ρK
.

Then, a unique spatially homogeneous steady state k̄1 exists, which can be

destabilized and give rise to agglomerations if the matrix T1, defined as in

(21) in Definition 3 calculated at k̄σ = k̄1, has eigenvalues in the interval

(0, r
2

4 ].

For the proofs of Propositions 2, 3 and 4 see Appendix (Sections A.3,

A.4, A.5 respectively).

There is no agglomeration emergence in the SO case if γ < 1, as the

global result of Theorem 1 guarantees. One may obtain a generalization of

Proposition 3 for the SO case, and provide conditions on the fundamentals

of the economy under which no agglomerations will emerge even in the case

γ > 1, which is not covered by Theorem 1.
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Proposition 5 (No agglomerations for SO case γ > 1) Assume σ = 1,

γ > 1 and let Assumption 3 hold.

(i) If the industry fundamentals satisfy

0 ≥ ρkk + (ρk + w̄ρK)2 1

ρN
ĒD + 2ρkKwii + ρKK

∑
r

wirwri,

0 ≤ (ρk + w̄ρK)2 1

ρN
ED + 2ρkKwij + ρKK

∑
r

wirwrj , i 6= j,

for all i, j ∈ N , no agglomerations are possible for the SO case.

(ii) If the industry fundamentals satisfy

0 ≥ ρkk + (ρk + w̄ρK)2 1

ρN
ED + 2ρkKwii + ρKK

∑
r

wirwri,

0 ≤ (ρk + w̄ρK)2 1

ρN
ED + 2ρkKwij + ρKK

∑
r

wirwrj , i 6= j,

for all i, j ∈ N , agglomerations are possible for the SO case. The top

eigenvalue of the stability matrix T1 can be found explicitly in terms

of the homogeneous steady state k̄1, as

λ∗ =
1

α

q(r + η)

(ρk + w̄ρK)k̄1

(
ρkk + (ρk + w̄ρK)2 1

ρ

sD
′
(s)

D(s)
+ 2ρkKw̄ + ρKKw̄

2

)
,

where s = ρNk̄γ1 .

Remark 3 Conditions on the demand function imply that (a) D(Q(k,K))

is maintained above a critical level (related to q(r + η)) when Q(k,K) falls

below a critical level and that (b) the demand function decays fast enough

for large enough values of Q(k,K). The second condition is quantified by

ĒD < − γ
γ−1 (for γ > 1) which in turn implies that D(s)s

γ−1
γ is a decreasing

function of s. The isoelastic demand function D(s) = Bs−δ for large enough

s, satisfies this condition as long as δ > γ
γ−1 .

The results obtained above provide a number of points which are useful

in understanding the emergence of agglomerations in a competitive industry.

In general k̄1 6= k̄0, i.e. the steady state of the SO problem does not

coincide with the steady state of the PF-RECE. Furthermore, for a strictly
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decreasing function D(s)s
γ−1
γ , and values of γ that are relevant for homo-

geneous production technologies, k̄1 > k̄0. Furthermore, k̄σ, σ = 0, 1, is an

increasing function of w̄.

The agglomeration emergence, related to part of the spectrum of Tσ

being in region B, is reminiscent of a Turing instability but with a major

difference. It is related to an optimally controlled system, and this fact

imposes major restrictions as to what will be an acceptable instability. As

we see in the proof of Theorem 2 the instability condition needs to satisfy

the transversality condition. Instabilities related to the part of the spectrum

of Tσ being in region A are associated with a Hopf type bifurcation.

The conditions for agglomeration emergence in the linearized problem

are conditions related to the spectrum of the symmetric matrix Tσ. This is

easily computed for concrete applications numerically (see e.g. Section 6).

However, the concavity properties of the production function f as well as

the monotonicity of the demand function provide important information on

the signs of the constants C1, C2, C3, C4 and thus allow us to obtain general

information concerning the position of the spectrum of the matrix Tσ. For

example, consider first the PF-RECE case. We see that C1 is always negative

as long as ρkk < 0 and since this term is responsible for a contribution C1I to

the stability matrix, this term will always contribute a negative eigenvalue,

leading to stability. The diagonal part is perturbed by the term C21 with

C2 being always negative, since D′ is negative and ρk, ρK > 0. Therefore,

this term is not expected to lead to further destabilization for w̄ > 0. The

third term is a contribution C3W , where C3 is positive when ρkK > 0,

which implies complementarity between own capital stock and the spatial

externality. This term can induce spatial instability through the occurrence

of positive spectrum if it is strong enough. The relative strength of C3 with

respect to C1 and C2 depends on the fundamentals of the problem, e.g. on

N and w̄, but the actual dependence is too complicated to be studied, unless

explicit forms for D and f are assumed (see Section 6). In the SO the extra

term C4W
2 is included in the stability matrix. If γ < 1, this is a stabilizing

term, and this in accordance with our global results in Section 4 eliminates

agglomerations. If γ > 1, this term may further contribute to instability

and lead to agglomeration formation.

It should be noted that for a Cobb-Douglas technology, if (γ1, γ2) < (1, 1)

but γ1 + γ2 = γ > 1, the flat steady state with spatial externalities is char-
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acterized by diminishing marginal productivity of capital from the private

point of view, and by increasing marginal productivity from the social point

of view. Increasing marginal productivity from the social point of view

may induce agglomerations when the spatial externality is fully internal-

ized. Thus the “no agglomeration” result requires diminishing marginal

productivity of capital from both the private and the social point of view.

With diminishing marginal productivity of capital from both the private

and the social point of view, agglomeration may emerge as a long-run out-

come of a PF-RECE but not at the SO. The local behavior described for the

linearized system around the flat PF-RECE steady state k̄, by Theorem 2

presents a plausible scenario for long-run spatial behavior of system (13). In

particular, it is possible that some of the unstable modes leading to spatial

patterns for the linearized system may persist, leading thus to stable ag-

glomerations in the long run. It is interesting to note that this is in striking

contrast to what happens for the SO equilibrium, where agglomerations and

clustering in the long run are definitely ruled out by Theorem 1, which is

based on the strict concavity of the production function in k and K = Wk.

In terms of economics this means that diminishing returns from the social

point of view, and full internalization of the spatial externality at the firm

level, eradicate any spatial patterns. When, however, the spatial externality

is not internalized in a competitive industry then spatial agglomeration may

occur which could become persistent. It is interesting to note that the re-

sult does depend on increasing returns, geometry of the spatial domain and

boundary conditions, or location advantages. In this case agglomeration-

inducing forces, or centrifugal forces, include incomplete internalization of

the spatial externality, strong complementarity between the stock of capital

and the spatial externality, a composite spatial externality which is positive

overall but that includes positive and negative local spillovers, and relatively

large deviations between own and other locations’ effects on the aggregate

externality.
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6 An Illustrative Example: The Cobb-Douglas Pro-

duction Function

In this section we provide an illustrative example using the Cobb-Douglas

production function,

f(x, y) = Cxγ1yγ2 , γ = γ1 + γ2, γ1 < 1, γ2 < 1.

This function evaluated at x = ki and y = (Wk)i =
∑

j wijkj gives the

production at site i of the spatial economy as a homogeneous production

function with degree of homogeneity γ. For a spatially homogenous steady

state, γ > 1 means increasing marginal productivity from the social point of

view in the sense of Romer (1986), while γ < 1 means diminishing marginal

productivity from the social point of view. We assume, furthermore, that

matrix W corresponds to a coupling of diffusive type, for which
∑

j wij =

w̄ > 0, for any i ∈ N , in accordance with Assumption 2, and that the

demand function is of the isoelastic form D(s) = B s−δ, δ > 0. This demand

function satisfies Assumption 3 with ED = ĒD = −δ. Using this structure

we calculate the flat steady states and the stability matrix for the PF-RECE

(σ = 0) and the SO (σ = 1). Calculations are presented in the Appendix (see

Section A.7). Furthermore, conditions for non-emergence of agglomerations

in the PF-RECE case simplify to

wii
w̄

<
1− γ1

γ2
+

δ

N

γ

γ2
, (27)

wij
w̄

>
δ

N

γ

γ2
, i 6= j, (28)

for all i, j ∈ N , which may be reinterpreted as

wii − wij
w̄

<
1− γ1

γ2
. (29)

Both these relations provide important insight into the mechanics of pattern

formation in the PF-RECE case. The first interpretation of the stability con-

ditions provides the interesting information that if wij are all positive, then

pattern formation in the PF-RECE case is expected to take place for large

enough values of γ. To see this we may reason as follows: Let all the wij > 0

as is the case of a single positive spatial externality, and assume (27) holds.

27



In order to have the possibility of pattern formation we need
wij
w̄ < δ

N
γ
γ2

, and

that can most easily be achieved if γ is large. We therefore expect occurrence

of patterns for the PF-RECE case, for single positive spatial externalities for

large enough values of γ. This is supported by numerical evidence as shown

in Section 6.1. On the contrary if we have composite kernels that combine

positive and negative externalities, then while condition (28) may hold, con-

dition (28) is never valid since for kernels of this type there exist i, j ∈ N
such that condition (28) fails. Therefore, instability may occur more easily

for composite kernels combining positive and negative externalities, and for

smaller values of γ. This theoretical prediction is fully supported by nu-

merical results provided in Section 6.2. On the other hand, the alternative

form of the stability condition (29) also provides some important qualitative

information on the mechanics of agglomeration formation. If the difference

between the diagonal and the off diagonal terms of the interaction matrix

W is small enough, no agglomeration is expected in the PF-RECE. The

difference between wii and wij , and even more so the ratio
wii−wij

w̄ , can be

interpreted as the importance of site i’s contribution to the externality at

site i, relative to the effect that site j has on the externality at site i. If this

effect is small as quantified by (29), then no agglomerations are induced. If,

on the contrary, this is larger than the critical value provided by (29), then

agglomeration emergence may occur.

We provide numerical results concerning agglomeration emergence through

the optimal spillover induced instability of a flat steady state. We choose a

spatial economy consisting of N = 101 sites. The parameters of the model

are chosen as follows: r = 0.03, η = 0.02, q = 1, α = 0.025, δ = 1.25,

B = 100, C = 1 and these are kept fixed in all the numerical experiments

that follow. We choose to vary the parameters of the production function

γ1, γ2 as well as the type of spatial interaction kernel w̄, which is used to

generate the matrix W . We provide two sets of results corresponding to a

single and a composite spatial externality.

6.1 Single spatial externality

In the first set of results, we model the spatial externality with an interaction

kernel of the form

w(|i− j|) = A1 exp(−α1|i− j|2),
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which is exponentially decaying with a single hump and corresponds to a sin-

gle positive spatial externality. We choose A1 = 2, a1 = 0.025, and the form

of the kernel is shown in Figure 2. For the corresponding interaction matrix

W , and using the fundamentals of the industry as described above, for each

choice of parameters (γ1, γ2), we generate the corresponding stability matrix

Tσ = T (γ1, γ2), both for the PF-RECE case (σ = 0) and for the SO case

(σ = 1) and study its spectrum as a function of the parameters (γ1, γ2).

In Figure 3, we present the region in the (γ1, γ2) plane, which corresponds

to the top eigenvalue of the matrix T (γ1, γ2) being in the interval (0, r
2

4 )

(shaded region). For values of (γ1, γ2) within the shaded region we therefore

expect pattern formation to occur. Note that this region corresponds to

values of (γ1, γ2) such that γ1 + γ2 > 1, but γ1 < 1, γ2 < 1. The red band is

the result for the matrix T0 (the PF-RECE case) while the blue band is the

result for the matrix T1 (the SO case). It is seen that both the PF-RECE

and the SO equilibria may lead to agglomerations if γ = γ1 + γ2 > 1, which

implies increasing returns from the social point of view.

[Figure 2]

The kernel of a single positive spatial externality

[Figure 3]

Stability diagram with a single positive spatial externality

Keeping all parameters fixed for the same values as used in the two

previous figures, we perturb the system from the spatially homogeneous PF-

RECE steady state k̄0, by a small random spatially varying perturbation. In

Figure 4 we show the spatiotemporal evolution of the perturbed initial state,

obtained by numerical integration of the resulting ODE, choosing the values

for the parameters γ1 = 0.2, γ2 = 0.7. From the stability results shown in

Figure 3, we expect no pattern formation for these parameter values. As

predicted by our theoretical results, the full numerical simulation indicates

that the initial random spatial disturbance soon dies out and the system

equilibrates once more to the spatially homogeneous steady state. In Figure

5, we do the same as for Figure 4, with the sole difference that we choose the

values for the parameters γ1 = 0.16, γ2 = 0.878. From the stability results

shown in Figure 3, we now, contrary to the previous case, expect pattern

formation for these parameter values. Indeed, as predicted by our theoretical

results, the full numerical simulation indicates that the initial random spatial
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disturbance is strengthened and soon a spatial pattern is formed, which even

though it has started from a random initial perturbation, has a well defined

shape, as the linear combination of the eigenvectors which correspond to

the positive eigenvalues. Therefore, in this case we have pattern formation

(akin to Turing instability) which is generated from the destabilization by

spatial interactions of a spatially homogeneous steady state. This pattern

is compatible with the transversality condition, so we can call this pattern

the optimal emerging agglomeration at a PF-RECE.

[Figure 4]

No agglomeration at the PF-RECE for γ < 1

[Figure 5]

Agglomeration emergence at the PF-RECE for γ > 1

Keeping all parameters fixed for the same values as used in the two

previous figures, we perturb the system from the spatially homogeneous SO

steady state k̄1, by a small random spatially varying perturbation. In Figure

6 we show the spatiotemporal evolution of the perturbed initial state for the

parameters γ1 = 0.2, γ2 = 0.7. As predicted by our theoretical results, the

initial random spatial disturbance soon dies out and the system equilibrates

once more to the SO spatially homogeneous steady state. In Figure 7, we do

the same as for Figure 6, by allowing for increasing returns from the social

point of view, i.e. γ1 = 0.122, γ2 = 0.891. As predicted by our theoretical

results, the initial random spatial disturbance is strengthened and soon a

spatial pattern is formed, which even though it has started from a random

initial perturbation, has a well defined shape, as the linear combination

of the eigenvectors which correspond to the positive eigenvalues. We have

again pattern formation (akin to Turing instability) which is generated from

the destabilization by spatial interactions of a spatially homogeneous steady

state. This pattern is compatible with the transversality condition, so we

can call this pattern the emerging optimal agglomeration at the SO.

[Figure 6]

No agglomeration at the social optimum for γ < 1

[Figure 7]

Agglomeration emergence at the social optimum for γ > 1
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6.2 Composite spatial externality

In the second set of results we model a composite externality by an interac-

tion kernel of the form

w(|i− j|) = A1 exp(−α1|i− j|2) +A2 exp(−α2|i− j|2.), (30)

By choosing A1 = 2, a1 = 0.025, A2 = −0.5, a2 = 0.0025, we now obtain

a non-monotonic kernel with a single maximum and two local minima as

shown in Figure 8. In (30) the first term corresponds to the positive ex-

ternality and the second to the negative externality. We generate as before

the corresponding stability matrix T = T (γ1, γ2) and study its spectrum

as a function of the parameters (γ1, γ2). In Figure 9, we present the re-

gion in the (γ1, γ2) plane, which corresponds to the top eigenvalue of the

matrix T (γ1, γ2) being in the interval (0, r
2

4 ) (shaded region). For values

of (γ1, γ2) within the shaded region we therefore expect pattern formation

to occur. Note that this region now corresponds to values of (γ1, γ2) such

that γ1 + γ2 < 1. Thus a composite externality induces agglomeration at a

PF-RECE without increasing returns from the social point of view. Since

the instability satisfies the transversality condition, we have again optimal

agglomeration at a PF-RECE.

[Figure 8]

The kernel of a composite - positive and negative - spatial externality

[Figure 9]

Stability diagram with a composite spatial externality

Keeping all parameters fixed for the same values as used in the two

previous figures, we perturb the system from the spatially homogeneous PF-

RECE steady state k̄0, by a small random spatially varying perturbation.

In Figure 10 we show the spatiotemporal evolution of the perturbed initial

state for the parameters γ1 = 0.16, γ2 = 0.256. From the stability results

shown in Figure 9, we expect pattern formation for these parameter values.

Indeed, as predicted by our theoretical results, the initial random spatial

disturbance is strengthened and soon a spatial pattern is formed which, even

though it has started from a random initial perturbation, has a well defined

shape, as the linear combination of the eigenvectors of T0 which correspond

to the positive eigenvalues. Therefore, in this case we have pattern formation
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(akin to Turing instability) at a PF-RECE with diminishing returns from

both the private and the social point of view. Since the pattern satisfies the

transversality condition, we have again an emerging optimal agglomeration

at the PF-RECE.

[Figure 10]

Agglomeration emergence at the PF-RECE for γ < 1

We now, keeping all parameters fixed for the same values as used in the

two previous figures, perturb the system from the spatially homogeneous SO

steady state k̄1, by a small random spatially varying perturbation. In Fig-

ure 11 we show the spatiotemporal evolution of the perturbed initial state,

obtained by numerical integration of the resulting ODE, choosing the values

for the parameters γ1 = 0.2, γ2 = 0.7. From the stability results shown in

Figure 9, we expect no pattern formation for these parameter values. In-

deed the initial random spatial disturbance soon dies out and the system

equilibrates once more to the spatially homogeneous steady state. This is

of course the result of strict concavity of the production function. In Figure

12, we do the same as for Figure 11, with the sole difference that we allow

for increasing returns from the social point of view by choosing γ1 = 0.116,

γ2 = 0.9. From the stability results shown in Figure 3, we expect pattern

formation for these parameter values. Indeed the full numerical simulation

indicates that the initial random spatial disturbance is strengthened and

soon a spatial pattern is formed, which even though it has started from a

random initial perturbation, has a well defined shape, as the linear com-

bination of the eigenvectors which correspond to the positive eigenvalues.

Therefore, in this case we have pattern formation (akin to Turing instabil-

ity) at the SO. This pattern is compatible with the transversality condition

and induces optimal agglomeration.

[Figure 11]

No agglomeration at the social optimum for γ < 1

[Figure 12]

Agglomeration emergence at the social optimum for γ > 1
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7 Concluding Remarks

We revisit the investment theory of a competitive firm in a spatial context

where spatial externalities, which are regarded as a positive externality in

the production function, are determined by spatial proximity of firms. We

show that spatial agglomerations may emerge endogenously in a competitive

industry where firms do not internalize spatial knowledge spillovers. The re-

sult does not require increasing returns either from the private or the social

point of view, or location specific advantages at the location where the ex-

ternality emerges, and does depend on boundary conditions since our spatial

domain is a circle. Agglomeration in a PF-RECE is driven by strong com-

plementarity between the firms’ stock of capital and the spatial externality,

incomplete internalization of the spatial externality, existence of positive

and negative local spillovers but positive aggregate externality, relatively

large deviations between own and other-locations effects on the aggregate

externality. These factors can be regarded as generalized centrifugal forces.

Spatial agglomerations do not emerge as the SO when knowledge spillovers

are internalized and the production function is characterized by strict con-

cavity, i.e. we have diminishing returns both from the private and the social

point of view. Agglomeration emerges at the PF-RECE and the SO when

the centrifugal forces are combined with diminishing returns from the private

point of view but increasing returns from the social point of view.

Due to the well known complexity of spatial models, we try to obtain

more insights through numerical experiments. Using a Cobb-Douglas pro-

duction function and an isoelastic demand function, we show that agglomer-

ation at the PF-RECE with diminishing returns from the private and social

point of view emerges when the global externality is positive but it consists

of positive and negative components. The numerical experiments confirm all

our theoretical predictions about the emergence or not of agglomerations.

The deviation between the PF-RECE and the SO stemming from the fact

that each firm neglects the impact of its own action on the aggregate exter-

nality suggests that, in the spirit of welfare analysis of models with externali-

ties, a capital subsidy is required in order for the PF-RECE to reproduce the

SO. This subsidy should be equal to σi (t) =
∑N

l=1wlifK(k∗i (t) ,
∑N

r=1wirk
∗
r (t)),

per unit of capital held by each firm at location i so that private and social

marginal products are equal.
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The results obtained in this paper suggest that agglomerations are possi-

ble as a long-run equilibrium outcome in a competitive industry with spatial

spillovers and forward-looking agents. We think that the ability to study

agglomeration emergence in the context of a full dynamic model with opti-

mizing forward-looking agents is a reasonable trade-off for not taking into

account some important features of new economic geography models, such

as transport costs, product differentiation, mobile labor vs immobile “farm-

ers”, or forward/backward linkages. Incorporating these aspects into our

dynamic framework will bring our model closer to the economic geography

models but will considerably increase the complexity of the model. This is

undoubtedly a direction for extension of our model.

Acknowledgements: The authors wish to thank Mrs Joan Stefan for her

superb editorial work.

A Proofs of stated results

A.1 A useful lemma

Lemma 1 Assume that demand D : R+ → R+ is a non-increasing function.

Then the function S : RN → R, defined by

S(k) :=

∫ Q(k,Wk)

0
D(s)ds,

is a concave function of k as long as the production function f is a concave

function.

Proof: We consider first the function D̄ : R+ → R+, defined by D̄(x) :=∫ x
0 D(s)ds. This is a concave function. Indeed, taking without loss of gen-

erality x < x+y
2 < y, we observe that

1

2
(D̄(x) + D̄(y))− D̄

(
x+ y

2

)
=

1

2

[∫ y

x+y
2

D(s)ds−
∫ x+y

2

x
D(s)ds

]
≤ 0,

since D is a non-increasing function. Therefore, D̄ is concave. If D is strictly

non-increasing, then D̄ is strictly concave.

Furthermore, by its definition, D̄ is also an increasing function with

respect to x. Se is the composition of the concave and increasing function
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D̄ with the function Qe : RN → R, defined by Qe(k) =
∑N

i=1 f(ki,K
e
i ),

which is clearly concave since the production function is assumed concave.

Therefore Se is a concave function of k as the composition of an increasing

concave function with a concave function. Similarly, for Q(k). This is the

composition of the increasing and concave function D̄, with Q : RN → R,

where Q(k) = f(k,Wk). Since Wk is a linear function and f is concave, Q

is a concave function of k, therefore S is a concave function of k. QED

A.2 Proof of Theorem 2:

For the proof, we work with the compact formulation of the RE and SO
model in a single equation (as in (17)) using the variable σ where σ = 0 in
the RE case and σ = 1 in the SO case. The equation of motion becomes

k
′′
i − rk

′
i+ (31)

1

α

{
D(Q(k,Wk))

[
f1(ki,

∑
r

wirkr) + σ
∑
`

w`if2

(
k`,
∑
j

w`jkj

)]
− q(r + η)

}
= 0.

Wel simplify the notation by using the definition

Fi := D(Q(k,Wk))

f1(ki,
∑
r

wirkr) + σ
∑
`

w`if2

k`,∑
j

w`jkj

 .
In the proof we employ the notation f1 for fk and f2 for fK .

We now perform the general calculation for the linearization of (31)

around a homogeneous steady state k̄. Note that k̄ changes with σ, so we

denote it as k̄σ. Consider then κ = k̄σ + εk, (meaning that κi = k̄σ + εki for

every i).

We do separately the linearization of the 3 terms involved:

(i) The term D(Q): Since

Q(κ,Wκ) =
∑
`

f

(
κ`,
∑
r

w`rκr

)
=
∑
`

f

(
k̄σ + εk`, w̄k̄σ + ε

∑
r

w`rkr

)

linearizing with respect to ε we get

Q(κ,Wκ) =
∑
`

f(k̄σ, w̄k̄σ) + ε
∑
`

f1(k̄σ, w̄k̄σ)k` + ε
∑
`

f2(k̄σ, w̄k̄σ)
∑
r

w`rkr

= Nf(k̄σ, w̄k̄σ) + εf1(k̄σ, w̄k̄σ)
∑
`

k` + εf2(k̄σ, w̄k̄σ)
∑
r

∑
`

w`rkr.
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For the last term we first perform the inner summation which yields that∑
`w`r = w̄ for every r, so that

Q(κ,Wκ) = Nf(k̄σ, w̄k̄σ) + εf1(k̄σ, w̄k̄σ)
∑
`

k` + εw̄f2(k̄σ, w̄k̄σ)
∑
r

kr,

which yields

Q(κ,Wκ) = Nf(k̄σ, w̄k̄σ) + ε
(
f1(k̄σ, w̄k̄σ) + w̄f2(k̄σ, w̄k̄σ)

)∑
`

k`.

Therefore,

D(Q) = D(Nf(k̄σ, w̄k̄σ)) + εD
′
(Nf(k̄σ, w̄k̄σ))

(
f1(k̄σ, w̄k̄σ) + w̄f2(k̄σ, w̄k̄σ)

)∑
`

k`.

This is simplified, using the notation

D(Q) = A0 + εA1

∑
`

k`

where

A0 = D(Nf(k̄σ, w̄k̄σ)),

A1 = D
′
(Nf(k̄σ, w̄k̄σ))

(
f1(k̄σ, w̄k̄σ) + w̄f2(k̄σ, w̄k̄σ)

)
.

(ii) The term f1(ki,
∑

r wirkr): We have that

f1(κi,
∑
r

wirκr) = f1(k̄σ + εki, w̄k̄σ + ε
∑
r

wirkr)

= f1(k̄σ, w̄k̄σ) + ε f11(k̄σ, w̄k̄σ)ki + ε f12(k̄σ, w̄k̄σ)
∑
r

wirkr.

This is expressed in the more compact notation

f1(κi,
∑
r

wirκr) = B0 + εB11ki + εB12

∑
r

wirkr
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where

B0 = f1(k̄σ, w̄k̄σ),

B11 = f11(k̄σ, w̄k̄σ),

B12 = f12(k̄σ, w̄k̄σ).

(iii) The term σ
∑

`w`if2

(
k`,
∑

j w`jkj

)
: We have that

σ
∑
`

w`if2

κ`,∑
j

w`jκj

 = σ
∑
`

w`if2

k̄σ + εk`,
∑
j

w`j(k̄σ + εkj)


= σ

∑
`

w`if2

k̄σ + εk`, w̄k̄σ + ε
∑
j

w`jkj


= σ

∑
`

w`i

f2(k̄σ, w̄k̄σ) + εf21(k̄σ, w̄k̄σ)k` + εf22(k̄σ, w̄k̄σ)
∑
j

w`jkj


= σw̄f2(k̄σ, w̄k̄σ) + εσf21(k̄σ, w̄k̄σ)

∑
`

w`ik` + εσf22(k̄σ, w̄k̄σ)
∑
`

∑
j

w`iw`jkj .

This is expressed in the more compact notation

σ
∑
`

w`if2

κ`,∑
j

w`jκj

 = C0 + εC11

∑
`

w`ik` + εC12

∑
`

∑
j

w`iw`jkj

where

C0 = σw̄f2(k̄σ, w̄k̄σ),

C11 = σf21(k̄σ, w̄k̄σ),

C12 = σf22(k̄σ, w̄k̄σ).

We now calculate the linearization of Fi:

Fi = A0(B0 + C0) + ε(B0 + C0)A1

∑
`

k`+

εA0B11ki + εA0(B12 + C11)
∑
r

wirkr + εA0C12

∑
`

∑
j

w`iw`jkj .
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From the above calculations, we see that the homogeneous steady state

k̄σ will be a solution of the algebraic equation

A0(B0 + C0)−M = 0, (32)

where M = q(r + η). This yields

D(Nf(k̄σ, w̄k̄σ))
(
f1(k̄σ, w̄k̄σ) + σw̄f2(k̄σ, w̄k̄σ)

)
−M = 0.

Recall the assumption that f is homogeneous with degree of homogeneity

γ. This implies that

f(k̄σ, w̄k̄σ) = k̄γσf(1, w̄),

f1(k̄σ, w̄k̄σ) = k̄γ−1
σ f1(1, w̄),

f2(k̄σ, w̄k̄σ) = k̄γ−1
σ f2(1, w̄),

so that (32) simplifies to

D(Nk̄γσf(1, w̄))k̄γ−1
σ f1(1, w̄)(f1(1, w̄) + σw̄f2(1, w̄))−M = 0.

Defining the real numbers ρ := f(1, w̄), ρk := fk(1, w̄), ρK := fK(1, w̄) this

is expressed as

(ρk + σw̄ρK))D(Nρk̄γσ)k̄γ−1
σ −M = 0

which, when solved with respect to k̄σ, provides the homogeneous steady

state. Upon the change of variables sσ = Nρk̄γσ, the steady state equation

becomes (
1

ρN

) γ−1
γ

(ρk + σw̄ρK))D(sσ)s
γ−1
γ

σ −M = 0.

When σ = 0 this yields the steady state for the RE case while when σ = 1

this yields the steady state for the SO case.

Substituting into the equation we see that the linearized equation is

k′′ − rk′ + Tσk = 0,
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where

Tσ :=
1

α

{
A0B11I + (B0 + C0)A11 +A0(B12 + C11)W +A0C12W

2
}
.

Using the homogeneity assumption for the production function, we may

further simplify this matrix to

Tσ = C1I + C21 + C3W + C4W
2, (33)

where

C1 :=
1

α
D(Nρk̄γσ)ρkkk̄

γ−2
σ ,

C2 :=
1

α
(ρ1 + w̄ρK)(ρ1 + σw̄ρK)k̄2(γ−1)

σ D
′
(ρNk̄γσ)

C3 :=
1

α
(1 + σ)ρkKD(Nρk̄γσ)k̄γ−2

σ ,

C4 :=
1

α
σρKKD(Nρk̄γσ)k̄γ−2

σ ,

and ρkk = f11(1, w̄), ρkK = f12(1, w̄) = f21(1, w̄), ρKK = f22(1, w̄). In the

above, we take k̄σ to be the solution of the steady state equation (32).

Having obtained the linearized system, we may now study the evolution

of a spatially nonhomogeneous perturbation of this homogeneous steady

state. Consider a solution of (13) of the form ki = k̄σ + εpi, i ∈ N , where ε

is a small parameter. We substitute into (13) and linearize with respect to ε.

The above results show that the vector p = (p1, · · · , pN ) evolves according

to the second order linear evolution equation

p′′ − rp′ + Tσp = 0, (34)

where Tσ is the matrix given in (33).

The rest of the proof is given in the short proof presented in the main

text. QED

A.3 Proof of Proposition 2

We work in the setting of Theorem 2 setting σ = 0.

(i) If γ < 1 then the function D(s)s
γ−1
γ is strictly decreasing, and if

condition (26) holds then by standard continuity arguments the scalar alge-
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braic equation defining the steady state admits a unique solution k̄0. The

rest follows by routine application of Theorem 2 for σ = 0.

(ii) If γ > 1 the function D(s)s
γ−1
γ is not necessarily strictly decreasing.

Calculating the derivative of this function we note that for s > 0, this

function is strictly decreasing if the condition on the elasticity of demand

holds. The rest of the proof follows as in (i). QED

A.4 Proof of Proposition 3

We work in the setting of Theorem 2 setting σ = 0. We observe that the

matrix T0 consists of 3 contributions. The first one is diagonal T0,1 = C1I,

and furthermore, C1 < 0 always. The second contribution is T0,2 = C21

and C2 < 0 always. Therefore, the matrix T0,1 + T0,2 consists of negative

elements. The first two contributions depend on the matrix W only through

w̄ (and we assume that overall externalities are positive in the sense that

w̄ > 0). The third contribution to this matrix is fundamentally different:

it is T0,3 = C3W and this may contain positive or negative contributions

depending on the particular elements on the matrix W , wij . For a composite

kernel combining positive and negative spatial externalities, some elements

wij may be positive and some may be negative. If

T0,ii := C1 + C2 + C3wii ≤ 0, ∀ i ∈ N
T0,ij := C2 + C3wij ≥ 0, ∀ i, j ∈ N , i 6= j,

then the matrix T0 is a Metzler matrix and this provides detailed infor-

mation concerning its stability properties. In particular, a Metzler matrix

is asymptotically stable if and only if its diagonal elements are negative.

Therefore, if W and the other fundamentals of the system are such that

the two above inequalities hold, the first with strict inequality, then all the

eigenvalues of T0 have real parts which are negative, and by Theorem 2

we expect no agglomerations. What remains is to check the validity of the

above conditions.

Using the definition of the terms C1, C2, C3, the off diagonal terms are

expressed as

T0,ij = k̄γ−2
0 D(ρNk̄γ0 )

(
ρk(ρk + w̄ρK)k̄γ0

D
′
(ρNk̄γ0 )

D(ρNk̄γ0 )
+ ρkKwij

)
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and since k̄γ−2
0 D(ρNk̄γ0 ) > 0, the off diagonal terms will have the same sign

as

Iij := ρk(ρk + w̄ρK)k̄γ0
D
′
(ρNk̄γ0 )

D(ρNk̄γ0 )
+ ρkKwij .

The first term of this sum is clearly negative, so Iij can be positive if the

second term is sufficiently large and positive. Since in principle we allow

ρkK > 0 this implies that wij is sufficiently large. Using the notation s =

ρNk̄γ0 and employing Assumption 3,

ρk
ρN

(ρk + w̄ρK)ED + ρkKwij ≤ Iij ≤
ρk
ρN

(ρk + w̄ρK)ĒD + ρkKwij .

A similar calculation allows us to express the diagonal terms as

T0,ii = k̄γ−2
0 D(ρNk̄γ0 )

(
ρkk + ρk(ρk + w̄ρK)k̄γ0

D
′
(ρNk̄γ0 )

D(ρNk̄γ0 )
+ ρkKwii

)
,

and since k̄γ−2
0 D(ρNk̄γ0 ) > 0, the diagonal terms will have the same sign as

Iii := ρkk + ρk(ρk + w̄ρK)k̄γ0
D
′
(ρNk̄γ0 )

D(ρNk̄γ0 )
+ ρkKwii.

Using the notation s = ρNk̄γ0 and employing Assumption 3,

ρkk +
ρk
ρN

(ρk + w̄ρK)ED + ρkKwii ≤ Iii ≤ ρkk +
ρk
ρN

(ρk + w̄ρK)ĒD + ρkKwii.

The stability matrix is a stable Metzler matrix if Tij ≥ 0 and Tii < 0, by

the above estimates, this will happen if

0 ≤ ρk
ρN

(ρk + w̄ρK)ED + ρkKwij ,

ρkk +
ρk
ρN

(ρk + w̄ρK)ĒD + ρkKwii < 0.

On the other hand, if Tij ≥ 0 and Tii ≥ 0 then T0 is a positive matrix . This

will happen if the fundamentals of the economy are such that

0 ≤ ρk
ρN

(ρk + w̄ρK)ED + ρkKwij ,

ρkk +
ρk
ρN

(ρk + w̄ρK)ED + ρkKwii ≥ 0.

41



If the above conditions hold, then according to the Perron-Frobenious the-

orem, T0 has a real maximal eigenvalue λ∗, which is positive. In particular

we have an estimate for this eigenvalue in terms of mini
∑

j T0,ij ≤ λ∗ ≤
maxi

∑
j T0,ij . We can easily see that

∑
j

T0,ij = k̄γ−2
0 D(ρNk̄γ0 )

Iii +
∑
j 6=i

Iij

 =: k̄γ−2
0 D(ρNk̄γ0 )Ji,

and

Ji := Iii +
∑
j 6=i

Iij = ρkk +
ρk
ρ

(ρk + w̄ρK)
sD
′
(s)

D(s)
+ ρkK

∑
j

wij

= ρkk +
ρk
ρ

(ρk + w̄ρK)
sD
′
(s)

D(s)
+ ρkKw̄.

This term is independent of i so in fact the maximal eigenvalue is equal to

λ∗ = k̄γ−2
0 D(ρNk̄γ0 )

(
ρkk +

ρk
ρ

(ρk + w̄ρK)
sD
′
(s)

D(s)
+ ρkKw̄

)

where s = ρNk̄γ0 , or recalling the definition of the spatially homogeneous

steady state, k̄0,

λ∗ =
M

k̄0ρk

(
ρkk +

ρk
ρ

(ρk + w̄ρK)
sD
′
(s)

D(s)
+ ρkKw̄

)
.

The above estimate allows us to check the condition λ∗ ∈ (0, r
2

4 ], which

by Theorem 2 is the condition for occurrence of agglomerations in the PF-

RECE case. For example, one easily reads off this estimate that we expect

instability if the kernel is such that

H := ρkk +
ρk
ρ

(ρk + w̄ρK)ED + ρkKw̄ > 0

which, taking into account the negativity of ρkk and ED and the positivity

of ρkK , is a condition on largeness of w̄. To see this rearrange the above

term as

H = ρkk +
ρ2
k

ρ
ED +

(
ρkρK
ρ

ED + ρkK

)
w̄.
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If the overall effect of the externalities are positive, then H can be positive

if ρkρKρ ED+ρkK > 0 and if w̄ is large enough. The conditions for instability

in this case are

V :=
ρkρK
ρ

ED + ρkK > 0,

w̄ >
−ρkk − ρ2k

ρ ED

V
=
−ρρkk − ρ2

kED
ρkρKED + ρρkK

.

A.5 Proof of Proposition 4

We work in the setting of Theorem 2 setting σ = 1, and apply arguments

similar to the ones used in the proof of Proposition 2 (ii). The details are

omitted. QED

A.6 Proof of Proposition 5

We work in the setting of Theorem 2 setting σ = 1. The off diagonal

elements of the matrix T1 are

T1,ij =
1

α
k̄γ−2

1 D(s)

(
(ρk + w̄ρK)2 1

ρN

sD
′
(s)

D(s)
+ 2ρkKwij + ρKK

∑
r

wirwrj

)
,

whereas the diagonal terms are

T1,ii =
1

α
k̄γ−2

1 D(s)

(
ρkk + (ρk + w̄ρK)2 1

ρN

sD
′
(s)

D(s)
+ 2ρkKwii + ρKK

∑
r

wirwri

)

where s = ρNk̄γ1 . Since k̄γ−2
1 D(s) > 0, for every k̄1 > 0, the signs of the

terms T1,ij , T1,ii coincide with the signs of the terms Iij , Iii respectively,

where

Iij := (ρk + w̄ρK)2 1

ρN

sD
′
(s)

D(s)
+ 2ρkKwij + ρKK

∑
r

wirwrj , i 6= j,

Iii := ρkk + (ρk + w̄ρK)2 1

ρN

sD
′
(s)

D(s)
+ 2ρkKwii + ρKK

∑
r

wirwri.
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Similar arguments to these used in Proposition 5 provide us with lower and

upper bounds for these terms, in particular,

(ρk + w̄ρK)2 1

ρN
ED + 2ρkKwij + ρKK

∑
r

wirwrj ≤ Iij ≤

(ρk + w̄ρK)2 1

ρN
ĒD + 2ρkKwij + ρKK

∑
r

wirwrj ,

and

ρkk + (ρk + w̄ρK)2 1

ρN
ED + 2ρkKwii + ρKK

∑
r

wirwri ≤ Iii ≤

ρkk + (ρk + w̄ρK)2 1

ρN
ĒD + 2ρkKwii + ρKK

∑
r

wirwri.

The matrix T1 is a Hurwitz stable Metzler matrix if T1,ij ≥ 0 and T1,ii <

0. Using the above bounds we see that this is the case if

0 ≤ (ρk + w̄ρK)2 1

ρN
ED + 2ρkKwij + ρKK

∑
r

wirwrj ,

ρkk + (ρk + w̄ρK)2 1

ρN
ĒD + 2ρkKwii + ρKK

∑
r

wirwri ≤ 0.

If the above conditions are true, the spectrum of the matrix T1 is negative,

and using Theorem 2 no agglomeration patterns are expected to occur.

If T1,ij ≥ 0 and Tii ≥ 0 then T1 is a positive matrix and using the Perron-

Frobenius theorem the top eigenvalue is positive, therefore, by Theorem 2

we expect the emergence of agglomeration patterns. Using the lower bounds

obtained we see that this will happen if

0 ≤ (ρk + w̄ρK)2 1

ρN
ED + 2ρkKwij + ρKK

∑
r

wirwrj ,

0 ≥ ρkk + (ρk + w̄ρK)2 1

ρN
ED + 2ρkKwii + ρKK

∑
r

wirwri.

We may furthermore estimate the top eigenvalue using the estimate mini
∑

j T1,ij ≤
λ∗ ≤ maxi

∑
j T1,ij . Some algebra yields that

∑
j

T1,ij =
1

α
k̄γ−2

1 D(ρNk̄γ1 )
∑
j

Iij ,
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and

∑
j

Iij = ρkk + (ρk + w̄ρK)2 1

ρ

sD
′
(s)

D(s)
+ 2ρkKw̄ + ρKK

∑
j 6=i

∑
r

wirwrj +
∑
r

wirwir


Note that ∑

j 6=i

∑
r

wirwrj +
∑
r

wirwir

 =
∑
j

∑
r

wirwrj

=
∑
j

(∑
r

wirwjr

)
=
∑
j

wjr

(∑
r

wir

)
= w̄

∑
j

wjr = w̄2,

by Assumption 2, so that

∑
j

Iij = ρkk + (ρk + w̄ρK)2 1

ρ

sD
′
(s)

D(s)
+ 2ρkKw̄ + ρKKw̄

2.

As this is independent of i, we obtain the maximal eigenvalue as

λ∗ =
1

α
k̄γ−2

1 D(ρNk̄γ1 )

(
ρkk + (ρk + w̄ρK)2 1

ρ

sD
′
(s)

D(s)
+ 2ρkKw̄ + ρKKw̄

2

)
,

which, keeping in mind the definition of k̄1, simplifies to

λ∗ =
1

α

M

(ρk + w̄ρK)k̄1

(
ρkk + (ρk + w̄ρK)2 1

ρ

sD
′
(s)

D(s)
+ 2ρkKw̄ + ρKKw̄

2

)
.

This expression allows us to check whether the top eigenvalue is less than
r2

4 , as long as the steady state k̄1 is known, and this is usually obtained by a

very straightforward calculation (even if we need to calculate it numerically,

it only involves the solution of a single algebraic equation). QED
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A.7 Details on the Cobb-Douglas example

For the Cobb-Douglas production function we have:

f(k̄σ, w̄k̄σ) = Cw̄γ2 k̄γσ,

f1(k̄σ, w̄k̄σ) = γ1Cw̄
γ2 k̄γ−1

σ ,

f2(k̄σ, w̄k̄σ) = γ2Cw̄
γ2−1k̄γ−1

σ ,

w̄f2(k̄σ, w̄k̄σ) = γ2Cw̄
γ2 k̄γ−1

σ ,

f1(k̄σ, w̄k̄σ) + w̄f2(k̄σ, w̄k̄σ) = γCw̄γ2 k̄γ−1
σ ,

f11(k̄σ, w̄k̄σ) = γ1(γ1 − 1)Ck̄γ1−2
σ w̄γ2 k̄γ2σ = γ1(γ1 − 1)Cw̄γ2 k̄γ−2

σ ,

f12(k̄σ, w̄k̄σ) = γ1γ2Ck̄
γ1−1
σ w̄γ2−1k̄γ2−1

σ = γ1γ2Cw̄
γ2−1k̄γ−2

σ ,

f22(k̄σ, w̄k̄σ) = γ2(γ2 − 1)Ck̄γ1σ w̄
γ2−2k̄γ2−2

σ = γ2(γ2 − 1)Cw̄γ2−2k̄γ−2
σ .

Using the isoelastic demand function D we obtain:

D(Nf(k̄σ, w̄k̄σ)) = BC−δw̄−δγ2 k̄−δγσ N−δ,

D′(Nf(k̄σ, w̄k̄σ)) = −δBC−(1+δ)w̄−(1+δ)γ2 k̄−(1+δ)γ
σ N−(1+δ).

Therefore

A0 = BC−δw̄−δγ2 k̄−δγσ N−δ,

A1 = −δγBC−δw̄−δγ2 k̄−(1+δγ)
σ N−(1+δ),

B0 = γ1Cw̄
γ2 k̄γ−1

σ ,

B11 = γ1(γ1 − 1)Cw̄γ2 k̄γ−2
σ ,

B12 = γ1γ2w̄
γ2−1Ck̄γ−2

σ ,

C0 = σγ2Cw̄
γ2 k̄γ−1

σ ,

C11 = σγ1γ2Cw̄
γ2−1k̄γ−2

σ ,

C12 = σγ2(γ2 − 1)Cw̄γ2−2k̄γ−2
σ

and
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A0B11 = γ1(γ1 − 1)BC1−δw̄γ2(1−δ)k̄γ(1−δ)−2
σ N−δ,

A1(B0 + C0) = −δγ(γ1 + σγ2)BC1−δw̄γ2(1−δ)k̄γ(1−δ)−2
σ N−(1+δ),

A0(B12 + C11) = (1 + σ)γ1γ2BC
1−δw̄γ2(1−δ)−1k̄γ(1−δ)−2

σ N−δ,

A0C12 = σγ2(γ2 − 1)BC1−δw̄γ2(1−δ)−2k̄γ(1−δ)−2
σ N−δ.

Therefore the stability matrix is of the form

Tσ = C1I + C21 + C3W + C4W
2,

where

C1 =
1

α
γ1(γ1 − 1)BC1−δw̄γ2(1−δ)k̄γ(1−δ)−2

σ N−δ,

C2 = − 1

α
δγ(γ1 + σγ2)BC1−δw̄γ2(1−δ)k̄γ(1−δ)−2

σ N−(1+δ),

C3 =
1

α
(1 + σ)γ1γ2BC

1−δw̄γ2(1−δ)−1k̄γ(1−δ)−2
σ N−δ,

C4 =
1

α
σγ2(γ2 − 1)BC1−δw̄γ2(1−δ)−2k̄γ(1−δ)−2

σ N−δ.

This fully characterizes the stability matrix Tσ in both cases (σ = 0 the

RE case, σ = 1 the SO case) in terms of the homogeneous steady state

k̄σ. However, since k̄σ depends on the fundamentals of the economy (the

parameters of the system), it is best at this stage to calculate explicitly

k̄σ in terms of the fundamentals of the economy, substitute in the above

expressions and thus obtain the matrix Tσ purely in terms of the parameters

of the system.

To perform this calculation, recall that the steady state k̄σ is given by

the solution of the equation

A0(B0 + C0)−M = 0

where M = q(ρ+ η). We see that

A0(B0 + C0) = (γ1 + σγ2)BC1−δw̄γ2(1−δ)k̄−1+γ(1−δ)
σ ,
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so that the steady state is given by

k̄σ =

(
M

γ1 + σγ2

) 1
−1+γ(1−δ)

B
− 1
−1+γ(1−δ)C

− (1−δ)
−1+γ(1−δ) w̄

− γ2(1−δ)
−1+γ(1−δ)N

δ
−1+γ(1−δ) ,

or in terms of ρ1 = −1 + γ(1− δ),

k̄σ =

(
M

γ1 + σγ2

) 1
ρ1

B
− 1
ρ1C

− (1−δ)
ρ1 w̄

− γ2(1−δ)
ρ1 N

δ
ρ1 . (35)

We now substitute expression (35) for k̄σ into the stability matrix, to

obtain the final form in terms of the parameters of the system only. This

gives (upon collecting all similar terms)

Tσ = C1I + C21 + C3W + C4W
2,

where

C1 =
1

α
γ1(γ1 − 1)

(
M

γ1 + σγ2

) ρ1−1
ρ1

B
1
ρ1C

1−δ
ρ1 w̄

γ2(1−δ)
ρ1 N

− δ
ρ1 ,

C2 = − 1

α
δγ(γ1 + σγ2)

(
M

γ1 + σγ2

) ρ1−1
ρ1

B
1
ρ1C

1−δ
ρ1 w̄

γ2(1−δ)
ρ1 N

(1−δ)(1−γ)
ρ1 ,

C3 =
1

α
(1 + σ)γ1γ2

(
M

γ1 + σγ2

) ρ1−1
ρ1

B
1
ρ1C

1−δ
ρ1 w̄

γ2(1−δ)
ρ1

−1
N
− δ
ρ1 ,

C4 =
1

α
σγ2(γ2 − 1)

(
M

γ1 + σγ2

) ρ1−1
ρ1

B
1
ρ1C

1−δ
ρ1 w̄

γ2(1−δ)
ρ1

−2
N
− δ
ρ1 ,

and ρ1 = −1 + γ(1− δ).
We finally note that the matrix Tσ can be expressed as

Tσ = τ
{
γ1(γ1 − 1)I − δγ(γ1 + σγ2)N−11 + (1 + σ)γ1γ2w̄

−1W + σγ2(γ2 − 1)w̄−2W 2
}
,

where

τ :=
1

α

(
M

γ1 + σγ2

) ρ1−1
ρ1

B
1
ρ1C

1−δ
ρ1 w̄

γ2(1−δ)
ρ1 N

− δ
ρ1 .

We now have everything in terms of the primitives of the model, and by

using numerical algebra techniques we can find the spectrum of the matrix T ,

and find parameter values for which pattern formation occurs. The patterns
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that occur can be obtained from the spatial form of the relevant eigenvectors.

In closing, we provide explicit forms for the stability criterion of Propo-

sitions 3 and 5. For the Cobb-Douglas utility function,

ρ = w̄γ2 , ρk = γ1w̄
γ2 , ρK = γ2w̄

γ2−1, ρk + w̄ρK = γw̄γ2 ,

ρkk = γ1(γ1 − 1)w̄γ2 , ρkK = γ1γ2w̄
γ2−1, ρKK = γ2(γ2 − 1)w̄γ2−2.

Therefore,

− ρkk
ρkK

=
1− γ1

γ2
w̄,

1

ρN

ρk
ρkK

(ρk + w̄ρK) =
γ

Nγ2
w̄,

so that the stability criterion for PF-RECE becomes

wii <
1− γ1

γ2
w̄ +

δ

N

γ

γ2
w̄,

wij >
δ

N

γ

γ2
w̄.
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Figure 1: An illustration of the spatial economy.
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Figure 2: The kernel w̄ used to generate the interaction matrix W in the
case of a single positive spatial externality.
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Figure 3: Stability diagram for a single positive spatial externality: Stability
diagram for the kernel of Figure 2 as a function of the parameters γ1 − γ2.
The shaded region corresponds to the region in the γ1 − γ2 plane which
corresponds to parameter values for which the top eigenvalue is positive,
therefore pattern formation is possible. The red band corresponds to the
RE case whereas the blue band corresponds to the SO case.
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Figure 4: No agglomeration at the PF-RECE for γ < 1: Spatiotemporal
evolution of a random initial perturbation of the spatially homogeneous
steady state k̄0, for γ1 = 0.2, γ2 = 0.7, using the kernel of Figure 2. As
expected from the theoretical results, the homogeneous steady state is stable
with respect to spatial perturbation and the system equilibrates once more
to the spatially homogeneous steady state.
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Figure 5: Agglomeration emergence at the PF-RECE for γ > 1: Spatiotem-
poral evolution of a random initial perturbation of the spatially homoge-
neous steady state k̄0, for γ1 = 0.16, γ2 = 0.878, using the kernel of Figure
2. As expected from the theoretical results, the homogeneous steady state is
unstable with respect to spatial perturbation and a spatial pattern is formed,
the shape of which is determined by a linear combination of the eigenvectors
corresponding to the positive eigenvalues of T0.
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Figure 6: No agglomeration at the social optimum for γ < 1: Spatiotemporal
evolution of a random initial perturbation of the spatially homogeneous
steady state k̄1, for γ1 = 0.2, γ2 = 0.7, using the kernel of Figure 2. As
expected from the theoretical results, the homogeneous steady state is stable
with respect to spatial perturbation and the system equilibrates once more
to the spatially homogeneous steady state.
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Figure 7: Agglomeration at the social optimum for γ > 1: Spatiotemporal
evolution of a random initial perturbation of the spatially homogeneous
steady state k̄1, for γ1 = 0.122, γ2 = 0.891, using the kernel of Figure 2.
As expected from the theoretical results, the homogeneous steady state is
unstable with respect to spatial perturbation and a spatial pattern is formed,
the shape of which is determined by a linear combination of the eigenvectors
corresponding to the positive eigenvalues of T1.
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Figure 8: The kernel w̄ used to generate the interaction matrix W , in the
case of a composite - positive and negative - spatial externality.
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Figure 9: Stability diagram for a composite spatial externality: Stability
diagram as a function of the parameters γ1 − γ2, using the kernel of Figure
8. The shaded region corresponds to the region in the γ1 − γ2 plane which
corresponds to parameter values for which the top eigenvalue is positive,
therefore pattern formation is possible. The red band corresponds to the
RE case (σ = 0) while the blue band corresponds to the SO case (σ = 1).
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Figure 10: Agglomeration emergence in the case of composite spatial ex-
ternality, at the FC-RECE for γ < 1: Spatiotemporal evolution of a ran-
dom initial perturbation of the spatially homogeneous steady state k̄0, for
γ1 = 0.16, γ2 = 0.256, using the kernel of Figure 8. As expected from the
theoretical results, the homogeneous steady state is unstable with respect
to spatial perturbation and a spatial pattern is formed, the shape of which
is determined by a linear combination of the eigenvectors corresponding to
the positive eigenvalues of T0.

56



0

1000

2000

3000

0

50

100

150
3.2814

3.2815

3.2816

3.2817

3.2818

3.2819

3.282

tx

Figure 11: No agglomeration at the social optimum for the case of a com-
posite spatial externality for γ < 1: Spatiotemporal evolution of a ran-
dom initial perturbation of the spatially homogeneous steady state k̄1, for
γ1 = 0.2, γ2 = 0.7, using the kernel of Figure 8. As expected from the
theoretical results, the homogeneous steady state is stable with respect to
spatial perturbation and the system equilibrates once more to the spatially
homogeneous steady state.
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Figure 12: Agglomeration emergence at the social optimum for the case of
a composite spatial externality for γ < 1: Spatiotemporal evolution of a
random initial perturbation of the spatially homogeneous steady state k̄1,
for γ1 = 0.116, γ2 = 0.9, using the kernel of Figure 8. As expected from the
theoretical results, the homogeneous steady state is unstable with respect
to spatial perturbation and a spatial pattern is formed, the shape of which
is determined by a linear combination of the eigenvectors corresponding to
the positive eigenvalues of T1.
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