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1 Introduction

Decision making when the decision making agent has concerns about possible deviations of the model
used in the decision making process from the model specified, have been associated with the concept
of robustness. Whittle (1996) characterizes a rule as robust if it continues to behave well even if
the model deviates from a specified or a benchmark model and points out that optimality should be
supplemented by robustness. Thus the desire for robustness emerges when the decision maker regards
her model not as the correct one but as an approximation of the correct one, or to put it differently,
when the decision maker has concerns about possible misspecifications of the reference model and
wants to incorporate these concerns into the decision-making rules. Robust control problems have
been traditionally analyzed in the context of risk sensitive linear quadratic Gaussian (LEQG) models
and the H∞ models (e.g. Başar and Bernhard (2008), Whittle (1996)). The H∞ criterion implies
decision making for protection against that ‘worst case’and is related to a minimax approach.

More recently Hansen and Sargent (Hansen and Sargent (2001)) interpreted concerns about model
misspecification in economics as a situation where a decision maker or a regulator distrusts her model
and wants good decisions over a cloud of models that surrounds the regulator’s approximating or
benchmark model, which are diffi cult to distinguish with finite data sets.1. Then they obtain robust
decisions rules by introducing a fictitious ‘adversarial agent’which we will refer to as Nature. Nature
promotes robust decision rules by forcing the regulator, who seeks to maximize (minimize) an objective,
to explore the fragility of decision rules to departures from the benchmark model. A robust decision
rule means that lower bounds to the rule’s performance are determined by Nature —the adversarial
agent —who acts as a minimizing (maximizing) agent when constructing these lower bounds. Hansen
and Sargent (Hansen et al. (2006)) show that robust control theory can be interpreted as a recursive
version of max-min expected utility theory (Gilboa and Schmeidler (1989)). In this context the
decision maker cannot or does not formulate a single probability model and maximizes expected
utility assuming the probability weights are chosen by Nature, the adversarial agent.

Robust control methods have been extensively used to study dynamic models, but no extension has
been undertaken, as far as we know, to models that evolve both in time and space. Decision making
when the spatial dimension of underlying problem is explicitly taken into account and the decision
maker or a regulator seeks to determine spatially dependent rules is attracting increasing interest in
economics. The spatial dimension has been brought into the picture through new economic geography
models (e.g., Krugman (1996), Boucekkine et al. (2009), Desmet and Rossi-Hansberg (2010)), but also
through models of resource management (e.g. Sanchirico and Wilen (1999), Wilen (2007), Smith et al.
(2009), Brock and Xepapadeas (2008, 2010)). In fields like biology or automatic control, systems with
spatially distributed parameter aspects in the dynamics have been used to study pattern formation
on biological agents (e.g., Murray (2003)), the control of infinite platoons of vehicles over time (e.g.,
Bamieh et al. (2002), Curtain et al. (2008)), or groundwater management (e.g., Leizarowitz (2008)).

The new element that the spatial dimension brings into robust control is that concerns about model
misspecification refer now to the benchmark or reference model that describes the spatiotemporal
dynamics of each specific site. If potential deviations from the specified model differ from site to site
then concerns for one site might affect the robust rules for other sites, given the interrelations among
different sites through short or long range spatial effects.

Thus the regulator should design the robust rules not only with respect to the spatial characteristics
of the problem in a specific location but also with respect to the degree to which the regulator distrusts
her model across locations. This means that if concerns about the benchmark model in a given site
differ from concerns in other sites, a spatially dependent robust rule should capture these differences.
This observation allows us to formally identify, for the first time to our knowledge in economics, spatial
hot spots —which are sites where robust control breaks down —or sites where robust control is very
costly as a function of the degree of the regulator’s concerns about model misspecification across all

1 see also Salmon (2002); Hansen et al. (2006); JET (2006), Hansen and Sargent (2008).
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sites. We are also able to identify spatial hot spots where the need to apply robust control induces
spatial agglomerations and breaks down spatial symmetry. From the theory point of view this is,
as far as we know, a new source for generating spatial patterns as compared to the classic Turing
diffusion induced instability (Turing (1952)) and the more recently identified optimal diffusion or
spatial-spillover-induced instabilities (Brock and Xepapadeas (2008, 2010)). Thus hot spots are specific
sites where uncertainties in these sites are such that when concerns about local misspecifications are
incorporated into the decision rules for the entire spatial domain, the global rule could break down,
could be very costly or could induce spatial clustering.

This result regarding robust control in spatiotemporal systems brings up another point which
could be associated with applied policy design and regulation. It has been argued recently (e.g.,
Haldane (2009)) that increased interconnectedness among networks has made various networks, such as
ecological networks, power grid networks, transportation networks, financial networks more unstable.
This interconnectedness and the potential instabilities induced can be associated with the hot spots
introduced by our model and the impact of local properties on global regulation.2

In the rest of the paper we formalize local concerns with the help of local entropy constraints and
we derive robust control rules, for a general linear quadratic model and a special case of this model
where translation invariance allows the derivation of closed form results, as well a general nonlinear
model. We also show how robust control can be applied using linear quadratic approximations. Finally
we provide an economic application where utility is spatially dependent and consumers consume in
situ ecosystem services by traveling to locations. We provide robust decision rules for an optimal
linear regulation problem where the objectives is to determine the optimal supply of services in each
site so that equilibrium local fees are determined. We show how misspecification concerns about local
resource dynamics could break down regulation and induce spatial patterns.

2 Modeling a spatial economy under uncertainty

2.1 The controlled state equation

Consider the economy as being located on a discrete finite lattice L, e.g. L = (ZN )d. By the term
“economy”at this point we consider a collection of state variables x = {xn}, n ∈ L. For fixed n, xn ∈ R
and corresponds to the state of the economy at lattice site n. We therefore consider the state variable
x as taking values on a (finite dimensional) sequence space. To keep our discussion within a Hilbert
space setting we choose to work with the sequence space `2 := `2(ZN ) = {{xn},

∑
n∈ZN x

2
n < ∞}3.

This space is a Hilbert space with a norm derivable from the inner product 〈x, y〉 =
∑

n∈ZN xnyn and
is in fact equivalent to RN . Given this economy we consider a social planning problem modelled as an
optimal linear regulator problem (e.g.Ljungqvist and Sargent (2004)). The optimal linear regulator
problem refers to the optimization of a quadratic objective defined over the whole lattice by exerting
on each lattice site a control un ∈ R where the control for the whole economy is described as a sequence
u = {un}, n ∈ ZN such that u ∈ `2(ZN ) = RN 4. From now on to simplify notation we will simply
denote the state space for the economy by RN .

2Although we choose to interpret the characteristics associated with the distributed parameter aspect as physical
space, the notion of “space” does not have to be physical. It can be used to model characteristics that are associated
with economic, sociological, cultural or other factors. Since the notion of “space” may be broadly interpreted, this
suggests that our methods can be used for the analysis of a wide range of problems.

3This choice is for simplicity of presentation. Most of the arguments and results presented here can be extended to
infinite dimensional systems, admittedly with considerable technical effort employing techniques beyond the scope of the
present paper, or when explicitly stated so with a weighted version of this space.

4The generalization to vector valued state and control variables xn ∈ Rd1 and un ∈ Rd2 on each site n ∈ Z requires
the use of the sequence spaces `2(Rdi), i = 1, 2 rather than `2 := `2(R)) and is straightforward. Furthermore, the
generalization for infinite dimensional lattices is feasible, but becomes technical from the mathematical point of view
and is beyond the scope of the present paper.
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The economy evolves in time and this is modelled by considering the state of the economy as
described by a function x̌ : I → RN such that x̌(t) = {xn(t)}, n ∈ L, where xn(t) is the state of the
system at site n at time t. To ease notation we will use the notation x for this function and similarly u
for the control exerted on the system. In this paper, we are interested in an infinite horizon economy
and thus we assume I = R+. The evolution of the state of the economy in time is subject to statistical
fluctuations (noise), which is introduced into the model via stochastic factors (sources)5, modelled
in terms of a stochastic process w = {wn}, n ∈ ZN , which is considered as a vector valued Wiener
process on a suitable filtered probability space (Ω, {Ft}t∈R+ ,F , P ) (see e.g., Karatzas and Shreve
(1991)). The introduction of noise turns the state of the system for a fixed time t into an RN -valued
random variable, thus the state of the system can be described as an RN -valued stochastic process.
We assume that this stochastic process is the solution of a stochastic differential equation of the form

dxn = (
∑
m

anmxm +
∑
m

bnmum)dt+
∑
m

cnmdwm, n ∈ ZN

where the last term, describing the fluctuations of the state due to the stochasticity, is understood in
the sense of the Itō theory of stochastic integration. In compact form this can be expressed as

dx = (Ax+ Bu) dt+ Cdw (1)

where A,B,C : RN → RN are linear operators, representable by finite matrices with elements anm,bnm,
cnm, respectively. The state equation (1) is an Ornstein-Uhlenbeck equation on the finite dimensional
Hilbert space `2(ZN ) = RN .

At this point we make some comments concerning the economic intuition behind the state equation
(1). Our model is a “spatial”economy where it is considered that the state of the economy at point
m has an effect at the state of the economy at point n. This effect is quantified through an influence
“kernel”(or rather a discretized version of an influence kernel) which can be represented in terms of
a matrix A = (anm). The entry anm provides a measure of the influence of the state of the system at
point m to the state of the system at point n. Network effects knowledge spillovers can be modelled
for example through a proper choice of A. For instance, if the economies do not interact at all then
A = anm = δn,m where δn,m is the Kronecker delta. If only next neighborhood effects are possible then
anm is non-zero only if m is a neighbor of n. Such an example is the discrete Laplacian. Similarly,
the controls at different point of the lattice um are assumed to have an effect at the state of the
system at site n, through the term

∑
m bnmum. For example in a model of a spatial fishery, fishing

effort at a given site may affect fish biomass at another sites through biomass movements. A similar
interpretation for this term holds as for the term

∑
m anmxm. We will identify the matrices A = (anm)

and B = (bnm) with operators denoted by the same symbol, acting from RN → RN .
Finally, the interpretation of the third term

∑
m cnmdwm is a term that tells us how the uncertainty

at sitem is affecting the uncertainty concerning the state of the system at site n. The matrix C = (cnm)
can be thought of as the spatial autocorrelation operator for the system.

2.2 Model uncertainty

Assume now that there is some uncertainty concerning the “true”statistical distribution of the state of
the system. This corresponds to a family of probability measures Q such that each Q ∈ Q corresponds
to an alternative stochastic model (scenario) concerning the state of the system. Considering for

5There is uncertainty concerning the economy which is represented in terms of the vector valued stochastic process
w. These common factors affect the state of the economy x at the different sites. Each factor has a different effect on the
state of the economy on each particular site; this will be modelled by a suitable correlation matrix. It is not of course
necessary that the number of factors is the same as the number of sites in the system however, without loss of generality
we will make this assumption and assume that there is one factor or source of uncertainty related to each site. This
assumption can be easily relaxed.
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the time being finite horizon T , we restrict ourselves to measures which are equivalent with P (i.e.
having the same null sets) such that the Radon-Nikodym derivatives dQ/dP are defined through an
exponential martingale of the type employed in Girsanov’s theorem,

dQ

dP

∣∣∣∣
FT

= exp

(∫ T

0

∑
n

vn(t)dwn(t)− 1

2

∫ T

0

∑
n

v2
n(t)dt

)
, (2)

where v = {vn}, n ∈ ZN is an RN -valued stochastic process which is measurable with respect to
the filtration {Ft} satisfying the Novikov condition exp(

∫ T
0

∑
n v

2
n(t)dt) < ∞. If the process v can

be chosen so that this condition is true for all T , then the result in the infinite horizon limit follows
by appropriately passing to the limit T → ∞. Furthermore, the same theorem guarantees that
w̄n(t) = wn(t) −

∫ t
0 vn(s)ds is a Q-Brownian motion for all n ∈ N, where the drift term vn may be

considered as a measure of the model misspecification at lattice site n. Thus, Girsanov’s theorem (see
e.g. Karatzas and Shreve (1991)) shows that the adoption of the family Q of alternative measures
concerning the state of the system, leads to a family of differential equations for the state variable

dxn = (
∑
m

anmxm +
∑
m

bnmum +
∑
m

cnmvm)dt+
∑
m

cnmdw̄m, n ∈ ZN .

The state variables x = {xn} depend on the choice of u = {un} and v = {vn} therefore, x = xu,v,
however we choose to avoid this notation for simplicity. We therefore tacitly assume that x indicates
the state of the system when the measure Q corresponding to the “information drift”v = {vn} and
the control procedure u = {un} is adopted. In compact form this equation becomes the Ornstein-
Uhlenbeck equation

dx = (Ax+ Bu+ Cv)dt+ Cdw̄, (3)

where for notational convenience the superscripts u, v are omitted from x. The well posedness of the
state equation (3) follows from standard results in the theory of stochastic differential equations.

2.3 The control objective

We now define the control objective. Let us first fix a model, i.e. let us assume that the drift v is fixed.
Then, the control procedure is designed so that the distance form a desired target, chosen without loss
of generality to be x0 = 0 the zero sequence, is minimized at the minimum possible cost, as measured
by the amplitude of the control variable u. Therefore, having chosen the state variable x as given by
the solution of the dynamic equation (3) the decision maker’s goal is to choose the control procedure
u so as to solve the stochastic control problem6

min
u
EQ

[∫ ∞
0

e−rt
∑
n,m

(pnmxn(t)xm(t) + qnmun(t)um(t)) dt

]

or in compact form

min
u
EQ
[∫ ∞

0
e−rt(〈Px(t), x(t)〉+ 〈Qu(t), u(t)〉)dt

]
where 〈·, ·〉 is the inner product in the Hilbert space RN and P,Q : RN → RN are symmetric positive
operators, whose matrix representation is P = {pnm} and Q = {qnm} respectively.

6To simplify the exposition we do not consider, without loss of generality, cross product terms in the quadratic
objective. Cross product terms can be eliminated by a change in units see for example Magill (1977b).
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In the special case of diagonal operators pnm = p δnm, qnm = q δnm this functional assumes the
simplified form

min
u
EQ

[∫ ∞
0

e−rt
∑
n

p(xn(t))2 + q(un(t))2)dt

]
The first sum, can be considered as the total deviation of the states of the system at each site from
the desired state 0 whereas the second sum is the total control exerted on the system in the effort to
drive it to 0. We emphasize that because of the linearity of the system the choice of 0 as the target
state is without any loss of generality whatsoever. This problem is solved under the adoption of the
measure Q, related to the drift v, i.e. it is solved under the dynamic constraint (3). This will provide
a solution leading to a value function V (x0; v); corresponding to the minimum deviation obtained for
the model Qv under the minimum possible effort. Being uncertain about the true model, the decision
maker will opt to choose this strategy that will work in the worst case scenario; this being the one that
maximizes V (x0; v), the minimum over all u having chosen v, over all possible choices for v. Therefore,
the robust control problem to be solved is of the general form

min
u

max
v
EQ

[∫ ∞
0

e−rt
∑
n

∑
m

(pnmxn(t)xm(t) + qnmun(t)um(t)− θrnmvn(t)vm(t))dt

]
(4)

or in compact form

min
u

max
v
EQ
[∫ ∞

0
e−rt(〈(Px)(t), x(t)〉+ 〈(Qu)(t), u(t)〉 − θ〈(Rv)(t), v(t)〉)dt

]
, (5)

subject to the dynamic constraint (3), where θ > 0 and R = {rnm} is a symmetric positive operator.
The third term corresponds to a quadratic loss function related to the “cost”of model misspecification.
Quadratic loss functions are rather common in statistical decision theory, mainly on account of their
connection with entropy (see Proposition 1).

In the special case where pnm = p δnm, qnm = q δnm, rnm = δnm the cost functional simplifies to

min
u

max
v
EQ

[∫ ∞
0

e−rt
∑
n

p(xn(t))2 + q(un(t))2 − θ
∑
n

(vn(t))2)dt

]
subject to the dynamic constraint (3). The new term in the functional, is related to our aversion for
model misspecification.

Another important special case is the case where pnm = pn δnm, qnm = qn δnm, rnm = θnδnm and
θ = 1. Then the control functional simplifies to

min
u

max
v
EQ

[∫ ∞
0

e−rt
∑
n

pn(xn(t))2 + qn(un(t))2 −
∑
n

θn(vn(t))2)dt

]
subject to the dynamic constraint (3). This version of the control functional introduces localized
concerns on the deviation from particular state targets, on the cost of required control as well as on
the cost of model misspecification.

Remark 1 (Interpretation as a differential game). One particularly intuitive way of viewing this
problem is as a two player game, the first player is the decision maker while the second player is
nature who has control over the uncertainty. The first player chooses her actions so as to minimize
the distance of the state of the system from a chosen target at the minimum possible cost, whereas
the second player is a considered by the first player as a malevolent player who tries to mess up the
first players efforts. This interpretation allows us to use the Hamilton-Jacobi-Bellman-Isaacs equation
approach for the solution of the robust control problem.
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2.4 Relation with entropic constrained robust control

The optimization problem (5) subject to (3) for various choices of the operator R is related to entropic
constrained robust control. We present here two examples where this assertion holds. The first
example is related with a “global” in space entropy constraint, while the second example is related
with a “localized”in space entropy constraint, which may be even more relevant in the robust control
of spatially varying interconnected economic systems.

Proposition 1 (Global entropy constraints). The optimization problem (5) subject to (3), for the
choice R = I, is related to a robust control problem with an entropic constraint of the form

inf
u

sup
Q∈Q

EQ
[∫ ∞

0
e−rt(〈Px(t), x(t)〉+ 〈Qu(t), u(t)〉)dt

]
,

subject to H(P | Q) < H0

and the dynamic constraint (3), where by H(P | Q) we denote the Kullback-Leibler entropy of the
probability measures P and Q.

Proof: Consider first a finite horizon problem with horizon T > 0. Within the class of models
considered, for any T > 0, an application of the Girsanov theorem yields that the likelihood of the
models is given by the Radon-Nikodym derivative of the measures P and Q in the form of equation
(2) as long as the Novikov condition holds. A quick calculation yields that the relative entropy of P
and Q is given by

H(Q | P ) := EQ
[
ln

(
dQ

dP

)]
=

1

2

∫ T

0

∑
n

v2
n(t)dt

We now consider the robust optimization problem

sup
Q∈Q

J(x, u; v)

subject to H(Q | P ) ≤ H0

and the dynamic constraint (3) where J(x, u; v) := EQ
[∫ T

0 e−rt (〈Px(t), x(t)〉+ 〈Qu(t), u(t)〉) dt
]
. The

entropic constraint means that we are only considering models (i.e., measures Q) whose deviation in
terms of the relative entropy from the “true”model (i.e., the measure P ) is less than H0. Taking
into account the representation of the entropy in terms of {vn} and using Lagrange multipliers for the
equivalent minimization problem infQ∈Q(−J(x, u; v)) we see that a solution of the relative entropy
constraint problem is equivalent to the solution of

inf
Q∈Q
−J(x, u; v) + θ(H(Q|P )−H0),

subject to (3) where θ ∈ R+ plays the role of the Lagrange multiplier. This is of course equivalent to
the maximization problem

sup
Q∈Q

J(x, u; v)− θ(H(Q|P )−H0),

subject to (3) which using the representation of the relative entropy in terms of {vn} reduces to

sup
{vn}

EQ

[∫ T

0
e−rt

(
〈Px(t), x(t)〉+ 〈Qu(t), u(t)〉 − θ

∑
n

v2
n(t)

)
dt

]
,
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subject to (3). The above reasoning may explain the negative coeffi cient in front of the terms {vn}.
Taking the limit as T →∞ leads to the required result. �

Generalizations of Proposition 1 for the case where more localized constraints with respect to
model uncertainty are taken into account may be considered.

We motivate this by the following discussion: Assume that we are interested in the effect of
uncertainty not on the Wiener process w = {wn} (the primary risk factors in our model) as such
but rather on the process W = Tw where T : RN → RN is an appropriate operator. This means
that we are not interested on the effect of model uncertainty on {wn} but on the linear combination
{
∑

m tnmwm}, which is assumed to reflect more accurately the effect of noise on the state variable.
Various choices for the operator T are possible. One obvious choice is T = C, this means that the
policy maker is interested in specifying the uncertainty so that she may understand its effect on the
state of the system at each lattice site. Another obvious choice is to take T defined as Tw = w` where
` ∈ Z; this choice means that the policy maker is not worried about the uncertainty with respect to
the noise term in general, but only as far as the uncertainty at site m is concerned.

Since w is a Wiener process under P , it follows that wn(t) ∼ N(0, t) while under Q (as a con-
sequence of Girsanov’s theorem) wn(t) ∼ N(−vn, t). Therefore, by the properties of the normal
distribution Wm ∼ N(0,

∑
m tnmtnm) under the measure P , whereas it is distributed as Wm ∼

N(−
∑

m tnmvm,
∑

m tnmtnm) under the measure Q. Therefore, if we only consider the marginal
measures P̄n and Q̄n which are related with the distributions of the random variable Wn under the
measures P and Q respectively, we may consider the “localized”entropy for the two measures as

d̄n := H(Q̄n, P̄n) =

∫ T

0

(∑
m

tnmvm(t)

)2

dt. (6)

The case where T is chosen such that Tw = wn (i.e. T = πn the projection onto the lattice site n),
then the local entropy is the entropy of the marginal measures Pn, Qn which give the distribution of
the component wn given that w is distributed with the measure P and Q respectively. In this case

dn := H(Qn, Pn) =

∫ T

0
v2
n(t)dt. (7)

The robust control problem
inf
u

sup
Q∈Q

J(x;u, v)

subject to the localized entropy constraints d̄n ≤ Hn (where d̄n is defined in (6)) or dn ≤ Hn (where
dn is defined in (7) may lead to optimal control problems of the form discussed here for proper choice
of the operator R. As an illustration we provide the following proposition, which of course can be
generalized to other choices for the constraints.

Proposition 2. The optimization problem (5) subject to (3), for the choice R = D, where D is a
diagonal operator with representation dnm = θn δnm is related to a robust control problem with an
entropic constraint of the form

inf
u

sup
Q∈Q

EQ
[∫ ∞

0
e−rt(〈Px(t), x(t)〉+ 〈Qu(t), u(t)〉)dt

]
,

subject to H(Pn | Qn) < Hn, n ∈ Z

and the dynamic constraint (3), where by H(Pn | Qn) we denote the Kullback-Leibler entropy of the
marginal probability measures Pn and Qn (see equation 7)).
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Proof: The proof follows the same steps as that of Proposition 1 only that now we need the Lagrangian

L = sup
v

{
J(x;u, v) +

∑
n

θn
(
H(Q̄n | P̄n)−Hn

)}

where {θn} are the Lagrange multipliers needed in order to guarantee that the localized entropic
constraints hold. The major difference with Proposition 1 is that here we need a sequence of Lagrange
multipliers rather than a single Lagrange multiplier, since now the constraints are more than one.
Using the expression (7) for the entropies, we obtain the stated results. �

Remark 2. The introduction of the local entropic constraints means that the policy maker is con-
cerned on the effect of model uncertainty on W rather than on w, and her concerns differ at various
lattice points. The concern of the policy maker on uncertainty at lattice site n is quantified by Hn, the
smaller Hn is the less model uncertainty is she willing to accept for lattice site n, given her information
about this site. This assumption is not unreasonable as certain lattice points may be considered as
more crucial than others therefore specific care should be taken for them.

Remark 3. In the robust control problem of Proposition 2 the maximizing adversarial agent - Nature
- chooses a {vn (t)} while θn ∈ (θn,+∞], θn > 0, is a penalty parameter restraining the maximizing
choice of Nature. As noted above θn is associated with the Lagrange multiplier of the entropy constraint
at each site. In the entropy constraint Hn is the maximum misspecification error that the decision
maker is willing to consider given the existing information about the system at site n7. The lower
bound θn is a so-called breakdown point beyond which it is fruitless to seek more robustness because
the adversarial (i.e. the maximizing) agent is suffi ciently unconstrained so that she/he can push the
criterion function to +∞ despite the best response of the minimizing agent. Thus when θn < θn for
a specific site robust control rules cannot be attained. In our terminology this site is a candidate for
a “nucleus”of a hot spot since misspecification concerns for this site will break down robust control
for the whole spatial domain. On the other hand when θm →∞ or equivalently Hm = 0 there are no
misspecification concerns for this site and the benchmark model can be used. The effects of spatial
connectivity can be seen in this extreme example. The spatial relation of site m with site n could
break down regulation for both sites. If site m was spatially isolated from n there would have been
no problem with regulation at m.

Remark 4. Alternative equivalent problems can be formulated. For instance one may consider utility
maximization problems in lieu of distance from a target minimization problems. In such cases the
agent wishes to maximize her utility while nature, the malevolent player, acts so as to minimize it. This
corresponds to maximizing the worst case utility which formally leads to an equivalent problem with
the max and the min interchanged. For uniformity and clarity of presentation we work throughout
with the distance from a target minimization interpretation of the problem (min / max) and emphasize
that all our results may be easily modified to work for the utility maximization interpretations.

3 Translation invariant systems: Closed form solution

In this section we treat a special case of the robust control problem, which allows a solution in closed
form. As discussed in Remark 7 the results in this section apply under rather restricted conditions8

7 If the decision maker can use physical principles and statistical analysis to formulate bounds on the relative entropy
of plausible probabilistic deviations from her/his benchmark model, these bounds can be used to calibrate the parameters
Hn (Athanassoglou and Xepapadeas (2012)).

8On the other hand are examples where the translation invariance property is relevant and useful, as in the longitudinal
control and string stability of vehicular platoons, with L = Z (e.g. Bamieh et al. (2002) Curtain et al. (2008)). On
more general terms translation invariance is quite commonly used in Interacting Particle Systems (IPS) type statistical
mechanics models. Structures like IPS models are quite popular in modeling social interactions.
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however, the closed form solution allows us to obtain a good intuition concerning the qualitative
behavior of the solution, which will guide us in the treatment of the general case in later sections.

Assume that the operators A, B and C are discrete convolution type operators. This is an assump-
tion which essentially states that anm = an−m, i.e. the effect that a site m has at site n depends only
on the distance between n and m and not on the actual positions of the sites. Therefore we assume
that the operators A, B and C are translation invariant. This assumption allows us to make a great
simplifying step towards the resolution of the problem. We employ the discrete Fourier transform on
the lattice L, denoted by F (for a detailed account of the Fourier transform the reader may consult
Wong (2011)). The Fourier transform has the property of turning a convolution operator into a mul-
tiplication operator, i.e. F(Au) = F(A)F(u) where by F(A) we denote the Fourier transform of the
matrix A. To ease notation we will use the convention ûk := F(u)(k) where now k takes values on the
dual lattice. A similar notation with the hats will hold for all other involved quantities.

As the rationale for this section is simply to help us develop our intuition, and we plan to consider
the problem in full generality in subsequent sections using techniques which are generally applicable,
we will make a few more simplifying assumptions. We will assume that our physical space is the finite
dimensional lattice ZN , so that the dynamical system is defined on the Hilbert space `2 := `2(ZN )
which is identified with RN and furthermore we restrict our attention to the class of vectors in `2(ZN )
such that their Fourier transforms are real valued vectors. This is done purely for simplicity and does
not restrict the validity of our qualitative results. The case of the infinite lattice introduces several
technicalities but also does not alter the qualitative nature of our results.

Definition 1. Form = 0, · · · , N−1 consider the following vectors which are elements of `2(ZN ) ' RN :

C(m) := Re(E(m)) =

(
1, cos

(
2π
m

N

)
, · · · , cos

(
2π
nm

N

)
, · · · , cos

(
2π

(N − 1)m

N

))
,

and define
XR := span(C(m);m = 0, · · · , N − 1) ⊂ `2(ZN ) ' RN .

Remark 5. The space XR contains vectors with specific symmetry patterns. For simplicity assume
that N = 2 ∗ n+ 1 is odd. Since cos

(
2π (N−r)m

N

)
= cos

(
2π rmN

)
for all r = 1, · · · , n, any element x of

XR is such that x(0) is arbitrary whereas x(1) = x(N − 1), x(2) = x(N − 2), · · · , x(n) = x(n+ 1) =
x(2n+ 1− n).

The following lemma is useful:

Lemma 1.

(i) If x ∈ XR then Im(x̂) = 0.

(ii) Let A be a symmetric matrix corresponding to a convolution operator (a circulant matrix) such
that the first column of the matrix A, a(1) ∈ XR. If x ∈ XR then Im(F(A ? x)) = 0.

Proof: The proof of (i) follows immediately from the linearity of the discrete Fourier transform and
the properties of the vectors C(m). Then (ii) follows from the fact that F(A ? x) = Fa(1) Fx, and each
of the vectors involved in this product are real valued (by (i)). �

We are now ready to state the assumptions needed for this section. We emphasize that these
assumptions are only used here in order to provide a simple completely worked out example in order
to motivate the general discussion that will be developed in subsequent sections of this paper.

Assumption 1.

(i) The operators A, B, C are translation invariant (such that they correspond to discrete convolution
operators and are represented by circulant matrices).
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(ii) The first column of the matrix representation of these operators are vectors which belong to XR.

(iii) The initial condition x0 ∈ XR and the stochastic process w ∈ XR.

Remark 6. Out of the above assumptions only (i) is essential for the treatment of the control
problem using the Fourier transform. Assumptions (ii) and (iii) are adopted simply to make sure that
the resulting dynamical system in Fourier space is real valued and thus facilitate the analysis. The
results stated here, e.g., the treatment of the control problem using the Riccati equation by no means
is restricted to the real valued case, and can be extended in the case where the resulting dynamical
system is complex valued, by simple separation of the real and the imaginary parts. However, this
would render the algebra rather involved, obscuring the main points regarding the qualitative behavior
of the system, that we wish to stress here.

Example 1. There are many interesting operators arising in realistic models that satisfy Assumption
1 (ii). The discrete Laplacian is an example of such an operator. Furthermore copies of the identity
operator are such operators as well. Therefore, an example that falls in this category is the case
of system (3) with A = ∆d, the discrete Laplacian operator defined (in 1 dimension) as (Ax)n =
xn+1 − 2xn + xn−1 and B = bI, C = cI. This leads to diffusive effects on the lattice, but localized
control and uncertainty effects. Other options are possible.

Proposition 3. Let P = p I, Q = q I, where RN → RN is the identity operator. Under Assumption
1 (i) the control system (5) under the dynamic constraint (3) decouples in Fourier space and becomes

min
{ûk}

max
{v̂k}

EQ

[∫ ∞
0

e−rt
∑
k

p(x̂k(t))
2 + q(ûk(t))

2 − θ
∑
n

(v̂k(t))
2)dt

]

subject to the decoupled state equations

dx̂k(t) = (âkx̂k(t) + b̂kûk(t) + ĉkv̂k(t))dt+ ĉkσkwk(t), k ∈ L,

where âk, b̂k, ĉk are the components of the Fourier transform of the first column of the matrix repre-
sentation of the operators A, B, C respectively, and

σ2
k := 1 + 4

n∑
r=1

cos2

(
2π
rk

N

)
.

and wk is a standard Brownian motion under the measure Q.
If furthermore Assumptions 1 (ii) and (iii) hold then the robust control problem

min
{ûk}∈XR

max
{v̂k}∈XR

EQ

[∫ ∞
0

e−rt
∑
k

p(x̂k(t))
2 + q(ûk(t))

2 − θ
∑
n

(v̂k(t))
2)dt

]
(8)

subject to the decoupled dynamic constraints admits real valued solutions in Fourier space.

Proof: Applying the Fourier transform F on the equations for the state variables yields

dx̂k(t) = (âkx̂k(t) + b̂kûk(t) + ĉkv̂k(t))dt+ ĉkŵk(t), k ∈ L. (9)

Since w ∈ XR it must possess the spatial symmetry of the elements of XR, therefore it consists of n+1
independent Wiener processes w0, w1, · · · , wn and is of the form

w(t) = (w0, w1, · · · , wn, wn, wn−1, · · · , w1)
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whose Fourier transform is real valued and equal to the vector ŵ with coordinates

ŵk(t) = w0 + 2

n∑
r=1

cos

(
2π
rk

N

)
where by a simple application of Lévy’s characterization theorem it can be seen that {ŵk} = σkw
where w is a standard Wiener process with respect to the measure Q and

σ2
k := 1 + 4

n∑
r=1

cos2

(
2π
rk

N

)
.

The system (9) is now a decoupled system and this greatly simplifies the presentation.
Assuming further that P = pI and Q = qI where I : RN → RN is the identity operator, so

that we may use the Plancherel theorem to restate the control functional with respect to the Fourier
transformed variables. According to this result,∑

n

u2
n =

1

N

∑
k

[F(u)(k)]2 =
1

N

∑
k

û2
k

where the first summation takes place in the lattice L whereas the second summation takes place in
the dual lattice. We have used the fact that we restrict our problem to control variables u ∈ XR so
that all the quantities involved in the Plancherel formula are real valued. In a similar fashion we may
deal with the other quadratic terms.

Therefore, one may restate the control functional in Fourier space as

J :=
1

N
EQ

[∫ ∞
0

e−rt
∑
k

p(x̂k(t))
2 + q(ûk(t))

2 − θ
∑
k

(v̂k(t))
2)dt

]

where using the Plancherel theorem we have replaced the summation over the primary lattice with
the summation over the dual lattice. Notice that the effects of the size of the lattice (the 1

N terms)
factor out and have a uniform effect over all the terms of the control functional.

The control problem then becomes

min
{ûk}

max
{v̂k}

EQ

[∫ ∞
0

e−rt
∑
k

p(x̂k(t))
2 + q(ûk(t))

2 − θ
∑
n

(v̂k(t))
2)dt

]
(10)

subject to the decoupled state equations (9). �
The decoupling of the system in Fourier space greatly facilitates its treatment and allows for

explicit solutions.

Proposition 4. The solution of the robust control problem (8) subject to state constraints (9) is
equivalent to the solution of the decoupled problems

min
ûk

max
v̂k
EQ

[∫ ∞
0

e−rtp(x̂k(t))
2 + q(ûk(t))

2 − θ
∑
k

(v̂k(t))
2)dt

]
, k ∈ L (11)

subject to the state constraint (9) for each individual k ∈ L.

Proof: The proof is straightforward and is omitted. �
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Remark 7. The Fourier approach considered here is rather limited as to the class of problems it
is applicable to. The two major limitations are (a) the assumption that the operators involved are
translation invariant and (b) the use of the Plancherel formula (isometry) to turn the control functional
from a mapping of the primal lattice to a mapping of the dual lattice. The second requirement limits
considerably the type of control problems we are allowed to treat in this manner. As a result, only
minor generalizations of the results of this section are allowed to systems of more general forms.
For instance, under further restrictions on the operators, one could treat using Fourier transforms
the localized entropic constrained problem introduced in Proposition 2 by defining the new variables
v̄n =

√
θnvn and rewriting the functional into a form where the Plancherel isometry holds. This

is equivalent to transforming v into v̄ = Dv, where D is a diagonal operator with representation
dnm =

√
θnδnm. However, this transformation changes the state equation as well, therefore care

should be taken so that the operator CD−1 and C are at the same time translation invariant, so that
the Fourier transform of the state equation is also diagonal. This remark shows the diffi culties in
generalizing the Fourier transform approach to systems of more general form. These diffi culties are
overcome in Section 5 where the general linear quadratic problem is treated via a different approach
and not through the Fourier transform.

We will consider the solution of the above problems (both primal and dual) using dynamic pro-
gramming techniques, through the use of the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation (see
e.g. Isaacs (1999), Hansen and Sargent (2001), Anderson et al. (2003) and references therein).

Proposition 5 (Solution of primal problem). The solution of the primal problem

min
ûk

max
v̂k
EQ
[∫ ∞

0
e−rtp(x̂k(t))

2 + q(ûk(t))
2 − θ(v̂k(t))2)dt

]
, (12)

subject to (9) for each k is given by the optimal state equation

dx̂∗k = Rkx̂
∗
kdt+ ĉkσkdwk

where

Rk := âk −
b̂2kM2,k

2q
+
ĉ2
kM2,k

2θ
.

and M2,k is the solution of (
ĉ2
k

2θ
− b̂2k

2q

)
M2

2,k + (2 âk − r)M2,k + 2p = 0. (13)

The optimal controls are given by the feedback laws

û∗k = − b̂kM2,k

2q
x̂∗k, v̂∗k =

ĉkM2,k

2θ
x̂∗k.

Proof: Fix k ∈ Z and let Vk be the value function corresponding to this choice.
Let Lk : C2(R)→ C(R) be the generator operator of the diffusion process {x̂k(t)}, t ∈ R+ defined

by

(LkΦ)(x̂k) = (âkx̂k + b̂kûk + ĉkv̂k)
∂Φ

∂x̂k
+

1

2
ĉ2
kσ

2
k

∂2Φ

∂x̂2
k

. (14)

The relevant Hamilton-Jacobi-Belman-Isaacs (HJBI) equation becomes

rVk = H̄

(
x̂k,

∂Vk
∂x̂k

,
∂2Vk
∂x̂2

k

)
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where for any function Φ of suffi cient regularity the Hamiltonian H̄
(
x̂k,

∂Φ
∂x̂k

, ∂
2Φ
∂x̂2k

)
is defined by

H̄

(
x̂k,

∂Φ

∂x̂k
,
∂2Φ

∂x̂2
k

)
:= inf

ûk
sup
v̂k

(
px̂2

k + qû2
k − θv̂2

k + LkΦ
)
,

and the optimization problems in the definition of the Hamiltonian are considered as static optimiza-
tion problems over v̂k ∈ Vk ⊂ R, ûk ∈ Uk ⊂ R, for fixed k, where Uk, Vk are appropriate subsets of R
9.

We first calculate H̄(x,Φx,Φxx) for any function Φ, where we use the shorthand notation Φx = ∂Φ
∂x̂k

and Φxx = ∂2Φ
∂x̂2k

for simplicity.

The solution of the static optimization problem is given by the first order condition v̂∗k = ĉk
2θΦx.

This corresponds to a maximum value which becomes

Ψ :=
ĉ2
kσ

2
kΦxx

2
+ q û2

k + p x̂2
k + bΦx ûk + âk Φx x̂k +

ĉ2
kΦ

2
x

4θ
.

We now minimize the function Ψ with respect to ûk. The first order condition for the minimum gives

ûk = − b̂k Φx

2 q

which upon substitution gives

H̄(x,Φx,Φxx) =
ĉ2
kσ

2
k Φxx

2
+ p x̂2

k + âk Φx x̂k −
b̂2kΦ

2
x

4 q
+
ĉ2
k Φ2

x

4θ
.

The HJBI equation thus assumes the form

ĉ2
kσ

2
k Vxx
2

+ p x̂2
k + âk Vx x̂k −

b̂2kV
2
x

4 q
+
ĉ2
k V

2
x

4θ
= rV

which is a nonlinear second order differential equation.
We look for a solution of the special form

V (x̂k) =
M2,k

2
x̂2
k +M1,kx̂k +M0,k.

Substituting into the HJBI equation and matching coeffi cients of different orders of x̂k we obtain that
the coeffi cient Mi,k, i = 0, 1, 2 are given by(

ĉ2
k

2θ
− b̂2k

2q

)
M2

2,k + (2 âk − r)M2,k + 2p = 0,

M1,k = 0,

M0,k =
ĉ2
kσ

2
kM2,k

2r
.

The value function is thus obtained as long as the solution of the above quadratic equation is obtained.
We now substitute this expression into the equations for the optimal controls to obtain

v̂∗k =
ĉkM2,k

2|θ| x̂k, û∗k = − b̂kM2,k

2q
x̂k.

9Or of Rd without loss of generality.
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Therefore, upon substitution into the state equation we see that the optimal state is given by the
solution of the stochastic differential equation

dx̂∗k = Rkx̂
∗
kdt+ ĉkdŵk

where

Rk := âk −
b̂2kM2,k

2q
+
ĉ2
kM2,k

2θ

This completes the proof. �
Proposition 6 (Solution of the dual problem). The solution of problem

max
v̂k

min
ûk
EP [

∫ ∞
0

e−rtp(x̂k(t))
2 + q(ûk(t))

2 − θ(v̂k(t))2)dt], k ∈ L (15)

subject to (9) for any k ∈ Z coincides with that of the primal problem (12) as given by Proposition 5
and there is no duality gap.

Proof: The value function of the dual problem V ] satisfies the Hamilton-Jacobi-Bellman equation

H(x̂k, V
]
x , V

]
xx) = rV ]

where for any function Φ, of suffi cient regularity, the Hamiltonian H(x,Φx,Φxx) is defined by

H(x,Φx,Φxx) := sup
v̂k

inf
ûk
{px̂2

k + qû2
k − θv̂2

k + LkΦ}

where Lk is the generator operator of the diffusion process, defined by (14). As before the optimization
problem is a static one. A quick calculation shows that for any function Φ,

H(x,Φx,Φxx) = H̄(x,Φx,Φxx)

thus leading to the same HJBI equation as for the primal problem. The result then follows retracing
the steps in the proof of Proposition 5. �
Remark 8. The above two propositions simply provide candidates for the solution of the problem.
Whether these candidates are indeed solutions and whether the solution is a saddle point depends on
the choice of the parameter θ, as will become clear in the next section.

Remark 9 (Certainty equivalent). Suppose that instead of the stochastic problem treated here we
treat instead the control problem with the deterministic state equation

dx̂k = (âkx̂k + b̂kûk + ĉkv̂k)dt

and the same quadratic cost functional (where of course now the expectation is redundant). This is
a deterministic linear quadratic optimal control system. The solution of the relevant robust control
problem is governed by the Hamilton-Jacobi-Isaacs equation, where the operator Lk is now replaced
by the first order operator L0

k with the following action on the value function: L0
kV = (âkx̂k + b̂kûk +

ĉkv̂k)Vx. Then, working in the same fashion as in Propositions 5 and 6 we see that the optimal policy
for the deterministic problem coincides with that of the stochastic problem. Therefore, as far as the
form of the feedback law of the optimal policies are concerned stochastic effects play no role. This has
been called by Hansen and Sargent the certainty equivalent. Our results suggest that this certainty
equivalence result can be extended to translation invariant spatial systems. However, one should be
extremely cautious with that, since in the stochastic case the optimal policy is a stochastic process
(through the dependence of u∗ and v∗ on x which is a stochastic process. On the contrary, the optimal
policy in the deterministic case is deterministic (through the dependence of u∗ and v∗ on x which is a
deterministic process). This qualitative behavior shows in the calculation of the value function, which
for the certainty equivalent problem works out to be V 0 =

M2,k

2 x̂2
k < V .
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4 Hot spot formation in translation invariant systems

In this section we study the validity and the qualitative behavior of the controlled system. We will
call the qualitative changes of the behavior of the system hot spots. We will define three types of
hot spots:

B Hot spot of type I: This is a breakdown of the solution procedure, i.e., a set of parameters
where a solution to the above problem does not exist.

B Hot spot of type II: This corresponds to the case where the solution exists but may lead to
spatial pattern formation, i.e., to spatial instability similar to the Turing instability.

B Hot spot of type III: This corresponds to the case where the cost of robustness becomes more
that what is offering us, i.e., where the relative cost of robustness may become very large.

In what follows we discuss the formation of hot spots in the case of finite lattices ZN ; the mechanism
for hot spot formation in the infinite lattice is similar and certain remarks will be made when necessary.

4.1 Hot spots of type I

The breakdown of the solution procedure can be seen quite easily by the following simple argument.
As seen in the proof of Proposition 5 the value function assumes a simple quadratic form, as long as
the algebraic quadratic equation(

ĉ2
k

2θ
− b̂2k

2q

)
M2

2,k + (2 âk − r)M2,k + 2p = 0. (16)

admits real valued solutions, at least one of which is positive. The positivity of the real root is
needed since, by general considerations in optimal control, the value function must be convex. If the
above algebraic quadratic equation does not admit at least one positive real valued solution this is
an indication of breakdown of the existence of a solution to the robust control problem which will be
called a hot spot of Type I.

Proposition 7 (Type I hot spot creation:). Hot spots of Type I may be created in one of the following
two cases:

(IA) Either,

(2âk − r)2 < 8 p

(
ĉ2
k

2θ
− b̂2k

2q

)
, (17)

(IB) Or,

(2âk − r)2 > 8 p

(
ĉ2
k

2θ
− b̂2k

2q

)
,

(
ĉ2
k

2θ
− b̂2k

2q

)
> 0, 2âk − r > 0. (18)

Remark 10. Hot spots of this type may arise either due to low values of θ, or due to high values of
q or low values of r. For example, they may arise either if

θ <
pĉ2
k(

âk − r
2

)2
+ p

q b̂
2
k

, k ∈ ZN .
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or if

θ >
pĉ2
k(

âk − r
2

)2
+ p

q b̂
2
k

,
q

θ
>
b̂2k
ĉ2
k

, r < 2âk, k ∈ ZN .

In particular hot spots are expected to occur in the limit as θ → 0 while they are not expected to
occur in the limit as θ →∞.

Proof of Proposition 7: Let us rewrite the above equation in the simpler form

M2
2,k +

a

R
+

2p

R
= 0

where

a := 2âk − r, R :=
ĉ2
k

2θ
− b̂2k

2q
, (19)

assuming of course that R 6= 0. The condition for having two real solutions of equation (16) is that
the discriminant is positive,

∆ :=
( a
R

)2
− 8

p

R
> 0

which is equivalent to the condition a2 > 8 pR. If R < 0 this condition always holds, whereas if R > 0
it will hold for particular modes which of course depend on the parameter values. We now look for
the solutions. We will consider two cases and the relevant subcases:

• Case A: R < 0. Then
√

∆ ≥ |a/R|.

• Case A1: If a > 0 then there is only one positive solution which is

M2,k =
1

2

(
− a
R

+
√

∆
)

• Case A2: If a < 0 then there is only one positive solution (which is exactly of the same form
as in Case A1),

M2,k =
1

2

(
− a
R

+
√

∆
)

• Case B: R > 0. Then
√

∆ ≤ |a/R|.

• Case B1: If a > 0 then there is two negative solutions none of which is acceptable on account
of loss of convexity of the value function, therefore this is a hot spot of Type I.

• Case B2: If a < 0, then there are two positive solutions

0 ≤M (1)
2,k =

1

2

(
− a
R
−
√

∆
)
≤M (2)

2,k =
1

2

(
− a
R

+
√

∆
)
.

Out of these two we should keep the smaller one M (1)
2,k which of course will give the minimum

value function (the other choice will correspond to a “second best”or suboptimal solution).

Therefore, summarizing a hot spot of Type I may arise if

(IA) Either, a2 < 8 pR

(IB) Or, a2 > 8 pR, R > 0 and a > 0.

or in terms of the original notation if
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(IA) Either,

(2âk − r)2 < 8 p

(
ĉ2
k

2θ
− b̂2k

2q

)
, (20)

(IB) Or,

(2âk − r)2 > 8 p

(
ĉ2
k

2θ
− b̂2k

2q

)
,

(
ĉ2
k

2θ
− b̂2k

2q

)
> 0, 2âk − r > 0. (21)

Conditions (20) and (21) for the occurrence of hot spots of Type I are multiparameter conditions
which are easily checked once a particular system is selected for study but when trying to infer general
qualitative aspects concerning the optimal path there is not a simple or unique way of interpreting
them. They may hold for some k ∈ Z, meaning that the robust control procedure will break down
in the particular site of the dual lattice, thus bringing down the successful control procedure of the
whole system due to the coupling effects. One may call that mechanism a transmission of breakdown.
Another way to look at these conditions is to use them as selection criteria for the parameters of the
system not related to the operators A, B, C for which a hot spot will definitely occur. For example
case IA can be translated to

θ <
pĉ2
k(

âk − r
2

)2
+ p

q b̂
2
k

, k ∈ ZN .

which will hold for every site in the dual lattice as long as

θ < θcr := min
k∈ZN

{
pĉ2
k(

âk − r
2

)2
+ p

q b̂
2
k

}
.

Therefore, if θ is too small, smaller than the critical value θcr then the robust control mechanism
breaks down and Type I hot spots will certainly occur. However, this is not the only possible case.
As Case IB shows, if

θ >
pĉ2
k(

âk − r
2

)2
+ p

q b̂
2
k

, q > θ
b̂2k
ĉ2
k

, r < 2âk, k ∈ ZN ,

then a hot spot of Type I will arise. This will be true if

θ > max
k∈ZN

{
pĉ2
k(

âk − r
2

)2
+ p

q b̂
2
k

}
, q > max

k∈ZN

{
θ
b̂2k
ĉ2
k

}
, r < 2 min

k∈ZN
{âk},

meaning that hot spots of Type I may also arise for high values of θ if either the cost of control is high
or if the discount factor is low enough. �

Remark 11 (Hot spot of type I and loss of convexity). As mentioned above, a hot spot of Type I
represents breakdown of the solvability of the optimal control problem. We argue that this represents
some sort of loss of convexity of the problem thus leading to non existence of solution. To illustrate
this point more clearly let us take the limit as θ → 0 which corresponds to hot spot formation. For
such values of θ, the particular ansatz employed for the solution breaks down and in fact as θ → 0 we
expect M2,k → 0 so that the quadratic term in the value function will disappear. This leads to loss of
strict concavity of the functional, which may be seen as follows: The functional contains a contribution
from v̂k through the dependence of x̂k on v̂k which contributes a quadratic term of positive sign in
v̂k. The robustness term, which is proportional to −θ contributes a quadratic term of negative sign
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in v̂k. For large enough values of θ the latter term dominates in the functional and guarantees the
strict concavity, therefore, leading to a well defined maximization problem. In the limit of small θ
the former term dominates and thus turn the functional into a convex functional leading to problems
with respect to the maximization problem over {v̂k}. We call this breakdown of concavity in v, which
lead to loss of convexity of the value function in x, for small values of θ a hot spot of type I. When
this happens, there is a duality gap, since the assumptions of the min-max theorem do not hold. In
terms or regulatory objectives this means that concerns about model misspecification make regulation
impossible.

The following examples show some interesting limiting situations:

Example 2. Assume that A is the discrete Laplacian whereas B and C are copies of the identity
operator. This corresponds to the case that there is diffusive coupling in the state equation but
controls as well as the uncertainty have purely localized effects. A quick calculation shows that in this
case ak = α

(
1 + 2 cos

(
2πk
N

))
where α is the diffusion coeffi cient whereas bk = β and ck = γ for every

k ∈ ZN where β and γ is a measure for the control and the uncertainty respectively. In this particular
case, the quadratic equation becomes(

γ2

2θ
− β2

2q

)
M2

2,k +

(
2α

(
1 + 2 cos

(
2πk

N

))
− r
)
M2,k + 2p = 0.

which must have a real valued solution for every k. There will not exist real valued solutions if

∆ :=

(
2α

(
1 + 2 cos

(
2πk

N

))
− r
)2

− 8 p

(
γ2

2θ
− β2

2q

)
< 0

or equivalently after some algebra((
1 + 2 cos

(
2πk

N

))2

− r

2α

)
<

p

α2

(
γ2

θ
− β2

q

)
.

This is the condition for generation of a hot spot of Type I in this particular example. If this condition
holds for some k ∈ ZN , this particular k is a candidate for such a hot spot. We may spot directly
that this cannot hold for any k ∈ ZN if the right hand side of this inequality is negative, i.e., when
θ > θcr := q γ

2

β2
, therefore hot spots of this type will never occur for large enough values of θ. The critical

value of θ for the formation of such hot spots will depend on the relative magnitude of uncertainty
over control . For θ < θcr then a hot spot of Type I may occur for the modes k such that(

1 + 2 cos

(
2πk

N

))2

≤ r

2α
+ ρ

or equivalently for k such that (
1 + 2 cos

(
2πk

N

))2

≤
( r

2α
+ ρ
) 1
2

where ρ2 = p
α2

(
γ2

θ −
β2

q

)
.

Example 3. The opposite case is when A is again the discrete Laplacian while B and C are multiples
of matrices containing 1 in the diagonal and the same entry ν in every other position. This means
that the controls as well as the uncertainty has a globalized effect to all lattice points, in the sense
that the controls even at remote lattice sites have an effect at each lattice point. Then b̂k = β δk,0,
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ĉk = γ δk,0, i.e., the Fourier transform is fully localized and is a delta function. Then, for k = 0 the
quadratic equation becomes (

γ2

2θ
− β2

2q

)
M2

2,0 − (6α− r)M2,0 + 2p = 0

while for k 6= 0 the quadratic term vanishes yielding

−
(

2α

(
1 + 2 cos

(
2πk

N

))
− r
)
M2,0 + 2p = 0

4.2 Hot spots of type II

We now consider the spatial behavior of the optimal path, as given by the Itō stochastic differential
equation

dx̂∗k = Rkx̂
∗
kdt+ ĉkdŵk

The optimal path is a random field, thus leading to random patterns in space, some of which may
be short lived and generated simply by the fluctuations of the Wiener process. We thus look for
the spatial behavior of the mean field as describable by the expectation X̂k := EQ[x̂∗k]. By standard
linear theory X̂k(t) = X̂k(0) exp(Rkt) and this means that for the modes k ∈ ZN such that Rk ≥ 0
we have temporal growth and these modes will dominate the long term temporal behavior. On the
contrary modes k such that Rk < 0 decay as t→∞ therefore such modes correspond to (short term)
transient temporal behavior, not likely to be observable in the long term temporal behavior. The
above discussion implies that the long time asymptotic of the solution in Fourier space will be given
by

X̂k(t) '
{
x̂k(0) exp(Rkt), k ∈ P := {k ∈ ZN : Rk ≥ 0 }

0 otherwise

To see what this pattern will look like in real space, we simply need to invert the Fourier transform,
thus obtaining a spatial pattern of the form

Xn(t) := EQ[xn(t)] =
∑
k∈P

x̂k(0) exp(Rkt) cos

(
2π

k

N
n

)
. (22)

The above discussion therefore leads us to a very important conclusion, which is of importance to
economic theory of spatially interconnected systems:

If as an effect of the robust optimal control procedure exerted on the system there exist
modes k ∈ ZN such that Rk > 0, then this will lead to spatial pattern formation which
will create spatial patterns of the form (22). As we will see there are cases what such
patterns will not exist in the uncontrolled system and will appear as an effect of the
control procedure. We will call such patterns an optimal robustness induced spatial
instability or hot spot of Type II.

The economic significance of this result should be stressed. We show the emergence of a spatial
pattern formation instability, which can be triggered by the optimal control procedures exerted on
the system; in other words emergence of spatial clustering and agglomerations in the economy caused
by uncertainty aversion and robust control. This observation can further be extended in the case of
nonlinear dynamics, in the weakly nonlinear case. When the dynamics are nonlinear in the state the
emergence of hot spots of Type II and optimal robustness induced spatial instability should be linked
to the spatial instability of a spatially uniform steady state corresponding to the linear quadratic
approximation of a nonlinear system. This instability which can be thought as pattern formation
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precursor will induce the emergence of spatial clustering. As time progresses and the linearized solution
(22) grows beyond a certain critical value (in terms of a relevant norm) then the deviation from the
homogeneous steady state is so large that the linearized dynamics are no longer a valid approximation.
Then the nonlinear dynamics will take over and as an effect of that some of the exponentially growing
modes could be balanced thus leading to more complicated stable patterns. At any rate even in the
nonlinear case the mechanism described here will be a Turing type pattern formation mechanism
explaining the onset of spatial patterns in the economy10.

The next proposition identifies which modes can lead to hot spot of Type II formation (optimal
robustness induced spatial instability) and in this way through equation (22) identifies possible spatial
patterns that can emerge in the spatial economy.

Proposition 8 (Pattern formation for the primal problem). There exist pattern formation behavior
for the primal problem if there exist modes k such that Rk > 0, i.e., if there exist modes k such that

1

2

r −
√√√√r2 + 8 p

(
ĉ2
k

2θ
−
b̂2k
2q

) ≤ âk ≤ 1

2

r +

√√√√r2 + 8 p

(
ĉ2
k

2θ
−
b̂2k
2q

) ,

r2 + 8 p

(
ĉ2
k

2θ
− b̂2k

2q

)
≥ 0. (23)

Proof: The expectation X∗k := EQ[x∗k], k ∈ Z of the optimal path is given by the solution of the linear
deterministic ordinary differential equation dX∗k(t) = RkX

∗
k(t) dt, k ∈ Z. Thus pattern formation

occurs for these k ∈ Z such that Rk > 0. Let us now try to express Rk in a form which reveals in a
more clear fashion the actual dynamics of the optimal path. We will use the notation of Section 4.1,
introducing again the quantities a and R (see equation (19 )). In terms of these quantities we rewrite
Rk = âk +RM2,k where M2,k is the positive solution of the quadratic equation (of course we assume
that we do not have occurrence of a Type I hot spot). We are limited in cases A1, A2 and B2 of
Section 4.1. A quick calculation shows that in cases A1 and A2,

Rk =
1

2
(r +R

√
∆)

whereas in case B2,

Rk =
1

2
(r −R

√
∆)

where
∆ :=

( a
R

)2
− 8

p

R
> 0.

Note that in any case Rk < r
2 which is of course expected since on the optimal path the functional

is finite therefore possible exponential growth of a mode cannot exceed e
r
2
t. Thus pattern formation

type behavior in the optimal path will correspond to cases where 0 ≤ Rk <
r
2 . Since the right hand

side of the inequality always holds, we just consider the left hand side. A simple but tedious algebraic
calculation (nor reproduced here) shows that in any of the above cases Rk ≥ 0 implies a2 ≤ r2 + 8 pR
(which can only hold as long as r2 + 8πR ≥ 0) and this is equivalent to

1

2

(
r −

√
r2 + 8 pR

)
≤ âk ≤

1

2

(
r −+

√
r2 + 8 pR

)
.

10For more details concerning the connection (similarities and differences) of the optimal robustness induced instability
with the Turing mechanism for pattern formation see Remark 16. For a full discussion of the nonlinear case (beyond the
particular case of translation invariant operators) see Sections 7 and 6.
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Thus modes satisfying this condition will lead to pattern formation. This condition translated to the
original parameters of the problem yields the pattern formation condition

1

2

r −
√√√√r2 + 8 p

(
ĉ2
k

2θ
−
b̂2k
2q

) ≤ âk ≤ 1

2

r +

√√√√r2 + 8 p

(
ĉ2
k

2θ
−
b̂2k
2q

) ,

r2 + 8 p

(
ĉ2
k

2θ
− b̂2k

2q

)
≥ 0.

�
It is interesting to see what is the behavior of the system as a function of parameters with respect

to pattern formation and the qualitative behavior of the optimal path.

Remark 12 (Pattern formation and the discount factor). Note that this pattern formation behavior
is in full accordance with the fact that our state equation is the optimal path for the linear quadratic
control problem. Since it solves this problem it is guaranteed that I := EQ[

∫∞
0 e−rtx̂2

k(t)dt] is finite
11

therefore x̂k(t) can at most grow as e
r
2
t, otherwise the quantity I would be infinite. This is verified

explicitly in the proof of the above proposition where it is shown that Rk ≤ r
2 for every k ∈ ZN .

Therefore, all possible patterns may at most exhibit growth rates less or equal to r/2. In the limit as
r → 0 i.e. in the limit of small discount rates pattern formation is becoming increasingly diffi cult in
the linear quadratic model since growing patterns will be suppressed by the control procedures.

Proposition 9 (Stabilizing or destabilizing effects of control). The robust control procedure may either
have a stabilizing or destabilizing effect with respect to pattern formation. in the sense that it may
either stabilize an unstable mode of the uncontrolled system or on the contrary facilitate the onset of
instabilities.

In particular,

(i) If qθ <
b̂2k
ĉ2k
then the robust control procedure has a stabilizing effect

(ii) If qθ >
b̂2k
ĉ2k
then the robust control procedure has a destabilizing effect

Case (ii) suggests robust control caused pattern formation, in the sense that we obtain a growing
mode leading to a pattern which would not have appeared in the uncontrolled system.

Proof: To support the above claim we need to compare the threshold in âk for the onset of instability
in the uncontrolled system a

(0)
k,cr and the relevant quantity a

(c)
k,cr. Of course for the uncontrolled system

a
(0)
k,cr , whereas by Proposition 8 we see that a

(0)
k.cr := 1

2

(
r −

√
r2 + 8 p

(
ĉ2k
2θ −

b̂2k
2q

))
. If a(c)

k,cr > a
(0)
k,cr = 0

then control has a stabilizing effect over mode k (since the effect of control is to make it more diffi cult
for this mode to develop instability by raising the instability threshold) while if on the contrary
a

(c)
k,cr < a

(0)
k,cr = 0, then control has a de-stabilizing effect over mode k (since the effect of control is

to make it easier for this mode to develop instability by lowering the instability threshold). Then by
simple algebra the claim arises. �
Remark 13. However, it should be emphasized that for any parameter values the robust control
imposes an upper bound of r2 for any unstable mode (see also Remark 12) whereas this does not hold
for the uncontrolled system, for which unstable modes may have any growth rate, determined purely
by the spectrum of A (the largest growth rate will correspond to the largest positive eigenvalue of A
in the finite dimensional case). Therefore, the effect of control on a mode which is unstable will be to
temper its growth rate and “trim”it to the maximum value r

2 .

11This is in fact equivalent to the assertion that the optimal path satisfies temporal transversality conditions at infinity.
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Remark 14 (The θ → ∞ limit). As seen by Proposition 9 in the θ → ∞ limit, the control has a
stabilizing effect on unstable modes of the uncontrolled system.

Remark 15 (The θ → 0 limit). Similarly, by Proposition 9 in the θ → 0 limit, the robust control has
a destabilizing effect on modes of the uncontrolled system which are “marginal”to be stable i.e. with
α̂k negative but close to zero.

Remark 16 (Similarities and Differences with Turing instability). This is similar to Turing instability
leading to pattern formation but with a very important difference! In contrast to Turing instability
which is observed in an uncontrolled forward Cauchy problem, this instability is created in an optimally
controlled problem in the infinite horizon. This has important consequences and repercussions both
from the conceptual as well as from the practical point of view. On the conceptual level, a controlled
system is related to a system that somehow its final state (at t → ∞ in our case) is predescribed.
Therefore, our result is an “extension” of Turing instability in a forward-backward system and not
just to a forward Cauchy problem, as is the case for the Turing instability. On the practical point
of view, the optimal control nature of the problem we study here induces serious constraints on the
growth rate of the allowed patterns which has a strict upper bound is related only to the discount
factor of the model and not on the operator A. This is not the case for the standard Turing pattern
formation mechanism, in which the growth rate upper bound is simply related to the spectrum of the
operator A.

4.3 Hot spot of type III: The cost of robustness

The value function is of the form Vk =
M2,k

2 x̂2
k +

ĉ2kM2,k

2r . This gives us the total cost of the minimum
possible deviation from the desired goal and it is made up from contributions by three terms:

B the term proportional to p in the cost functional which corresponds to the cost related to the
deviation from the desired target,

B the term proportional to q in the cost functional which corresponds to the cost related to the
cost of the control u needed to drive the system to the desired target and

B the term proportional to θ in the cost functional which corresponds to the cost of robustness
(which is the cost incurred by the regulator because she wants to be robust when she has concerns
about the misspecification of the model).

The value functions depends on all these three contributions and this may be clearly seen since
M2,k is in fact a function of the parameters p, q, θ.

An interesting question is which is the relevant importance of each of these contributions in the
overall value function. Does one term dominates over the others or not?

A simple answer to this question will be given by the elasticity of the value function with respect to
these parameters, i.e., by the calculation of the quantities 1

V
∂V
∂p ,

1
V
∂V
∂q and

1
V
∂V
∂θ . It is easily seen that

these elasticities are independent of x̂k and reduce to 1
M2,k

∂M2,k

∂p , 1
M2,k

∂M2,k

∂q and 1
M2,k

∂M2,k

∂θ , respectively.
Whenever one of these quantities tends to infinity, that means that the contribution of the relevant
procedure dominates the control problem12

In particular whenever 1
M2,k

∂M2,k

∂θ → ∞, then we say that the cost of robustness becomes more
expensive than what it offers, and we will call that a hot spot of type III. This quantity can be

12This interpretation arises from observation that close to a point (p0, q0, θ0) the value function behaves as

Vk '
∂Vk
∂p

∣∣∣∣
p=p0

(p− p0) +
∂Vk
∂q

∣∣∣∣
q=q0

(q − q0) +
∂Vk
∂θ

∣∣∣∣
θ=θ0

(θ − θ0).
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calculated directly from the solution of the quadratic equation (13) through straightforward but tedious
algebraic manipulations, which we choose not to reproduce here.

However, an illustrative partial case, which allows some insight on the nature of hot spots of type
III is the following:

Differentiating (13) with respect to θ yields

− ĉ2
k

2θ2
M2

2,k + 2

(
ĉ2
k

2θ
− b̂2k

2q

)
M2,k

∂M2,k

∂θ
+ (2 âk − r)

∂M2,k

∂θ
= 0.

Dividing by M2
2,k we obtain

− ĉ2
k

2θ2
+ 2

(
ĉ2
k

2θ
− b̂2k

2q

)
1

M2,k

∂M2,k

∂θ
+ (2 âk − r)

1

M2
2,k

∂M2,k

∂θ
= 0.

Let us now take the particular case where 2âk = r, so that

1

M2,k

∂M2,k

∂θ
=

ĉ2
k

4θ

(
ĉ2k
2θ −

b̂2k
2q

)
which becomes infinite for values of θ such that θ → qĉ2k

b̂2k
. The general case 2âk 6= r may present similar

phenomena.

4.4 Non translation invariant systems

The methodology employed in this section to provide closed form solutions used the translation invari-
ant property of the dynamical system, which allowed the use of the discrete Fourier transform. This
is a symmetry property of the system (commutation of the vector field with the translation operator)
which has as a result that the spatial operators are convolutions and therefore the discrete Fourier
transform may be used to turn this convolution into a product in Fourier space. This situation may be
generalized for other symmetry groups and may lead to interesting generalizations for systems which
are not translation invariant but invariant under other more complicated symmetries. In this case the
tools of harmonic analysis on groups (see e.g. Rudin (1990)) may be used and generalized Fourier
transforms may be defined in terms of the Haar measure13. In terms of this generalized Fourier trans-
form, the system will decouple thus allowing for use of the proposed method in more general settings
(see e.g. Bamieh et al. (2002) for a related discussion).

5 The general linear quadratic control problem

We now relax the simplifying (and restrictive) assumptions concerning the translation invariance
property of the operators A,B,C as well as the overly restrictive assumption that P = pI and Q = qI.

We now consider instead the solution of the general linear quadratic robust control problem (5)
under the state constraint (3), and comment on the possibility of hot spot formation working in real
space directly rather than in Fourier transform space. The general form of the problem allows the study
of a wider range of economic applications (see, e.g., Section 8 for an illustration of the applicability
of the general problem). The relaxation of translation invariance leads to significant complications,
and to the inability to derive solutions in closed form. However, as our subsequent analysis shows the
qualitative aspects regarding hot spot formation in general linear quadratic problems persist, beyond
the translation invariant case.
13The Haar measure is a generalization of the Lebesgue measure, which is invariant under the symmetry group
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5.1 Solution in terms of the Riccati equation

The problem may be treated using the Hamilton-Jacobi-Bellman-Isaacs equation, which is solvable in
terms of an operator (matrix) Riccati equation.

Theorem 1. If the problem (5) under the dynamic constraint (3) has a solution, for arbitrary x ∈ H,
then the optimal controls are of the feedback control form

u = −Q−1B∗Hsymx, v =
1

θ
R−1C∗Hsymx, (24)

and the optimal state satisfies the Ornstein-Uhlenbeck equation

dx = (A− BQ−1B∗Hsym +
1

θ
CR−1C∗Hsym)x dt+ CdW (25)

where Hsym is the solution of the operator Riccati equation

HsymA + A∗Hsym − HsymEsymHsym − rHsym + P = 0 (26)

and Esym := 1
2(E + E∗) is the symmetric part of E := BQ−1B∗ − 1

θCR−1C∗.

Proof: We first obtain the relevant Hamilton-Jacobi-Bellman-Isaacs equation for this stochastic dif-
ferential game. The generator for the Ornstein-Uhlenbeck equation is of the form

LV =
∑
n

(∑
m

(anmxm + bnmum + cnmvm)

)
∂

∂xn
+
∑
n

∑
m

∑
k

cnkcmk
∂2

∂xn∂xm
(27)

or in compact form

LV = 〈Ax+ Bu+ Cv,DV 〉+ Tr(CC∗D2V )

where DV is the finite sequence (in `2 = `2(ZN ) ' RN ) with (DV )n = ∂
∂xn

V and D2V is the operator

which can be represented as the matrix with elements (D2V )nm = ∂2

∂xn∂xm
V . With Tr we denote the

trace of the operator involved whereas with the superscript tr we denote the transposition.
We now construct the Hamiltonian. We start with the function H : RN × RN × RN → R defined

as
H(V ;x, u, v) = LV + 〈Px, x〉+ 〈Qu, u〉 − θ〈Rv, v〉

We need to obtain the upper Hamiltonian and lower Hamiltonians defined respectively as

H̄ := sup
u

inf
v
H(V ;x, u), H := inf

v
sup
u
H(V ;x, u).

Let us present in some relative detail the construction of H. The maximization over u is a quadratic
optimization problem over the Hilbert space RN . The first order condition is easily calculated to be

1

2
(Q + Q∗)u = −B∗DV

where by the symmetry of Q and the positive definite property is is seen that

u = −Q−1B∗DV

We work similarly with the minimization problem over v which is again a quadratic optimization
problem in RN whose first order conditions yield

θ

2
(R∗ + R)v = C∗DV
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which upon invoking the symmetry of the operator R and the positive definite property yields

v =
1

θ
R−1C∗DV

We now insert these expressions for u and v back into H to obtain

H =

〈
Ax− BQ−1B∗DV +

1

θ
CR−1C∗DV,DV

〉
+ Tr(CC∗D2V )

+
1

2
〈Px, x〉+

1

2
〈QQ−1B∗DV,Q−1B∗DV 〉 − 1

2θ
〈RR−1C∗DV,R−1C∗DV 〉

which upon rearrangement yields

H = 〈Ax,DV 〉 − 1

2

〈(
BQ−1B∗ − 1

θ
CR−1C∗

)
DV,DV

〉
+

1

2
〈Px, x〉+ Tr(CC∗D2V )

The lower Hamilton-Jacobi-Bellman-Isaacs then becomes

〈Ax,DV 〉 − 1

2

〈(
BQ−1B∗ − 1

θ
CR−1C∗

)
DV,DV

〉
+

1

2
〈Px, x〉+

1

2
Tr(CC∗D2V ) = rV

This is a nonlinear elliptic equation in RN , the solution of which will provide the optimal controls.
On account of the quadratic nature of the problem we seek a solution of the following ansatz

V (x) =
1

2
〈Hx, x〉+ 〈j, x〉+K

where H is an operator, j is an element of the Hilbert space RN and K ∈ R. For this choice14

DV =
1

2
(H + H∗)x+ j, D2V =

1

2
(H + H∗).

We now substitute into the HJBI equation and match powers of x.
(a) The quadratic terms yield the operator Riccati equation

1

2
(H∗ + H)A− 1

8
(H∗ + H)E(H + H∗) +

1

2
(P− rH) = 0 (28)

where

E := BQ−1B∗ − 1

θ
CR−1C∗

the solution of which yields H.
(b) The terms which are linear in x provide a linear homogeneous equation for j which admits the

trivial solution j = 0.
(c) Finally, the constant term K is

K =
1

2r
Tr

(
CC∗

H + H∗

2

)
.

A quick inspection of the solution shows that we only need the symmetric part of the operator H,
Hsym := 1

2(H + H∗), in order to specify the optimal control and the value function15.
We therefore need to obtain a Riccati equation involving Hsym only.

14 If H is a symmetric operator, then the above expressions simplify to DV = Hx + j, D2V = H, however, we do not
make this assumption at this point.
15 It is easily seen that 〈Hx, x〉 = 〈Hsymx, x〉.
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Taking the adjoint of equation (28) and adding we obtain the following symmetric Riccati equation
for Hsym := 1

2(H + H∗) in the form

HsymA + A∗Hsym − HsymEsymHsym − rHsym + P = 0

where Esym := 1
2(E + E∗) is the symmetric part of E. In the above calculation we have explicitly taken

into account the symmetry of P.
The determination of the optimal controls requires only the solution of the symmetric Riccati

operator equation (29). Once Hsym is known the feedback control laws are given by

u = −Q−1B∗Hsymx, v =
1

θ
R−1C∗Hsymx, (29)

where now x is assumed to be the current state of the system. �

Remark 17. The operator Riccati equation (29) is the generalization of the quadratic algebraic
equation (13) in the case where the operators A, B and C are not translation invariant, and thus
amenable to analysis using the Fourier transform. Furthermore, in the case where the state space is
finite dimensional (i.e., in the case of finite lattices) the operator Riccati equation assumes the form
of a matrix Riccati equation.

Clearly, by Theorem 1 the solvability and the properties of the solution for the optimal control
problem is reduced to the solvability and the properties of the solution of the operator Riccati equation
(29).

Proposition 10. Let m = ||A|| defined as m = {sup〈Ax, x〉, ||x||RN = 1} and assume that m < r/2.
Then, for small enough values of ||E|| and ||P|| the operator Riccati equation (29) admits a unique
bounded strong solution.

Proof: By further defining the operator Ã = A− r
2I the symmetric operator Riccati equation simplifies

to

HsymÃ + ÃtrHsym − HsymEsymHsym + P = 0 (30)

This is in the standard form of operator Riccati equation studied in the literature (see e.g., Bensoussan
et al. (1992) or Da Prato (2002)). The spectrum of the operator Ã is in the interval [−m− r

2 ,m−
r
2 ]

whereas the spectrum of the operator −Ã is in the interval [ r2 − m,m + r
2 ]. If m < r

2 then d :=

dist(spec(Ã), spec(−Ã)) > 0. Then according to Theorem 3.7 in Albeverio et al. (2003) (whose proof
is based on the Banach contraction theorem) equation (30) has a unique solution. �

Remark 18. The “smallness”condition on ||E|| and ||P|| is made explicit via the Banach contraction
argument in the proof of Theorem 3.7 in Albeverio et al. (2003). In particular, for the existence of
a strong solution we need ||E|| + ||P|| < d. It can be seen that this condition breaks down for small
enough values of θ, which in fact is the analogue of the hot spot of Type I that was obtained before.
for the restricted class of models involving translation invariant operators, using the Fourier expansion
method (see Proposition 7).

5.2 Hot spot formation in general linear quadratic systems

The various hot spots that were obtained explicitly for the translation invariance case, can be gener-
alized for the general linear quadratic case.

Concerning hot spots of Type I, these are related to the breakdown of the minimax problem
involved, for small values of the parameter θ. In fact, in McMillan and Triggiani (1994) it has been
shown rigorously for a similar deterministic problem that there does not exist a saddle point and the
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functional becomes unbounded if θ < θcr where θcr is an intrinsic parameter of the system related
to the data of the system. This result has been shown with the use of Lyusternik theory, and can
be extended for the stochastic case. In fact, our results concerning the solvability of the relevant
Riccati equation are pointing in this direction. Therefore, hot spots of Type I do exist in general
linear quadratic systems, and are indeed related to model mispecification costs.

Similarly, hot spots of Type II will also exist. It can be seen that if the operators involved
in the Riccati equation are diagonalizable then the Riccati equation admits a solution Hsym is a
diagonalizable operator as well. Then, by the properties of diagonalizable operators the operators
involved in the feedback laws are diagonalizable as well. A quick inspection shows that in this case the
spectral theorem holds for the operator R, therefore, the pattern formation behavior for the optimal
path may now be obtained by spectral analysis. The hot spots of Type II will correspond to these
eigenfunctions of the operator R := A−BQ−1B∗Hsym + 1

θCR−1C∗Hsym that have positive eigenvalues.
A priori estimates of the spectrum may help us rule out the possibility of the emergence of hot spots.

The above general formulae for the feedback controls simplify in certain particular cases of interest.
For instance, assume that we are interested in the localized entropic constraints problem introduced
in Proposition 2. Then, since R is a diagonal operator, it can easily be seen that R−1 is also diagonal
and has the representation r−1

nm = θ−1
n δnm. Therefore, the optimal feedback control v can be expressed

as
vn =

1

θn
(C∗Hsymx)n,

where,
(C∗Hsymx)n =

∑
m

fnmxm

where fnm are determined as long as the operators C∗, Hsym are known. This form clarifies the effect of
model misspecification in particular sites; the behavior of the system at lattice site n depends inversely
proportionally ( 1

θn
contribution) on the Lagrange multiplier of the localized entropic constraint at this

site, as well as on the state of the system at neighboring sites through the term (C∗Hsymx)n. This
semi-explicit form allows us to understand the effect of model misspecification in certain sites. For
instance sites with very large values of θn that in the absence of robust control tend to be unstable
will remain so. Sites with small values of θn, but larger than a critical cutoff value, that in the absence
of model misspecification tend to be unstable may be stabilized as an effect of robustness. On the
other hand extremely small values of θn may destabilize the system. This qualitative picture is in
some sense a generalization of the arguments concerning hot spot formation, from the limited case of
translation invariant operators to the general linear quadratic case.

The above remarks can help us understand the emergence of hot spots in the general linear model.
Assume for simplicity that C is diagonal and that the spatial domain is finite so that θ = (θ0, ..., θN−1)
is the vector of local misspecification concerns. The low θ’s will correspond to locations with the
higher concerns. If one or more of these low θ’s are such that the “smallness”condition on ||E|| and
||P|| is violated then local concerns will cause global regulation to break down.

In the same way if the low θ’s are such that the operator R has positive eigenvalues then local
concerns may induce global spatial clustering through the mechanism described in section 4.2.

Pattern formation in the general linear quadratic system can also emerge through a ‘non-Turing’
mechanism. We can write the mean field for the optimal state as

dx =

[
A− BQ−1B∗Hsym +

1

θ
CR−1C∗Hsym

]
x = Rx (31)

Assume that matrix A is invertible but matrix R which embodies optimization and misspecification
concerns is not invertible. In this case the steady state equation 0 = Rx will have more than one
solutions. This means that there will be vectors x 6= 0 that will satisfy 0 = Rx. These vectors will be
ker (R). If ker (R) consists of vectors which are spatially nonuniform then pattern formation emerges.
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This is pattern formation mechanism is however a non-Turing mechanism. Of course to examine
whether such a mechanism exists a detailed analysis of matrix R and its null space is required.
For example given the parametrization of the system one could ask the question whether a vector of
misspecification concerns θ exists, such that R is not invertible. If such a vector exists then the specific
misspecification concerns could induce pattern formation in the general linear quadratic model.

6 Interlude: Linear quadratic approximation of nonlinear robust
control problems

The approach in sections 2-4 which provided the most tractable results, was based on linear quadratic
problems. However, by using the linear quadratic approximation of general nonlinear control problems
(see, e.g., Magill (1977a) ) we may adapt our results for the linear quadratic problem to obtain an
approximation to a nonlinear robust optimal control problem. We sketch this approach.

Assume that we have a nonlinear problem, subject to weak additive noise, of the general form,

dxn = f(
∑
m

anmxm,
∑
m

bnmum)dt+
∑
m

cnmdwm. (32)

The problem is subject to model uncertainty which may be modelled in terms of a drift {v} so that
applying Girsanov’s theorem (see, e.g., Karatzas and Shreve (1991) for the finite dimensional theory
or Carmona and Tehranchi (2006) for the case of infinite dimensions) in the same fashion as for the
linear case we obtain the family of models

dxn =

(
f(
∑
m

anmxm,
∑
m

bnmum) + ε
∑
m

cnmvm

)
dt+ ε1/2

∑
m

cnmdwm. (33)

Assume now that the control {u} has to be chosen so as to maximize a cost functional of the form

J(u, v) = max
{u}

min
{v}

EP [

∫ ∞
0

e−rt
∑
n

(
U(xn(t), un(t)) + θv2

n(t)
)

(34)

which is a robust control problem of maximizing the utility function for the system for the worst
possible model.

Since the noise is assumed to be weak we may consider as a zeroth order approximation a deter-
ministic optimal path which is uniform in space, i.e. a solution {x0

n(t)} such that x0
n(t) = x0(t) for

all n ∈ Z. This is the solution of a deterministic optimal control problem, which corresponds to the
minimization of J(u, v) for the unperturbed (deterministic) state equation (33) with ε = 0 and is sup-
ported by a uniform in space control {u0} and uncertainty drift {v0}. Let us consider perturbations
of {x, u, v} around this reference solution, i.e. let us consider solutions of the above problem of the
form

{x, u, v} = {x0, u0, v0}+ ε{x1, u1, v1}

where now {x, u, v} are subject to uncertainty and are solutions of the stochastic state equation (33)
with ε a small parameter. The perturbation is assumed to be spatially dependent.

We linearize the state equation around the state {x0, u0, v0} to obtain to first order in ε that

dx1
n =

(
A
∑
m

anmx
1
m +B

∑
m

bnmu
1
m +

∑
m

cnmv
1
m

)
dt+

∑
m

cnmdwm (35)

where
A := f1(

∑
m

anmx
0
m(t),

∑
m

bnmu
0
m(t)), B := f2(

∑
m

anmx
0
m(t),

∑
m

bnmu
0
m(t))
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where f1, f2 are the partial derivatives of f with respect to the first and the second variable respectively.
In general A and B are functions of time but not of space. In the special cases where either {x0, u0}
are steady states or the operators generated by the matrices {anm}, {bnm} are such that

∑
m anm = 0,∑

m bnm = 0 (diffusive coupling) the functions A and B are constant.
We furthermore look at the local behavior of the cost functional J(u, v) around the state {x0, u0}.

To be more precise, we calculate J(u0 + εu1, v0 + εv1) and Taylor expand in ε. The first order term in
the expansion is effectively the Gâteaux derivative of the functional J calculated at {u0, v0}, and by
the extremality properties of {x0, u0, v0} this vanishes. We are thus left with the second order terms
in this expansion which are

J1 =

∫ ∞
0

e−rt
∑
n

(U11(x1
n(t))2 + U22(u1

n(t))2 − |θ|(v1
n(t))2dt

where Uij , i, j = 1, 2 are the second derivatives of the utility function U with respect to the first
and second variable calculated at (

∑
m anm)x0(t) and (

∑
m bnm)u0(t). Therefore, Uij = Uij(t) are

deterministic functions of time (but not of space). If the utility function U is separable then U12 = 0.
We may assume this without loss of generality.

The above discussion shows (rather informally) that the problem of extremizing J(u, v) subject
to the stochastic state equation (33) may be approximated by the problem of extremizing J1(u1, v1)
subject to the linear state equation (35). This is a linear quadratic control problem similar to the
one studied here. If x0, u0, v0 are time independent (steady states) then this linear quadratic control
problem is of the exact form studied here and the results of this paper may be used in their exact form
to study the approximation of the nonlinear problem. If x0, u0, v0 are time dependent then the linear
quadratic control problem is one with time varying deterministic coeffi cients, which is still manageable
by a slight modification of the results of this paper.

Remark 19. The above linear quadratic approximation to a nonlinear problem may also have an
alternative interpretation as follows: Consider any desired path {x0(t)} and study small deviations
from that. Linearizing the state equation we obtain a linear system similar to (35). Then the problem
is to pick the controls u so as to keep the perturbed problem (35) as close as possible to the desired
target {x0(t)},for the worst case scenario in terms of a whole family of models (specified by {v}). If the
distance from the target is given by a quadratic distance functional, and the model misspecification is
given by an entropic measure then it is easy to see that the above mentioned “stabilization”problem
is equivalent to a linear quadratic robust control problem of the form treated in this paper.

7 Nonlinear systems

7.1 General form of the controlled system

Consider now the nonlinear system

dx = (Ax+ F(x) + Bu)dt+ Cdw

where as before x ∈ RN , A : RN → RN is a linear operator and F : RN → RN is in general a
nonlinear operator and C is the covariance operator. The simplest choice for the nonlinear term F
may be F(x) = (f1(x1), f2(x2), · · · ) in which case the nonlinear effects are purely local, however this is
by no means a necessary restriction16. The functions {fi} will be assumed to be twice differentiable,
together with their derivatives and satisfying dissipativity conditions. The control acts on the system
through the linear operator B : RN → RN .
16The general form F(x) = (f1(x), f2(x), · · · ) where at each site the nonlinear effects depends on the state of the system

at all lattice sites is easily handled within the framework presented here.
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The robust form of the system, using the Girsanov theorem is

dx = (Ax+ F(x) + Bu+ Cv)dt+ Cdw. (36)

We now consider a control functional of the form

J = EQ
[∫ ∞

0
e−rt(U(x(t)) + K(u(t))− T(v(t)))dt

]
(37)

where U : RN → R is a measure of distance from a desired target, K : RN → R is a cost function for
the control and T : RN → R is a cost function for the robustness. All three functions are assumed
convex. The robust control problem thus becomes

min
u

max
v
EQ
[∫ ∞

0
e−rt(U(x(t)) + K(u(t))− T(v(t)))dt

]
subject to the nonlinear state equation (36). By K$ : H∗ → R we denote the Fenchel-Legendre
transform of K defined by

K$(p) := sup
x∈H

[〈p, x〉 − K(x)],

where by the Riesz representation we assume that the dual space H∗ ' H17.

7.2 Solution in terms of the HJBI equation

The nonlinear optimal control problem may be treated in terms of a fully nonlinear Hamilton-Jacobi-
Bellman-Isaacs equation.

Theorem 2. The Hamilton-Jacobi-Bellman-Isaacs equation associated with the robust control problem
(37) subject to the constraint (36) is the nonlinear PDE

〈Ax+ F(x), DV 〉+ Tr(CC∗D2V ) + U(x)− K$(−B∗DV ) + T$(C∗DV ) = rV (38)

where K$, T$ are the Fenchel-Legendre transforms of K and T$ respectively. Given a solution of
this equation V : H → R of suffi cient regularity the associated closed loop system is the nonlinear
Ornstein-Uhlenbeck system

dx = (Ax+ F(x)−DK$(B∗DV (x)) +DT$(C∗DV (x)))dt+ Cdw (39)

Proof: The generator operator for the diffusion process defined by the solution of (36) is the linear
operator L whose action on a suitably smooth function Φ is given by

LΦ =
∑
n

(∑
m

(anmxm + bnmum + cnmvm) + fn(xn)

)
∂

∂xn
Φ +

∑
n

∑
m

∑
k

cnkcmk
∂2

∂xn∂xm
Φ (40)

or in compact form

LΦ = 〈Ax+ F(x) + Bu+ Cv,DΦ〉+ Tr(CC∗D2Φ)

We now consider the Hamiltonian

H(V ;x, u, v) = LV + U(x) + K(u) + T(v),

17 In this particular case H = `2 := `2(ZN ) ' RN and by the finite dimensionality of the Hilbert space involved H = H∗.
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which may be rewritten as a sum of three terms

H(V ;x, u, v) = H1(V ;x) +H2(V ;u) +H3(V ; v),

H1(V ;x) := 〈Ax+ F(x), DV 〉+ Tr(CC∗D2V ) + U(x),

H2(V ;u) := 〈Bu,DV 〉+ K(u),

H3(V ; v) := 〈Cv,DV 〉+ T(v),

Note that

inf
u
H2(V ;u) = inf

u
(〈Bu,DV 〉+ K(u)) = inf

u
(〈u,B∗DV 〉+ K(u))

= − sup
u

(〈u, (−B∗DV )〉 − K(u)) = −K$(−BtrDV ),

where K$ denotes the Fenchel-Legendre transform of K. By the theory of the Fenchel-Legendre
transform (see e.g., Aubin and Ekeland (1984)) p ∈ ∂K(u) is equivalent to u ∈ ∂K$(p) where ∂ denotes
the subdifferential operator, therefore, by the regularity assumptions imposed on K, the minimizer is

u = −DK$(B∗DV ) (41)

Similarly,

sup
v
H2(V ; v) = sup

v
(〈Cu,DV 〉 − T(u)) = T$(C∗DV ) (42)

where T$ is the Fenchel-Legendre transform of T. By similar arguments as above, the maximizer is

v = DT$(C∗DV ) (43)

The Hamilton-Jacobi-Bellman-Isaacs equation assumes the form

〈Ax+ F(x), DV 〉+ Tr(CC∗D2V ) + U(x)− K$(−B∗DV ) + T$(C∗DV ) = rV

which is an infinite dimensional second order fully nonlinear partial differential equation for the value
function V . The nonlinearity enters through the Fenchel-Legendre transforms K$ and T$ of K and T
respectively. Assume the existence of a regular enough solution and substitute (41) and (43) into (36)
to obtain the closed loop control system (39). �

The solvability of the HBJI equation follows by generalizing results either of Da Prato and Zabczyk
(2002) or Cerrai (2001), for stochastic control problems, to the case of stochastic differential games.
We do not provide the detailed proof here for the sake of brevity. The proof uses techniques from the
theory of maximal dissipative operators.

7.3 Hot spot formation in nonlinear systems

We now consider the possibility of hot spot formation in the nonlinear robust control system. Let us
assume a steady state x0 ∈ H for the averaged over all realizations of the noise closed loop system,
which presents no spatial patterns. This means that x0 is such that Ax0 = 0 and furthermore

0 = F(x0)−DK$(B∗DV (x0)) +DT$(C∗DV (x0))

for a suffi ciently smooth solution of the HJBI equation. We now consider a small perturbation of x0

in the form x = x0 + εz where ε is a small real number and z ∈ H, and see how the closed loop system
(39) evolves under this perturbation. A relevant question is whether z develops any spatial variability
which is interpreted as a hot spot of type II.

The following proposition provides some answer to this question.

32



Proposition 11. Assume that V is a C2 solution of (38). If K$ and T$ are C2 then the perturbation
z is the solution of the linear Ornstein-Uhlenbeck equation

dz = (Az +DF(x0)z −D2K$ B∗D2V (x0)z +D2T$ C∗D2V (x0)z)dt+ Cdw

The type II hot spots correspond to the unstable modes of the above equation, i.e., to eigenvectors of
the matrix

R := A +DF(x0)−D2K$ B∗D2V (x0) +D2T$ C∗D2V (x0)

with positive eigenvalues.

Proof: Substitute x = x0 + εz into (39) and expand in powers of ε, using the Taylor expansion
theorem. According to that

DV (x0 + εz) = DV (x0) + εD2V z +O(ε2)

where D2V : H → H is a symmetric operator corresponding to the generalization of the Hessian
matrix. Therefore, by the assumed regularity of K$

DK$(B∗DV (x)) = DK$(B∗DV (x0)) + εD2K$ B∗εD2V z +O(ε2)

and similarly for the other nonlinear terms. Inserting into the closed loop system yields the required
result for the evolution of z. The rest follows by spectral theory considerations. �

The value functions and the Legendre-Fenchel transforms satisfy convexity properties. This gives
important information on the second derivatives D2K$, D2V (x0), D2T$ and in particular assuming
suffi cient regularity they are positive operators. This property allows us at least to obtain some a
priori estimates on the spectrum of R and thus provide values on the parameters of the model which
allow the generation of hot spot. In this respect, we may generalize some of the findings of the linear
model in the nonlinear model.

8 Application: Distance-dependent utility and robust control of in
situ consumption

An issue that has been given attention in spatial models of individual behavior is the concept of
distance-dependent utility. In models of travel behavior the impact of distance on trip preferences
underlies the choice of an individual to consume at locations which are away from his/her current
location. The distance-dependent utility relates to the concept of spatial discounting which, similar
to time discounting, provides weights which an individual attaches to utility derived at locations
away from current location (e.g. Smith (1975), Smith (1976), Perrings and Hannon (2001), Wu and
Plantinga (2003), Akamatsu et al. (2009)). For exponential spatial discounting for example, a spatial
discount factor can be defined as α (n) = β−n, β > 1, n = 0, 1, 2, ..., N−1 indicating that the individual
will attach declining weights to utility accruing at locations further away from his/her present location
at n = 0.

Spatial discounting and distance - dependent utility can be interpreted in terms of an individual
expressing preferences for consuming at different points in space. This interpretation can be associated
with traveling to consume for example environmental amenities which take the form of services gen-
erated by stocks of natural capital. According to the Millennium Ecosystem Assessment classification
stocks of natural capital accumulated in ecosystems generate supporting, provisioning, regulating, and
cultural services. Some of these services can be consumed only in situ which means that an individual
needs to travel a certain distance in order to consume. Recreational or tourism related services is a
classic example of in situ consumption.
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The analytical framework developed in this paper can be readily used to study the structure of
equilibrium when utility is distance dependent and an individual consumes in locations away from her
under uncertainty. We formulate this application in the context of an economy located on a discrete
lattice defined in terms of a finite group of integers modulo N. That is in our spatial economy each
location or each cell belongs to a discrete ring of cells with the property that the cell 1 is the same
as cell N, cell 2 as cell N + 1 and so. A representative consumer is located at each cell (location)
n = 0, 1....N − 1. Each cell is characterized by a stock of natural capital xn (t) which generates
environmental services that can be consumed only in situ.

Consumption at location n is the sum of consumption of all individuals or un (t) =
∑N−1

m=0 unm (t),
where unm (t) is the consumption of an individual located at location m = 0, 1, ...N − 1 of services at
location n. Consumption of services implies reduction of natural stocks. The evolution of the natural
capital stock at a given location is determined by natural growth at the location and by the impact
that stock levels at nearby locations might have on this natural growth rate. This impact might be
positive or negative in the context of facilitating or competing growth. The evolution of the natural
stock is subject to stochastic shocks. Thus we write

dxn (t) =
N−1∑
m=0

[αnmxm (t)− γnmun (t)] dt+
N−1∑
m=0

cnm (t) dwm, (44)

for the evolution of the stock of natural capital at location n = 0, 1, · · · , N − 1. In this formulation
xn (t) for all n, can be interpreted as deviations from a spatially homogeneous benchmark equilibrium
stock, x̄ which could be determined historically (e.g. a preindustrial level). The terms αnmxm (t) of
(44) can be regarded as a first order approximation around the benchmark steady state, with ann being
the value of the derivative of the first order approximation evaluated at the benchmark equilibrium.18.
The influence kernel αnm, n 6= m describes the spatial effects of nearby stocks on the growth of stock
at n, while the influence kernel γnm describes the spatial effects that consumption of services in nearby
locations might have on the stock of amenities at location n. Influence kernels are assumed symmetric
so the impact depends only on the distance between n and m. Thus αnm ≡ αn−m = αm−n ≡ αmn,
γnm ≡ γn−m = γm−n ≡ γmn.

Consumers

A representative individual located at a given location (cell) n can derive utility by travelling to the
other locations of the ring and consuming the corresponding amenity services. Let (unm (t) , bnm (t)) ,
m, n = 0, 1, ..., N − 1, denote the consumption at location m of an individual located at n and the
corresponding bliss point for the same individual. An individual located at point n can travel to
locations 0, 1, ..., n − 1, n + 1, ...N − 1 to consume the services there and compare consumption to
his/her corresponding bliss point.

We define individual utility in terms of square deviations of consumption from the bliss point
or Un =

∑
m βnm (unm (t)− bnm (t))2 ,m = 0, ..., N − 1, with the objective being the minimization

of deviations from the corresponding bliss point (e.g. Ljungqvist and Sargent (2004)). The influence
kernel βnm reflects the weight that the individual located at n, attaches to the utility derived at location
m, so it can be interpreted as spatial discounting. We assume that the kernel is symmetric and that
the impact depends only on the distance between n and m so that βnm ≡ βn−m = βm−n ≡ βmn.
If βnm = β then all locations are treated equally. To consume services at location m an individual
located at n should pay a known exogenous price pm (t) ≥ 0, which could be for example an entrance
fee.
18The full nonlinear model can be considered in the context of Section 7 with similar qualitative result. The linear

approach provides however better tractability.
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Assume that the individual has a quasi linear utility function with respect to a numeraire com-
modity, and that the price pm (t) is treated as parametric. The individual’s problem is

max
{unm}

−
n−1∑
m=0

βnm (unm (t)− bnm (t))2 + In (t)−
N−1∑
m=0

pm (t)unm (t) for all n

where In (t) is income at n, and by {unm} we denote the whole family of processes unm(·). The solution
results in individual demand curves for consumption at each location

2βnmbnm (t)− 2βnmunm (t) = pm (t) (45)

The aggregate demand at location m and time t, un(t) :=
∑N−1

n=0 unm(t), is obtained as:

um (t) =

N−1∑
n=0

bnm (t)−
(
N−1∑
n=0

1

2βnm

)
pm (t) =: B0m (t)−B1m (t) pm (t) (46)

where we have introduced the notation

B0m (t) :=
N−1∑
n=0

bnm (t) , B1m (t) :=

(
N−1∑
n=0

1

2βnm

)
.

The Regulator

Consider now a regulator who seeks to allocate consumption at each location (cell) of the ring by
maximizing utility across the whole spatial domain subject to the dynamic of the natural stocks. The
regulator is concerned about possible misspecification of the dynamics. Allowing for uncertainty about
the ‘true’statistical distribution of the stocks, and following the discussion in Section 2, the evolution
of the natural stocks can be written as:

dxn (t) =

N−1∑
m=0

[αnmxm (t)− γnmum (t) + cnmυm (t)] dt+

N−1∑
m=0

cnm (t) dwm (47)

or in compact form as

dx = (Ax+ Γu+ Cυ) dt+ Cdw

with the operators A, Γ, C defined accordingly (and in particular represented as the matrices {anm},
{γnm} and {cnm}).

The robust control problem for the regulator becomes:

min
{unm(·)}

max
{υn(·)}

EP

[∫ ∞
0

e−rt

[
N−1∑
n=0

N−1∑
m=0

βnm (unm (t)− bnm (t))2 − θ

2
(υn (t))2

]
dt

]
(48)

subject to (47)

A simplification of the problem that leads to closed form solutions is to assume that the regulator
imposes an arbitrary bliss point bn (t) at each location and ignores the spatial weighting of the con-
sumers by attaching the same weight β = βnm to all locations. In this case the regulators seeks that
aggregate consumption at each location and solves the problem:

min
{un(·)}

max
{vn(·)}

EP

[∫ ∞
0

e−rt

[
N−1∑
n=0

β(un(t)− bn(t))2 − θ

2
(υn(t))2

]
dt

]
subject to (47)
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Define the new control variable ū = {ūn}, ūn = un − bn and rewrite the regulator problem as

min
{un(·)}

max
{vn(·)}

EP

[∫ ∞
0

e−rt
N−1∑
n=0

β

(
ū2
n (t)− θ

2
(υn (t))2

]
dt

]
subject to

dx = (Ax+ Γū+ Cυ + F ) dt+ Cdw

where b = {bn}, the bliss points at various lattice sites and F = Γb is known.
This is the simplified problem19, involving translation invariant operators, solved in Section 3,

which in the Fourier space (Pontryagin dual space) is given by a problem similar to (12) treated in
Proposition 5. Following the solution approach in Section 3, and taking without loss of generality20

the bliss points bn(t) = 0, we find that the feedback laws are

û∗k = − γ̂kM2,k

2β
x̂∗k, v̂∗k =

ĉkM2,k

2θ
x̂∗k,

where M2,k is the solution of the quadratic equation(
ĉ2
k

2θ
− b̂2k

2β

)
M2

2,k + (2 âk − r)M2,k = 0.

The expectation of x evolves as

dx̂∗k = Rkx̂
∗
kdt, Rk = α̂k −

γ̂kM2,k

2β
+
ĉkM2,k

2θ

with solution
x̂∗k (t) = Ak exp (Rkt) , x̂

∗
k (0) = x̂∗k0.

Using the inverse Fourier transform we may obtain the optimal path and the optimal control in real
space21 as

x∗n (t) =

N−1∑
k=0

Ak exp

[
2πiωz

N
+Rkt

]
,

u∗n (t) =
N−1∑
k=0

γ̂kM2,k

2β
x∗n (t) . (49)

and therefore the optimal supply of services at location n is fully determined by (49). Then the
equilibrium prices at locations n will be determined by (46) as:

p∗m (t) = B0m (t)− u∗m (t)

B1m (t)
= B0m (t)− 1

B1m (t)

(
N−1∑
k=0

γ̂kM2,k

2β
x∗n (t)

)
. (50)

It should be noted that through (49) the local equilibrium prices depend on the local resource stock.
A more realistic model will allow for a differentiation of the weights across locations which would

follow the preferences of the individuals’as well as a corresponding differentiation of the bliss points

19Apart from the introduction of the constant term F , which as can easily be seen does not alter the dynamics
20The case bn(t) 6= 0 can be treated with minor modifications.
21 In the primal lattice ZN as opposed to the Fourier space which is the dual lattice.
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and site dependent misspecification concerns. In this case the regulator solves (48) subject to (47),
which in a compact form, following the notation of Section 5 can be written as:

min
u

max
υ
EP

[∫ ∞
0

e−rt
N−1∑
n=0

[〈(BU) (t) , U (t)〉 − θn 〈(Rv) (t) (v (t))〉] dt
]

subject to

dx = (Ax+ Γu+ Cv) dt+ Cdw.

where U (t) = u − b. This is the general linear quadratic control problem analyzed in Section 5.
Assuming without loss of generality22 that the bliss point is b = 0, the optimal supply of services for
an individual located at m and consuming at n will be

u∗nm (t) = −B−1Γ∗Hsymxn (t)

and the local equilibrium price at n will be

p∗n (t) = B0n (t)− 1

B1n (t)

(
N−1∑
m=0

u∗nm (t)

)
. (51)

By determining the supply of optimal services at each location the regulator creates markets for these
services in each location.

Using the theory developed in Section 7, a fully nonlinear problem can be also studied. In this case
the linear or linearized dynamics used before for the resource stock can be replaced by the nonlinear
dynamics of the form

dxn (t) = ((Ax)n + f (xn) + (Γu)n + (Cv)n) dt+ (Cdw)n,

where the operators A, Γ,C have action such that

(Ax)n :=

N−1∑
m=0

αnmxm (t) , (Γu)n :=

N−1∑
m=0

γnmunm (t) , (Cv)n :=

N−1∑
m=0

cnmvm,

which corresponds to the total effect of the other sides stock, the total effect of the other sides control
policies and the total effect of the other sides robustness policies at site n respectively.

The regulators objective in this case, omitting the explicit dependence on t to ease notation could
take the more general form

min
{un(·)}

max
{vn(·)}

EP

[∫ ∞
0

e−rt
N−1∑
n=0

[
N−1∑
m=0

U1
nm (unm − bnm) + U2

n (xn − x̄n)− θn
2

(vn (t))2

]
dt

]
The linear operator A reflects the impact of the stock at different locations on the growth of the

resource at location n. In this objective the regulator’s utility is a function of (i) the deviation between
consumption at location m by individual n and the corresponding bliss point, U1

nm (ii) the deviation
between the stock of natural capital at location n and some benchmark value U2

n, and the penalty
factor that reflects concerns regarding model misspecification.

As shown in Section 7, under the appropriate assumptions, this problem has a solution of the form

u∗ = DK$ (B∗DV (x))

where V (x) is a solution of the Hamilton-Jacobi-Bellman-Isaacs equation. This solution will determine
the equilibrium local prices by a condition similar to (51).

22The general case b 6= 0 is treated accordingly with minor modifications.
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Hot spot interpretation

The model presented in this section may for appropriate parameter values allow for the generation of
hot spots of types I, II, III according to the general theory developed here. The following economic
interpretation of these hot spots is possible:

. Hot spot of type I: Regulation breaks down for small θ. This means that because of the regulator
has very strong concerns about possible model misspecifications at specific site(s) the regulator
can not set up markets for consumption of in situ services where the supplied quantities satisfy
the regulator’s criterion.

. Hot spot of type II: The regulator due to misspecification concerns allows a nonhomogeneous
spatial pattern of the stocks to emerge. There exist a system of local prices that supports the
spatial pattern.

. Hot spot of type III: Due to misspecification concerns, the cost of controlling the in situ con-
sumption at each location becomes very high in terms of deviations from the desired bliss points.

The parameter θn expressing misspecification concerns in site n can, for certain problems, be
related to the physical characteristics of the the site23. Thus if a hot spot is emerging from a given
site this might signal the need for additional scientific evidence that might reduce the maximum
misspecification error and thus the entropy constraint Hn. Reduction of the entropy constraint will
increase θn and prevent the emergence of a hot spot.

9 Concluding remarks

We study robust control methods in a spatial domain where explicit spatial interactions are modelled
by kernels and where concerns about model misspecification could be different across locations. We
analyze linear quadratic problems. We derive closed form solutions for translation invariant systems
but we also extent our results to general non translation invariant linear quadratic problems as well as
to fully non linear systems. We show that misspecification concerns about specific cites could induce
the emergence of hot spots which cause regulation to break down for the whole spatial domain. We
also identify conditions for two more types of hot spots where location specific concerns could induce
the emergence of spatial patters, or could render regulation very costly. We apply our methods to a
problem of regulating in situ consumption when consumers are characterized by distance-dependent
utility. We examine the emergence of local markets for in situ consumption and cases where location
specific concerns could brake down regulation for the whole area, or could induce specific clustering.

Our results provide tools for studying optimal regulation of spatially interconnected systems when
there are concerns about the specification of the model describing local processes describing the evo-
lution of the system’s states. Given the increasing interconnections and the localized uncertainties in
the real world our approach could be appropriate for a wide class of economic problems characterized
and connectivity, not necessarily spatial, since connectivity can be regarded with respect to other
attributes, and by local uncertainties.
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