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Abstract

This paper develops linear quadratic robust control theory for a

class of spatially invariant distributed control systems that appear in

areas of economics such as New Economic Geography, management of

ecological systems, optimal harvesting of spatially mobile species, and

the like. Since this class of problems has an infinite dimensional state

and control space it would appear analytically intractable. We show

that by Fourier transforming the problem, the solution decomposes into

a countable number of finite state space robust control problems each

of which can be solved by standard methods. We use this convenient

property to characterize hot spots”which are points in the transformed

space that correspond to “breakdown” points in conventional finite

dimensional robust control, or where instabilities appear or where the

value function loses concavity. We apply our methods to a spatial

extension of a well known optimal fishing model.
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1 Introduction

Two issues have attracted considerable interest in economic theory recently.

The first is decision making when the decision maker is trying to make good
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choices when she regards her model not as the correct one but as an approx-

imation of the correct one, or to put it differently, when the decision maker

has concerns about possible misspecifications of the correct model and wants

to incorporate these concerns into the decision-making rules (e.g., Salmon

2002; Hansen and Sargent 2001, 2008; Hansen et al. 2006; JET 2006). The

second is decision making when the spatial dimension of underlying problem

is explicitly taken into account and the decision maker or a regulator seeks

to determine spatially dependent rules. In economics, the spatial dimension

has been brought into the picture through new economic geography models

(e.g., Krugman 1996, Boucekkine et al. 2009, Desmet and Rossi-Hansberg

2009), but also through models of resource management (e.g. Sanchirico

and Wilen 1999, Smith et al. 2009, Brock and Xepapadeas 2008, 2010). In

fields like biology or automatic control, systems with spatially distributed

parameter aspects in the dynamics have been used to study pattern forma-

tion on biological agents (e.g., Murray 2003), the control of infinite platoons

of vehicles over time (e.g., Bamieh et al. 2002, Curtain et al. 2008), or

groundwater management (e.g., Leizarowitz 2008).

The purpose of the present paper is to bring together these two branches

of the literature by studying dynamic economic models with explicit spatial

dependence when a regulator has concerns about possible misspecifications

of the spatiotemporal evolution of the phenomenon. That is, the regulator

regards her model as an approximation of the correct spatiotemporal dy-

namics and seeks spatially dependent regulation that performs well under

the approximating model.

The contribution of this unification is that it allows us to study the op-

timal regulation of spatially interconnected distributed parameter systems

when concerns about model misspecification vary across the spatial domain.

Concerns about model misspecification, following Hansen et al. (2006) or

Hansen and Sargent (2008), means that the regulator distrusts her model

and wants good decisions over a cloud of models that surrounds the regula-

tor’s approximating or benchmark model, which are diffi cult to distinguish

with finite data sets. The good or robust decisions are obtained by introduc-

ing a fictitious ‘adversarial agent’which we will refer to as Nature. Nature

promotes robust decision rules by forcing the regulator, who seeks to max-

imize an objective, to explore the fragility of decision rules to departures

from the benchmark model. A robust decision rule to model misspecifica-
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tion means that lower bounds to the rule’s performance are determined by

Nature —the adversarial agent —who acts as a minimizing agent when con-

structing these lower bounds. Hansen et al. (2006) show that robust control

theory can be interpreted as a recursive version of max-min expected utility

theory (Gilboa and Schmeidler 1989). In this context the decision maker

cannot or does not formulate a single probability model and maximizes ex-

pected utility assuming the probability weights are chosen by Nature, the

adversarial agent.

When robust control theory is combined with distributed parameter

models, it provides a method for studying robust regulation when the cloud

of models surrounding the benchmark model differs among spatial locations.

Thus the regulator can design the decision rules not only with respect to the

spatial characteristics of the problem but also with respect to the degree to

which the regulator distrusts her model across locations. This means that if

concerns about the benchmark model in a given site deviate from concerns

in other sites, a spatially dependent robust rule should capture these dif-

ferences. This observation allows us to formally identify, for the first time

to our knowledge in economics, spatial hot spots —which are sites where

robust control breaks down —or sites where robust control is very costly as

a function of the degree of the regulator’s concern about model misspecifica-

tion. We are also able to identify spatial hot spots where the need to apply

robust control induces spatial agglomerations and breaks down spatial sym-

metry. From the theory point of view this is, as far as we know, a new source

for generating spatial patterns as compared to the classic Turing diffusion

induced instability (Turing 1952) and the more recently identified optimal

diffusion or spatial-spillover-induced instabilities (Brock and Xepapadeas,

2008, 2009, 2010).

This unification brings up another point which could be associated with

applied policy design and regulation. It has been argued recently (e.g.,

Haldane 2009) that increased interconnectedness among networks has made

various networks, such as ecological networks, power grid networks, trans-

portation networks, financial networks more unstable. This interconnected-

ness and the instabilities generated at hot spots are captured in our model

by the distributed parameter aspect.1

1Although we choose to interpret the characteristics associated with the distributed
parameter aspect as physical space, the notion of “space” does not have to be physical.
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Distributed parameter models result in optimal control problems in in-

finite dimensional spaces. By using Fourier methods and exploiting the

property of spatial invariance of a class of linear quadratic problems, we are

able to obtain solutions to infinite dimensional problems, by solving parame-

terized finite-dimensional problems. Furthermore, by showing how to obtain

correct linear quadratic approximations — in the sense of Magill (1977a,b)

and Benigno and Woodford (2006) —of nonlinear distributed parameter ro-

bust control problems, we obtain solutions of infinite dimensional robust

control problems in terms of linear quadratic approximations of parameter-

ized families of finite dimensional problems. We consider this to be another

contribution of this paper.

In sections 2 and 3 we present our theory and we define hot spots. In

section 4 we apply our theory to a classic model of commercial fishing (Smith

1969) where spatial interconnections in economic and biological variables are

captured by local and non-local spatial effects. We show how a regulator

could design optimal spatiotemporal robust control for this fishery, how hot

spots emerge, and what implications they might have for regulation.

2 Robust control in stochastic distributed para-

meter systems

We consider a distributed parameter control system where the state and

the control functions are respectively represented by real functions x (t, z)

and u (t, z) of time t ∈ [0,∞) := T , and a variable z ∈ Z, where Z is a

domain that describes a dimension different from the temporal dimension,

along which the state and the control functions evolve. Thus Z could be

interpreted as a spatial domain, implying that we study spatiotemporal evo-

lutions, or a domain defining social characteristics or describing varieties of

goods or sectors of the economy. Technically, and in order to develop a

general framework of analysis, Z is a locally compact Abelian group (see for

example Rudin (1962) for definitions). Special cases of Z include the real

line R, the unit circle ∂D, the integers Z, or the finite group of integers mod-
ulo N, ZN . For the rest of our analysis we will assume that Z is the finite

It can be used to model characteristics that are associated with economic, sociological,
cultural or other factors. Since the notion of “space” may be broadly interpreted, this
suggests that our methods can be used for the analysis of a wide range of problems.

4



group of integers modulo N. This means that our group of characteristics,

whether spatial, social, or economic, can be represented by a discrete ring

of cells with the property that ‘cell 0’is the same as ‘cell N’, ‘cell 1’is the

same as ‘cell N + 1’and so on.2

Our state and control functions can be identified with the abstract func-

tions x (t) (z) = x (t, ·) , u (t) (z) = u (t, ·) , which take values on Z and which
belong to the space of vector valued functions which are square integrable

with respect to the Haar measure:3,4

Ln2 (Z) :=

{
f : Z → <n| ‖f‖22 =

∫
Z
|f (z)|2 dz <∞

}
. (1)

We introduce into our system the real function v (t, z) which is also iden-

tified with the abstract function v (t) (z) = v (t, ·) that takes values in the
space of functions which are square integrable with respect to the Haar

measure This function describes a deterministic specification error which is

expressed in terms of deviations from a baseline or benchmark case which

is defined for v (t, z) := 0. This specification error is distributed across the

domain Z according to v (t) (z) , so that the error may vary across cells at

the same point in time. To express the idea that when the model is mis-

specified the benchmark model remains a good approximation, we restrain

the misspecification errors for problems by

N∑
z=1

[∫ ∞
0

e−ρt [v (t, z)]2 dt

]
≤ v0, (2)

where e−ρt is the appropriate discount factor.

Each cell z ∈ Z of the system is also subject to a stochastic force which

2This assumption simplifies considerably the technical aspects of our analysis without
any loss in the generality of results, since our analysis can be generalized to continuous
spaces. The assumption of ‘ring of cells’was used by Turing (1952) in the classic paper
on morphogenesis.

3The Haar measure is a variant of the Lebesgue measure suitable for ZN . The Haar
measure is invariant to the translation map z 7→ z + z0 and the translation operation for
functions on Z defined as (Tz0f) (z) := f (z − z0) . An operator A with domain D (A) in
the space of square integrable functions with respect to the Haar measure is said to be
translation invariant if for all z ∈ Z
Tz : D (A) → D (A) and ATzf = TzAf ∀f ∈ D (A) (Bamieh et al. 2003, p. 1023).

As we will see later, translation invariance is very useful for providing tractability to the
models developed in this paper, without introducing unrealistic characteristics.

4When we write the integral with respect to dz we interpret it as a sum over z ∈ ZN .
In the rest of the paper we use integral signs and sums interchangeably.
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is represented by a white noise Ḃ (t)(z) which is the formal time-derivative

of a Wiener process B (t) (z) which is placed in each cell z.

Thus in our model the coordinates of the characteristics (spatial, social,

or economics) denoted by z vary in the group Z, and the functions related to

state, control and misspecification functions as well as the stochastic force

are fully distributed over this coordinate.

Effects across the z coordinate, for example spatial effects, on the state

of the system are modelled in terms of local and long-range or nonlocal

effects. Nonlocal effects describing the impact of the concentration of the

state variable x (t, z′) in cell z′ on x (t, z) are modelled using the kernel

formulation:

(Kx) (t, z) :=
∑
z′∈Z

Kx

(
z − z′

)
x
(
t, z′
)

= X (t, z) . (3)

Local effects are modeled by classic diffusion. Interpreting partial derivatives

with respect to z as finite differences when working on ZN , local effects are
represented by the term

Ed (t, z) = D [x (t, z + 1)− 2x (t, z) + x (t, z − 1)] , (4)

where D > 0 is the diffusion coeffi cient.5

When effects are non-local the degree of interconnectedness can be repre-

sented by fixed parameters. For the kernel specification this can be modelled

by writing:∑
z′∈Z

Kx

(
z − z′

)
x
(
t, z′
)
dz′ = α1

∑
z′∈Z

e−α2|z−z
′|x
(
t, z′
)
dz′, (5)

where α1 and α2 are level and shape parameters. For example, as α2 de-

creases, the kernel increases and becomes "flatter" at the same time, suggest-

ing that interconnectedness increases. For local effects, interconnectedness

is related to the diffusion coeffi cient D. The higher D is, the faster the state

variable moves from cells of high concentration to cells of low concentration.

The interconnectedness in our system is also reflected in nonlocal control

5When Z is continuous then local effects are modeled by Ec (t, z) = D ∂2x(t,z)

∂z2
.
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effects which are modelled, using the kernel formulation, by:

(Ku) (t, z) :=
∑
z′∈Z

Ku

(
z − z′

)
u
(
t, z′
)

= U (t, z) . (6)

These effects describe the impact of the control applied in cell z′ on the

control of the system u (t, z) in cell z.

The stochastic shocks in each cell can also be correlated across cells. In

this case the stochastic term can be defined as

(KdB) (t, z) :=
∑
z′∈Z

Kε

(
z − z′

)
dB
(
t, z′
)

= ε (t, z) . (7)

All the kernel functions, such Kj (·) , j = x, u, used in this paper are

assumed to be continuous and symmetric around zero in Z, or Kj (z) =

Kj (−z). Given the above assumptions, the evolution of the system’s state
can described in continuous time domain by by a general equation of motion:

∂x (t, z)

∂t
= f (x (t, z) , u (t, z) , (Kx) (t, z) , (Ku) (t, z) , v (t, z))

+Ed (t, z) + (KdB) (t, z) , x (0, z) = x0 (z) . (8)

In a discrete time domain t = 0, 1, 2, ..., the evolution of the system is de-

scribed as

xt+1 (z) = f (xt (z) , ut (z) , Xt (z) , Ut (z) , vt+1 (z))

+Edt (z) + εt+1 (z) , z = 1, ..., N. (9)

The state dynamics (8) or (9) coupled with a payoff functional can be

used to extend the robust control analytical framework developed by Hansen

and Sargent (2008) to distributed parameter systems. When the regulator

has concerns about model misspecification, the regulator’s objective can be

expressed in terms of the following penalty distributed parameter robust

control problem for given θ ∈ (θ,+∞] :

sup
u(t,z)

inf
v(t,z)

E0
∑
z∈Z

{∫ ∞
0

e−ρt [f0 (x (t, z) , u (t, z) , X0 (t, z) , U0 (t, z))

+ θv2 (t, z)
]
dt
}
subject to (8) (10)
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where

X0 (t, z) : =
∑
z′∈Z

K0
x

(
z − z′

)
x
(
t, z′
)
dz′ = (K0x) (t, z) (11)

U0 (t, z) : =
∑
z′∈Z

K0
u

(
z − z′

)
u
(
t, z′
)
dz′ = (K0u) (t, z) (12)

represent nonlocal effects in the payoff functional which are modelled using

the kernel formulation. In the extremization problem6 (10), the minimizing

agent —Nature —chooses a v while θ ∈ (θ,+∞] , θ > 0 is a penalty parameter

restraining the minimizing choice of the v (t, z) function. The lower bound

θ is a so-called breakdown point beyond which it is fruitless to seek more

robustness because the minimizing agent is suffi ciently unconstrained so that

she/he can push the criterion function to −∞ despite the best response of

the maximizing agent. Thus when θ < θ, robust control rules cannot be

attained. The benchmark distributed parameter optimal control problem is

a special case of (10) for v (t, z) ≡ 0, while when (KdB) (t, z) ≡ 0 in addition,

we have a deterministic distributed parameter control problem.

Problem (10) can be regarded as a starting point for defining a robust-

distributed parameter linear quadratic regulator problem. This problem,

which as far as we know has not been studied before in economics, can be

used to provide new insights into the regulation of various applied problems

when the regulator has concerns about model misspecification, the state

function evolves in time and space and local and nonlocal spatial effects are

present.

A special case of an optimal solution for problem (10), provided it

exists, is the optimal solution of the spatially independent deterministic

benchmark problem. This problem is defined for v (t, z) ≡ 0, D = 0,

x (t, z) = x (t) , u (t, z) = u (t) . Spatial independence means that the ker-

nel operators can be written as (Φφ) (t, z) = φ (t)
∑

z′∈Z ϕ (z − z′) , where∑
z′∈Z ϕ (z − z′) = ϕ̄ is a fixed parameter for given ϕ (·) , and φ = (x, u) , ϕ =(

K0
x,Kx,K

0
u,Ku

)
. We shall call a locally optimal steady state of the spa-

tially independent deterministic benchmark problem denoted by (x̄∗, ū∗, 0)

a flat optimal steady state (FOSS) since this steady state will exhibit a

spatially uniform distribution for the state-costate and control variables as-

sociated with the problem. In Appendix 1 we show that the correct linear
6We follow Hansen and Sargent in using the term extremization for the sup inf opera-

tion.
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quadratic approximation of the robust distributed parameter problem (10)

with deterministic misspecification can be written, dropping (t, z) to ease

notation, as:

sup
u(t,z)

inf
v(t,z)

∑
z∈Z

[∫ ∞
0

e−ρt
1

2

[
ξ′Qξ + θv2 (t, z)

]]
dt, (13)

subject to
∂x

∂t
= Ax+Bu+ ĀX + B̄U + Cv + Ed (14)

x (0, z) = x0 (z) , x (t, 0) = x (t.N) ,∀t (15)

ξ = (x, u,X0, U0, X, U) ,
(
A,B, Ā, B̄, C

)
: fixed parameters (16)

where, by a slight abuse of notation, (x, u, v) denote deviations from the

deterministic FOSS. In (13) Q = [qij ] , i, j = 1, ..., 6 is a (6× 6) symmetric

matrix of the second derivatives, in the Fréchet sense, of the Hamiltonian of

the spatially independent deterministic benchmark problem evaluated at the

FOSS and
(
A,B, Ā, B̄, C

)
= (f∗x , f

∗
u , f

∗
X , f

∗
U , f

∗
v ) with all Fréchet derivatives

evaluated at the FOSS (see Appendix 1 for details).

In discrete time the problem can be written as:

sup
ut(z)

inf
vt(z)

∑
z∈Z

∞∑
t=0

βt
1

2

[
ξ′Qξ + θv2 (t, z)

]
(17)

subject to

xt+1 = Axt +But + ĀXt + B̄Ut + Cvt+1 + Edt. (18)

Problem (13) is a linear quadratic problem. We can think of this problem

as the problem of a linear quadratic regulator, or as a linear quadratic

approximation of a more general nonlinear penalty distributed parameter

robust control problem.7

7Note that the expectation operator is missing from the linear quadratic approxima-
tions (13) or (17). This is because, as we explain in detail in section 3, a certainty
equivalence principle holds which is related to the Hansen and Sargent result (2008, Sec-
tion 2.4.1). This principle states that the controls are the same for the deterministic and
the stochastic version of the linear quadratic approximation, or equivalently the controls
are the same whether or not the stochastic term is included in (14) or (18). In our paper
this principle is slightly different from the one of Hansen and Sargent because we don’t
multiply the shocks, if they were to be included in (14) or (18), by the same matrix C
that multiplies the adversarial agent’s control, v (t) or vt+1.
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3 Robust linear-quadratic regulation and hot spots

Problem (13) is defined in the infinite dimensional space of functions which

are square integrable with respect to the Haar measure. The analysis of this

problem can be greatly simplified by exploiting the property of the objective

functional and the dynamics of problem (13) to be translation invariant with

respect to the coordinate z. This property allows us to decompose, using

Fourier transforms, the infinite dimensional optimal control problem to a set

of finite dimensional optimal control problems (Bamieh et al. 2002). The

Fourier transform F associates a function ψ (·) on the set Z with a function
ψ̂ (ω) on the set Ẑ which is called the dual or the character group. In our

case the discrete Fourier transform (DFT) (e.g., Chu 2008) of a function

ψ (t) (z) = ψ (t, ·) = ψ (t, z) , z ∈ Z is defined as:

Fψ (t)(ω) = ψ̂ (t, ω) :=
1

N

N∑
z=1

ψ (t, z) e−2πiω
z
N , ω ∈ Ẑ. (19)

When Z = ZN then Ẑ = ZN as well, thus the Fourier transform F will map
functions on ZN to functions also on ZN . The inverse Fourier transform is

ψ (t, z) :=

N−1∑
ω=0

ψ̂ (t, ω) e2πiω
z
N , z ∈ ZN . (20)

The properties of the Fourier transform imply that translation invariant

operators in Z are associated with multiplication operators in Ẑ. Since our

kernel operators are translation invariant we have, using the convolution

theorem for the DFT:

F(Kjφ) (t, ω) = (K̂jφ) (t, ω) = K̂j (ω) φ̂ (t, ω) (21)

j = x, u, ε, φ = (x, u, dB) . (22)

Thus the use of DFT allows us to transform nonlocal effects (spatial or

economic) expressed by kernels into simpler multiplicative expressions in

ZN . Local effects can also be simplified by using the shift theorem of the

DFT, which implies that:

Fx (t)(ω − k) = e−2πik
ω
N x̂ (t, ω) . (23)
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Using the shift theorem the DFT of the local effect term becomes:

FD [x (t, ω + 1)− 2x (t, ω) + x (t, ω − 1)] = (24)

D

[
exp

(
2πiω

N

)
− 2 + exp

(
−2πiω

N

)]
x̂ (t, ω) = (25)

2D

[
cos

(
2πω

N

)
− 1

]
x̂ (t, ω) = −4D sin2

(πω
N

)
x̂ (t, ω) (26)

using in the second and third line the trigonometric identities

exp (iθ) = cos (θ) + i sin (θ) , exp (−iθ) = cos (θ)− i sin (θ) (27)

2 sin2 (θ) = 1− cos (2θ) . (28)

Taking the DFT of the linearization of (8), we obtain:8

dx̂ (t, ω)

dt
= Ax̂ (t, ω) +Bû (t, ω) + ĀK̂x (ω) x̂ (t, ω) + B̄K̂uû (t, ω)

+Cv̂ (t, ω)− 4D sin2
(πω
N

)
x̂ (t, ω) + K̂ε (ω) dB̂ (t, ω) or

dx̂ (t, ω)

dt
=

[
A− 4D sin2

(πω
N

)
+ ĀK̂x (ω)

]
x̂ (t, ω) +

(
B + B̄K̂u (ω)

)
û (t, ω)

+Cv̂ (t, ω) + K̂ε (ω) dB̂ (t, ω) , x̂ (0, ω) = x̂0 (ω) . (29)

The Plancherel theorem implies that the quadratic objective functional

(13) can be written as

sup
u(t,z)

inf
v(t,z)

E0

∫ ∞
0

e−ρt
∑
z∈ZN

[
1

2

[
ξ′Qξ+θv2 (t, z)

]]
dt = (30)

sup
û(t,z)

inf
v̂(t,z)

∑
ω∈ZN

[∫ ∞
0

e−ρt
1

2

[
ŵ′Q̂ŵ+θv̂2 (t, ω)

]
dt

]
(31)

ŵ′ = (x̂ (t, ω) , û (t, ω))′ , Q̂ = [q̂ij (ω)] i, j = 1, 2, (32)

where the elements of matrix Q̂ are defined in the dual space Ẑ, or the

frequency domain, and depend on the spatial kernels. In Appendix 2 we

show how to derive the quadratic form ŵ′Q̂ŵ. Then the linear quadratic

approximation of robust distributed parameter problem (10) is equivalent

to the extremization of (31) subject to (29). In the same way the discrete

8We assume that the Wiener processes are the same at equidistant points around the
circle so that the output of the Fourier transform is real.
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time problem (17) can be written as:

sup
û(t,z)

inf
v̂(t,z)

E0
∑
ω∈ZN

[ ∞∑
t=0

βt
1

2

[
ŵ′Q̂ŵ+βv̂t+1 (ω)2

]]
dω (33)

ŵ′ = (x̂t (ω) , ût (ω))′ , Q̂ = [q̂ij (ω)] i, j = 1, 2 (34)

x̂t+1 (ω) =
[
A− 4D sin2

(πω
N

)
+ ĀK̂x (ω)

]
x̂t (ω) + (35)(

B + B̄K̂u (ω)
)
ût (ω) + Cv̂t+1 (ω) + K̂ε (ω) ε̂t+1 (ω) . (36)

The robust linear quadratic regulator problem (31) and (29) with initial

conditions x̂ (0, ω) = x̂0 (ω) is "block-diagonal" with blocks parametrized by

ω. That is, for a fixed ω problem (31) and (29) is a finite dimensional linear-

quadratic penalty robust control problem of the type studied by Hansen

and Sargent (2008). We can use problem (31) and (29) or the equivalent

problem (33)-(35) to characterize the emergence of a spatial hot spot. We

use the continuous time model to characterize hot spots, but results can

easily be extended to the discrete time model. Under appropriate regularity

assumptions (Hansen et al. 2006), the {sup, inf} operators can be replaced
with {max,min} . Furthermore the order in which the maximizing agent and
the minimizing agent choose does not matter (Hansen and Sargent 2008,

Chapter 7, Section 7.7).

Recalling that Fourier transformation diagonalizes the coupled matrix

Bellman equation in z-space into N separate scalar Bellman equations, one

for each ω ∈ ẐN , and suppressing ω to simplify notation, the Bellman-Isaacs
equation for the linear quadratic problem (31) and (29) can be written as

the scalar equation below:

−ρP x̂2 − ρp = max
û

min
v̂

[
1

2

(
Mx̂2 +Nû2 + 2Sx̂û+θv̂2

)
+ (37)

(−2Px̂) (Fx̂+Gû+ Cv̂) +
1

2
(−2P )K2

ε

]
M (ω) = q̂11 (ω) , N (ω) = q̂22 (ω) , S (ω) = q̂12 (ω)

M < 0, N < 0,MN − S2 > 0,∀ω for strict concavity

F = A− 4D sin2
(πω
N

)
+ ĀK̂x (ω) , G = B + B̄K̂u (ω)

where −Px̂2 (ω)− p = V (x̂ (ω)) is the value function for the problem with

P, p parameters to be determined. Following standard approaches we solve
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for the minimization problem first to obtain

v̂ (ω) =
2PC

θ
x̂ (ω) . (38)

Substituting into the Bellman-Isaacs equation, the maximization prob-

lem is

−ρP x̂2 − ρp = max
û

[
1

2

(
Mx̂2 +Nû2 + 2Sx̂û+

4P 2C2

θ
x̂2
)

+ (39)

(−2Px̂)

(
Fx̂+Gû+

2PC2

θ
x̂

)
− PK2

ε

]
,

which implies that the optimal decision rule for the maximizing agent is

û (ω) =
2PG− S

N
x̂ (ω) . (40)

Substituting into (39) and equating factors of like power, we obtain that

P is determined by the solution of the quadratic expression

φ (P ) = 2

(
C2

θ
+
G2

N

)
P 2 + (41)(

2F − ρ− 2GS

N

)
P +

(
S2 −MN

2N

)
= 0

F = A− 4D sin2
(πω
N

)
+ ĀK̂x (ω) , G = B + B̄K̂u (ω) .

The roots of the quadratic will depend on (θ, ω) . If P ∗ (θ, ω) = P ∗ is a

positive root of (41), then p is determined as

p∗ =
P ∗K2

ε

ρ
. (42)

Note from (41) that since p∗ does not depend on the volatility parameter

Kε, the optimal decision rule (40) does not depend onKε. Thus the modified

certainty equivalence principle related to Hansen and Sargent (2008), which

was mentioned above, holds for the distributed parameters linear quadratic

regulator problem in the sense that the same decision rules for û (ω) and v̂ (ω)

emerge from solving a random version of the appropriate Bellman equation

or from a nonstochastic version where dB̂ (t, ω) ≡ 0. However the optimal

decision rules depend on the misspecification parameter C as long as θ <∞.
Using this certainty equivalence property, we focus on the nonstochastic

13



version of the problem to define hot spots in the space of ‘cells’ZN . Hot
spots are determined by the interaction of the penalty parameter θ with

ω ∈ ZN . We will characterize a hot spot ω in terms of stability of the state
variable in the neighborhood of the FOSS and in terms of low values for

welfare reflected in the value function of the problem.

3.1 Hot spot of type 1: The agglomeration hot spot

From (41), φ (0) =
[(
S2 −MN

)
/2N

]
> 0 by the concavity of the objective.

Furthermore the stationary point for (41) will be at P+ = −γ1/2γ2, while
the extremum (maximum or minimum) of φ (P ) will be φ (P+) We can then

distinguish the following cases:

1. C2

θ + G2

N < 0 for θ < ∞. In this case φ (P+) is a maximum and

φ (P ) = 0 has one positive root P ∗ (θ, ω).9

2. C2

θ +G2

N > 0 for θ <∞. In this case φ (P+) is a minimum and φ (P ) = 0

could have: two positive roots, two negative roots, one positive or one

negative root, or no real roots. Furthermore, if:

(a) φ (P+) > 0, there are no real roots.

(b) φ (P+) < 0 and φ′ (0) < 0, there are two positive roots P ∗1,2 (θ, ω)

or one (double) positive root.

(c) φ (P+) < 0 and φ′ (0) > 0, there are two negative roots P ∗1,2 (θ, ω)

or one (double) negative root.

We will assume for the rest of this subsection that φ (P ) = 0 has one

positive root P ∗ (θ, ω) . Then when optimal decision rules are followed, the

deterministic state dynamics are:

dx̂ (t, ω; θ)

dt
=
{[
A− 4D sin2

(πω
N

)
+ ĀK̂x (ω)

]
+ (43)[

B + B̄K̂u (ω)
] 2P ∗ (ω, θ)G

N
+

2P ∗ (ω, θ)C2

θ

}
x̂ (t, ω) or

dx̂ (t, ω; θ)

dt
= φ (ω; θ) x̂ (t, ω) , x̂ (0, ω) = x̂0 (ω) . (44)

9Note that when θ → ∞ there are no concerns for misspecification and the regulator
trusts the benchmark model.
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The solution of (44) in the dual group is x̂ (t, ω) = Aωeφ(ω)t, where x̂ (t, ω)

is defined as x̂ (t, ω) = x̂ (ω, t)− x̂∗ (ω) by the linearity of the Fourier trans-

form,with x̂∗ (ω) being the Fourier transform of the FOSS. Then Aω =

x̂ (0, ω) − x̄∗ where x̄∗ is the FOSS and x̂ (0, ω) is the Fourier transform of

initial conditions in the neighborhood of the FOSS for all z.10

Using the inverse Fourier transform, the solution for the state variable

in the primary group is

x (t, z) = x̄∗ +
N−1∑
ω=0

Aω exp

[
2πiωz

N
+ φ (ω; θ) t

]
, z ∈ ZN , (45)

The evolution of the state variable (45) is very similar to Turing’s (1952)

formulation regarding morphogenesis associated with chemical substances,

although it is derived, in contrast to Turing, from a problem that involves

optimization. The part of the exponential φ (ω; θ) determines the potential

instability emerging at frequency or mode ω. If, for some combination of

(ω, θ) , the quantity φ (ω; θ) > 0, a wave pattern which becomes more pro-

found with the passage of time emerges. In this case a spatial instability

occurs at (ω, θ) and agglomeration emerges. In more recent terminology

(Murray 2003), φ (ω) is a dispersion relationship (see, for example, Brock

and Xepapadeas 2008, 2010). A frequency or mode ω̂ will be unstable if

φ (ω̂; θ) > 0. In this case an optimal agglomeration emerges on the ring.

The interesting result, which is different from previous results on optimal-

diffusion-induced or optimal-spillover-induced spatial instability (Brock and

Xepapadeas 2008, 2009, 2010), is that instability can be induced by a θ <∞,
while the same instability would not emerge for θ →∞. Thus the following
proposition can be stated.

Proposition 1 Assume that when θ →∞, φ (ω; θ) < 0 for all ω and assume

that there exists a critical pair (ω∗, θ∗1) with θ
∗
1 < ∞ : φ (ω∗, θ∗1) > 0. Then

optimal robustness induced instability emerges on the ring of cells ZN .

This result suggests the regulator’s concerns for model misspecification

could induce spatial agglomeration on the ring. This means that the optimal

10 x̂∗ (ω) = x̄∗
(
1
N

∑N
z=1 e

−2πiω z
N

)
= − 1−e−2iωπ

N

(
1−e

2iωπ
N

) x̄∗ = Ŝ (ω) x̄∗, ω = 0, 1, ..., N − 1.

But Ŝ (0) = 1 and Ŝ (ω) = 0 for ω = 1, ..., N−1, since e−2iωπ = cos (2πω)−i sin (2πω) = 1,
for ω = 1, ..., N − 1. Thus x̂∗ (ω) = x̄∗.
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robust feedback control which will be of the form

u (t, z) = ū∗+

(
2PG− S

N

)N−1∑
ω=0

Aω exp

[
2πiωz

N
+ φ (ω; θ) t

]
, z ∈ ZN (46)

will also exhibit a wave pattern around the ring. In this case the regula-

tor’s concerns about model misspecification induce controls which will break

spatial symmetry and produce agglomeration.

3.2 Hot spot of type 2: The breakdown hot spot

From (41) let P ∗ (θ, ω) = P ∗ (θ) (ω) = P ∗ (θ, ·) be the largest root of the
quadratic as a function of θ for each ω ∈ ZN . Consider the non-empty sets,
assuming they exist, defined as

Θ (ω) = {θ : P ∗ (θ) (ω) < 0} . (47)

Assume that for some ω, P ∗ (θ) < 0 for a critical θc ∈ Θ̄ω ⊂ (0,+∞) ,

where Θ̄ω is a closed set. Then for this ω and θ ∈ Θ̄ω, the maximizing agent

cannot prevent the minimizing agent from driving the maximizing agent’s

objective to −∞. Let θ̄ω be the maximum θ ∈ Θ̄ω, and consider the set of

all the maximum θs for each ω defined as

Θmax
ω (ω) =

{
θ̄ω : P ∗

(
θ̄ω
)
< 0, θ̄ω = max Θ̄ω

}
. (48)

We define as a hot spot of type 2 a mode ω2 for which

ω2 : θ̄ω2 = max Θmax
ω (ω) . (49)

If we associate the case of θ →∞ with no concern for model misspecification

and confidence in the benchmark model, and then interpret reductions in θ

as an increase of concern for model misspecification or lack of confidence in

the benchmark model, then a hot spot of type 2 can be given the following

interpretation. When θ̄ω2 is suffi ciently far from zero, then at mode ω2, the

regulator cannot optimize and cannot prevent her welfare from going to −∞
even though her concerns for misspecification are not very large in the sense

of a θ close to zero. It should be noted that if all sets (47) are empty, then

hot spots of type 2 do not exist.
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To provide a concrete example, assume that S = 0 by a suitable redefin-

ition of variables (Brock and Malliaris 1989, chapter 5), and that K̂0
x (ω) =

K̂0
u (ω) = D = 0, so that we have only nonlocal effects in the state dynamics.

A critical value of θ is defined from (41) as

θc :=
−NC2
G2

, N < 0, G = B + B̄K̂u (ω) . (50)

For θ = θc we have that P ∗ (ω) = M/2
2F−ρ where F = A+ K̂x (ω) > 0 and

M = q11 < 0. Then P ∗ (ω) < 0 for a small discount rate. A hot spot of type

2 will be a mode ω2 such that:

θ̄ω2 = max Θmax
ω (ω) = max

ω

−NC2(
B + B̄K̂u (ω)

)2 . (51)

It should be noted that the critical θc is larger the lower the effectiveness of

the control, measured by G2, the higher the cost of the control, measured

by N, and the stronger the impact of misspecification on the state dynamics

and the effectiveness of the adversarial agent (Nature), measured by C2.

Since by the Plancherel theorem the total value of the regulator’s objec-

tive is the sum of the values for all modes, the existence of a type 2 hot spot

will drive the total value to −∞ and will render regulation useless. If this

hot spot does not arise at the spatially homogenous system defined for D =

0 and for
(
K̂x (ω) , K̂h (ω)

)
fixed numbers independent of ω, then our re-

sults suggest that spatial effects and moderate concerns about model mis-

specification might cause regulation to break down. As we will discuss in

the application section, this breakdown might suggest the need to introduce

additional regulatory instruments.

3.3 Hot spot of type 3: The cost of robustness

However, even if we obtain a positive root P ∗ (θ, ω) for all ω, another type of

hot spot could emerge. Since the value function can be written as V (x) =

−P ∗x2, due to the certainty equivalence, then for a given initial state a large
P ∗ corresponds to low welfare and large cost, while a small P ∗ corresponds

to higher welfare and smaller cost. Thus if P ∗ → ∞ then welfare goes to

−∞ and cost goes to +∞.
Let P ∗ (θ, ω) > 0. For each ω let θ∗c be the critical value of θ for which
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P ∗ (θ∗c , ω) = max P ∗ (θ, ω) , for all θ ∈ (0,+∞) . A hot spot of type 3 will

be a mode ω2 such that:

ω3 : P ∗ (θ∗c , ω3) = max
ω

P ∗ (θ∗c , ω) for all ω ∈ ZN . (52)

Since P ∗ (θ∗c , ω3) > 0 the regulator can prevent the minimizing agent from

driving her objective to −∞, but the regulator will experience low welfare at
this point. If −P ∗ (θ∗c , ω3)x

2 < −P ∗ (∞, ω)x2, then concerns for misspec-

ification reduce the value of the regulator and the largest value reduction

occurs at the hot spot ω3. The difference
∣∣P ∗ (θ∗c , ω3)x

2 − P ∗ (∞, ω)x2
∣∣ will

provide a measure of the cost of seeking robustness. Since sometimes ro-

bust preferences have been associated with a precautionary principle, this

robustness cost can be regarded as an indication of the cost of following

precautionary policies.

4 Application: Distributed robust control of a com-

mercial fishery

We illustrate our theory by extending Smith’s (1969) well known model of

commercial fishing to spatial robustness. We believe that this extension is a

new and potentially useful contribution to our paper. We assume that the

area of the fishery consists of a ring of N cells so that our space Z is the

finite group of integers modulo N,ZN . Let x (t, z) denote biomass at time

t and cell z ∈ Z. Fish biomass moves from cell to cell. The movements are

short range or local movements which can be described by classic diffusion

with diffusion coeffi cient D > 0, which means that fish move from cells of

high biomass concentration to adjacent cells of low biomass concentration.

Let V (t, z) denote the number of identical vessels or firms operating at cell

z of the ring, and h (t, z) the harvest rate at cell z per unit time. Thus total

harvesting at cell z is V (t, z)h (t, z) .The evolution of biomass can then be

described as

∂x (t, z)

∂t
= f (x (t, z)) + Ed (t, z)− V (t, z)h (t, z) , (53)

x (0, z) = x0 (z)

Ed (t, z) = D [x (t, z + 1)− 2x (t, z) + x (t, z − 1)] , (54)
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where f (x) is the recruitment rate or growth function for the fishery, with

f (x) = f (x̄) = 0, f ′
(
x0
)

= 0, f ′′ (x) < 0, x ≥ 0, 0 ≤ x < x0 < x̄. When

f (x) is quadratic, growth is logistic. Harvested fish is sold at an exoge-

nous world price p. The cost per vessel for harvesting rate h is defined

as C (h (t, z) , x (t, z) , X (t, z) , H (t, z)) . X (t, z) = (KXV ) (t, z) , H (t, z) =

(Khh) (t, z) denote nonlocal effects modelled by kernels as defined in sec-

tion 2. For the cost function we assume, denoting partial derivatives with

subscripts, that: (i) Ch > 0, Chh ≥ 0; (ii) Cx < 0, which implies resource

stock externalities;(iii) CX > 0, which implies crowding externalities due to

congestion effects. We assume that an increase in vessels in a given cell will

always increase costs, that is CV > 0. The kernel formulation in the cost

function means that vessels not only in cell z but also near cell z could cre-

ate congestion effects and increase operating costs of the vessels operating in

cell z; and (iv) CH < 0, which implies knowledge or productivity external-

ities because harvesting that takes place near cell z helps the development

of harvesting knowledge in z and reduces operating costs. Profit per vessel

at z is defined as π (t, z) = ph (t, z) − C (h (t, z) , x (t, z) , X (t, z) , H (t, z)) .

Vessels are attracted to cell z if profits per vessel are positive in this cell.

Vessels can be attracted to the ring from locations outside the ring if profits

are positive in cells of the ring, so the number of vessels in the ring does not

need to be conserved.11 Thus the evolution of the vessels is described by:

∂V (t, z)

∂t
= φ [ph (t, z)− C (h (t, z) , x (t, z) , X (t, z) , H (t, z))] (55)

φ > 0, V (0, z) = V0 (z) ,

where φ measures speed of adjustment and is set equal to one without loss of

generality. A regulator is trying to determine an optimal level of harvesting

per vessel in each cell. This harvesting level can be used, for example, to

set up a quota system in each cell of the ring. The regulator’s objective

is the maximization of discounted profits over the whole ring by taking

into account biomass diffusion as well as stock, congestion and knowledge

11To simplify we ignore transportation costs.
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externalities.12. The regulator’s objective is therefore

max
{h(t,z)}

∑
z∈Z

{∫ ∞
0

e−ρtV (t, z) [ph (t, z)− C (h (t, z) , x (t, z) , X (t, z) , H (t, z))] dt

}
.

(56)

The regulator however has concerns regarding the specification of biomass

dynamics in each cell. These concerns are captured by a deterministic spec-

ification error which is expressed in terms of deviations from the benchmark

case which is defined for v (t, z) := 0. The specification error is distributed

across the domain Z according to v (t) (z) , so that the error may vary across

cells at the same point in time. This assumption means that, depending on

her scientific knowledge, the regulator might trust the benchmark model

more or less depending on the cell. For a large enough ring, this assump-

tion —which implies spatially differentiated degrees of scientific uncertainty

—seems plausible. When the model is misspecified, the benchmark model

remains a good approximation so the misspecification error satisfies (2).

Each cell of the fishery is also subject to a stochastic force represented by a

Wiener process which is placed in each cell as described in section 2. Under

deterministic misspecification and stochastic shocks, the biomass evolution

is described by

∂x (t, z)

∂t
= f (x (t, z))+Ed (t, z)−V (t, z)h (t, z)+Cv (t, z)+(KdB) (t, z) .

(57)

The regulator’s concerns about model misspecification are incorporated

into robust preferences. Thus the regulator decides about optimal harvest-

ing per vessel in each cell, by solving a problem where Nature will play the

role of the minimizing or ‘mean’agent. In this context the regulator consid-

ers that Nature ‘chooses’a misspecification error to minimize the regulator’s

objective and, by doing so, Nature determines lower bounds to the perfor-

mance of the regulation. If the lower bound tends to −∞, then regulation is
useless. The problem of the regulator is therefore the distributed parameter

robust control problem with local and nonlocal spatial effects of the type

12To simplify the interpretation of results and the analysis, we do not include existence
values for the biomass.
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described in sections 2 and 3, which can be written, dropping (t, z) in some

places to simplify notation, as:

sup
h(t,z)

inf
v(t,z)

E0
∑
z∈ZN

{∫ ∞
0

e−ρt [V [ph− C (h, x, V,H)] (58)

+θv2 (t, z)
]
dt
}

subject to (55), (57). (59)

Let
(
x̄∗, V̄ ∗, h̄∗, 0, λ̄

∗
, µ̄∗
)
be a FOSS for the spatially independent deter-

ministic benchmark model as defined in section 3 and appendix 1, with (λ, µ)

the costate variables associated with the spatially independent deterministic

benchmark dynamics corresponding to (55), (57) respectively. Assume that

this FOSS has the local saddle point property. Linear quadratic approx-

imation, application of the discrete Fourier transform and the Plancherel

theorem, and use of the certainty equivalence property as described in sec-

tion 3, allow us to write the linear quadratic approximation of problem (58)

around the FOSS as a set of countable finite dimensional linear quadratic

problems, one problem for each ω in the dual space ZN . The regulator’s
objective now is to determine an optimal harvesting rule that takes into

account misspecifications concerns in the neighborhood of this FOSS.

sup
ĥ(t,z)

inf
v̂(t,z)

∑
ω∈ZN

[∫ ∞
0

e−ρt
1

2

[
ŵ′Q̂ŵ+θv̂2 (t, ω)

]
dt

]
(60)

ŵ′ =
(
x̂ (t, ω) , V̂ (t, ω) , ĥ (t, ω)

)′
, Q̂ = [q̂ij (ω)] i, j = 1, 2, 3 (61)

dx̂ (t, ω)

dt
= A1x̂ (t, ω) +A2V̂ (t, ω) +A3ĥ (t, ω) + (62)

Cv̂ (t, ω) , x̂ (0, ω) = x̂0 (ω) (63)

dV̂ (t, ω)

dt
= B1x̂ (t, ω) +B2ĥ (t, ω) , V̂ (0, ω) = V̂0 (ω) (64)

A1 =
[
f∗x − 4D sin2

(πω
N

)]
, A2 = h̄∗, A3 = V̄ ∗ (65)

B1 = −φ
(
C∗x + C∗XK̂x (ω)

)
, B2 = φ

(
p− C∗h − C∗HK̂h (ω)

)
(66)

where (∗) when associated with partial derivatives indicates derivative eval-

uated at the FOSS, matrix Q̂ is negative definite and its elements q̂ij (ω)

can be calculated using the procedure described in appendix 2. Note that

the coeffi cients of the transition equations depend on local and nonlocal spa-

tial effects in the frequency domain. Assuming a quadratic value function
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W
(
x̂ (ω, θ) , V̂ (ω, θ)

)
= −P1x2−P2V 2−P3xV and following the procedure

of section 3, we obtain the optimal feedback controls as:

v̂∗ (ω, θ) =
C
(

2P1x̂ (ω, θ) + P3V̂ (ω, θ)
)

θ

ĥ∗ (ω, θ) =
1

q̂33

[
(2P1A3 + P3B2 − q̂31) x̂ (ω, θ) + (2P2B2 + P3A3 − q̂32) V̂ (ω, θ)

]
.

Substituting the optimal feedback controls into the value functions and

equating coeffi cients of the same power, the parameters of the value function

are obtained as the solution of a nonlinear system in (P1, P2, P3) which has

the structure13

η1
(
P2, P3, P

2
2 , P

2
3

)
+
C2

2θ
P 23 = 0 (67)

η2
(
P1, P2, P3, P

2
3

)
+

2C2

θ
P1P3 = 0 (68)

η3
(
P1, P3, P

2
1 , P

2
3

)
+

2C2

θ
P 21 = 0. (69)

We note the following: When the regulator is not concerned about model

misspecification, then θ → ∞ and our problem is a distributed parameter

control problem. Local spatial effects are captured by the term 4D sin2
(
πω
N

)
which reflects biomass diffusion, while nonlocal effects are captured by the

terms
(
K̂x (ω) , K̂h (ω)

)
which reflect congestion and knowledge effects.

When spatial effects are not present and θ → ∞, then our problem is a

standard linear quadratic regulator problem. A solution of (67)-(69) will

provide the parameters of the value function in the frequency domain as

functions of θ and the local and the nonlocal spatial effects, or

P ∗i (ω) = P ∗i

(
ω, θ,D, K̂x (ω) , K̂h (ω)

)
. (70)

This solution can be used to locate suffi cient conditions for hot spots of type

1-3 discussed above.

4.1 Agglomeration hot spot (type 1)

To study this hot spot we assume that P ∗1 < 0, P ∗2 < 0, P ∗1P
∗
2 − (P ∗3 )2 >

0 so that the value function is concave. Then the state dynamics when

13The full system is presented in appendix 3.
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the maximizing agent (regulator) and the minimizing agent (Nature) make

optimal choices can be written as(
dx̂(t,ω)
dt

dV̂ (t,ω)
dt

)
= A

(
x̂ (t, ω)

V̂ (t, ω)

)
, A = [αij ] , i, j = 1, 2 (71)

α11 = f∗x − 4D sin2
(πω
N

)
+
V̄ ∗

q̂33
(2P ∗1A3 + P ∗3B2 − q̂31)(72)

α12 = h̄∗ +
V̄ ∗

q̂33
(2P ∗2B2 + P ∗3A3 − q̂32) +

C2P ∗3
θ

(73)

α21 = −φ
(
C∗x + C∗XK̂x (ω)

)
+

B2
q̂33

(2P ∗1A3 + P ∗3B2 − q̂31) (74)

α22 =
φ

q̂33

(
p− C∗h − C∗HK̂h (ω)

)
(2P ∗2B2 + P ∗3A3 − q̂32) .(75)

For stability of the FOSS in all frequencies ω ∈ ZN we need the two

eigenvalues of matrix A denoted by (λ1, λ2) to be real and negative or to

have negative real parts for all θ. Let λ1 denote the largest eigenvalue of

matrix A. Then the following proposition can be stated:

Proposition 2 (i) If λ1 > 0 for a set of frequencies Ω ∈ ZN when θ →∞
then an agglomeration hot spot exists for frequencies or modes ω ∈ Ω, where

Ω can be a singleton. The agglomeration hot spot is independent of concerns

for model misspecification. (ii) If λ1 > 0 for a set of frequencies Ω ∈ ZN
if and only if θ ∈

[
θ, θ̄
]
, with θ̄ < ∞, then an agglomeration hot spot is

induced by the regulator’s concerns about model misspecification.

An agglomeration hot spot in this context means that optimal regula-

tion implies the generation of a heterogenous spatial pattern of fish biomass

and fishing vessels along the ring, with the form of a wave pattern. These

patterns will be realized in the primal space ZN when inverse Fourier trans-
forms similar to (45) are applied. Furthermore, optimal harvesting, since it

is a feedback function of fish biomass and vessels, is also going to exhibit

a similar wave heterogenous spatial pattern. Thus if quotas are to be is-

sued, the amount of quotas will be different for each cell of the ring and

the approximate optimal spatiotemporal quota path will be {h∗ (t, z)}Z=Nz=1 .

Suppose that h∗ (t, z1) < h∗ (t, z2), then if quotas can be traded across cells,

the optimal trading ratio will be h∗ (t, z1) /h
∗ (t, z2) for quotas of cell 2 to be
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used for harvesting in cell 1. The importance of part (ii) of proposition 2 is

that the spatially heterogeneous quota pattern can be induced by concerns

about model misspecification, since reduction of θ means increase in the reg-

ulator’s concerns about model misspecification. To put it in more general

terms, when concerns about possible misspecifications of state dynamics dif-

fer across sites, then the regulator might introduce spatially differentiated

instruments and generate agglomerations.

When it is optimal to generate agglomeration through the mechanism

described above, the question of what will be the final —or the steady state

equilibrium —agglomeration, which is the spatial pattern of vessels and fish

biomass after a long lapse of time, arises. Emergence of agglomeration im-

plies that the spatial instability will tend to become ‘catastrophic’ in the

sense that the amplitude of the waves increase with time. This pattern will

be halted, however, when the fish biomass in some cells becomes zero. This

is because in the dynamic system of fish biomass and vessels (57), (55), bio-

mass acts as an activator, since an increase in biomass in a cell will reduce

costs and increase the rate of growth of vessels in this cell, while vessels act

as an inhibitor, since an increase in the number of vessels in a cell will reduce

the rate of growth of biomass in this cell. Thus when biomass collapses in

a cell, cost per vessel will become very high, profits per vessel will become

negative and number of vessels in this cell will eventually decline to zero.

Whether biomass diffusion will increase the stock of fish in the cell to the

extent that vessels will be attracted depends on the specific structure of the

fishery, but this is a possibility suggesting that quite complex spatiotem-

poral patterns might emerge in the long run. Although the analysis of the

equilibrium spatial distribution of biomass, vessels and quotas is beyond the

purpose of the present paper, it can be approximated by substituting the

optimal harvesting rule {h∗ (t, z)}Z=Nz=1 in feedback form into the system of

(57), (55) and then solving the system with (∂x/∂t) = (∂V/∂t) = 0. This

will be a system of difference equations in the spatial dimension with circle

boundary conditions. In principle numerical schemes can be used to provide

a description of equilibrium distributions.
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4.2 Break down hot spot (type 2)

Consider the non-empty sets, assuming they exist, defined as

Θ (ω) = {θ : all P ∗i (θ) ∈ R, i = 1, 2, 3 which are solutions of (67)− (69)

imply a convex value function W
(
x̂ (ω, θ) , V̂ (ω, θ)

)}
. (76)

These sets represent θ′s at which the value function is convex. A mode ω2
will be a hot spot of type 2 if the value function becomes convex at this mode

for the largest θ <∞. If such a hot spot exists, the regulator cannot prevent
her value from going to −∞ at this mode which means that she cannot pre-

vent the performance of the regulation by a quota system from reaching −∞.
Since by the Plancherel theorem the total value of the regulator’s objective

is the sum of the values for all modes, the existence of a break down hot spot

will drive the total value to −∞ and will render regulation useless. If this

hot spot does not arise at the spatially homogenous system defined for D =

0 and
(
K̂x (ω) , K̂h (ω)

)
independent of ω, then our results suggest that spa-

tial effects and moderate concerns about model misspecification might cause

regulation to break down. Although the complexity of the model does not

allow analytical results, numerical simulation might be possible to reveal

the relative contribution of local and nonlocal spatial effects to this break

down. Identification of this contribution might be important for refining

regulation. If, for example, nonlocal congestion effects are responsible for

the emergence of this hot spot, then new regulatory instruments, such as

entry licences to a cell, could be introduced to prevent these effects from

creating the hot spot.

4.3 The cost of robustness hot spot (type 3)

A type 3 hot spot is consistent with a concave value function but corresponds

to a mode ω and a parameter θ at which the value function has the smallest

value for any given initial state of fish biomass and vessels. Let, for all

θ ∈ (0,+∞) ,

(P ∗1 (θ∗c , ω) , P ∗2 (θ∗c , ω) , P ∗3 (θ∗c , ω)) = max ‖P ∗1 (θc, ω) , P ∗2 (θc, ω) , P ∗3 (θc, ω)‖ ,

(77)
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then the mode ω3 that maximizes ‖P ∗1 (θ∗c , ω) , P ∗2 (θ∗c , ω) , P ∗3 (θ∗c , ω)‖ will be
a type 3 hot spot. At this hot spot regulation does not break down but the

largest reduction of value occurs. Since concerns about model misspecifica-

tion have been associated with the concept of a precautionary principle, our

result can be used to characterize costs or benefits from precaution. Since the

no concern case corresponds to the value function W
(
x̂ (ω,∞) , V̂ (ω,∞)

)
,

the cost or benefits from precaution can be determined by

W
(
x̂ (ω3,∞) , V̂ (ω3,∞)

)
−W

(
x̂ (ω3, θc) , V̂ (ω3, θc)

)
. (78)

As in the case of the break down hot spot discussed above, identification of

the relative contribution of local and nonlocal effects might be important for

refining regulation and preventing large losses in value due to the application

of a precautionary principle.

5 Conclusions and suggestions for future research

This paper has developed robust control theory in spatial settings by build-

ing on recent work on distributed control of spatially invariant systems

(Bamieh et al. 2002; Curtain et al. 2008; Brock and Xepapadeas 2008, 2009,

2010) and on robust control in economics (Salmon 2002; JET 2006; Hansen

and Sargent 2008). By adapting and extending this work, we produced a

linear quadratic approximation to this problem (see Appendix 1). Using

that linear quadratic approximation, we were able to decompose an appar-

ently intractable infinite horizon robust control linear quadratic problem on

an infinite dimensional space with highly coupled spatial dynamics into a

countable number of tractable finite dimensional infinite horizon robust con-

trol linear quadratic problems. Using these finite dimensional problems, we

were able to characterize the robust solution for the original infinite dimen-

sional linear quadratic problem. As far as we know, this approach to spatial

robust control is new to economics. Our approach provides closed form so-

lutions to a wide class of spatial robust control problems in economics. Our

approach also leads to a useful precise formulation of three types of “hot

spots”.

Hot spots of type 1 are spatial agglomerations induced by concerns of the

optimizing agent about model misspecification. Here the penalty parameter
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θ for choices of v(t, z) by the adversarial agent is still larger than any break-

down point θ (ω) , ω ∈ ẐN and is still larger than any point where the value
function of the maximizing agent loses concavity in the maximizing agent’s

state variable. While the linear quadratic approach can signal the existence

of such hot spots, the accuracy of the linear quadratic approximation will

break down and underlying nonlinearities left out of the linear quadratic

approximation of the problem determine the ultimate patterns. This task

is beyond the scope of the current paper and is reserved for future research.

Hot spots of type 2 occur when the penalty parameter, θ, for the adver-

sarial agent is lowered from +∞ to the “first”value of θ where there is an

ω where the adversarial agent can drive the maximizing agent’s welfare to

−∞. This kind of hot spot suggests a new type of precautionary principle
that operates when model uncertainty is present. Recall that the size of θ is

inversely related to the size of the model uncertainty set (e.g., Hansen and

Sargent 2008, chapter 2). Thus the optimizing agent will want to invest a lot

of resources in reducing model uncertainty that the regulator wishes to ro-

bustify against when type 2 hot spots exist. Hot spots of type 2 guide these

resources towards reduction of model uncertainty at the particular where

the hot spot exists. We plan to explore this type of precautionary principle

as well as to develop the ways in which to formulate the problem of optimal

allocation of model uncertainty reduction resources in spatial settings where

the concept of “space”is much broader than physical space.

Hot spots of type 3 occur at ω’s where the value function in the Fourier

domain computed from (37) and the text following (37), call it Ŵ (x̂0 (ω) , ω; θ),

is particularly low, i.e., when its absolute value is particularly large at a par-

ticular level of model uncertainty reflected by a particular value of θ. Again,

this type of hot spot reveals not only a strong incentive to employ resources

to learn more about the system in order to reduce model uncertainty, but

also directs allocation of those resources, much as indicated by hot spots of

type 2.

Last but not least, we apply our approach to a spatial extension of a clas-

sical work in environmental economics and bioeconomics, Vernon Smith’s

(1969) model of commercial fishing. We take the linear quadratic approx-

imation around a flat optimal steady state where each site has an equal

number of vessels, using the material in the Appendix. We then study the

analytics of the solution and the three basic types of hot spots. We locate
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suffi cient conditions for when it is optimal to induce agglomeration at some

sites independently of concerns about model misspecification. We also lo-

cate suffi cient conditions under which concerns about model misspecification

and robustification against it lead to creation of “precautionary”agglomer-

ations. This is a novel (to our knowledge) form of precautionary principle.

Of course a linear quadratic approach can only signal that the FOSS is

optimally (or robustly optimally) unstable. A study of the full nonlinear

problem is needed to assess whether agglomerations are actually created or

whether some other type of pattern is created. It is beyond the scope of the

current paper to conduct this study. This study would be the optimal control

analog of studies in mathematical biology and elsewhere of the actual non-

linear patterns created when the linearization approach signals instability.

In Brock and Xepapadeas (2008) and (2010), we used numerical methods to

compute the optimal aggregations when the linear quadratic approach sig-

naled instability of the FOSS. But we did not do robust control. It is beyond

the scope of the current paper to do an analog of the Brock and Xepapadeas

computational analysis for the robust control problems studied here. But

we conjecture that it will be a relatively straightforward adaptation of the

methods of Brock and Xepapadeas.

We placed the dynamics in this paper upon a finite ring of cells, i.e., the

“primary”group ZN with modulo N arithmetic where Fourier transforms lie

in the “dual”group ẐN = ZN . We did this to present the analytical results in
bold relief. We conjecture that the methods developed here can be extended

to many other pairs of primary and dual groups. We further conjecture that

the notation will become more complex but the basic methods will be the

same. See, for example, Bamieh et al. (2002, page 1092 and following

material, e.g. Table I) for the wide variety of settings that may be treated

in the context of spatially distributed control. This makes it clear that in

the context of spatially distributed control it will be basically a matter of

more complex notation, especially for two dimensional or higher dimensional

spaces. Hence, this is why we conjecture that the same will hold for robust

control. We leave this extension to future research.

Appendix
Appendix 1: Linear quadratic (LQ) approximation of nonlinear

distributed parameter penalty robust control problem
We extend the general approach set out by Magill (1977a,b) and we
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consider a general nonlinear distributed parameter penalty robust control

problem with deterministic misspecification only, since the modified cer-

tainty equivalence property will apply to the LQ problem. We will deal

with a general distributed parameter problem where space is continuous.

State and control functions can be identified with the abstract functions

x (t) (z) = x (t, ·) , u (t) (z) = u (t, ·) which take values on Z and which be-

long to the space of vector valued functions which are square integrable

with respect to the Haar measure, while the deterministic misspecification

is again the real function v (t, z) which is identified with the abstract func-

tion v (t) (z) = v (t, ·) that takes values into the space of functions which
are square integrable with respect to the Haar measure. In deriving the

LQ approximation we use a continuous finite space formulation with circle

boundary condition to simplify the exposition. Our results can be extended

to a discrete space ZN . Let the nonlinear penalty robust control problem:

max
u(t,z)

min
v(t,z)

∫
z∈Z

∫ ∞
0

e−ρt [f0 (x (t, z) , u (t, z) , (K0x) (t, z) , (K0u) (t, z))

+ θv2 (t, z)
]
dtdz (79)

subject to
∂x (t, z)

∂t
= f (x (t, z) , u (t, z) , (Kx) (t, z) , (Ku) (t, z) , v (t, z)) + (80)

D
∂2x

∂z2
, x (0, z) = x0 (z) and circle boundary conditions

(K0φ) (t, z) : =

∫
Z
K0
j

(
z − z′

)
φ
(
t, z′
)
dz′ = Φ (t, z) , j, φ = x, u,Φ = X0, U0

(Kφ) (t, z) : =

∫
Z
Kj

(
z − z′

)
φ
(
t, z′
)
dz′ = Φ (t, z) , j, φ = x, u,Φ = X,U

Let

H (x, u, v,X0, U0, X, U, λ,D) = f0 (x, u,X0, U0)+θv
2+λ

[
f (x, u,X,U, v) +D

∂2x

∂z2

]
(81)

be the current value Hamiltonian for the distributed parameter penalty ro-

bust control problem (79), and assume that an optimal solution to this

problem exists with the maximizing and the minimizing agents taking si-

multaneous decisions. Let u∗ (t, z) , v∗ (t, z) denote the optimal controls and
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x∗ (t, z) , λ∗ (t, z) denote the corresponding optimal state and costate paths

respectively.

A special case of this optimal solution is the optimal solution to the

spatially independent deterministic benchmark problem. This problem is a

special case of problem (79) for v (t, z) ≡ 0, D = 0, x (t, z) = x (t) , u (t, z) =

u (t) . Spatial independence means that the kernel operators can be written

as (Φφ) (t, z) = φ (t)
∫
z′∈Z ϕ (z − z′) dz′, where

∫
z′∈Z ϕ (z − z′) dz′ = ϕ̄ is a

fixed parameter for given ϕ (·) , and φ = (x, u) , ϕ =
(
K0
x,Kx,K

0
u,Ku

)
.

Thus at the spatially independent model, kernels are fixed parameters. The

current value Hamiltonian for this problem is simply:

H(x, λ, u) = f0 (x, u) + λf (x, u) (82)

where λ (t) is the costate variable. From the maximum principle, the solution

of the problem is determined by the system

Hu(x, λ, u) = 0 (83)

Hx(x, λ, u) + λ̇− ρλ = 0 (84)

Hλ(x, λ, u) = 0. (85)

Let
(
x̄∗, ū∗, 0, λ̄

∗) be a steady state of the spatially independent benchmark
model corresponding to paths that satisfy transversality conditions at infin-

ity. We shall call this steady state a flat optimal steady state and we will

assume that the process described by (80) starts close to the FOSS, or that

x (0, z) starts close to x∗ for all z ∈ Z.
Let

(χ, γ, ζ, η) = (86)

(x (t, z)− x∗ (t, z) , u (t, z)− u∗ (t, z) , v (t, z)− v∗ (t, z) , λ (t, z)− λ∗ (t, z))

denote deviations of the paths for the state, control and costate functions

from the optimal paths. Deviation should be understood as functions χ (t) (z) =

χ (t, ·) , γ (t) (z) = γ (t, ·) , ζ (t) (z) = ζ (t, ·) , η (t) (z) = η (t, ·) which take val-
ues on Z and which belong to the space of vector valued functions which

are square integrable with respect to the Haar measure. A special case of

these deviations are deviations from the FOSS
(
x̄∗, ū∗, 0, λ̄

∗)
.

Perturb the optimal controls by letting
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u (t, z) = u∗ (t, z) + εγ (t, z) (87)

v (t, z) = v∗ (t, z) + εζ (t, z) . (88)

For a control of the form (87), (88) we adapt Athans and Falb (1966,

page 261) to focus on perturbations of the state function of the form below,

x (t, z) = x∗ (t, z) + εy (t, z) + ε2ξ (t, z) + o
(
ε2, t, z

)
, (89)

where y and ξ are first- and second-order state perturbations respectively,

o
(
ε2, t, z

)
is defined in the L2 norm sense o

(
ε2, t, z

)
→ 0 as ε2 → 0 uni-

formly in (t, z) . Athans and Falb (1966, pp. 254-265) show that control

perturbations of the form (87) lead to state perturbations of the form (89)

under appropriate regularity conditions for the case where Z is one point.

Substituting the perturbed state and controls into the kernel expressions

and using the linearity of the integral operator we obtain

(Kx) (t, z) = K
(
x∗ (t, z) + εy (t, z) + ε2ξ (t, z) + o

(
ε2, t, z

))
= (90)

(Kx∗) (t, z) + ε (Ky) (t, z) + ε2 (Kξ) (t, z) + Ko
(
ε2, t, z

)
(Ku) (t, z) = K (u∗ (t, z) + εγ (t, z)) = (Ku∗) (t, z) + ε (Kγ) (t, z) .(91)

We substitute perturbed control, state and kernels into (80) and then

expand it as a Taylor series around the FOSS
(
x̄∗, ū∗, 0, λ̄

∗)
, where the

expansion is defined in terms of Fréchet derivatives of f (·) . Omitting (t, z)

to ease notation and letting (∗) denote evaluation at the FOSS we obtain

ε
∂y

∂t
+ ε2

∂ξ

∂t
= f

(
x̄∗, ū∗, x̄∗K̄x, ū

∗K̄u, 0
)

+ f∗x
[
εy + ε2ξ + o

(
ε2
)]

+ f∗uεγ +

f∗X
[
ε (Ky) (t, z) + ε2 (Kξ) (t, z) + Ko

(
ε2, t, z

)]
+ f∗Uε (Kγ) (t, z)

f∗v εζ + εD
∂2y

∂z2
+ ε2D

∂2ξ

∂z2
+

1

2
w′Ww + higher order terms, (92)

where K̄x, K̄u are the fixed, at the FOSS, kernels and w′Ww is the quadratic

form of the second order Fréchet derivatives of f (·) with

w =
(
εy + ε2ξ, εγ, ε (Ky) + ε2 (Kξ) , ε (Kγ) , εζ

)
. (93)

Noting that f
(
x̄∗, ū∗, x̄∗K̄x, ū

∗K̄u, 0
)

= 0 since it is evaluated at the FOSS,
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dividing throughout by ε and then taking the limit as ε→ 0, we obtain:

∂y

∂t
= f∗xy + f∗uγ + f∗X (Ky) + f∗U (Kγ) + f∗v ζ +D

∂2y

∂z2
. (94)

Using the Hamiltonian function (81) write

H (x, u, v,X0, U0, X, U, λ
∗) = G (x, u, v,X0, U0, X, U, λ

∗) + λ∗D
∂x2

∂z2
(95)

G (x, u, v,X0, U0, X, U, λ
∗) = f0 (x, u,X0, U0) + θv2 + λ∗f (x, u,X,U, v) .

Then the performance functional for (79) along the optimal path can be

written as

J (u∗, v∗) =

∫
z∈Z

∫ ∞
0

e−ρt
[
G (x∗, u∗, v∗, X∗0 , U

∗
0 , X

∗, U∗, λ∗) + λ∗D
∂2x∗

∂z2
− λ∗∂x

∗

∂t

]
dtdz

(96)

with (t, z) omitted to ease notation. The performance functional along a

perturbed path, with perturbations given by (87), (88), (89), which is eval-

uated along the λ∗ (t, z) path, is

J (u, v) =

∫
z∈Z

∫ ∞
0

e−ρt
[
G (x, u, v,X0, U0, X, U, λ

∗) + λ∗D
∂x2

∂z2
− λ∗∂x

∂t

]
dtdz.

(97)

Let G0 = G (x∗, u∗, v∗, X∗0 , U
∗
0 , X

∗, U∗, λ∗) , then

J (u, v)−J (u∗, v∗) =

∫
z∈Z

∫ ∞
0

e−ρt
[(
G − G0

)
−λ∗∂ (x− x∗)

∂t
−λ∗D∂

2 (x− x∗)
∂z2

]
dtdz.

(98)

The terms λ∗ ∂(x−x
∗)

∂t and λ∗D ∂2(x−x∗)
∂z2

can be transformed as follows:

Integrating by parts the term
∫∞
0 e−ρtλ∗ ∂(x−x

∗)
∂t dt and using appropriate

temporal transversality conditions, we obtain∫ ∞
0

e−ρtλ∗
∂ (x− x∗)

∂t
dt =

∫ ∞
0

e−ρt
(
εy + ε2ξ

) (
λ̇
∗ − ρλ∗

)
dt. (99)

Integrating twice by parts the term
∫
z∈Z

∫∞
0 e−ρtλ∗D ∂2(x−x∗)

∂z2
dtdz and using
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appropriate spatial transversality conditions, we obtain

∫
z∈Z

∫ ∞
0

e−ρtλ∗D
∂2 (x− x∗)

∂z2
dtdz = −

∫
z∈Z

∫ ∞
0

e−ρt
(
εy + ε2ξ

)
D
∂2λ∗

∂z2
dtdz.

(100)

We substitute for the perturbed path x = x∗ + εy + ε2ξ + o
(
ε2
)
into (98)

and we expand the term G − G0 as a Taylor series around the optimal path
(x∗ (t, z) , u∗ (t, z) , v∗ (t, z) , λ∗ (t, z)) to obtain

G − G0 = κ′∇G∗ +
1

2
κ
′∇2G∗κ+ higher order terms, (101)

where ∇G, ∇2G are the first- and second-order Fréchet derivatives of the
Hamiltonian function evaluated at the optimal paths. and

κ =
(
εy + ε2ξ, εγ, εζ, ε (K0y) + ε2 (K0ξ) , ε (K0γ) , ε (Ky) + ε2 (Kξ) , ε (Kγ)

)′
, or

κ =
(
εy + ε2ξ, εγ, εζ, εY0 + ε2Y0ξ, εG0, εY + ε2Yξ, εG

)′
. (102)

Then (98) becomes

J (u, v)− J (u∗, v∗) = (103)∫
z∈Z

∫ ∞
0

e−ρt
[
κ′∇G∗ +

1

2
κ
′∇2G∗κ+

(
εy + ε2ξ

)(
λ̇
∗ − ρλ∗ +D

∂2λ∗

∂z2

)
+

]
dtdz.

The term κ′∇G can be expanded as

κ′∇G = G∗x
(
εy + ε2ξ

)
+ G∗uεγ + G∗vεζ + G∗X0

(
ε (K0y) + ε2 (K0ξ)

)
+ G∗U0ε (K0γ)

+G∗X
(
ε (Ky) + ε2 (Kξ)

)
+ G∗Uε (Kγ) . (104)

By appropriate change in the order of integration we can write∫
z∈Z
G∗X
(
ε (Ky) + ε2 (Kξ)

)
dz =

∫
z∈Z

[
εy (KG∗X) + ε2ξ (KG∗X)

]
dz∫

z∈Z
G∗Uε (Kγ) dz =

∫
z∈Z

εγ (KG∗U ) dz (105)

and the same for the corresponding X0, U0 kernels. Assume that

G∗u +
(
K0G∗U0

)
+ (KG∗U ) = 0,G∗v = 0 (106)

λ̇
∗ − ρλ∗ +D

∂2λ∗

∂z2
+ G∗x +

(
K0G∗X0

)
+ KG∗X = 0. (107)
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But (106)-(107) are the optimality conditions for problem (79), then

(103) becomes

J (u, v)− J (u∗, v∗) =

∫
z∈Z

∫ ∞
0

e−ρt
1

2
κ
′∇2G∗κ, (108)

where all the terms of the quadratic form κ
′∇2G∗κ are multiples of ε2 or

higher terms. Since the approximation (108) holds along the optimal path,

then assuming that state dynamics start in the neighborhood of the FOSS,

dividing by ε2 and taking the limit as ε → 0, we define the approximation

at the FOSS as

J (u, v)− J (ū∗, v̄∗) =

∫
z∈Z

∫ ∞
0

e−ρt
1

2
κ
′∇2Ḡ∗κ, (109)

where all derivatives are evaluated at the FOSS. Assuming that state dy-

namics start in the neighborhood of the FOSS, dividing by ε2 and taking

the limit as ε→ 0 we can obtain a ‘good LQ approximation’of the nonlin-

ear problem (79) by substituting f0 (x, u,X0, U0) + θv2 by 1
2κ
′
0∇2Ḡ∗κ0+ θv2

where κ0 = (y, γ, Y0, G0, Y,G) . Writing ∇2Ḡ∗ = Q and abusing notation by

setting (y, γ, Y0, G0, Y,G) = (x, u,X0, U0, X, U) = ξ′ and ζ = v, the approx-

imating LQ penalty robust control problem can be written as

max
u(t,z)

min
v(t,z)

∫
z∈Z

∫ ∞
0

e−ρt
1

2

[
ξ′Qξ + θv2

]
dtdz

subject to
∂x

∂t
= f∗xx+ f∗uu+ f∗XX + f∗UU + f∗v v +D

∂2x

∂z2
, x (0, z) = x0 (z) ,

which is problem (13) with (f∗x , f
∗
u , f

∗
X , f

∗
U , f

∗
v ) =

(
A,B, Ā, B̄, C

)
and Q =

[qij ] , i, j = 1, ..., 6 is a (6× 6) symmetric matrix.

Appendix 2: The derivation of the quadratic form ŵ′Q̂ŵ

In the quadratic form ŵ′Q̂ŵ the matrix Q̂ is a symmetric (2× 2) ma-

trix [q̂ij ] , i, j = 1, 2. Its elements are derived from the quadratic form ξ′Qξ

using the convolution theorem for the Fourier transform (e.g. Bracewell

2000). Let
(
x, u,K0

xx,K
0
ux,Kxx,Kuu

)
= ξ′ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) , where(

K0
xx,K

0
ux,Kxx,Kuu

)
= (X0, U0, X, U) . Then ξ′Qξ =

∑6
i,j=1 qijξiξj .

To make the derivation clear, take i = 1. Then the sum of the terms of
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the quadratic form corresponding to i = 1 is

Q1 = q11x
2+q12xu+q13x

(
K0
xx
)
+q14x

(
K0
uu
)
+q15x (Kxx)+q16x (Kuu) .

(110)

Using the convolution theorem for the DFT we obtain:(
K0
xx
)

(t, z) → K̂0
x (ω) x̂ (ω) ,

(
K0
uu
)

(t, z)→ K̂0
u (ω) û (ω) , (111)

(Kxx) (t, z) → K̂x (ω) x̂ (ω) , (Kuu) (t, z)→ K̂u (ω) û (ω) , (112)

then

Q1 →
[
q11 + q13K̂

0
x (ω) + q15K̂x (ω)

]
x̂2 (ω) + (113)[

q12 + q14K̂
0
u (ω) + q16K̂u (ω)

]
x̂ (ω) û (ω) = Q̂1 (ω) . (114)

The same can be repeated for i = 2, ..., 6. It is noted that the sum of the

pure quadratic terms, which is

q11x
2+q22u

2+q33
(
K0
xx
)2

+q44x
(
K0
uu
)2

+q55x (Kxx)2+q66 (Kux)2 , (115)

becomes, after using the convolution and the power theorems,[
q11 + q33

(
K̂0
x (ω)

)2
+ q55

(
K̂x (ω)

)2]
x̂2 (ω) + (116)[

q22 + q44

(
K̂0
u (ω)

)2
+ q66

(
K̂u (ω)

)2]
û2 (ω) . (117)

After performing all calculations and taking common factors of x̂2 (ω) ,

û2 (ω) , x̂ (ω) û (ω) , we obtain the quadratic form ŵ′Q̂ŵ where the elements

of matrix Q̂ (ω) are defined in the dual space Ẑ, or the frequency domain,

and depend on the spatial kernels.

Appendix 3: The parameters of the value function of the com-
mercial fishery

The parameters of the value function are determined by the solution of
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the following system:

−P2 +A2P3 −
1

2
q̂22 +

2B22P
2
2

q̂33
+

2A3B2P2P3
q̂33

+
1

2

A23P
2
3

q̂33
−

2B2P2q̂23
q̂33

− A3P3q̂23
q̂33

+
1

2

q̂223
q̂33

+
1

2

C2P 23
θ

= 0 (118)

2A2P1 + 2B1P2 − P3 +A1P3 − q̂21 +
4A3B2P1P2

q̂33
+

2A23P1P3
q̂33

+

2B22P2P3
q̂33

+
A3B2P

2
3

q̂33
− 2A3P1q̂23

q̂33
− B2P3q̂23

q̂33
− 2B2P2q̂31

q̂33
−

A3P3q̂31
q̂33

+
q̂23q̂31
q̂33

+
2C2P1P3

θ
= 0 (119)

−P1 + 2A1P1 +B1P3 −
1

2
q̂11 +

2A23P
2
1

q̂33
+

2A3B2P1P3
q̂33

+
1

2

B22P
2
3

q̂33
−

2A3P1q̂31
q̂33

− B2P3q̂31
q̂33

+
1

2

q̂231
q̂33

+
2C2P 21
θ

= 0. (120)
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