# Multi-Output Distance Function for the North Sea Beam Trawl Fishery 

Trond Bjorndal<br>Department of Economics/CEMARE, University of Portsmouth, UK<br>Phoebe Koundouri ${ }^{1}$<br>Department of Economics, University of Reading, UK<br>Department of Economics/CSERGE, University College London, UK<br>Sean Pascoe<br>Department of Economics/CEMARE, University of Portsmouth, UK


#### Abstract

Interactions between species in a fishery may be either biological (e.g. predatorprey) or technical (e.g. joint production). Technical interactions within fisheries have generally been assumed to exist, although the strength of these interactions has not been previously quantified. In this paper, we estimate a multi-output distance function for the UK North Sea demersal fishery and consider elasticities of substitution between the outputs. The empirical results of the paper have implications for continuing fisheries management in several countries. In particular, they reinforce the need for fisheries managers to consider the technical interactions between species when setting the TACs. Failure to consider these interactions may result in increased discarding in the fishery, and potentially lower than expected future yields.


Key Words: multi-output fishery, distance function, elasticities of substitution, efficiency.
JEL: Q22

[^0]
## 1. Introduction

Fisheries management can impinge on economic efficiency in a number of ways, as it is based on a combination of input (regulating the level of fishing effort) and output controls (regulating the total harvest through total allowable catches (TAC) or individual quotas). This motivated economists, in the last decade, to estimate technical efficiency in fisheries (Salvanes and Steen, 1994; Kirkley et al., 1995, 1998; Campbell and Hand, 1998; Squires and Kirkley, 1999; Grafton et al., 2000; Pascoe et al., 2001, Alvarez and Orea, 2001). ${ }^{2}$

In summary, the literature finds that restrictions on input use may lead to input substitution, resulting in a sub-optimal combination of inputs relative to the unrestricted situation (both in terms of technical and allocative efficiency). Moreover, measures to reduce the ability of fisheries to harvest the resource without reducing the total level of employment may result in contraction or shifts in the production frontier through technological changes. Management may also result in improved input allocative efficiency through removing incentives to overcapitalise. Regarding output controls in fisheries, the literature finds that when changes in quota allocations do not reflect changes in stock conditions, actual catch may diverge from planned catch, and output may be less than efficient given the level of inputs.

An aspect of the fishing activity, which is closely related to efficiency measures, but also affects the effectiveness of fisheries' regulation, is jointness in production. In the case of multi-species fisheries, fishing firms may be exploiting several fish stocks at the same time in a situation where it may be difficult to target specific stocks (by-catch). The challenge is then to correctly model this situation in order to be able to derive reliable policy recommendations with regards to the efficiency implications of the existing regulatory regime.

## 2. Single vs multi-output production functions in fisheries

A production function defines the relationship between the level of inputs and the resultant level of outputs. It is estimated from observed outputs and input usage and indicates the average level of outputs for a given level of inputs (Schmidt 1986). In fisheries, several studies have estimated production functions at either the individual boat level or total fishery level (e.g. Hannesson 1983, Campbell and Lindner 1990, Squires 1987, Pascoe and Robinson

[^1]1998). The objective of these studies was generally to estimate the output elasticities associated with each input, and in some cases the potential for input substitution.

More recently, emphasis has shifted to the estimation of production frontiers. Interest in technical efficiency has largely driven this shift, although there are theoretical reasons why the estimation of production frontiers has advantages over the estimation of production functions (see Kumbhakar 2002). Only limited attempts to estimate stochastic production frontiers for fisheries have been undertaken (Kirkley, Squires and Strand 1995, 1998, Campbell and Hand 1998, Sharma and Leung 1999, Grafton, Squires and Fox 2000, Alvarez 2001, Pascoe, Anderson and de Wilde 2001, Pascoe and Coglan 2002).

A common feature of these studies is the reliance on a single measure of output. This approach has generally been common for the estimation of most production functions in most industries. However, unlike many other industries, fisheries are characterised by joint production. Joint production occurs when firms produce several outputs at the same time. In fisheries, this is due to technological aspects of the production process, in particular technical interdependencies and non-allocable inputs. Resource jointness in fisheries can arise as a result of several reasons. In particular, many species are often found in the same geographical area and will be harvested at the same time as a result of the limited selectivity of the fishing gear.

The use of a singe composite measure of output under such circumstances imposes a number of restrictive assumptions. Summing up the weight of each output assumes that all species are equally important in the catch, which is clearly not the case in fisheries as high volume species often tend to be low value. This can be overcome through incorporating price into the measure, and several of the above studies have used revenue as the output measure. The use of total revenue as the output measure requires the assumption that output prices do not differ between firms, and changes in 'output' due to changes in price need to be compensated for. A further method that has been applied in several of the above studies has been to weight the quantity of each output on the basis of its revenue share. This avoids the biases introduced through using prices only, but assumes revenue maximising behaviour and competitive output markets - assumptions that may not be realistic in many instances. Moreover, an aggregate production function imposes the restrictive assumption of separability in inputs and output on
the transformation function. This implies that the input mix can be changed significantly without affecting the slope of the production possibility curve and that marginal costs depend only on the output mix, so are independent of the input prices.

An alternative to single output measures is the use of multi-output measures. Several studies have been undertaken assessing technical efficiency and capacity utilisation using Data Envelopment Analysis (DEA) in fisheries (couple of references). A key feature of DEA is that it is directly able to incorporate multiple outputs into the analysis. However, as it is nonparametric it is sensitive to random error, and also does not provide estimates of the impact of individual inputs on the level of outputs, or the relationship between the outputs themselves.

Alvarez and Orea (2001) examined two methods for incorporating multi-outputs in fisheries production functions and compared these with single output measures. The first method - the multi-output production function - involved regressing one (of two) outputs against the other output and set of inputs. The second method - the output oriented distance function involved a normalised and restricted model that considers the maximal proportional expansion of the output vector given an input vector. Both methods were found to produce similar output elasticities associated with each input, and these were also similar to those derived through the single output production function. Moreover, the specification of the production process as multi-output overcame the problems associated with the implicit assumptions imposed through the different aggregation processes necessary to derive the single composite output measure.

A key criticism of the multi-output production function is that the output selected as the dependent variable plays an asymmetric role, which affects the estimated parameters of the production technology as well as the relevant efficiency score. In contrast, in the output oriented distance function, every output plays the same role, avoiding the asymmetry problem (i.e. the efficiency measures are not output specific but radial). Further, the output oriented distance function has advantages over the other methods in that estimation is possible without separability and jointeness, and information on prices is not required. However, the estimation of the distance function requires the assumption of linear homogeneity in outputs, implicitly implying that not only efficiency but noise are also radial. That is, the influence of noise on one output is the same as that upon another output. This not withstanding, the
output-oriented distance function appears to be the most appropriate method for estimating multi-output

## 3. The Restricted Multi-Output Distance Function

The methodology employed in the study largely follows that used by Fare and Grosskopf (1990), Grosskopf et al. (1995), Coelli and Perelman (1996) and Morrison Paul et al. (2000). These studies largely derive from the initial distance function theory developed by Shephard (1970). Given the existence of a production possibility frontier, the distance that any producer is away from the frontier is a function of the set of inputs used, $\mathbf{x}$, and the level of outputs produced, $\mathbf{y}$. For the output-oriented model, this can be expressed as

$$
\begin{equation*}
D_{0}(\mathbf{x}, \mathbf{y})=\min \{\theta:(\mathbf{y} / \theta) \in P(\mathbf{x})\} \tag{1}
\end{equation*}
$$

where $D_{0}(\mathbf{x}, \mathbf{y})$ is the distance from the firm's output set to the frontier, and $\theta$ is the corresponding level of efficiency. The output distance function seeks the largest proportional increase in the observed output vector $\mathbf{y}$ provided that the expanded vector $(\mathbf{y} / \theta)$ is still an element of the original output set (Grosskopf et al 1995). ${ }^{3}$ If the firm is fully efficient, so that it is on the frontier, $D_{0}(\mathbf{x}, \mathbf{y})=\theta=1$, where as $D_{0}(\mathbf{x}, \mathbf{y})=\theta<1$ indicates that the firm is inefficient. The output distance function is homogeneous of degree 1 in outputs (Shephard 1970). ${ }^{4}$

Fishery models recognise that capital (the vessel) is usually a fixed factor, due to limited second hand markets and high adjustment costs. These models use a restricted profit function, where the fishing vessel is assumed to maximise profits by choosing inputs and harvest level

[^2]subject to the size of the vessel used in harvesting. Modelling fishermen behavior with profit functions, however, is appropriate only when the output quantities are choice variables. For the fishing vessel in IVQ regulated fisheries the harvest level is set by the individual quota and is no longer a choice variable, i.e., harvest is an exogenous or restricted factor. Hence the price-taking fishermen maximises profits for a given harvest level $H_{i t}$, or equivalently, minimises the cost of harvesting the given quota, assuming the quota is the only fixed factor, (Asche et al., 2002).

The restricted profit maximization problem can be written as:

$$
\begin{align*}
& \Pi_{i t}^{R}\left(p_{t}^{P}, p_{t}^{S}, p_{t}^{C}, p_{t}^{A}, p_{t}^{O}, p_{t}^{K}, p_{t}^{E}\right)= \\
& \max \left(p_{t}^{P} \cdot y_{i t}^{P}+p_{t}^{S} \cdot y_{i t}^{S}+p_{t}^{C} \cdot y_{i t}^{C}+p_{t}^{A} \cdot y_{i t}^{A}+p_{t}^{O} \cdot y_{i t}^{O}\right)-C_{i t}\left(Y_{i t}, p_{t}^{E}, p_{t}^{K}\right) \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
C_{i t}\left(Y_{i t}, p_{t}^{E}, p_{t}^{K}\right)=\min p_{t}^{E} \cdot x_{i t}^{E}+p_{t}^{K} \cdot x_{i t}^{K}: H_{i t}\left(\underset{i t}{\left(Y, x_{i t}^{E}\right.}, x_{i t}^{K}\right)=0 \tag{3}
\end{equation*}
$$

To anticipate empirical estimation, variables are introduced. The vessel and time specific restricted profit function and the cost function are $\Pi_{i t}^{R}($.$) and C_{i t}($.$) , respectively. Outputs are$ plaice ( $y^{P}{ }_{i t}$ ), sole $\left(y^{S}{ }_{i t}\right)$, cod $\left(y^{C}{ }_{i t}\right)$, angler ( $y^{A}{ }_{i t}$ ) and other ( $y^{O}{ }_{i t}$ ); $p^{P}{ }_{t}, p_{t}^{S} p^{C}{ }_{t} p^{A}{ }_{t}$ and $p^{O}{ }_{t}$, are respective competitive market prices. Input price vectors for labour (days employed in fishing) $x^{E}{ }_{i t}$ and capital $x^{K}{ }_{i t}$ are $p^{E}{ }_{t}$ and $p^{K}{ }_{t}$, respectively. $\mathbf{Y}_{i t}$ is vessel ( $i$ ) and time $(t)$-specific aggregate harvest quantity. By solving for optimal levels of output, one can therefore find the potential rents in such a fishery. ${ }^{5}$

Given the advantages of the distance function discussed in section (2), we model fishing behaviour through a restricted multi-output distance function. The production technology is defined by output sets, $\mathrm{P}\left(\mathbf{X}_{\mathrm{it}} ; \mathbf{H}_{\mathrm{it}}\right)$, which represents the set of all output vectors, $\mathbf{Y}_{\mathrm{it}}$, which can be produced using the input vector, $\mathbf{X}_{\mathrm{it}}$, given that individual fishermen decide the mix of

[^3]input quantities for a given quota (which can be vessel (i) and time ( $t$ ) specific). Quotas restrict the harvest level $\mathbf{H}_{\mathrm{it}}$. That is,
$P\left(\boldsymbol{X}_{i t} ; \boldsymbol{H}_{i t}\right)=\left\{\boldsymbol{Y}_{i t}: \boldsymbol{X}_{i t}\right.$ can produce $\boldsymbol{Y}_{i t}$ given $\left.\boldsymbol{H}_{i t}\right\}$

For each $\mathbf{X}_{\mathrm{it}}$, the output set $\mathrm{P}\left(\mathbf{X}_{\mathrm{it}} ; \mathbf{H}_{\mathrm{it}}\right)$ is assumed to satisfy the properties mentioned above. The output distance function is defined on the output set, $\mathrm{P}\left(\mathbf{X}_{\mathrm{it}} ; \mathbf{H}_{\mathrm{it}}\right)$, as:

$$
\begin{equation*}
D_{\text {oit }}^{R}\left(\underset{i t}{E}, x_{i t}^{K}, y_{i t}^{P}, y_{i t}^{S}, y_{i t}^{C}, y_{i t}^{A}, y_{i t}^{O} ; H_{i t}\right)=\min \left\{\theta_{i t:}:\left(Y_{i t} / \theta_{i t}\right) \in P\left(X_{i t}^{;} ; H_{i t}\right)\right\} \tag{5}
\end{equation*}
$$

where $D_{o i t}^{R}($.$) , the restricted output distance function, is non-decreasing in outputs and$ increasing in inputs, linearly homogeneous in outputs, $D_{\text {oit }}^{R}()=$.1 and $D_{\text {oit }}^{R}()=$.1 if $\mathbf{Y}_{\text {it }}$ belongs to the "frontier" of the production possibility set; $\theta_{i t}$ measures the proportional (radial) expansion of the output vector that brings the ith firm to the efficient frontier. ${ }^{6}$

Shepard (1970) has shown that the output distance function may also be obtained as a profit maximal profit function. This means that equation (5) can alternatively be written as:

$$
\begin{align*}
& D_{o i}^{R}\left(x_{i t}^{E}, x_{i t}^{K}, y_{i t}^{P}, y_{i t}^{S}, y_{i t}^{C}, y_{i t}^{A}, y_{i t}^{O} ; H_{i t}\right)= \\
& \max _{p^{M}}\left\{p_{t}^{P} \cdot y_{i t}^{P}+p_{t}^{S} \cdot y_{i t}^{S}+p_{t}^{C} \cdot y_{i t}^{C}+p_{t}^{A} \cdot y_{i t}^{A}+p_{t}^{O} \cdot y_{i t}^{O}: \Pi_{i t}^{R}(.)\right\} \\
& m=1, \ldots, 6 \text { outputs } \tag{6}
\end{align*}
$$

## 4. Econometric Specification

In order to estimate the distance from the frontier, both the frontier itself and the relationship between inputs and outputs need to be determined. This requires some form of multi-output production function $P(\mathbf{x})$ to be specified. The most common functional form applied is the translog production function, as it does not impose restrictive assumptions regarding

[^4]substitutability between inputs (and in this case outputs ${ }^{7}$ ). This is particularly important in this study as a primary objective is to assess the elasticity of substitution between outputs.

The translog distance function with $\mathrm{M}(m=1,2, \ldots, M)$ outputs and $\mathrm{K}(k=1,2, \ldots, K)$ inputs, and for $\mathrm{I}(i=1,2, \ldots, I)$ firms, can be given by:

$$
\begin{align*}
\ln D_{0 i} & =\alpha_{0}+\sum_{m} \alpha_{m} \ln y_{m i}+0.5 \sum_{m} \sum_{n} \beta_{m n} \ln y_{m} \ln y_{n i} \\
& +\sum_{k} \alpha_{k} \ln x_{k, i}+0.5 \sum_{k} \sum_{l} \beta_{k l} \ln x_{k} \ln x_{l i}  \tag{7}\\
& +\sum_{k} \sum_{m} \beta_{k m} \ln x_{k i} \ln y_{m i}
\end{align*}
$$

In order to maintain the homogeneity conditions, a number of restrictions need to be imposed. These conditions require the constraints $\sum_{m} a_{m}=1, \sum_{n} \beta_{m n}=\sum_{m} \beta_{k m}=0$, while symmetry restrictions require $\beta_{m n}=\beta_{n m}$ and $\beta_{k l}=\beta_{l k}$. The homogeneity restrictions can be imposed through normalising the function by one of the outputs. This results in:

$$
\begin{align*}
\ln D_{0 i} / y_{1 i} & =\alpha_{0}+\sum_{m} \alpha_{m} \ln \left(y_{m i} / y_{1 i}\right)+0.5 \sum_{m} \sum_{n} \beta_{m n} \ln \left(y_{m} / y_{1 i}\right) \ln \left(y_{n i} / y_{1 i}\right) \\
& +\sum_{k} \alpha_{k} \ln x_{k, i}+0.5 \sum_{k} \sum_{l} \beta_{k l} \ln x_{k} \ln x_{l i}  \tag{8}\\
& +\sum_{k} \sum_{m} \beta_{k m} \ln x_{k i} \ln \left(y_{m i} / y_{1 i}\right)
\end{align*}
$$

The level of inefficiency can be estimated from a stochastic frontier production function of the form $\mathbf{y}=\mathrm{f}(\mathbf{x})+\mathrm{v}-\mathrm{u}$, where $v$ is the error term (assumed to be $\mathrm{N}[0, \sigma]$ ) and $u$ is the one sided inefficiency term that may take one of several distributional forms. The level of efficiency is estimated as the exponent of the negative of the error term (i.e., $\exp (-\mathrm{u})$ ). Consequently, $\ln D_{0_{i}}=-u_{i}$, and the normalised equation can be expressed as

[^5]\[

$$
\begin{align*}
-\ln y_{1 i} & =\alpha_{0}+\sum_{m} \alpha_{m} \ln \left(y_{m i} / y_{1 i}\right)+0.5 \sum_{m} \sum_{n} \beta_{m n} \ln \left(y_{m} / y_{1 i}\right) \ln \left(y_{n i} / y_{1 i}\right) \\
& +\sum_{k} \alpha_{k} \ln x_{k, i}+0.5 \sum_{k} \sum_{l} \beta_{k l} \ln x_{k} \ln x_{l i}  \tag{9}\\
& +\sum_{k} \sum_{m} \beta_{k m} \ln x_{k i} \ln \left(y_{m i} / y_{1 i}\right)+v_{i}+u_{i}
\end{align*}
$$
\]

For estimation purposes, the negative sign on the dependent variable can be ignored (i.e., use $\ln y_{l}$ rather than $-\ln y_{l}$ ). This results in the signs of the estimated coefficients being reversed, but is more consistent with the expected signs of conventional production functions (Coelli and Perelman 1996), and provides a convenient means of qualitatively assessing the models.

In order to separate the stochastic and inefficiency effects in the model, a distributional assumption has to be made for $u_{i}$. Two main distributional assumptions that have been proposed are a normal distribution truncated at zero, $u_{j} \sim\left[N\left(\mu, \sigma^{2}{ }_{u}\right)\right]$ (Aigner, Lovell and Schmidt 1977); and a half-normal distribution truncated at zero, $u_{j} \sim\left[N\left(0, \sigma_{u}^{2}\right)\right]$ (Jondrow et al. 1982). In addition, the inefficiency can also be considered to have a time invariant component, such that $u_{i, t}=u_{i} \exp [\eta(T-t)]$ (Battese and Coelli 1992), where $T$ is the terminal time period (i.e. $u_{i, t}=u_{i}$ when $t=T$ ).

### 4.1 Elasticities of substitution

Following Grosskopf et al (1996), the Allen elasticities of substitution can be directly derived from the distance function, given by

$$
\begin{equation*}
A_{y y^{\prime}}(x, y)=\left[D(x, y)+\frac{\partial^{2} D(x, y)}{\partial y \partial y^{\prime}}\right] /\left[\frac{\partial D(x, y)}{\partial y} * \frac{\partial D(x, y)}{\partial y^{\prime}}\right] \tag{10}
\end{equation*}
$$

where $A_{y y}$, is the Allen elasticity of substitution between output y and y'. A negative value indicates the outputs are substitutes, while a positive value indicates complementarity. The size of the value is a measure of the strength of the substitute/complementarity relationship.

In order to estimate the values of the first and second order derivatives, the values of and $\beta$ relating to the output over which the production function was normalised need to be derived. This can be done using the homogeneity restrictions that were imposed on the model.

For the purposes of estimating the elasticity of substitution, the signs of the estimated coefficients need to be reversed.

## 5. The UK North Sea Demersal fishery

The North Sea (ICES Divisions Iva,b,c - see Figure 1) contains a number of interacting multispecies fisheries of great importance to many countries. The North Sea is the major fishing area in European Community waters. Based on the total allowable catches (TACs) and the guide prices for each species, the total value of the allowable catch in 1999 was estimated to be about 1.5 billion Euro (Table 1). This is an underestimate of the true value of landings as the guide prices are generally lower than market prices. However, it provides an indication of the order of magnitude of the value of the fishery. Over half of the combined total allowable catches of all species in all EU waters are taken from the North Sea. Commercial activity in the region is mostly undertaken by fishermen from the countries bordering the North Sea: UK, Denmark, the Netherlands, France, Germany, Belgium and Norway. Transboundary stocks are shared between the EU and Norway.

This study focuses on two main fleet segments that make up the majority of the UK North Sea demersal fleet: the UK beam trawl and the English otter trawl fleet segments.

The UK North Sea beam trawl fleet targets primarily high value flatfish (particularly sole and plaice), but also catches a considerable quantity of cod and anglerfish. In addition, a range of other species is also caught as bycatch in varying, but small, quantities. Most of the stocks exploited by the fleet are heavily over-fished, resulting in a substantial decrease in the level of quota over recent years. In addition, the fishery has been targeted for decommissioning as it is considered to have considerable excess capacity. Fleet size has been almost halved between 1994 and 2000 as a result of the reduced North Sea quotas (pushing some boats into the English Channel and/or Celtic Sea) and decommissioning.

The otter trawlers primarily target cod, haddock, saithe and whiting, but also catch plaice and nethrops. These species comprise 90 per cent of the catch by volume, and a greater proportion by value. In addition, a range of other species is caught as bycatch.

Figure 1. ICES areas


Table 1: TAC allocation for North Sea species ${ }^{\text {a }}$ (kt) and estimated value ${ }^{\text {b }}$ (mEuro), 1999

|  | Belgium | Denmark | France | Germany | Netherlands | Norway | UK | Total | Value |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Demersal groundfish |  |  |  |  |  |  |  |  |  |
| Cod | 4.7 | 23.9 | 4.9 | 12.1 | 13.1 | 12.5 | 52.4 | 132.4 | 197.4 |
| Haddock | 0.8 | 5.2 | 5.8 | 3.3 | 0.4 | 14.9 | 56.0 | 88.6 | 90.9 |
| Whiting | 1.2 | 4.9 | 8.2 | 1.4 | 3.0 | 4.4 | 20.9 | 44.0 | 38.9 |
| Saithe | 0.1 | 2.3 | 13.3 | 6.5 | 0.0 | 57.2 | 4.5 | 110.0 | 84.7 |
| Demersal flatfish |  |  |  |  |  |  |  |  |  |
| Plaice | 6.1 | 14.9 | 0.6 | 6.1 | 46.6 | 3.4 | 23.8 | 102.0 | 132.9 |
| Sole | 1.6 | 1.1 | 0.3 | 1.2 | 14.9 | 0.0 | 0.9 | 20.3 | 131.0 |
| Invertebrates |  |  |  |  |  |  |  |  |  |
| Nephrops | 0.8 | 0.8 | 0.0 | 0.1 | 0.4 | 0.0 | 12.9 | 15.2 | 79.5 |
| Other |  |  |  |  |  |  |  | 1688.4 | 704.7 |
| Total |  |  |  |  |  |  |  | 2200.9 | 1460.0 |

a) Allocation by country based on historical shares of TAC b) Values based on guide prices for 1999 c) includes ICES Division IIa for some species

The key species caught by both groups are subject to quota controls under the European Common Fisheries Policy. Prior to 1998, quota was allocated to the producer organisations (PO) to which the trawlers belonged, based on the rolling track record of the member vessels. This would increase or decrease with the actual catch of the individuals, although the POs were expected to try and keep the total catch within the allocation. Different POs ran different schemes, with some operating an individual transferable quota (ITQ) system (with trade limited to within the PO ) and others operating a more competitive TAC system. For the fleet segments examined, most beam trawlers were managed under effectively an ITQ scheme, while most otter trawlers were managed under a pooled quota system. In 1999, the track record system was changed to a fixed quota allocation (FQA). Despite being 'fixed', these could be traded by individuals, either through an annual lease, or through more permanent arrangements (although the process for the latter was generally administrative complex, inhibiting 'permanent' transfers).

Despite being subject to quota controls, these quotas were not binding over the period examined. Since the introduction of the FQAs in 1999, the only binding quotas for North Sea species were for saithe and sole in 2000. For most species, quota uptake ranged between 70 and 90 per cent (DEFRA, 2001). An analysis of the available beam trawl logbook and quota allocation data for 2000 (see next section) found that over 75 per cent of the vessels did not fill their quota allocation, with the remainder exceeding the allocation (assumingly through quota leasing). Given the apparent abundance of quota and the apparent effectiveness of the quota leasing market, it was assumed for the purposes of the study that the quotas were effectively not constraining output.

## 6. The Dataset

Logbook production data and boat characteristics information from the central fleet registry for the beam and otter trawlers operating in the North Sea were used in the analysis. The data available for the otter trawl fleet relates only to the boats in the fleet registered to English ports. Data on Scottish otter trawlers are held separately, and were not available for this analysis ${ }^{8}$. The logbook data were available on a monthly basis over the 11 year-period 19902000.

[^6]Over the period, data were available for 58 beam trawlers, although only between 30 and 40 operated in any one year, and 152 otter trawlers, with between 100 and 120 operating in any one year. For both groups, only boats that were still registered in 2000 were included. As noted above, many boats had left the fishery as a result of decommissioning. The boats that left the fishery though the decommissioning scheme were most likely the least efficient, and their inclusion in the earlier years of the analysis (but not the later years) may affect the results. Hence, for consistency, the target population was defined in terms of those boats that were registered in 2000 (even though they may not have participated in the fishery in 2000). A second condition was imposed that the boats must have operated in the fishery in at least three of the 11 years considered in the analysis.

The data set was also subject to further exclusions. For beam trawlers, boats that primarily targeted brown shrimp (Crangon crangon) were excluded. For these boats, the catch of the other species considered (see table 2) were negligible, and the fishing operation was considered sufficiently different to exclude from the analysis. Of the remaining vessels, not all boats recorded catch of the key species (plaice) in each year. As this formed the dependent variable in the model, boats that did not record landings of plaice were excluded for that year. Again, boats that did not have catches for at least three years after removing observations without plaice were excluded from the analysis. Similarly for the otter trawlers, boats that did not record landings of cod (the main species) were excluded. As with the beam trawl data, boats that did not have data for at least three years after removing observations without cod were excluded from the analysis. The key characteristics used in the analysis are presented in tables 2 and 3. In most years, data were available for between 30 and 40 beam trawlers, and between 100 and 120 otter trawlers.

Catches of the key species used in the model varied over the period examined, largely as a result of changes in stock conditions. The key species were selected on the basis of both weight and contribution to total value and constituted 90 per cent of the value of total catch. The remaining species were aggregated into and 'other' category using a divisia index approach.

Table 2. Average characteristics and catch (kg) of key species, beam trawlers

| YEAR | Boats | Engine | Days | Plaice | Sole | Cod | Angler | Other |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| power (kW) |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1990 | 14 | 954 | 188 | 347,343 | 22,168 | 10,109 | 8,778 | 23,804 |
| 1991 | 27 | 791 | 156 | 194,968 | 15,038 | 6,711 | 6,430 | 20,054 |
| 1992 | 41 | 837 | 158 | 189,343 | 8,469 | 10,651 | 7,392 | 25,103 |
| 1993 | 43 | 815 | 178 | 191,841 | 7,247 | 14,440 | 10,688 | 35,899 |
| 1994 | 39 | 879 | 200 | 195,427 | 10,165 | 16,857 | 13,207 | 40,579 |
| 1995 | 41 | 842 | 196 | 187,727 | 9,697 | 13,557 | 12,184 | 38,977 |
| 1996 | 36 | 899 | 200 | 212,235 | 9,180 | 15,443 | 9,085 | 42,857 |
| 1997 | 38 | 891 | 191 | 238,279 | 4,163 | 14,526 | 11,150 | 44,008 |
| 1998 | 40 | 898 | 188 | 228,431 | 6,465 | 19,562 | 8,628 | 44,965 |
| 1999 | 39 | 898 | 181 | 190,520 | 7,168 | 13,918 | 6,175 | 37,716 |
| 2000 | 35 | 959 | 186 | 295,031 | 7,784 | 10,165 | 7,814 | 37,474 |

Table 3. Average characteristics and catch (kg) of key species, otter trawlers

| YEAR | Boats | Engine <br> power <br> $(\mathrm{kW})$ | Days | Cod | Haddock | Whiting | Saithe | Nephrops | Plaice | Other |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |
| 1990 | 88 | 223 | 147 | 31,171 | 7,094 | 8,340 | 10,539 | 9,017 | 3,635 | 22,358 |
| 1991 | 96 | 217 | 140 | 28,662 | 6,209 | 7,959 | 13,992 | 7,739 | 3,701 | 19,590 |
| 1992 | 99 | 211 | 134 | 29,849 | 9,198 | 8,880 | 5,256 | 6,348 | 4,003 | 18,326 |
| 1993 | 111 | 217 | 141 | 30,841 | 12,666 | 9,964 | 11,149 | 11,199 | 2,651 | 15,493 |
| 1994 | 102 | 209 | 117 | 34,012 | 10,481 | 8,898 | 4,641 | 1,231 | 3,423 | 15,056 |
| 1995 | 110 | 212 | 118 | 36,883 | 11,484 | 8,036 | 10,946 | 859 | 4,140 | 15,572 |
| 1996 | 110 | 213 | 119 | 44,432 | 13,322 | 8,679 | 18,314 | 1,285 | 3,377 | 14,778 |
| 1997 | 124 | 206 | 121 | 38,443 | 14,757 | 11264 | 13,019 | 1,493 | 4,411 | 16,330 |
| 1998 | 123 | 211 | 142 | 62,507 | 15,709 | 13,479 | 10,847 | 1,623 | 3,636 | 15,286 |
| 1999 | 119 | 216 | 120 | 30,794 | 13,379 | 11,332 | 15,770 | 2,486 | 3,316 | 14,693 |
| 2000 | 104 | 229 | 122 | 22,601 | 10,964 | 10,377 | 10,048 | 3,691 | 4,352 | 13,427 |

While several physical characteristics were available in the data set (e.g. length, vessel
 (expressed as the product of length and width) was found to be highly correlated with engine power ( $\mathrm{r}=0.94$ ), while vessel capacity units are a composite measure of both boat size and engine power (and, thus, was also highly correlated with engine power). The number of days at sea was also used as a variable in the model, representing the level of capital utilisation.

Stock information for the key species examined was available on an annual basis (ICES 2001). Stock indexes were derived based on the total available biomass in each year (with the base year being 1990). Changes in the stock abundance over the period of the data are illustrated in Figure 2. As it can be seen, the different species were subject to differing changes in stock abundance. For the 'other' species, average catch per day fished across the fleet was used to derive the stock index. This approach implicitly assumes that catch per day fished is proportional to the available stock abundance. Individual stock information on many of the species in the 'other' category was not available.

Accounting for variations in stock abundance in fisheries production functions is generally undertaken through either the direct inclusion of the stock index, or through the use of dummy variables. A particular problem exists for the use of stock indexes in multi-output production functions in that each stock measure relates directly to only one of the outputs (although indirectly it may affect the output of the others by affecting fishing patterns). A composite stock variable cannot effectively capture the stock changes of the different species, which do not follow a consistent pattern. Use of dummy variables is also problematic, as a single annual dummy variable cannot adequately represent the different individual stock effects. A series of individual stock dummy variables run into the same problems as the stock indexes, in that they cannot be related to any particular stock. In this study, a further problem was experienced, in that the stock indexes were highly correlated. For example, for the beam trawl fishery, the sole and plaice stock indexes had a correlation coefficient of 0.90 , while plaice and 'other' species had a correlation coefficient of 0.80 . Initial attempts at incorporating the stock indexes fully into the translog framework resulted in a singular matrix due to the high level of multicollinearity.

To overcome these problems, the catches in each time period were normalised using the stock indexes (i.e. the catch in each time period was divided by the stock index in that time period). This allows the effects of changes in stock size on catch to be incorporated into the analysis, but imposes the implicit assumption of unitary output elasticity with respect to stock size.

Figure 2: Relative stock indexes for a) beam trawl species and b) otter trawl species



## 7. Empirical Results

The adjusted catches of each species were normalised by plaice and cod for the beam trawl and otter trawl respectively in order to estimate the multi-output production frontier. The data were further normalised by the mean value of each variable, such that the average value of the normalised data was equal to one. This allows the output elasticities with respect to the
outputs of the other species and the inputs to be determined directly from the results of the analysis as the $\alpha$ coefficients.

The models were estimated using FRONTER 4.1 (Coelli 1996). A series of tests can be conducted to examine the specification of the models. These are tested through imposing restrictions on the model and using the generalised likelihood ratio statistic $(\lambda)$ to determine the significance of the restriction. The generalised likelihood ratio statistic is given by $\lambda=-2\left[\ln \left\{L\left(H_{0}\right)\right\}-\ln \left\{L\left(H_{1}\right)\right\}\right]$, where $\ln \left\{L\left(H_{o}\right)\right\}$ and $\ln \left\{L\left(H_{l}\right)\right\}$ are the values of the loglikelihood function under the null $\left(H_{o}\right)$ and alternative $\left(H_{l}\right)$ hypotheses. The restrictions form the basis of the null hypothesis, with the unrestricted model being the alternative hypothesis. The value of $\lambda$ has a $\chi^{2}$ distribution with the number of degrees of freedom given by the number of restrictions imposed.

A key test is the one-sided generalised likelihood ratio-test for the existence of a frontier (i.e., $\mathrm{H}_{0}: \gamma=0$ ). As the alternative hypothesis is that $0<\gamma<1$, the test has an asymptotic distribution, the critical values of which are given by Kodde and Palm (1986). If the hypothesis is accepted, then there is no evidence of technical inefficiency in the data and the production frontier is identical to a standard production function.

Several other standard tests are carried out on the specification of the production function and inefficiency distribution. As the basic model is assumed to be have a translog functional form, the hypothesis that the correct functional form of the model is Cobb-Douglas can be imposed by removing the squared and cross product terms from the translog production function (i.e., $\mathrm{H}_{0}: \beta_{i, k}=0$ ) and re-estimating the model. Distinguishing between a half normal and a truncated normal distribution as the most appropriate assumption for the inefficiency distribution can be undertaken by running the model under both assumptions. The half-normal distribution is a special case of the truncated normal distribution, and implicitly involves the restriction $\mathrm{H}_{0}: \mu=0$. Similarly, the hypothesis that efficiency is invariant over time (i.e. $\mathrm{H}_{0}: \eta$ $=0)$ can also be tested. The model is estimated first assuming time variant inefficiency, then restricted by modelling the frontier as time invariant.

The results of the specification tests indicate that the translog is the most appropriate functional form; that inefficiency exists; and that the most appropriate distributional
assumption for the inefficiency is a truncated normal distribution with time varying inefficiency (Table 4).

## Table 4. Specification tests

|  | $\mathrm{L}\left(\mathrm{H}_{0}\right)$ | $\mathrm{L}\left(\mathrm{H}_{1}\right)$ | $\chi^{2}$ | Probability |
| :--- | ---: | ---: | ---: | ---: |
| Beam trawl |  |  |  |  |
| $\gamma=0$ | -163.578 | -100.621 | 125.915 | $<0.01 \%^{\mathrm{a}}$ |
| $\beta_{\mathrm{i}, \mathrm{j}}=0$ | -275.485 | -100.621 | 349.728 | $0.00 \%$ |
| $\mu=0$ | -102.542 | -100.621 | 3.841 | $5.00 \%$ |
| $\eta=0$ | -108.800 | -100.621 | 16.359 | $0.01 \%$ |
| Otter trawl |  |  |  |  |
| $\gamma=0$ | -687.097 | -481.432 | 411.331 | $<0.01 \% \%^{\mathrm{a}}$ |
| $\beta_{\mathrm{i}, \mathrm{j}}=0$ | -810.856 | -481.432 | 658.848 | $0.00 \%$ |
| $\mu=0$ | -490.692 | -481.432 | 18.521 | $0.00 \%$ |
| $\eta=0$ | -495.743 | -481.432 | 28.622 | $0.00 \%$ |

a) based on the one sided distribution tables developed by Kodde and Palm (1986)

The results for the translog models with the appropriate distributional characteristics are presented in Table 5. Most of the coefficients were found to be significant at the 1 per cent level.

The $\alpha$ coefficients are indicative of the elasticity of the output of the species chosen as the dependent variable with respect to the output of the other species and the inputs. A priori, it would be expected that the signs of these coefficients would be negative for the outputs of the other species (assuming some degree of substitution) and positive for the inputs. This was found to be the case for both gear types, with the exception of haddock in the otter trawl model. For both gear types, the output elasticity with respect to days fished was close to unity, while the output elasticity with respect to engine power was less than one. This suggests constant returns with respect to days fished, but diminishing returns with respect to boat size.

The Allen elasticities of substitution were estimated for the various outputs (Table 5, 6 and 7), following the approach proposed by Grosskopf et al (1996). A negative value of the elasticity indicates a substitute, while a positive value indicates a complement. The results suggest that substitution of some species is possible, but this is largely limited to 'bundles' of species. For example, for the beam trawlers, while the main target species is plaice, it appears possible to
target sole to some degree. However, increasing sole output also increases the catch of anglerfish and 'other' species. Similarly, the fisher could increase the catch of cod, but also 'other' species. For the otter trawlers, there appears to be two available strategies, with cod, whiting and plaice being one group, and haddock, saithe, nephrops and 'other' being an alternative bundle

In most cases, the potential of substitutability between the main species and the alternative species is relatively small. For example, while cod and haddock (the two main species) are substitutes for the otter trawlers, the elasticity of substitution is small, so the practical potential for substitution is limited. Similarly, the elasticity of substitution between sole and plaice (the two main species) for the beam trawlers is small, indicating only limited substitution potential.

Table 5. MLE results for the two fleet segments

|  | Beam trawl |  |  |  | Otter trawl |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coeff | SE | t-stat |  | Coeff | SE | t-stat |
| Constant | 0.731 | 0.081 | 9.054*** | Constant | 1.024 | 0.082 | 12.411*** |
| Cod* | -0.036 | 0.024 | -1.531 | Haddock* | 0.121 | 0.012 | 9.752*** |
| Sole* | -0.233 | 0.016 | -14.331 *** | Whiting* | -0.092 | 0.012 | -7.338*** |
| Angler* | -0.057 | 0.013 | -4.265*** | Saithe* | -0.064 | 0.008 | -8.016*** |
| Other* | -0.246 | 0.036 | -6.750 *** | Nephrops* | -0.054 | 0.006 | -9.064*** |
| KW | 0.654 | 0.069 | $9.470^{* * *}$ | plaice* | -0.129 | 0.015 | -8.561*** |
| Days | 1.018 | 0.053 | 19.061*** | other* | -0.493 | 0.019 | -26.379*** |
| Cod*2 | -0.009 | 0.009 | -0.988 | KW | 0.835 | 0.068 | 12.358*** |
| Sole*2 | -0.012 | 0.003 | -3.758*** | Days | 0.978 | 0.029 | 33.691*** |
| Angler*2 | -0.012 | 0.003 | -4.560*** | Haddock*2 | 0.009 | 0.003 | $3.529 * * *$ |
| Other*2 | -0.034 | 0.008 | -4.433*** | Whiting*2 | -0.006 | 0.002 | -3.582*** |
| KW ${ }^{2}$ | -0.036 | 0.094 | -0.383 | Saithe*2 | 0.002 | 0.001 | 1.604 |
| Days ${ }^{2}$ | 0.032 | 0.048 | 0.676 | Nephrops*2 | -0.001 | 0.001 | -1.047 |
| Cod*sole* | 0.008 | 0.012 | 0.639 | Plaice*2 | -0.010 | 0.003 | -4.000*** |
| Cod*angler* | 0.008 | 0.009 | 0.823 | Other*2 | -0.016 | 0.005 | $-3.220 * * *$ |
| Cod*other* | -0.013 | 0.016 | -0.809*** | KW ${ }^{2}$ | 0.008 | 0.105 | 0.077 |
| Sole*angler* | -0.006 | 0.006 | -1.057*** | Days ${ }^{2}$ | -0.011 | 0.026 | -0.415 |
| Sole*other* | -0.041 | 0.013 | -3.220 | Had*wht* | -0.015 | 0.004 | -4.107*** |
| Angler*other* | 0.027 | 0.010 | 2.783 | Had*saithe* | 0.015 | 0.004 | 4.086*** |
| Kw days | -0.041 | 0.058 | -0.704 | Had*nep* | 0.003 | 0.002 | 1.821* |
| Kw cod* | 0.000 | 0.036 | 0.008 | Had*plaice* | -0.015 | 0.005 | -3.086*** |
| Kw sole* | 0.168 | 0.024 | $6.904^{* * *}$ | Had*other* | 0.023 | 0.006 | $3.468 * * *$ |
| Kw ang* | 0.018 | 0.014 | 1.270 | whit*saithe* | 0.000 | 0.003 | 0.065 |
| Kw other* | -0.241 | 0.045 | -5.389*** | Whi*neph* | 0.003 | 0.002 | 1.219 |
| Days cod* | 0.040 | 0.036 | 1.108 | Whi*plaice* | 0.002 | 0.003 | 0.868 |
| Days sole* | -0.057 | 0.021 | -2.682*** | Whi*other* | 0.017 | 0.004 | $3.945 * * *$ |
| Days ang* | -0.043 | 0.016 | -2.679*** | Saithe*nep* | 0.000 | 0.001 | 0.446 |
| Days other* | 0.075 | 0.037 | 2.047 ** | saithe*plaice* | 0.007 | 0.004 | 1.756* |
| $\sigma^{2}$ | 2.650 | 0.830 | $3.192 * * *$ | Saithe*other* | -0.039 | 0.005 | -7.811*** |
| $\gamma$ | 0.974 | 0.008 | 115.683 *** | Nep*plaice* | 0.007 | 0.003 | 2.111** |
| $\mu$ | -3.214 | 0.616 | -5.221 *** | Nep*other* | -0.021 | 0.004 | -4.845*** |
| $\eta$ | -0.065 | 0.014 | -4.726*** | plaice*other* | 0.023 | 0.005 | 4.133*** |
|  |  |  |  | Kw days | -0.045 | 0.067 | -0.671 |
|  |  |  |  | Kw had* | -0.095 | 0.024 | -4.029*** |
|  |  |  |  | Kw whi* | 0.050 | 0.020 | 2.542** |
|  |  |  |  | Kw saithe* | 0.005 | 0.013 | 0.340 |
|  |  |  |  | Kw neph* | 0.037 | 0.013 | 2.775*** |
|  |  |  |  | Kw plaice* | 0.023 | 0.026 | 0.862 |
|  |  |  |  | Kw other* | 0.077 | 0.028 | 2.753*** |
|  |  |  |  | Days had* | 0.046 | 0.011 | $4.321^{* *}$ * |
|  |  |  |  | Days whi* | -0.015 | 0.013 | -1.154 |
|  |  |  |  | Days saithe* | 0.022 | 0.008 | $2.789^{* * *}$ |
|  |  |  |  | Days neph* | -0.021 | 0.006 | -3.251*** |
|  |  |  |  | Days plaice* | -0.020 | 0.017 | -1.174 |
|  |  |  |  | Days other* | -0.037 | 0.018 | -2.050** |
|  |  |  |  | $\sigma^{2}$ | 0.240 | 0.025 | $9.539^{* * *}$ |
|  |  |  |  | $\gamma$ | 0.617 | 0.030 | 20.634*** |
|  |  |  |  | $\mu$ | 0.770 | 0.067 | 11.427*** |
|  |  |  |  | $\eta$ | 0.023 | 0.004 | 5.604*** |

[^7]Table 6. Elasticity of substitution: beam trawl

|  | Plaice | Sole | Cod | Angler | Other |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Plaice | - |  |  |  |  |
| Sole | -0.373 | - |  |  |  |
| Cod | -0.291 | -0.659 | - | - |  |
| Angler | 0.465 | 0.346 | -2.653 | -1.391 |  |
| Other | -1.808 | 0.513 | 1.026 |  |  |

Table 7. Elasticity of substitution: otter trawl

|  | Cod | Haddock | Whiting | Saithe | Nephrops | Plaice | Other |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Cod | - |  |  |  |  |  |  |
| Haddock | -0.247 | - |  |  |  |  |  |
| Whiting | 0.029 | -0.570 | - |  |  |  |  |
| Saithe | -0.347 | 0.820 | -0.016 | - | - |  |  |
| Nephrops | -0.247 | 0.214 | -0.237 | -0.053 | - |  |  |
| Plaice | 0.281 | -0.411 | -0.083 | -0.370 | -0.448 |  |  |
| Other | -0.043 | 0.164 | -0.163 | 0.542 | 0.345 | -0.154 | - |

The estimated distributions of efficiency for the two fleet segments differed substantially (Figure 3). Over two thirds of the beam trawlers were more than 70 per cent efficient on average over the period of the data. In contrast, over 90 per cent of the otter trawlers were less than 70 per cent efficient on average.

Figure 3. Distribution of average individual vessel efficiency over the period 1990-2000.


From the model results (Table 5), average individual otter trawl efficiency increased by around 2.3 per cent a year. The removal and replacement of less efficient otter trawlers over the time period resulted in a slight additional increase in average efficiency for the fleet
segment as a whole, with an average rate of efficiency increase of around 2.6 per cent (Figure 4). In contrast, average individual efficiency of the beam trawlers decreased by 6.5 per cent a year (Table 5), while removal of the lesser efficient vessels (and introduction of more efficient vessels into the panel) resulted in an overall average decline in the efficiency of the fleet segment of around 1 per cent.

Figure 4. Average vessel efficiency over the period 1990-2000.


A decline in average individual vessel efficiency of Dutch beam trawlers operating in the North Sea was also observed over the same period (Pascoe et al 2001). This was attributed to increased crowding pressure, as TACs for sole and plaice were reduced while fleet sizes remained relatively constant. For the UK fleet, total beam trawl numbers effectively halved over the period examined, reducing the potential increase in crowding externalities. However, as overall international pressure on these shared stocks did not decrease at the same rate, this would still have negatively impinged on the efficiency of the UK vessels.

## 8. Concluding Remarks

Interactions between species in a fishery may be either biological (e.g. predator-prey) or technical (i.e. joint production). Technical interactions within fisheries have generally been assumed to exist, although the strength of the interaction has not been previously quantified. Most previous studies of production functions and frontiers in fisheries have generally applied a composite output measure on the assumption that applying a set of inputs to a given set of
fish stocks (again, usually expressed as a composite stock measure) results in a given level of total output. Alvarez and Orea (2001) examined both multi-output production functions and multi-output distance functions for two species (one being a composite bycatch 'species'), but did not extend their analysis to consider elasticities of substitution between the outputs.

A key difficulty with the methodology employed in this study was the treatment of the fish stock. While stock measures for each of the species were available, incorporating these into the production function was not feasible. The high correlation between stock size and output of a species (as would be expected) results in substantial multicollinearity in the analysis. Normalising the output data using the associated stock index allowed the changes in output due to stock changes to be taken into account, but necessitated the assumption of a unitary elasticity with respect to stock size. This assumption is most likely valid given the nature of the resource, in that it is widely dispersed, fairly uniform in density across its range and exploited across its whole range. Elasticities greater than one are associated with stocks that are characterised by small areas of high density and large areas of low density, such that catch rates fall rapidly as the aggregations are depleted and the lower density areas are exploited. In contrast, elasticities less than one are associated with stocks that are highly aggregated over a relatively small area (e.g. spawning aggregations), or are exploited in a sequential pattern (i.e. move onto the next area as the catch rates start to decline). In both cases, catch rates decline only marginally as the stock is depleted (until, of course, the whole stock is depleted) (Hilborn and Walters 1992).

Excluding the stock from the production frontier does not allow the effects of changes in stock size on targeting behaviour to be examined. A high relative stock abundance of a species would result in its cost per unit capture decreasing (relative to the other species with lower stock abundances), and may encourage some change in targeting behaviour (i.e. output substitution) if possible. However, high stock abundance resulting in high catches may also result in lower prices, so the incentives to change targeting behaviour may be less than expected. In either case, these effects cannot be captured (and are effectively assumed to be zero) through the exclusion of stock. However, as the elasticity of substitution is a technical (rather than economic) measure, if these factors had influenced targeting behaviour and had resulted in changes in output composition then they should have been identified through the
interaction terms in the model. The fact that some substitution has been observed in the data may be a direct result of these factors.

The results of the study have implications for the continuing management of the fishery. In many countries, including the European Union, pressure is often placed on policy makers to allow fishers to catch as much as possible given the natural constraints of the resource. As a result, total allowable catches (TACs) are generally set on the basis of the status of the stock of the individual species rather than on the basis of the technical interactions between the species. This is particularly the case when stocks of some species are severely depressed, requiring substantial decreases in the allowable catch. In such cases, pressure is often placed on policy makers to increase the TACs of less biologically vulnerable species in order to reduce the impact of the reduced catch of the vulnerable species on fisher income. In the case of the North Sea stocks, the technical interaction between haddock, cod and whiting, for example, has been recognised by fisheries scientists, and advice to policy makers has been to control the catches of these species in relation to each other (ICES 2001).

The decline in the North Sea cod stock has resulted in substantial declines in allowable catches in a bid to avoid stock collapse and allow the stock to recover. In 2000, the North Sea cod stock was estimated to be roughly 20 per cent of the level of population of mature fish required for sound recruitment (the Bpa, or "Biomass according to the precautionary approach"). A "recovery programme" was instigated with the aim of enabling the stock of mature fish to increase by 30 per cent a year until the Bpa level has been achieved. The Total Allowable Catch for cod in the North Sea was reduced from 81,000 tonnes in 2000 to 48,600 tonnes in 2001, and further reduced to 41,600 tonnes in 2002 (European Commission 2000, 2001, 2002).

In contrast, North Sea TACs of both haddock and saithe were increased by 62 and 55 per cent respectively between 2001 and 2002. The increase in stock that is presumed to underly these TAC increases will result in an increased proportion of these species in the catch, ceteris paribus. However, stocks of these species are still considered low (ICES 2001), and it is likely that the TACs increases are, in part, a means of 'softening' the impact of the decreased cod TACs. Given the limited substitutability between cod and haddock (and also saithe, which is complementary to haddock), the disparity in the TACs may lead to increased discarding of
over-quota cod, provided it is economically viable to continue to fish for haddock and saithe without the additional revenue derived from $\operatorname{cod}^{9}$.

For the beam trawl fleet, scientific advice for 2002 for the two main species was a 30 per cent reduction in the TAC of plaice and 20 per cent reduction in the TAC of sole in the North Sea (ICES 2001). Recognition was again given to the joint nature of the output of the two species in the scientific advice. Final changes in TACs were, in contrast, less than 5 per cent decrease for plaice and 16 per cent for sole, (European Commission 2002 (and previous years)). Again, given the limited substitutability between sole and plaice, the incompatible TACs may result in increased discarding of sole. However, as sole is substantially more valuable on a per unit basis, it may not be economically viable for fishers to land only plaice and discard sole, resulting in either the TAC for plaice not being filled, or providing incentives to land overquota catch of sole illegally.

The results of the study reinforce the need for fisheries managers to consider the technical interactions between species when setting the TACs. These interactions have been long recognised by fisheries scientists, and have been generally assumed to exist by fisheries economists. Failure to consider these interactions may result in increased discarding in the fishery, and potentially lower than expected future yields.

## Acknowledgements

The study has been undertaken as part of the Commission of the European Communities Fifth Framework programme project QLK5-CT1999-01295, "Technical efficiency in EU fisheries: implications for monitoring and management through effort controls".

## References

Aigner D., C.A.K. Lovell and P. Schmidt (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 6: 21-37.

Alvarez, A., (2001). Some Issues on the Estimation of Technical Efficiency in Fisheries', Efficiency Series Paper 2/2001, Department of Economics, University of Oviedo.

[^8]Alvarez, A. and L. Orea, (2001). Different Approaches to Model Multi-Species Fisheries Using a Primal Approach', Efficiency Series Paper 3/2001, Department of Economics, University of Oviedo.
Anderson, L. G., (1994). 'An economic analysis of highgrading in ITQ fisheries regulation programs', Marine Resource Economics 9(3) 209-226.

Arnason, R., (1994). On catch discarding in fisheries, Marine Resource Economics 9(3):189207.

Battese, G.E. and T.J. Coelli (1992). Frontier Production Function, technical efficiency and panel data: with application to Paddy Farmers in India. Journal of Productivity Analysis 3: 153-169.

Campbell, H.F. and A.J. Hand, (1998). Joint Ventures and Technology Transfer: the Solomon Islands Pole-and-line Fishery, Journal of Development Economics, 57, 421-422.
Campbell, H.F. and R.K. Lindner, (1990). The production of fishing effort and the economic performance of license limitation programmes. Land Economics. 66:55-66.

Caves, D. W., Christensen, L. R. and Diewert, W. E., (1982). Multilateral comparisons of output, input and productivity using superlative index numbers, Economic Journal, 92, 7386.

Coelli, T., (1996). A guide to FRONTIER version 4.1: a computer program for frontier production function estimation. CEPA Working Paper 96/07, Department of Econometrics, University of New England, Armidale, Australia.

Coelli, T. J. and Perelman, S. (1996) Efficiency measurement, multi-output technologies and distance functions: with application to European railways, CREPP Working Paper 96/05, University of Liege.

DEFRA (2001 and earlier issues) UK Fisheries Statistics 2001, Department of Environment, Food and Rural Affairs, London.

European Commission 2002 (and previous years) Fishing TACs and Quotas 2002 As agreed by Council Regulation (EC) No 2555/2001 of 18 December 2001. Available from http://europa.eu.int/comm/fisheries/doc_et_publ/liste_publi/tac/tac2002_en.pdf

Färe, Rolf and Shawna Grosskopf, (1990). A distance function approach to price efficiency, Journal of Public Economics, 43(1):123-126

Grafton, R. Q., D. Squires and K.J.Fox, (2000). Private Property and Economic Efficiency: A Study of a Common-Pool Resource, Journal of Law and Economics, 43(2): 679-713.

Grosskopf, S., D. Margaritis and V. Valdmanis, (1995). Estimating output substitutability of hospital services: A distance function approach, European Journal of Operational Research, 80(3): 575-587

Hannesson, R., (1983). Bioeconomic production function in fisheries: Theoretical and Empirical analysis. Canadian Journal of Fisheries and Aquatic Science. 13(3):367-375.

Hilborn, R., and Walters, C., (1992) Quantitative Fisheries Stock Assessment Chapman and Hall, London.

ICES (2001), Report of the ICES Advisory Committee on Fishery Management, 2000. ICES Co-operative Research Report 249, ICES, Copenhagen.

Jondrow, J., C.A.K. Lovell, I.S. Materov and P. Schmidt, (1982). On the estimation of technical inefficiency in the stochastic frontier production function model, Journal of Econometrics, 19: 223-238.

Kirkley, J., D. Squires and I. Strand, (1995). Assessing Technical Efficiency in Commercial Fisheries: The Mid-Atlantic Sea Scallop Fishery, American Journal of Agricultural Economics, 77(4): 686-697.

Kirkley, James E.; Strand, Ivar E., (1988). The Technology and Management of Multi-species Fisheries; Applied Economics, 20(10): 1279-92.

Kirkley, J., D. Squires and I. Strand, (1998). Characterizing Managerial Skill and Technical Efficiency in a Fishery, Journal of Productivity Analysis, 9: 145-160.

Kodde D.A. and F.C. Palm (1986). Wald criteria for jointly testing equality and inequality restrictions. Econometrica, 54(5):1243-1248.

Kumbhakar, S.C. 2002 Specification and estimation of production risk, risk preferences and technical efficiency. American Journal of Agricultural Economics 84(1) 8-22.

Pascoe, S. (1998). Bycatch Management and the Economics of Discarding. FAO Fisheries Technical Report 370, FAO, Rome, 140p.

Pascoe, S., J.L.Andersen and J. de Wilde, (2001). The Impact of Management Regulation on the Technical Efficiency of Vessels in the Dutch Beam Trawl Fishery, European Review of Agricultural Economics, 28(2), 187-206.

Pascoe, S. and C. Robinson, (1998). Input controls, input substitution and profit maximisation in the English Channel beam trawl fishery, Journal of Agricultural Economics, 49(1): 1633.

Pascoe, S. and L. Coglan (2002) Contribution of unmeasurable factors to the efficiency of fishing vessels: an analysis of technical efficiency of fishing vessels in the English Channel. American Journal of Agricultural Economics 84(3) 45-57.
Paul, Catherine J. Morrison; Johnston, Warren E.;Frengley, Gerald A. G.. " Efficiency in New Zealand Sheep and Beef Farming: The Impacts of Regulatory Reform " Review of Economics and Statistics, May 01, 2000, Vol. 82, Issue 2, p 325.

Salvanes, K.G. and F. Steen, (1994). Testing for Relative Performance between Seasons in a Fishery, Land Economics, 70(4), 431-447.
Schmidt, P. (1986). Frontier production functions. Econometric Review. 4(2):329-334.
Sharma, K.R and P. Leung. (1999). Technical Efficiency of the Longline Fishery in Hawaii: An application of a Stochastic Production Frontier. Marine Resource Economics, 13:259274.

Shephard, R. W. (1970) Theory of Cost and Production Functions, Princeton, Princeton University Press.
Squires, D. (1987) Fishing effort: Its testing, specification, and internal structure in fisheries economics and management. Journal of Environmental Economics and Management. 14(September):268-282.
Squires, D. and J. Kirkley, (1999). Skipper Skill and Panel Data in Fishing Industries, Canadian Journal of Fisheries and Aquatic Sciences, 56(11), 2011-2018.


[^0]:    ${ }^{1}$ Address for correspondence: Dr. Phoebe Koundouri, The University of Reading, School of Business, Department of Economics, HUMSS Building, PO Box 218, Whiteknights, Reading, RG6 6AA, Berkshire, UK. Tel. + 44 (0) 1183787862 ; Fax. +44 (0) 118975 0236; e-mail: p.koundouri@reading.ac.uk

[^1]:    ${ }^{2}$ See Alvarez (2001) for a survey of the literature.

[^2]:    ${ }^{3}$ Production technology is defined by output sets, $P(\mathbf{x})$, which represents the set of all output vectors, $\mathbf{y}$, which can be produced using the input vector, $\mathbf{x}$, i.e., $P(\mathbf{x})=\{\mathbf{y}: \mathbf{x}$ can produce $\mathbf{y}\}$. The properties of this set are summarised as follows: for each $\mathbf{x}$, the output set $P(\mathbf{x})$ is assumed to satisfy (i) $0 \in P(\mathbf{x}$ ); (ii) non-zero output levels cannot be produced from zero level of inputs; (iii) $P(\mathbf{x})$ satisfies strong disposability of outputs: if $\mathbf{y} \epsilon$ $P(\mathbf{x})$ and $\mathbf{y}^{*}=\mathbf{y}$ then $y^{*} \in P(\mathbf{x})$; (iv) $P(\mathbf{x})$ satisfies strong disposability of inputs: if $\mathbf{y}$ can be produced from $\mathbf{x}$, then $\mathbf{y}$ can be produced from any $\mathbf{x}^{*}=\mathbf{x}$; (vi) $P(\mathbf{x})$ is bounded (which is essentially a mathematical requirement that implies that we cannot produce unlimited levels of outputs with a given set of inputs); (vii) $P(\mathbf{x})$ is convex (which implies that if two combinations of output levels can be produced with a given input vector $\mathbf{x}$, then any average of these output vectors can also be produced; this assumption implicitly requires the commodities to be continuously divisible).
    ${ }^{4}$ The properties of $D_{0}(\mathbf{x}, \mathbf{y})$ follow directly from the axioms on the technology set and play a major role in efficiency measurement: (i) $D_{0}(\mathbf{x}, \mathbf{y})$ is non-decreasing in $\mathbf{y}$ and increasing in $\mathbf{x}$; (ii) $D_{0}(\mathbf{x}, \mathbf{y})$ is linearly

[^3]:    homogeneous in $\mathbf{y}$; (iii) if $\mathbf{y}$ belongs to the production possibility set of $\mathbf{x}$ (i.e., $\mathbf{y} \in P(\mathbf{x})$ ), then $D_{0}(\mathbf{x}, \mathbf{y})=1$; and (iv) distance is equal to unity (i.e., $\left.D_{0}(\mathbf{x}, \mathbf{y})=1\right)$ if $\mathbf{y}$ belongs to the "frontier" of the production possibility set.
    ${ }^{5}$ Furthermore, since the TAC is given, if some vessels are to increase their output, others must reduce theirs. As argued by Asche et al. (2002), one can also obtain optimal fleet size, and therefore an indication of the overcapacity in the fishery. This is important information in fisheries managed with IVQs, as it will provide information about the extent to which one has been able to collect the resource rent and how much resource rent is dissipated due to overcapacity in the fishery.

[^4]:    ${ }^{6}$ The definition of the output distance function uses min (minimum) instead of inf (infimum), implying the assumption of the absence of the possibility that the minimum does not exist (i.e., that $\theta=+\infty$ is possible).

[^5]:    ${ }^{7}$ For example, an implication of the Cobb-Douglas production function is that the elasticity of substitution is always 1 .

[^6]:    ${ }^{8}$ This was not a problem for the beam trawl fleet as all UK beam trawlers operate out of English ports.

[^7]:    *** significant at the $1 \%$ level; ** significant at the 5\% level; * significant at the $10 \%$ level.

[^8]:    ${ }^{9}$ The economic incentives to discard fish has been well established in the literature. See for example Anderson (1994), Arnason (1994) and Pascoe (1998).

