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Abstract

In view of the ambiguities and the deep uncertainty associated with

climate change, we study the features of climate change policies that account

for spatially structured ambiguity. Ambiguity related to the evolution of the

natural system is introduced into a coupled economy-climate model with

explicit spatial structure due to heat transport across the globe. We seek

to answer questions about how spatial robust regulation regarding climate

policies can be formulated; what the potential links of this regulation to

the weak and strong version of the precautionary principle (PP) are; and

how insights about whether it is costly to follow a PP can be obtained. We

also study the emergence of hot spots, which are locations where local deep

uncertainty may cause robust regulation to break down for the whole spatial

domain, or the weak PP to be costly.

Keywords: Ambiguity, Climate change, space, maxmin expected util-
ity, robust control regulation, hot spots, precautionary principle

JEL Classification: Q54, Q58, D81, R11

1 INTRODUCTION

Ambiguity (or deep uncertainty can) be regarded as a situation where a

decision maker does not formulate decisions based on a single probability

model but on a set of probability models. Gilboa and Schmeilder (1989)

extended decision making under uncertainty by incorporating ambiguity and

by moving away from the framework of expected utility maximization. They

adopted a maxmin expected utility framework by arguing that when the

underlying uncertainty of the system is not well understood and the decision

maker faces a set of prior probability density functions associated with the

phenomenon, it is sensible - and axiomatically compelling - to optimize over

the worst-case outcome (i.e., the worst-case prior) that may conceivably

come to pass. Doing so guards against potentially devastating losses in any

possible state of the world, and thus adds an element of robustness to the

decision-making process.

Motivated by concerns about model misspecification in macroeconomics,

Hansen and Sargent (2001a,b, 2008, 2012) and Hansen et al. (2006) extended

Gilboa and Schmeidler’s insights into dynamic optimization problems, thus

introducing the concept of robust control to economic environments. A
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decision maker characterized by robust preferences takes into account the

possibility that the model used to design regulation, call it benchmark or

approximating model P, may not be the correct one but only an approx-

imation of the correct one. Other possible models, say Q1, . . .,QJ , which

surround P, should also be taken into account with the relative differences

among these models measured by an entropy measure. Hansen and Sargent

(2003) characterize robust control as a theory "... [that] instructs decision

makers to investigate the fragility of decision rules by conducting worst-case

analyses," and suggest that this type of model uncertainty can be related to

ambiguity or deep uncertainty so that robust control can be interpreted as

a recursive version of maxmin expected utility theory.

Climate change is another area where ambiguity and concerns about

model misspecification are present and significant. As Weitzman (2009)

points out, the high structural uncertainty over the physics of environmental

phenomena makes the assignment of precise probabilistic model structure

untenable, while there is high sensitivity of model outputs to alternative

modeling assumptions such as the functional form of the chosen damage

function and the value of the social discount rate (e.g., Stern 2006, Weitz-

man 2010). Thus robust control approaches fit very well with climate change

problems, as well as with more general environmental and resource eco-

nomics problems, given the deep uncertainties associated with these issues.3

For example a specific density function for climate sensitivity from the set

of densities reported by Meinshausen et al. (2009) can be regarded as the

benchmark model, but other possible densities should be taken into account

when designing regulation. One of these densities that corresponds to the

least favorable outcome regarding climate change impacts can be associated

with the concept of the worst case.

The situation where a single model - or a unique prior - is sufficient for

analyzing the phenomenon and formulating decision rules can be identified

as the case of pure risk or measurable uncertainty where the decision maker

is able to assign probabilities to outcomes. On the other hand the situation

where the decision maker operates in the realm of many models - or multiple

priors - is the case of ambiguity or deep uncertainty. Under ambiguity the

decision maker does not have the ability to determine a precise probability

structure for the physical or the economic model, or to put it differently, to

measure uncertainty using a single probability model.4
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The inability to measure uncertainty can be viewed as associating deci-

sion making and regulation under ambiguity with the concept of a precau-

tionary principle (PP).5 Different formulations and versions of the PP can be

found in the literature. Sunstein (2002-2003, 2007) discusses two versions of

the PP: the weak PP where “lack of decisive evidence of harm should not be

a ground for refusing to regulate”; and the strong PP, suggesting that when

“potential adverse effects are not fully understood, the activities should not

proceed.” Sunstein regards the weak PP as sensible but the strong PP as

a paralyzing principle. In the context of climate change in this paper we

associate the weak PP with regulation under ambiguity and the strong PP

with regulation break down.

Apart from ambiguity, climate change - although a global phenomenon -

is characterized by a strong spatial dimension, since its impacts are expected

to vary profoundly among geographical locations in terms of temperature

and damages. Transport of heat from the equator toward the Poles induces

a spatially non-uniform distribution of the surface temperature across the

globe. Then the interactions between the spatially non-uniform temper-

ature distribution and the spatially non-uniform economic characteristics

ultimately shape the spatial distribution of temperature and damages.

In recent decades the main driving force in the economics of climate

change has been integrated assessment models (IAMs), such as the DICE,

RICE models (see, for example, Nordhaus 2007, 2010). Some of these models

(e.g., the RICE model) provide a spatial distribution of damages in which

the relatively higher damages from climate change are concentrated in the

zones around the equator. However this model, as well as other IAMs,

does not account for the natural mechanism - heat transfer - which induces

temperature distribution across the globe.

In the terminology of climate science, IAMs with no spatial dimension are

zero-dimensional models. Energy balance climate models (EBCMs) on the

other hand - one- or two-dimensional - include heat transport across latitudes

or across latitudes and longitudes (e.g., North 1975, North et al. 1981, Wu

and North 2007) and induce a spatial structure which conforms to reality.

One- and two-dimensional coupled economic-climate models have recently

been developed (Brock, Engstrom and Xepapadeas forthcoming). Among

their most striking results are the generation of distributions of temperature,

fossil fuel use, and damages across latitudes and time, which are derived from
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a social planner’s optimization problem, as well as the characterization of

spatially differentiated climate policy in the form of optimal carbon taxes.

When ambiguity is introduced into a spatial economic-climate model,

it seems reasonable to assume that ambiguity will have some spatial struc-

ture. The emergence of this spatial structure can be associated with the fact

that even if the approximating model of the regulator is the same for each

location, locations could differ in terms of the worst-case model due to differ-

ences in the climate change physics across these locations. These differences

cause the regulator to have different misspecification concerns for different

locations and thus cause ambiguity to acquire a spatial structure. For the

approximating model P and models Q surrounding it, this means that the

local entropy balls containing the local Ps differ from location to location

reflecting spatial differences in misspecification concerns and in worst-cases.

In this context we develop a one-dimensional spatial economic-climate

model with specific climate policy instruments and localized ambiguity with

explicit spatial structure. The purpose is to obtain insights regarding spatial

robust control regulation which can be associated with a spatially structured

PP, the possible emergence of spatial hot spots, and the associated implica-

tions in formulating climate change policies. Hot spots, as we use the term,

are locations where deep uncertainty could cause regulation to break down

for the whole spatial domain, or could imply that regulation under weak

precaution is very costly. Thus a closely related issue that can be addressed

within this framework is: how costly might being precautious be?

The rest of the paper presents these ideas in greater detail, while a

technical appendix at the end provides a formal description of the model.

2 CLIMATE CHANGE POLICIES

A general framework for climate change policies should consider three main

types of policies that can affect climate change and its impacts:

(1) Mitigation that involves reduction in the flow of emissions of green-

house gases (GHGs) and consequently the stock of accumulated GHGs in

the atmosphere. A reduced stock of GHGs allows a larger flux of outgoing

infrared radiation and thus less radiation is “trapped.” This is expected to

reduce pressures for temperature to increase.

(2) Adaptation that involves policies to cope with the detrimental im-
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pacts of climate change which cannot be avoided. The aim is to anticipate

and adapt to the impacts in order to minimize their costs which may extend

from the local to the international level. Adaptation is both a matter of need,

as climate change is most likely unavoidable, and a matter of equity, as its

impacts falls disproportionately on those least able to bear them. Therefore

activities that use scarce resources to prevent damages from climate change

can be considered adaptation.

(3) Geoengineering that involves methods that prevent GHGs from en-

tering the atmosphere through carbon capture and storage (CCS) or carbon

capture and sequestration, or methods of solar radiation management (SLR)

that block incoming solar radiation by shading for example the earth from

the sun through the spreading of reflective particles (e.g., Schelling 1996,

Robock 2008, Shepherd 2009).

These policies can be considered as defining the foundation of a regula-

tory framework which affects the evolution of temperature and, through

adaptation, reduces damages when increases in temperature become in-

evitable even after mitigation or geoengineering methods are applied.

The basic structure of the coupled economic climate system which in-

cludes climate change policies is presented in figure 1, which describes a

climate module modelled by: an EBCM; an economic module, which is

based on a standard neoclassical growth model; and their interactions. In

this model climate change (i.e. increase in temperature) damages aggregate

output and possibly reduces utility from consumption, while the economy

generates emissions that increase the stock of GHGs and temperature.

[Figure 1]

Regulation can affect climate change and associated damages through a

possible combination of mitigation, adaptation, and geoengineering. These

policies are, however, costly in terms of output and may lead to further

damages as for example in the case of SLR that involves pumping sulphur

dioxide into the stratosphere. In this paper we do not study the whole

coupled system but we discuss two important and interrelated aspects of

the coupled system: spatial aspects and deep uncertainty in relation to

regulatory policies.

The spatial aspects of climate change are related to natural or economic

forces that shape the distribution of temperature and damages across loca-
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tions. As shown in figure 1, the spatial structure of our model is induced

by two main factors: the transport of heat from the equator toward the

Poles which produces a spatially non-uniform distribution of the surface

temperature across the globe; and (ii) economic-related forces which deter-

mine the damages that a regional (or local) economy is expected to suffer

from a given increase in the local temperature in terms of individuals’ utility

and global production. These damages depend primarily on the production

characteristics (e.g., agriculture vs services) or local natural characteristics

(e.g., proximity to the sea and elevation) and have been estimated at a re-

gional level by IAMs (e.g., the RICE model). On the other hand, calibrated

temperature and damage distributions in the space-time domain when heat

transport across the globe takes place have been derived by Brock, Engström

and Xepapadeas (forthcoming).

Ambiguity in our model is associated with the evolution of the natural

system and its impacts, and in particular with the effectiveness of climate

change policies (mitigation, geoengineering) in affecting the rate of change

of temperature across the globe, the effectiveness of adaptation in restrict-

ing damages due to climate change, and the damages created by the policies

themselves.6 The regulator (or a social planner) has concerns about model

misspecification and is not able to assign a unique probability model to sto-

chastic factors affecting the dynamics of climate change and the damages

that climate change may cause, as shown in figure 1. Given the spatial struc-

ture of the model it is reasonable to assume that misspecification concerns

acquire local characteristics and may differ from location to location.

Since climate change policies are expected to affect the rate of change and

the distribution of temperature, as well as the distribution of damages across

the globe, a regulatory framework based on global averages might not be

efficient relative to regulation that depends explicitly on local characteristics.

Potentially important questions in this context could be how spatial robust

regulation regarding climate policies can be formulated, what the potential

links of this regulation to the PP are, and how some insights about whether

it is costly to follow a PP can be obtained.
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3 SPATIALLY STRUCTUREDAMBIGUITY, PRE-

CAUTION AND CLIMATE CHANGE

Ambiguity and concerns about model misspecification underlying natural

systems can be manifested in many probability models. The decision maker

cannot choose one of them to define expected utility, but the emergence of

the worst-case model could lead to severe damages or irreversible change.

To prevent these damages, which are not clearly demonstrated since the

decision maker does not know that the worst-case model will prevail, pre-

caution might be desirable in designing specific policy rules, which implies

that the decision rule should take into account the worst-case scenario. The

maxmin expected utility could be used as a conceptual framework for de-

signing good or robust management rules which will work reasonably well

given the multiplicity of the possible models.7 The worst case which is one

of many possible models that may prevail, cannot be demonstrated clearly;

therefore robust control can be regarded as adhering to a precautionary

behavior under conditions of deep uncertainty and ambiguity aversion.

Being robust and precautious in policy design under ambiguity can be

relevant and potentially desirable, for example in the current discussion

about whether to take strong action now or have a gradual response regard-

ing policies to address climate change, given the uncertainties associated

with the issue. However, being robust and precautious could also be costly

in the sense of Sunstein’s (2002-2003) paralyzing situation where potential

benefits are foregone due to inaction, or costly stringent regulation is called

for. In such a case, a policy maker should address the relation between deep

uncertainty and the structure or the limits of regulation, given a measure of

the “severity” of deep uncertainty.

Assume that the regulator has a benchmark or approximate model P

surrounded by other possible models, say Q1, . . .,QJ , with the difference

between P and Qs measured by relative entropy. The worst-case model that

the decision maker is willing to consider, given the existing knowledge and

information, is the one differing the most from P in terms of entropy. Thus

the size of ambiguity can be regarded as the length of the radius H of the

entropy ball that surrounds P.

A fundamental parameter in robust control problems is the weight, or the

penalty parameter or the robustness parameter, assigned by the regulator
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to the possibility that the chosen probability model might not be the correct

one. Equivalently the penalty parameter can be related to a measure of “how

far” the worst-case climate sensitivity density can be from the benchmark

sensitivity. Given a benchmark probability model in the climate change

problem, the regulator can in principle approximate - given the existing

knowledge - the deviation between the benchmark and the worst-case model,

and determine the extra constraint that deep uncertainty imposes on the

regulatory processes. The impact of this extra constraint on regulation can

be associated with both the weak and the strong versions of the PP.

Regulation designed subject to the constraint that an appropriately de-

fined worst case may emerge can be associated with the weak version of the

PP. On the other hand, if the deviation between the benchmark and the

worst-case distribution exceeds a threshold, then robust control regulation

is not possible because the impact of the worst-case distribution is so large

that regulation using the maxmin expected utility criterion is meaningless.

This is because the worst case is so far from the benchmark case, i.e. H is

so large, that maximization over the worst case is not possible. This break-

down can be viewed as a situation where an adversarial agent chooses the

worst case, trying to minimize the regulator’s objective, while the regulator

is trying to maximize over this minimizing choice. Breakdown means that

the adversarial agent can choose a worst case which is so “bad” that it will

create a very large loss for the regulator or, put differently, it will push the

regulator’s objective to minus infinity. In such a case, any maximization

on the regulator’s part would be meaningless. Regulation breakdown due

to deep uncertainty can be associated with the strong version of the PP

and suggests actions such as acquiring more information that might reduce

the entropy ball, thus allowing regulation in the spirit of the weak PP, or

completely changing the regulatory model.

When the spatial dimension of the climate change problem is introduced,

deep uncertainty acquires a spatial structure. In such a case, concerns and

ambiguity about climate change, and the distribution of its impacts across

the globe, introduce deviations between the local benchmark model and the

worst case for the specific location. In this case there will be a benchmark

model Pn of change in temperature at each n = 1, ..., N location and a set of

possible models Qn=(Q1n, . . . , QJn). It will be reasonable to assume that

even if the benchmark model is the same across locations, the entropy ball

9



surrounding each benchmark model need not be the same. More precisely,

the radius of the entropy ball will be different across locations, i.e. Hn �= Hm,
n �= m, n,m = 1, ..., N. This observation suggests a spatial structure to

ambiguity, which is induced by differences in the “deepness” of uncertainty

across locations and by spatial interactions of the natural and the economic

systems. The spatially structured ambiguity is shown in figure 2.

[Figure 2]

Due to the local interactions, regulation under the local worst-case con-

straint in a specific location will affect regulation in other locations operating

under their own local worst-case constraint. Thus spatially structured ambi-

guity is expected to induce spatially dependent robust regulation in terms of

mitigation, adaptation and geoengineering, which will reflect the structure

of ambiguity. This type of regulation can be associated with a localized weak

version of the PP. A spatially dependent climate policy emerges therefore in

the context of an economic EBCM with spatially structured ambiguity. In

terms of policy design this is a departure from the spatially uniform policies

mostly suggested by the IAMs. The rigorous formulation of optimal spa-

tially robust climate policies is not an easy task given the complexity of the

model. A first attempt to address this issue is presented in the appendix.

3.1 How Costly is the Weak PP?

Because the constraint imposed by the worst-case model should be accounted

for, robust control regulation (or regulation by following a weak PP) is differ-

ent from regulation under risk, which is the case of measurable uncertainty

where it is accepted that the regulator trusts the benchmark model.8 There-

fore, one way of answering the question of how costly it is to follow a weak

PP is to compare robust control regulation in climate change under deep un-

certainty, with regulation under risk which might be regarded as the “bench-

mark regulation.” A way of performing this comparison is by comparing the

optimized value of the regulator’s objective under robust control regulation

with the corresponding optimized value of the objective under benchmark

regulation (see appendix, section 5.4 for details). Optimized objective in

the case of climate change means the maximized global discounted value of

utility less damages from climate change under the regulatory scheme (see

figure 1). If the optimized objective under robust control is less than the
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optimized objective under benchmark regulation, the difference between the

two maximized objectives can be interpreted as the cost of following the

weak PP.

3.2 Spatially Structured Ambiguity and Hot Spots

What are the features of spatially robust climate policies that might be of

interest to regulators? Recent results on the robust control of spatiotempo-

ral economic systems (Brock, Xepapadeas and Yannacopoulos 2012, 2013)

suggest that deep uncertainty in certain locations might have a very impor-

tant impact on the regulation for the whole spatial domain. This is because,

given the spatial structure of ambiguity in terms of worst-case models, the

regulator designs the robust rules, not only with respect to the spatial char-

acteristics of the problem in a specific location or the average characteristics

of the whole spatial domain, but also with respect to the degree of the regu-

lator’s ambiguity - the radius of the entropy ball - for each specific location.

This observation allows us to identify locations, referred to as spatial hot

spots, which are classified into two types (see appendix for details):

Hot Spot Type A : Locations where robust control breaks down for the

whole spatial domain.

Hot Spot Type B : Locations where robust control is very costly as a

function of the degree of the regulator’s ambiguities across all sites,

relative to standard regulation under pure risk.

A type A hot spot is a location where the deviation between the bench-

mark and the worst-case model exceeds a threshold, which causes the regu-

lation for the whole spatial domain to break down. This is because mistrust

of the benchmark model for this specific location is so large that it makes

regulation meaningless in the sense that the worst case for this specific loca-

tion will push the regulator’s objective to minus infinity. Since this location

is linked to the rest of the locations in the spatial domain, and regulation

should be designed for the whole domain, the severe ambiguities of the hot

spot are “transmitted” to the rest of the domain, thus making regulation

impossible. Thus an A hot spot can be associated with the strong PP.

A type B hot spot is a location where, because of ambiguity, the maxi-

mized value of the regulator’s objective under robust control is substantially
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lower, relative to regulation under pure risk. This means that for a given

level of precaution, defined by the worst-case choice in each location, regu-

lation for the whole spatial domain is costly due to deep uncertainties in a

specific location. This could happen if precaution induces costly robust poli-

cies relative to benchmark regulation, while the expected savings in terms

of damages are not sufficiently large. The emergence of a B hot spot implies

that the mistrust of the benchmark model and worst-case considerations in

a specific location create an interesting trade-off between the weak PP and

the cost it implies.

The two types of hot spots and the associated domains for the weak and

strong PP are shown in figure 3.

[Figure 3]

A reversal of the type B may also be possible. This occurs if the value of

the regulator’s maximized objective under robust control is relatively higher

than the corresponding value when the regulator is using the benchmark

model. This could happen if the policies adopted are more costly under

robust control relative to benchmark regulation, but they generate relatively

larger benefits in terms of expected damage savings. A reversal of the type B

may be associated with the concept of optimal precaution which is the level

of precaution defined by the worst-case choice that maximizes the regulator’s

objective.

4 CONCLUDING REMARKS

This paper discusses issues which arise in the process of regulating a coupled

economic climate system when (i) there is ambiguity and concerns about

model misspecification (or deep uncertainty) associated with the mecha-

nisms of the natural system, and (ii) there are spatial interactions between

the natural and the economic systems. We explore the implications of deep

uncertainty and spatial interactions on climate change policies and link them

to the PP. Under deep uncertainty climate change policies can be regarded

as precautionary.

The main result is that the combination of deep uncertainty and spatial

interactions induces spatially structured ambiguity which is an important

characteristic for designing climate change policies. This spatial structure
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may cause certain locations to emerge as spatial hot spots. The existence of

hot spots introduces a potentially important relationship between local in-

teractions and global regulation. It has recently been argued (e.g., Haldane

2009) that increased interconnectedness among networks has made various

networks - such as ecological networks, power grid networks, transportation

networks, and financial networks - more unstable. This interconnectedness

and the potential instabilities induced can be associated with the hot spots

discussed in this paper and the impact of local properties on global regula-

tion.

In terms of climate change policies, given the existence of deep uncer-

tainties associated with various components of the system and the spatial

interrelations between the natural and the economic systems, these obser-

vations give rise to a large number of questions. For example, how large a

cost are we willing to incur in order to be precautious? Should we advocate

uniform or spatially differentiated carbon taxes or other mitigation policies?

How will deep uncertainties associated with the impact of solar radiation

management methods affect policies based on solar radiation management?

Is it likely that deep uncertainty in a specific location will cause regulation

using a specific instrument to break down globally? What is the proper

response in this case: do we immunize the whole system with respect to

the specific location - if this is feasible - or do we look for a qualitatively

different policy framework?

The general framework of spatial robust control regulation described here

could provide insights and ways of formulating informed answers to these

questions.

5 APPENDIX

This appendix provides a technical description of the coupled economy-

climate model presented in figure 1 and the associated robust control prob-

lem. It extends Brock, Engström and Xepapadeas (forthcoming) by in-

troducing: (i) spatially structured ambiguity, and (ii) geoengineering and

adaptation expenses as additional climate change policy instruments.
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5.1 Temperature and GHGs Dynamics

We develop a one-dimensional EBCM model with human inputs. We as-

sume that the surface (sea level temperature) T depends upon location φ,

φ ∈ [−π
2 ,
π
2

]
and time t ≥ 0. We use x = sin(φ) ∈ [−1, 1], and x = ±1 corre-

sponds to the North and South Pole while x = 0 corresponds to the Equator.

We refer to x as latitude, and denote by T (x, t) the surface temperature in
◦C at latitude x at time t. The temperature is affected by heat transfer due
to thermal diffusion and the solar energy input in the atmosphere, and by

human actions (GHGs emissions and geoengineering). Following Wu and

North (2007) the basic energy balance equation with human input added

can be written in terms of a partial differential equation (PDE) connecting

the temporal and spatial rates of change of the temperature, ∂T (x, t) /∂t,

with the various processes, which is of the form

Cc
∂T (x, t)

∂t
= D

∂

∂x

[
(1− x2)∂T (x, t)

∂x

]
− [A+B T (x, t)] +QS(x)α(x)

−ψ (Z) + g(M (t)), (1)

with initial condition T (x, 0) = T0(x), and a boundary condition stating

that the flux at the boundary vanishes, i.e., T must be such that:

√
1− x2∂T (x, t)

∂x
= 0 for x = ±1 for all t ≥ 0.

The terms on the first line of the right hand side of (1) correspond to

non-human sources that affect the temperature dynamics, while the second

line collects all the human-related sources. The term D ∂
∂x

[
(1− x2)∂T (x,t)∂x

]
is the effect of thermal diffusion effects with D a heat transport coefficient;

−[A + B T (x, t)] is the rate of outgoing infrared radiation to space with
A and B empirical coefficients; QS(x)α(x) models absorption effects from

solar energy; S(x) is the mean annual distribution of solar radiation energy;

α(x) is the co-albedo; and Cc is the effective heat capacity per unit area of

earth atmospheric system.

The term −ψ (Z (t)) models the reduction in incoming solar radiation
due to geoengineering activities of total scale Z(t) =

∫ 1
−1 z (x, t) dx, where

z(x, t) denotes local geoengineering. The global concentrationM(t) of GHGs

at time t reduces outgoing radiation thus increasing temperature. The term

g(M) models the effect that accumulated GHGs have on the reduction of
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the outgoing radiation. We assume that g (M (t)) = ξ ln
(
M(t)
M0

)
where M0

denotes the preindustrial concentration of GHGs, and ξ is a temperature-

forcing parameter. GHGs emissions are assumed proportional to the amount

q(x, t) of fossil fuel used in production process and M (t) evolves according

to:
d

dt
M(t) = βQ(t)− δmM (t) , (2)

where Q(t) :=
∫ 1
−1 q (x, t) dx is the global quantity of fossil fuel used, β is

independent of x and t, and δm is a natural decay rate for the GHGs.

To facilitate the exposition and numerical analysis we obtain a finite

dimensional model by discretization of the infinite dimensional dynamical

system described above. This is done by approximating the continuous space

[−1, 1] by a one-dimensional discrete finite lattice with N points xn ∈ X =

{x1, ..., xN} , n = 1, ...N, with x1 = −1 and xN = 1. We approximate the

function T (x) by a vector T = (T1, · · · , TN ) ∈ RN , where Ti � T (xi), i =

1, · · · , N . By approximating the spatial derivatives with finite differences
and choosing appropriate boundary conditions, the PDE (1) is transformed

to a system of coupled ODEs in RN , of the form

CeT
′
i = D(ai,i+1Ti+1+ai,iTi+ai,i−1Ti−1)− [A+BTi]+QSiai−ψ(Z)+g(M),

∀ i = 1, · · · , N where T ′i =
dTi
dt , ai,j j = i, i ± 1 (the nearest neighbors

of the site i) are real numbers chosen so as to obtain the best possible

approximation for the second derivative, and

Z =

N∑
i=1

zi,

M ′ = β
N∑
i=1

qi − δMM,

where zi(t) = z(xi, t) and similarly for all the other functions.

The discretized system can then be written in compact form, using IN ,

the identity matrix in RN , and the vector 1N = (1, · · · , 1) ∈ R1×N , as

T ′ = AdT − ArT − Bz(Z) + Be(M) + F, (3)

where T = (T1, · · · , TN )tr, Ad is the diffusion matrix and corresponds to the
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discretization of the diffusion operator, Ar = BINT , Bz(Z) = ψ(Z)1trN is

the geoengineering term which models the effects of global geoengineering

on temperature, Be(M) = g(M)1trN is the term modeling the effect of GHGs

on climate and F = (−A+QS1a1, · · · ,−A+QSNaN )tr, all properly scaled
by Ce. We use the vectors z = (z1, · · · , zN )tr and q = (q1, · · · , qN )tr and1N ,
to express

∑N
i=1 zi = 1Nz = 1

tr
N · z and similarly,

M ′ = β1Nq − δmM. (4)

We end up with the controlled dynamical system (3), (4) in RN × R;
(T,M) ∈ RN × R being the state variable and (z, q) ∈ RN × RN being the

control variables.

5.2 The Global Economy

We assume a representative household at location i having preferences de-

scribed by the utility function

U (ci (t) /	i) =
[ci (t) /	i]

1−υ − 1
1− υ (5)

where ci (t) and 	i (t) are consumption and the size of the representative

household (equal to population) at time t for location i, respectively. Labor,

supplied inelastically, is equal to population which is assumed constant to

simplify the model.

Production takes place at each location i, according to a production

function

yi (t) = Ω (Ti (t) , φi (t) , Z (t))F (ki (t) , 	i, qi (t)) (6)

where ki (t) , 	i (t) , qi (t) denote capital, labor and fossil fuels respectively

used at point i, time t. F is a standard Cobb-Douglas, which is multiplied

by a damage function Ω modelling the effects of climate change on the econ-

omy. Local damages depend on the local temperature Ti, local adaptation

expenses φi that mitigate damages, and global geoengineering activities Z.
9

It is assumed that:

∂Ω

∂Ti
< 0,

∂Ω

∂φi
> 0,

∂Ω

∂Z
< 0.

As shown in Brock Engström and Xepapadeas (forthcoming), for the
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global economy, the potential world GDP can be defined as the maximum

output that can be produced with fixed and immobile labor, given total

capital K(t) =
∑N
i=1 ki (t) available and total fossil fuel Q(t) =

∑N
i=1 qi (t)

used, for a given distribution of temperature T (t) = (T1(t), · · · , TN (t)), or

Ŷ (t) = Ω
(
{Ti (t) , φi (t)}Ni=1 , Z (t)

)
F (K,Q) . (7)

The global budget constraint is:

K ′ (t) = Ŷ (t)− [C (t) + Z (t) + Φ (t) + δK (t)] (8)

where C (t) =
∑N
i=1 ci (t) , c = (c1, ..., cN ) , Z (t) denote global consumption

and geoengineering expenses respectively, δ is the depreciation rate, and

Φ (t) =
∑N
i=1 φi (t) , φ = (φ1, ..., φN ) denote global adaptation expenses.

Under certainty a social planner will choose paths for (c, q, z, φ) to max-

imize global discounted utility

J =

N∑
i=1

∫ ∞

0
e−ρtωi	iU (ci (t) /	i) dt (9)

subject to (3),(4),(8), and initial and boundary conditions where ω = (ω1, · · · , ωN )
are welfare weights associated with the utility of consumption of each loca-

tion.

5.3 Spatially Structured Uncertainty

Uncertainty is associated with temperature dynamics, GHGs accumulation,

and damages. We assume that the social planner does not formulate deci-

sions regarding the paths for (c, q, z, φ) based on a single probability model

but on a set of probability models for each location i = 1, ..., N . Thus

the planner has concerns about model misspecification and is willing, for

each location, to consider for local temperature dynamics models Qi which

are within an appropriately defined entropy ball centered at the benchmark

model Pi. The entropy constraints can be written as:

Q = {Q : H(Qi | Pi) ≤ Hi, i = 1, · · · , N + 2} (10)
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where Hi is the radius of the entropy ball indicating the planner’s mistrust

in the benchmark model, and i = N + 1, N + 2 correspond to the global

entropy constraints for GHGs and capital stock dynamics. If Hi = 0 the

planner trusts the i-th benchmark model and has no concerns about model

misspecification. Since in general Hi �= Hj for i �= j i, j = 1, ...N, ambiguity
acquires a spatial structure since the planner has different degrees of model

mistrust across locations. If Hi > Hj the planner trusts the benchmark

model in location i less relative to location j.

Following Hansen and Sargent, misspecification concerns can be mod-

elled as drift distortions of a multivariate Wiener process associated with the

multiple stochastic factors affecting temperature, GHGs and capital stock

dynamics, or

dT = (AdT − ArT − Bz(1Nz) + Be(M) + F ) dt+ C(T )υdt+ C(T )dw(11)
dM = (β1Nq − δmM) dt+ C(M) + υC(M)dt+ C(M)dw (12)

dK = (Ω(T, φ,1Nz)F (K,1Nq)− δK − [1Nc+ 1Nz + 1Nφ]) dt+ (13)

υC(K)dt+ C(K)dw

where υ is the vector of distortions of the benchmark models, w is a vector

Wiener process w = (w1, · · · , wJ)tr associated with J sources of uncertainty
with joint distribution N(0, IJ t) where IJ is the J × J identity matrix, and
C =

(
C(T ),C(M),C(K)

)tr
, C(T ) =

[
cTij

]
∈ RN×J , C(M) =

[
cM1j

]
∈ R1×J and

C(K) =
[
cK1j

]
∈ R1×J . The stochastic shock affecting the temperature dy-

namics in the i-th location can written as
∑J
j=1 c

T
ijdwj and C

(T ) can be

interpreted as a spatial autocorrelation matrix, while
∑J
j=1 c

T
ijυj is the cor-

responding drift distortion. Matrices C(M), and C(K) have a similar inter-

pretation

In this set-up the multiplier robust control problem can be written as

max
(c,q,z,φ)

min
υ
EQ

⎡
⎣∫ ∞

0
e−ρt

N∑
i=1

ωi	iU

(
ci (t)

	i

)
−
N+2∑
i=1

θi
2

⎛
⎝ J∑
j=1

cijυj

⎞
⎠
2⎤
⎦

subject to (11),(12),(13) (14)

where the adversarial agent chooses distortions υ to minimize the planner’s

objective. The parameters θ, the robustness parameters, can be regarded
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as the Lagrangean multipliers associated with the entropic constraints (10).

The first N multipliers θ1, · · · , θN correspond to the local entropic con-

straints for the temperature, whereas θN+1 and θN+2 correspond to global

entropic constraints for global GHGs concentration and global capital stock

accumulation respectively.

Remark The exact value of the Lagrange multipliers θi ≥ 0 depends

on the radius of the local entropy balls, i.e., on the value of Hi. Since

θ2i > C 1
Hi
, the limit θi → ∞ corresponds to Hi → 0, which is the case

where the planner trusts the benchmark model and has no concerns about

model misspecification. We call this limit the risk limit, in the sense that

there is noise present but the benchmark model P is trusted. The opposite

limit θi → 0 corresponds to the case where Hi → ∞, therefore the planner
has very little trust in the benchmark model and allows for very large model

misspecification. We call this limit the deep uncertainty limit.

The stochastic differential game (14) can be solved by using the associ-

ated Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation. This is expressed in

terms of the generator operator which is a second order differential operator

L, acting on the value function V = V (T,M,K). V : RN × R+ × R+ → R

of the game. It can be expressed as L = L(T ) + L(M) + L(K) + Ln where

L(T )V = (AdT − ArT − Bz(1Nz) + Be(M) + F + C(T )v) · DTV
L(M)V = (β1Nq − δmM + C(M)v)DMV

L(K)V =
(
Ω(T, φ,1Nz)F (K,1Nq)− δK − [1Nc+ 1Nz + 1Nφ] + C(K)v

)
DKV

Ln =
1

2
Tr
(
CC(tr)D2V

)
,

DV tr = (DTV,DMV,DKV ) is the gradient of V with respect to (T,M,K)

(e.g., DMV = ∂V
∂M and similarly for DKV ), and D2V ∈ R(N+2)×(N+2) is the

Hessian matrix, consisting of all the second derivatives of V with respect

to (T,M,K). Since the variance of the system dynamics does not depend

on the controls, and the decisions regarding (c, q, z, φ) and υ separate, the

time protocol regarding maximization and minimization decisions does not

matter, so the min,max operators can be interchanged. This means that the

robust control static game has a Nash equilibrium, which is provided by the

solution of the HJBI equation which is of the form (Fleming and Souganidis
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1989)

ρV −H(V,DV,D2V ) = 0 (15)

H(V,DV,D2V ) = max
(c,q,z,φ)

min
υ

⎡
⎣ N∑
i=1

ωi	iU(
ci
	i
)−

N+2∑
i=1

θi
2

⎛
⎝ J∑
j=1

cijυj

⎞
⎠
2

+

L(T )V + L(M)V + L(K)V + LnV
]
.

Feedback controls for (c, q, z, φ) and υ are obtained as functions of DV

by performing the optimization in (15). Substituting the feedback controls

into (15) we obtain the relevant HJBI equation as:

F(V,DV,D2V ) := ρV −Hd (DV )− 1
2
Tr
(
CCtrD2V

)
= 0. (16)

5.4 Solvability of the HJBI equation, Viscosity Solutions and
Hot Spot Formation

The solvability of the robust control problem depends on the solvability

of the related HJBI equation (16). The solution of (16) will be used to

obtain the optimizers (c, φ, q, z), υ which are all defined in terms of DV,

and obtain therefore the robust feedback control policy. By inserting the

feedback rules into the state equation, we obtain the optimum path for the

controlled system.

Since our problem does not have a linear-quadratic structure, the solu-

tion of (16) is not an easy task. To address the issue we use the concept

of viscosity solutions (e.g., Bardi and Capuzzo-Dolcetta 2008), which are

continuous but not necessarily differentiable functions that solve the HJBI

equation in a weak sense. This approach can prove very useful in address-

ing robust control problems without linear-quadratic structure, which are

exactly the problems associated with climate change. Let x = (T,M,K) .

Definition (Viscosity solutions of HJBI equation)

1. v ∈ C(RN+2) is a viscosity subsolution of (16) if for any test function
ϕ ∈ C2(RN+2) such that x is a local maximum of v − ϕ,
F(x, v(x),Dϕ(x),D2ϕ(x)) ≤ 0.

2. v ∈ C(RN+2) is a viscosity supersolution of (16) if for any test function
ϕ ∈ C2(RN+2) such that x is a local minimum of v − ϕ,
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F(v(x),Dϕ(x),D2ϕ(x)) ≥ 0.

3. v ∈ C(RN+2) is a viscosity solution of (16) if it is both a viscosity
subsolution and a viscosity supersolution.

Regarding the solvability of the problem, we consider the finite horizon

version, i.e., t ∈ [0, T ] for large T and treat a parabolic version of the HJBI
equation of the form

∂V

∂t
+ F1(DV ) + F2(D

2V ) = 0.

It can be shown that if the controls (c, φ, q, z) are allowed to take values

in a compact subset of RN ×RN ×RN ×RN , then under certain regularity
assumptions there exists a T ∗ ∈ [0, T ], such that equation (16) admits a
unique viscosity solution, such that |V (t, x)| ≤ C(1 + |x|2). Furthermore
it can be proved that the value of the game is the viscosity solution of the

relevant HJBI equation. The derivatives of the viscosity solution v can be

used to construct satisfactory approximate feedback controls. The optimal

state of the system can then be calculated using a forward integration of the

state equation.10

Following Da Lio and Ley (2006), the condition for existence of a super-

solution would be of the general form r−C0− C0
θ e

rT ∗ > 0 (r < ρ), where C0
is a constant. When θ = (θ1, ..., θN , θN+1, θN+2)→ 0, the last term which is

negative dominates, and this condition cannot hold at all. This means that

the robustness parameter θ plays an important role in the loss of solutions

for the system. The next theorem whose proof follows along the lines of

Felmer, Quaas, and Sirakov (2013) states that the HJBI equation (16) does

not have a solution (even in the viscosity sense) in the limit as θ → 0.

Theorem 1 (The θ → 0 limit) Equation (16) does not have a solution in
the limit as θ → 0 in the classical or in the viscosity sense.

This breakdown of solutions at the deep uncertainty limit, as θ → 0,

induces type A hot spots. In fact, the breakdown can occur even when

just one of the θi tends to zero, as is indicated by exact results in the linear-

quadratic case (see Brock Xepapadeas and Yannacopoulos 2012, 2013). This

can be shown for general problems, by a proper modification of arguments

along the lines of Felmer, Quaas, and Sirakov (2013) which essentially boil
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down to the nonexistence of a positive solution for ODEs of the form ρu+
1
θi
|u′|2− u′′ = 0 for θi → 0. We call this breakdown of solutions in the deep

uncertainty limit a type A hot spot. This means breakdown of the solution

for the whole system because there is “too much” uncertainty for just one

site which propagates to the other sites through spatial interactions.

As shown in Athanassoglou and Xepapadeas (2012) for a linear-quadratic

problem, solving the HJBI equation for a given robustness parameter θ

is equivalent to finding a robust policy for all probability models having

relative entropy less than the worst-case model, and allows us to estimate

the deviation between the benchmark and the worst case. This implies that

if the actual deviation between the worst case and the benchmark case can be

inferred from existing knowledge, then by repetitive solving of the model for

different values of θ, a value θ0 that corresponds to the actual deviation can

be calculated. This will be the ‘correct value’ of the robustness parameter.

Therefore by combining solutions of (16) for vectors of robustness pa-

rameters θ and existing knowledge about possible deviations between the

benchmark and the worst case, the robustness parameters can be calibrated.

In this context two types of hot spots can be defined:

Type A hot spot. Assume that the realistic deviations between the bench-

mark and the worst-case model imply low values θ0i ∈ θ such the HJBI equa-
tion (16) does not have a solution. This is a type A hot spot which means

that misspecification concerns for a location cause regulation to break down.

Thus local ambiguity breaks down regulation globally, and this can be as-

sociated with a strong PP.

Type B hot spot. Assume that the HJBI equation (16) has a solution,

either classical or viscosity, for realistic deviations between the benchmark

and the worst case. This can be associated with a weak PP and robust

control regulation is feasible. The value function in this case will be a

function of the states of the system and the robustness parameters θ. At the

risk limit (θ1, ..., θN , θN+1, θN+2) → ∞, and there is complete trust in the
benchmark model, with no entropic constraints. Let

(
c (t)U , q (t)U , z (t)U , φ (t)U ;T (t)U ,K (t)U ,M (t)U

)
, (17)(

c (t)
R

, q (t)
R

, z (t)
R

, φ (t)
R

;T (t)
R

,K (t)
R

,M (t)
R
)

(18)

denote, for all i, the time paths for the control and the state variables that
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correspond to the solution of (14) and the risk limit case respectively.

Define by

WU
(
cU , θU

)
= EQυ∗

[∫ ∞

0
e−ρt

{
N∑
n=1

ωn

[
	iU

(
cU (t)

	i

)]}
dt

]
(19)

the welfare measure for the planner where cUi (t) , n = 1, ...N is the Nash

equilibrium consumption path for (14), and by

W
R
(
c
R
)
= EP

[∫ ∞

0
e−ρt

{
N∑
n=1

ωn

[
	iU

(
cRn (t)

	i

)]}
dt

]
(20)

the welfare measure for the regulator in the risk limit case. Then if ΔW =

W∞−WU > 0, this difference can be interpreted as the cost of being precau-

tious. If ∂ΔW∂θi is high for some locations, these locations can be characterized

as type B hot spots. On the other hand if ΔW < 0, precaution is desir-

able and one may even discuss the optimal level of precaution in the sense

that robustness parameters
(
θ∗1, ..., θ

∗
N , θ

∗
N+1, θ

∗
N+2

)
may exist such that they

maximize the difference WU −WR, under the constraint that these para-

meters correspond to realistic deviations between the benchmark and the

worst case.
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Notes
1Anastasios Xepapadeas, Professor, Athens University of Economics and Business, De-

partment of International and European Economic Studies, xepapad@aueb.gr.

Athanasios Yannacopoulos, Professor, Athens University of Economics and Business,

Department of Statistics, ayannaco@aueb.gr.
2Many of the issues discussed here have emerged as a result of joint work with William

Brock whom we would like to thank for valuable comments and suggestions on this paper.

An earlier version of this paper was presented at the conference on “Developing Regula-

tory Policy in the Context of Deep Uncertainty: Legal, Economic, and Natural Science

Perspectives,” University of Chicago, April 2013. We would like to thank the participants

for comments and suggestions. This research has been co-financed by the European Union

(ESF) and Greek national funds through the Operational Program "Education and Life-

long Learning" of the NSRF - Research Funding Program: Excellence — Athens University

of Economics and Business “Spatiotemporal Dynamics in Economics.”
3 Issues of regulation under ambiguity have been studied using two main approaches:

smooth ambiguity and robust control. Smooth ambiguity (Klibanoff, Marinacci and Muk-

erji 2005), parameterizes uncertainty or ambiguity aversion in terms of preferences and

nests the worst-case, corresponding to robust control, as a limit of absolute ambiguity

aversion. The approach has been used in climate change issues (e.g., Millner, Dietz, and

Heal 2010), but questions regarding the calibration of the regulator’s ambiguity aversion

remain open. Robust control methods have been applied to climate change by Athanas-

soglou and Xepapadeas (2012).
4When the decision maker lacks adequate information to assign probabilities to events,

we are in the realm of uncertainty as introduced by Frank Knight (1921).
5For example Weisbach (2012) studies whether environmental taxes should be precau-

tionary.
6Geoengineering in the form of SLR is very likely to create environmental damages

such as ocean acidification or acid depositions.
7Approaches such as minimax regret, or H∞ regulation, can also be considered. We fol-

low the maxmin criterion suggested by robust control, since it clearly defines a regulatory

framework that can incorporate spatially structured ambiguity.
8Confidence in the benchmark model means that Hn = 0 for all n.
9The local damage function depends on global geoengineering activities to allow for

negative externalities at i due to other regions’ geoengineering activities.
10There is a well established literature on numerical methods for the calculation of

viscosity solutions of fully nonlinear elliptic and parabolic equations of the general type of

the HJBI equation obtained here (e.g., Souganidis 1985, Nikolopoulos and Yannacopoulos

2010).
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