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SUMMARY

This paper aims at reconciling two apparently contradictory empirical regularities

of financial returns, namely the fact that the empirical distribution of returns tends

to normality as the frequency of observation decreases (aggregational Gaussianity)

combined with the fact that the conditional variance of high frequency returns seems

to have a unit root, in which case the unconditional variance is infinite. We show

that aggregational Gaussianity and infinite variance can coexist, provided that all

the moments of the unconditional distribution whose order is less than two exist. The

latter characterises the case of Integrated GARCH (IGARCH) processes. Finally,

we discuss testing for aggregational Gaussianity under barely infinite variance.
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1 INTRODUCTION

One of the most important questions in the financial literature concerns the distri-

bution of financial prices. The interest for this question originated in the early 1950s

with the detailed empirical study of Kendall (1953) on the statistical properties of a

set of economic time series including commodity prices such as the Chicago wheat

and New York cotton prices. This study was the first to notice that the empirical

distributions of successive price changes deviate from normality mainly because they

exhibit excess kurtosis. Then, the issue of leptokurtosis was taken up by Mandel-

brot (1963) who put forward the idea that the observed leptokurtosis reflects the fact

that the variance of commodity or stock price changes is infinite. More specifically,

Mandelbrot observed that the logarithmic price changes within a specific period of

time, say a day, is the sum of elementary logarithmic price changes, ξi, between

transactions that occur in that day. He then assumed that the variance of these

elementary price changes is infinite, which in turn implies that the Central Limit

Theorem is not applicable. As a result, the sum of ξi’s converges not to the normal

distribution, but instead, to a Stable Paretian distribution. The latter is leptokurtic

and has infinite variance.

An alternative explanation for the observed leptokurtosis in the empirical distri-

butions of price changes was offered by, among others, Clark (1973), and Blattberg

and Gonedes (1974). These studies attempt to explain leptokurtosis without sacri-

ficing the finite-variance assumption. In particular, they put forward the idea that

the transactions are not spread uniformly across time, which in turn implies that

the underlying distribution of price changes is a mixture of normals.

The two competing explanations for leptokurtosis mentioned above bare different

implications about the behavior of the distribution of logarithmic price changes as

we move from higher (say daily) to lower (say monthly) frequencies of observations.

In particular, it has been observed that as we move from higher to lower frequencies
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the degree of leptokurtosis diminishes and the empirical distributions tend to ap-

proximate normality. This stylized fact, refered to as “Aggregational Gaussianity”,

can be accounted for only by the mixture of normals explanation of leptokurtosis and

not by the infinite-variance alternative. Indeed, the stable-Paretian explanation is

characterised by the property of “stability under addition” according to which if the

daily price changes follow a stable Paretian ditribution with characteristic exponent

equal to a, then the monthly price changes also have to follow the same distribution.

This in turn implies that the property of infinite variance cannot coincide with that

of Aggregational Gaussianity.

In late 1980’s, when a new class of models, namely the GARCH models, was put

forward, the issue of the parallell existence of infinite variance and Aggregational

Gaussianity re-emerged in the context of the estimates of the GARCH parame-

ters. In particular, the estimation of GARCH models for commodity or stock price

changes seemed to suggest (i) the presence of a unit root (or near-to-unit root) in the

conditional variance, which gave rise to the so-called Integrated GARCH (IGARCH)

models and (ii) the gradual declining of conditional heteroskedasticity and the as-

sociated leptokurtosis of the unconditional distribution as we move from higher to

lower frequencies of observation (see Diebold 1988, Drost and Nijman 1993). In

view of the fact that the presence of a unit root in the conditional variance implies

that the unconditional distribution has infinite variance, a case in which the classical

Central Limit Theorem (CLT) does not apply, the empirical studies seemed to sug-

gest the simultaneous presence of two seemingly contradictory facts: aggregational

Gaussianity and infinite variance.

In this paper we aim at reconciling the above mentioned paradox. We show that

infinite variance and aggregational Gaussianity can coexist, provided that all the

moments of the unconditional distribtion whose order is less than two exist. This

moment condition is satisfied in the case of IGARCH processes, or put it differently,

an IGARCH process is indeed a process with barely infinite variance (see Kourogenis
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and Pittis 2008). In other words, what we show in this paper is that aggregational

Gaussianity can coexist with infinite variance, once the latter arises from a unit root

in the conditional variance.

The paper is organised as follows: In Section II we present evidence indicating

that the price changes of six major crops, namely cocoa, coffee, corn, soybean,

sugar and wheat, observed at high frequencies, seem to be characterised by both

leptokurtosis and unit root in the conditional variance. We also show that both these

effects tend to diminish as we move to lower frequencies. In Section III we explain

why there is no paradox in admitting the simultaneous existence of aggregational

Gaussianity and IGARCH, by means of some limit theorems for mixing processes

with barely infinite variance, developed in the probability theory over the last twenty

years or so. In this Section we also discuss whether the mixing properties of an

IGARCH process, obtained so far in the literature, conforms to those assumed in

the relevant limit theorems. In Section IV we discuss some issues that arise in testing

for aggregational Gaussianity under infinite variance and present some additional

empirical evidence supporting the coexistence of infinite variance and aggregational

Gaussianity. The last Section concludes the paper.

2 EMPIRICAL MOTIVATION: DISTRIBUTIONAL

CHARACTERISTICS OF CROP PRICE CHANGES

The motivation for this paper derives from analyzing the dataset of spot crop prices

obtained from S&P Goldman Sachs Commodity Indices for cocoa, coffee, corn, soy-

bean, sugar and wheat. In this dataset, the inception date of each crop price index

ranges from 12/31/1969 to 1/6/1984. Figure 1 reports the empirical distributions of

logarithmic price changes for sugar at daily, weekly, monthly, quarterly semi-annual

and annual frequencies (similar results are obtained for all the crops considered

here).
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Figure 1. Sugar Returns

We also estimate a GARCH(1,1) model for the daily logarithmic price changes

of all the six crops under consideration (see Model (2)) of Section III). The results

may be summarized as follows:
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(i) The sum of the maximum likelihood estimates of the GARCH(1,1) parameters

is 0.994, 0999, 0.997, 0.993, 0.995 and 0.994 for cocoa, coffee, corn, soybean, sugar

and wheat daily price changes, respectively. These results suggest the presence of a

near-to-unit root in the conditional variance of the daily series. Note that this sum

decreases with the frequency of observation. For example, the sum of the GARCH

parameters is 0.219, 0.4516, 0.752, 0.658, 0.885 and 0.776 for cocoa, coffee, corn,

soybean, sugar and wheat semi-annual price changes, respectively. These results

suggest that, on average, the GARCH effects in semi–annual frequency are much

weaker than the corresponding ones for daily frequency.

(ii) Visual inspection of the empirical distributions of the crop price changes

under consideration suggests that these distributions are leptokurtic for daily, weekly

and monthly frequencies. Overall, the degree of leptokurtosis seems to decrease as

we move from daily to annual frequency at a slow rate. More specifically, the

leptokurtosis does not seem to decrease substantially before we reach at least the

quarterly frequency.

(iii) Overall, the combined evidence from (i) and (ii) above, suggests the simulta-

neous presence of a unit root in the conditional variance together with aggregational

Gaussianity for all the six series under consideration.

3 AGGREGATIONAL GAUSSIANITY UNDER BARELY INFINITE

VARIANCE

Let Rt be the one-period (say daily) continuously compounded return on a crop,

defined as Rt = pt − pt−1, where pt is the natural logarithm of the price of the

particular crop. In a similar fashion we define the k-period (say weekly or monthly)

return Rτ (k) as:

Rτ (k) = pt − pt−k =
k∑

i=1

Rt−k+i. (1)

The new index, τ , is introduced for notational simplicity, representing the k-period

interval, in terms of t. More specifically, since we consider non-overlapping returns,
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the series of k-period returns, produced by taking non-overlapping sums of the origi-

nal one-period return series, will be of the form {. . . , pt−k − pt−2k, pt − pt−k, pt+k − pt, . . .}.

This means that one unit in terms of τ will correspond to k units in terms of t.

Next, let us assume that the one-period returns, follow an Integrated GARCH(1,1)

(IGARCH(1,1)) process:

Rt = htνt (2)

νt ∼ NIID(0, σ2
ν)

h2
t = c + bh2

t−1 + γν2
t−1, with

c > 0, 0 ≤ b < 1, 0 ≤ γ < 1 and b + γ = 1.

We shall attempt to answer the following question: Given that Rt follows an IGARCH

process with infinite variance, how does the distribution of Rτ (k) behave as the re-

turns horizon k increases? To answer this question, we must examine whether the

probabilistic properties of Rt are such that enable the application of a relevant limit

theorem. To this end, let us first briefly discuss the case of a stable GARCH pro-

cess, that is when b + γ < 1. It is well known that under the restriction b + γ < 1,

Rt is a second-order stationary process whose unconditional variance is equal to

σRt = c/(1 − (b + γ)). This process is also β−mixing with exponential decay (see

Carrasco and Chen 2002 and Francq and Zakian 2006). Since a β−mixing process

is also α−mixing, we can appeal to the central limit theorem of Ibragimov (1962)

and conclude that as k → ∞, the sequence Rτ (k) converges in law to the normal

distribution. Alternatively we may say that the distribution function of Rt belongs

to the domain of attraction of the normal law. Moreover, in this case, the stan-

dardizing sequence is given by σRt

√
k, which enables us to say that the distribution

function of Rt belongs to the domain of normal attraction (DNA) of the normal

law (see Ibragimov and Linnik 1971). A similar result in a different context was

obtained by Diebold (1988) who showed that the GARCH effects tend to disappear
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under temporal aggregation.

Let us now focus attention on the case under study, that is when b + γ = 1 in

which case, the variance of Rt is infinite. In this case we cannot apply the central

limit theorem mentioned above. Moreover, the results of Diebold (1988) are derived

under the assumption b + γ < 1 which means that they do not cover the IGARCH

case. Therefore, we cannot say anything about the temporal aggregation properties

of IGARCH processes. The presence of infinite variance seems to suggest that

we must move away from the central limit theorem into limit theorems developed

for the case of random variables with infinite variances. Historically, the problem

described above was first dealt with by Lévy (1935) in the context of independent

and identically distributed (iid) random variables and later by Ibragimov and Linnik

(1971) for the case of mixing random variables (see Kourogenis and Pittis 2009 for

an extentive discussion). Given the infinite variance of Rt, it seems reasonable to

assume that Rt belongs to the domain of non-normal attraction of a stable law with

exponent a. If this were the case, it would have implied two things: (a) the limiting

distribution of Rτ (k) is a stable distribution (but not the normal distribution);(b)

the sequence by which the partial sum process, Rτ (k), is standardised cannot be

σRt

√
k.

However, the case of IGARCH is different: An IGARCH process exhibits barely

infinite variance meaning that all the moments E |u1|δ for every δ, 0 ≤ δ < 2 are

finite (see Corollary 1 in Kourogenis and Pittis 2008). In such a case, despite having

infinite variance, the Rt’s belong to the domain of non-normal attraction of the

normal law. In other words, there exists a sequence {δk} , which necessarily has the

form δk = L(k)
√

k, such that:

Rτ (k)

δk

weakly converges to the normal distribution. The function L(k) is of particular inter-

est: it is usually referred to as “slowly varying (at infinity)” meaning that L(tx)
L(x)

→ 1

as x → ∞ for every t > 0. The limit theorems that ensure this result are produced
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by Bradley (1988) or Peligrad (1990) for ρ−mixing and ϕ−mixing sequences, re-

spectively (see Kourogenis and Pittis 2008, 2009). These results show that the finite

variance assumption is not necessary for the central limit theorem. More specifi-

cally, for strictly stationary sequences, (as is the IGARCH case considered here) the

central limit theorem amounts to the truncated moment function, defined by:

H(x) = ER2
1I|R1|≤x ,

being slowly varying as x → ∞, that is:

H(x) is slowly varying as x → ∞ (3)

In fact, the condition of slow variation of H(x) is both necessary and sufficient for

Rt to lie in the domain of attraction of the normal distribution (see Ibragimov and

Linnik 1971). The requirement that H(x) is a slowly varying function is equivalent

to the condition:

E |R1|δ < ∞, 0 ≤ δ < 2. (4)

The latter condition amounts to saying that the Rt’s have just barely infinite variance

(see Bradley 1988). This implies that the central limit theorem may hold even in

cases that the variance of the Rt’s is infinite, provided that all the moments of order

δ < 2 are finite.

The preceding discussion suggests that the empirical features of Aggregational

Gaussianity and Infinite Variance in crop price changes can coincide due to the

limit theorems for mixing sequences with barely infinite variance mentioned above.

However, one word of caution is in order. In order to apply the central limit theorem

of Bradley (1988) or that of Peligrad (1990) we must ensure that an IGARCH process

is either ρ−mixing or ϕ−mixing, respectively. As far as we know, the relevant

literature is yet to produce such a result. Having said this, it is worth mentioning
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Francq and Zakian’s (2006) relevant result, which proves that an IGARCH process

is β−mixing with exponential decay. However since there is no proof to date that

β−mixing implies either ρ−mixing or ϕ−mixing, the use of the above mentioned

theorems should be exercised with caution.

4 TESTING FOR AGGREGATIONAL GAUSSIANITY UNDER

IGARCH

The preceding discussion must have made clear that aggregational Gaussianity is

allowed to coincide with the assumption that the returns over the shortest hori-

zon (say daily) follow an IGARCH process with barely infinite variance. However

to establish this fact empirically, using formal statistical methods is rather tricky.

The usual procedure for evaluating whether a given empirical distribution is nor-

mal involves estimating the sample skewness and kurtosis coefficients, α3 and α4,

respectively. To this end, establishing aggregational Gaussianity would imply to

estimate these coefficients over various frequencies, and observe that α3 and α4 tend

to 0 and 3, respectively, as the freqency of observation (returns horizon) decreases

(increases). However, this strategy does not work in the case under study, because

the returns over the shortest horizon (one-period), Rt, are assumed to follow an

IGARCH process. In this case, the population skewness and kurtosis coefficients

are infinite, which in turn implies that the corresponding sample estimates, α̂3 and

α̂4 will diverge to infinity as the sample size (of daily observations) increases.

Let us examine more closely the behavior of the estimated kurtosis coefficient,

α̂4, of Rτ (k) as k increases under the assumption that the one-period returns, Rt,

is an IGARCH process. To this end, we conduct a small Monte Carlo experiment.

Specifically, we generate 1000 near-to- IGARCH(1,1) series of length equal to 10056

which is the number of daily observations in our sample. The conditional variance

parameters were set equal to b = 0.059299 and γ = 0.935634, which are the average

values of the estimated parameters across the three crops under consideration. For
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each of these 1000 replications, we generate five more series, Rτ (k), k = 5, 20, 60,

120, and 240 according to (1), corresponding to weekly, monthly, quarterly, semi-

annual and annual frequencies. Note that the number of observations decreases with

k; in particular we end up with 2011, 503, 168, 84 and 42 observations for k = 5, 20,

60, 120, and 240, respectively. Then, for each replication, we estimate the kurtosis

coefficient for all the available frequencies, namely k = 0, 5, 20, 60, 120, and 240

and take the average (referred to as α̂4,MC) across the 1000 replications for each

frequency. The results are reported in Figure 2, together with the corresponding

average estimated kurtosis coefficients (referred to as α̂4,D) across the six crops under

consideration.
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Figure 2

The results may be summarised as follows:

(i) The Monte Carlo kurtosis coefficent, α̂4,MC appears to exhibit a pattern sim-

ilar to that observed for the kurtosis coefficient, α̂4,D, of the real data. In particular,

α̂4,MC increases temporarily as we move from k = 0 to k = 5 and then decreases

with k.

(ii) The behaviour of α̂4,MC reported above is typical for IGARCH (or near-

to-IGARCH) processes. On the contrary for GARCH parameters safely inside the

stationarity region the behaviour of α̂4,MC is exactly that predicted by CLT, namely

α̂4,MC converges monotonically to 3 as the returns horizon increases.

(iii) The behaviour of α̂4,MC reported above may be due to the following reasons:

First, as k increases there are two opposite forces at work: The first one stems

from the fact that Rt does belong to the domain of attraction of the normal law,

which means that as k increases, the corresponding processes Rτ (k) become “more

normal”. This force creates a tendency for the estimates of the kurtosis coefficient

to approach the value of 3. However, as k increases, the number of observations on
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the corresponding k−horizon returns, available in a given time period, decreases.

For example, for the time period 29/12/1969 to 12/11/2009 we have 10056 daily

observations but only 2081 weekly, 480 monthly, 161 quarterly, 81 semi annual and

41 annual observations.

The smaller number of observations makes it harder for CLT to take effect,

thus creating a tendency for α̂4,MC to deviate from 3. The second reason, which

may explain the non-monotonicity in the behavior of α̂4,MC is related to the rate

of convergence of Rτ (k) to normal. In the absence of a finite second moment, the

rate of convergence to the normal distribution is expected to be much slower than

the corresponding one for the finite-variance case. This property combined with the

fact that the number of observations decreases with k may explain the slow and

non-monotonic way by which α̂4,MC approaches the value of 3 as k increases. To

this end, it is also interesting to note that the rate of convergence to normality in the

presence of a barely infinite variance as suggested by the normalizing sequence, δk,

is L(k)
√

k with L(k) being a slowly-varying and possibly non-monotonic function.

5 CONCLUSIONS

Motivated by empirical evidence indicating that the price changes of six major crops,

when observed at high frequencies, seem to be characterised by both leptokurtosis

and unit root in the conditional variance, while both of these effects tend to diminish

as one moves to lower frequencies, we explain why there is no paradox in admitting

the simultaneous existence of aggregational Gaussianity and infinite variance. In

particular, we show that aggregational Gaussianity and infinite variance can coexist,

provided that all the moments of the unconditional distribution whose order is less

than two exist. Our theoretical explanation derives from limit theorems for mixing

processes with barely infinite variance, developed in the probability theory literature.

More specifically, we suggest that the limit theorems of Bradley (1988) or that of

Peligrad (1990) for mixing sequences with barely infinite variance, for ρ−mixing and
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ϕ−mixing sequences respectively, ensure the coincidence of the empirical features of

Aggregational Gaussianity and Infinite Variance in crop price changes. Finally, we

discuss some issues that arise in testing for aggregational Gaussianity under infinite

variance and present some additional empirical evidence supporting the coexistence

of IGARCH effects in high frequency data and aggregational Gaussianity.
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