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1. Introduction 
An important element of most ecological theories seeking to understand 

ecosystems is the spatial and temporal structure of ecosystems. Spatial 

heterogeneity involving spatial structures such as patches or gradients seems to 

prevail in nature, in contrast to spatial homogeneity, and has a central role in the 

analysis of issues such as theories of competition, succession, evolution and 

adaptation, maintenance of species diversity, parasitism, population genetics, 

population growth, and predator-prey interactions (Legendre and Fortin 1989). 

The study of the emergence and the properties of regular spatial or 

spatiotemporal patterns which can be found in abundance in nature, such as for 

example stripes or spots on animal coats, ripples in sandy deserts, vegetation 

patterns in arid grazing systems or spatial patterns of fish species, has drawn 

much attention in natural sciences. Furthermore, empirical evidence suggests 

that disturbances in an ecosystem caused by human actions can either increase 

or decrease landscape heterogeneity depending on the parameter and spatial 

scale examined (e.g. Mladenoff et al. 1993). 

In economics the importance of space has long been recognized in the 

context of location theory,1 although as noted by Krugman (1998) a systematic 

analysis of spatial economics has been neglected. This neglect is associated 

mainly with difficulties in developing tractable models of imperfect competition 

which are essential in the analysis of location patterns. After the early 1990s 

there was a renewed interest in spatial economics mainly in the context of new 

economic geography. Krugman (1998) attributes this new research to: the ability 

to model monopolistic competition using the well known model of Dixit and 

Stiglitz (1977); the proper modeling of transaction costs; the use of evolutionary 

game theory; and the use of computers for numerical examples.  

                                                        
1 See for example Weber (1909), Hotelling (1929), Christaller (1933), and Löcsh (1940) for early 
analysis, or Krugman (1993, 1996), Fujita et al. (1999) for the more recent literature. 
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 In environmental and resource management problems the majority of 

the analysis has been focused on taking into account the temporal variation of 

the phenomena, and has concentrated on issues such as the transition dynamics 

towards a steady state, or the steady-state stability characteristics. However, it is 

clear that when renewable and especially biological resources are analyzed, the 

spatial variation of the phenomenon is also important. Biological resources tend 

to disperse in space under forces promoting ‘spreading’, or ‘concentrating’ 

(Okubo and Levin 2001); these processes along with intra and inter species 

interactions induce the formation of spatial patterns for species.  

In the management of economic-ecological problems, the importance of 

introducing the spatial dimension can be associated with attempts to incorporate 

spatial issues, such as resource management in patchy environments or reserve 

creation (e.g. Sanchirico and Wilen 1999, 2001, 2005; Brock and Xepapadeas 

2002, 2005; Smith and Wilen 2003; Sanchirico 2005; Wilen 2007; Costello and 

Polasky 2008), the study of control models for interacting species (Lenhart and 

Bhat 1992; Lenhart et al. 1999), the control of surface contamination in water 

bodies (Bhat et al. 1999), or the exploration of the conditions under which 

interacting processes characterizing movements of biological resources, and 

economic variables which reflect human effects on the resource (e.g. harvesting 

effort), could generate steady-state spatial patterns for the resource and the 

economic variables. That is, conditions which could generate a steady-state 

concentration of the resource and the economic variable, which varies across 

locations in a given spatial domain (Brock and Xepapadeas 2008, 2010). We will 

call this formation of steady spatial patterns persistent ‘spatial heterogeneity’, in 

contrast to ‘spatial homogeneity’ which implies that the steady state 

concentration of the resource and the economic variable is the same at all points 

in a given spatial domain.  

A central concept in modeling the dispersal of biological resources is that 

of diffusion. Diffusion is defined as a process where the microscopic irregular 

movement of particles such as cells, bacteria, chemicals, or animals results in 

some macroscopic regular motion of the group (Levin and Segel 1985; Okubo 

and Levin 2001; Murray 2003). Biological diffusion is based on random walk 

models which, when coupled with population growth equations of interacting 
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species, lead to general reaction-diffusion systems.2 In general a diffusion 

process in an ecosystem tends to produce a uniform population density, that is, 

spatial homogeneity. Thus it might be expected that diffusion would ‘stabilize’ 

ecosystems where species disperse and humans intervene through harvesting. 

There is however one exception known as ‘diffusion-induced instability’, or 

‘diffusive instability’ (Okubo and Levin 2001). It was Turing (1952) who 

suggested that under certain conditions, reaction-diffusion systems can generate 

spatially heterogeneous patterns. This is the so-called ‘Turing mechanism’ for 

generating diffusion instability. Turing’s diffusion-induced instability signals the 

emergence of spatial patterns as a result of spatial diffusion. These emerging 

patterns might lead to persistent spatial heterogeneity, depending on the 

features of the dynamical system.  

Biological reaction-diffusion systems are descriptive non-optimizing 

systems, in the sense that the biological agents cannot be regarded as fully 

forward looking optimizing agents. Therefore, to study spatial diffusion in the 

context of economic models, the reaction-diffusion systems need to be coupled 

with an economic model. This modeling typically involves control functions 

which are chosen by economic agents and which affect the evolution of state 

functions of the reaction-diffusion system, and an objective that depends on the 

controls and the states. The objective should be maximized by the choice of the 

controls, subject to the constraint of the reaction diffusion system. Brock and 

Xepapadeas (2008, 2010) have studied these systems in the context of resource 

management problems and have identified conditions for the emergence of an 

‘optimal diffusion-induced instability’.3 This instability signals the emergence of 

the spatial patterns resulting from forward-looking optimizing behavior under 

spatial diffusion. Persistent spatial heterogeneity resulting from optimal 

diffusion-induced instability can be regarded as describing optimal 

agglomerations or optimal clustering of the state variables of the system in the 

long run. 

                                                        
2 When only one species is examined, the coupling of classical diffusion with a logistic growth 
function leads to the so-called Fisher-Kolmogorov equation. 
3 Boucekkine et al. (2009) has studied a similar problem in the context of a Ramsey growth 
model. For a recent short survey, see Xepapadeas (2010). 
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The purpose of this chapter is to present methods for studying 

environmental and resource economics models in a spatial-dynamic framework, 

along with current results regarding the optimization of such models and the 

emergence of optimal diffusion-induced instabilities and optimal 

agglomerations. The emergence of optimal agglomerations and clustering in this 

context results from the interactions between forward-looking optimizing 

economic agents whose actions - either in the form of harvesting or in the form 

of regulation - affect environmental systems which generate useful services, and 

the natural processes which govern the movements of environmental resources 

in time and space. 

The approach presented in this chapter is placed in the general context of 

bioeconomic models governed by spatiotemporal dynamics, but differs from the 

main body of the existing literature, which uses metapopulation and discrete 

spatial-dynamic models, by using continuous spatial-dynamics. This adds on the 

one hand the mathematical complication of employing partial differential 

equations in modeling, but on the other hand it significantly reduces the 

dimensionality of the optimal control problems resulting from metapopulation 

models. This is because metapopulation models require one state variable for 

each patch. Thus the study of models with multiple interacting state variables is 

facilitated.  

The interpretation of the costate variable in these models as showing the 

spatiotemporal evolution of the state’s shadow value is similar to that of discrete 

spatial-dynamic models (e.g. Sanchirico and Wilen 2005). Thus the costate 

variables can be used as a basis for spatially dependent regulation.  

 

2.  Modeling Spatial Movements 

2.1 Short-Range Effects 
Let 

 

x t,z( ) denote the concentration of a biological or economic entity at time 

0≥t  at the spatial point Zz ∈ , where space is assumed to be one-dimensional 

and modeled by a line segment.4 The real function 

 

x t,z( ) describes the state of 

                                                        
4 The use of two- or three-dimensional space does not change the basic analysis, however it 
complicates the mathematical presentation. 
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the system.5 The classic approach for modeling spatial movements of this state 

function is through diffusion. Under diffusion the microscopic irregular motion 

of an assemblance of particles results in a macroscopic regular motion of the 

group. This classical approach to diffusion implies that diffusion has local or 

short-range effects. This means that economic or ecological activity at point z is 

only affected by the economic activity at nearby spatial points, i.e. points z ± dz  

and for dz tending to 0. In general short-range effects are modeled by linear, or 

nonlinear in more general cases, differential operators. The most common 

example is the use of the Laplace operator Ax t, z( )= ∇2x t, z( )=
∂2x t, z( )

∂z2  which 

leads to the well known one-dimensional heat equation ∂x t, z( )
∂t

− Dx Ax t, z( )= 0 . 

A measure of diffusion is the diffusion coefficient, or diffusivity, Dx  which 

measures how efficiently particles move from high to low density. Let 

 

f x t,z( ),u t,z( )( ) be a growth function or a source for the state function that 

depends on the density of the state of the system, where 

 

u t,z( ) is a control 

function, defined in the same way as the state function. A control function could 

be, for example, harvesting by economic agents. Let 

 

φ t,z( ) denote the flow of 

‘material’ such as animals or commodities past z at time t. The classic 

assumption is that this flux is proportional to the gradient of the concentration of 

material or φ t, z( )= −Dx
∂x t, z( )

∂z
 , where xD  is the diffusion coefficient and the 

minus sign indicates that material moves from high levels of concentration to 

low levels of concentration. Under this assumption the evolution of the 

material’s stock in a small interval 

 

∆z  is defined as: 

( ) ( ) ( ) ( ) ( )( )∫∫
∆+∆+

+∆+−=
zz

z

zz

z

dsstustxfzztztdsstx
dt
d ,,,,,, φφ . 

                                                        
5 In mathematical terms, problems involving space and time are distributed parameter problems 
and 

 

x t,z( ) is a function that takes values in a separable Hilbert space of square integrable 

functions which can be written more precisely as 

 

x t,z( ) = x t( ) z( ).  
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If we divide the equation above by 

 

∆z  and take limits as 

 

∆z →0 , then the 

spatiotemporal evolution of our state will be determined by the partial 

differential equation:6  

 

∂x t, z( )
∂t

= f x t, z( ),u t, z( )( )+ Dx∇
2x t, z( ), x 0, z( )= x0 t( ),∇2x t, z( )=

∂2x t, z( )
∂z2 .

 (1) 

In most applications it is assumed that the spatial domain is finite with 

 

z ∈ −Z,Z[ ]. Spatial boundary conditions for (1) could imply: (i) that the spatial 

domain is a circle or x t,−Z( )= x t, Z( ) for all t, (ii) hostile boundaries or 

 

x t,−Z( ) = x t,Z( ) = 0  for all t, or (iii) zero flux at the boundaries 

∂x t,−Z( )
∂z

=
∂x t, Z( )

∂z
= 0 for all t. If the source term represents logistic population 

growth and the control function

 

u t,z( ) represents harvesting at spatial point z 

and time t or 

 

f x,u( ) = x t,z( ) s − rx t,z( )( )− u t,z( ), then we obtain the Fisher 

equation: 

∂x t, z( )
∂t

= sx t, z( ) 1−
rx t, z( )

s






− u t, z( )+ Dx∇
2x t, z( ), x 0, z( )= x0 t( ).

 (2) 

The Fisher equation can be generalized to several interacting species or 

activities. With two interacting species 

 

x t,z( ),y t,z( )( ) which are both harvested 

at rates 

 

ux t,z( ),uy t,z( )( ) and diffuse in space with constant diffusivities 

 

Dx,Dy( ) 

respectively, we obtain: 

∂x
∂t

= f1 x, y,ux( )+ Dx∇
2x        (3) 

∂y
∂t

= f2 x, y,uy( )+ Dy∇
2y

.
       (4) 

System (3-4) is referred to as a reaction-diffusion system or as an 

interacting population diffusion system.7 If species x promotes the growth of y, 

then x is an activator, while if y reduces the growth of x, then y is an inhibitor. In 

                                                        
6For details, see Murray (2003). In more general diffusion models the diffusion coefficient could be 
density dependent or 

 

Dx = Dx x t,z( )( ). 

 
7Generalization to n species is straightforward. 
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this case the system (3)-(4) is an activator-inhibitor system. In systems like (3)-

(4) patterns may emerge as the result of Turing diffusion-induced instability. 

Diffusivity can be also nonlinear. In energy balance climate models for 

example (see North 1975a, 1975b; North et al. 1981), outgoing radiation is 

described by the following partial differential equation: 

∂I (, zt)
∂t

= QS(z)α(z, zs (t)) − I (z, t) − h(z, t)[ ]+ D
∂
∂x

(1− z2 )
∂I (z, t)

∂z






  (5) 

where units of z  are chosen so that z = 0  denotes the Equator, z = 1  denotes the 

North Pole, and z = −1  denotes the South Pole; Q  is the solar constant8 divided 

by 4; S(z)  is the mean annual meridional distribution of solar radiation which is 

normalized so that its integral from -1 to 1 is unity; α(z, zs (t))  is the absorption 

coefficient which is one minus the albedo of the earth-atmosphere system, with 

zs (t)  being the latitude of the ice line at time t ; and D  is a thermal diffusion 

coefficient that has been computed as D = 0.649Wm−2 .  

Equation (5) states that the rate of change of outgoing radiation is 

determined by the difference between the incoming absorbed radiant heat 

QS(z)α(z, zs (t))  and the outgoing radiation I (z, t) − h(z, t)[ ].  Note that the outgoing 

radiation is reduced by the human input h(z, t).  Thus the human input at time t  

and latitude z,  can be interpreted as the impact of the accumulated carbon 

dioxide that reduces outgoing radiation. 

2.2 Long-Range Effects  

In many cases, however, it is necessary to model nonlocal or long range spatial 

interactions. This is done by using integral operators which model the long-

range spatial interactions. These operators are of the general form  

Ax( ) z, t( )= Κ z, z ', x t, z '( )( )x t, z '( )dz '∫      (6) 

and the integration takes place over the whole spatial domain where economic 

or ecological activity is assumed to happen. The function K is called the kernel 

function and models the effect that economic or ecological activity has as a 

possible distant point y to the activity at point z. This integral operator has many 

                                                        
8The solar constant includes all types of solar radiation, not just the visible light. It is measured by 
satellite to be roughly 1.366 kilowatts per square meter (kW/m²). 
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important differences from the differential operator, from both the mathematical 

and the modeling point of view.9 From the modeling point of view, the integral 

operator formulation allows us to model long-range spatial effects, since the 

point y may be as distant as possible from x, and the strength of the interaction is 

provided by the size of the kernel function K.  

In the presence of nonlocal effects, the temporal change of the state 

variable at spatial point z depends on the influence of neighboring state variables 

in all other locations z’. In this case the spatiotemporal evolution of the system’s 

state which is analogous to (1) is: 

∂x z, t( )
∂t

= f x z, t( ),u z, t( )( )+
− Z

Z

∫ w z − z '( )x z ', t( )dz ' , x 0, z( )= x0 z( )∀z
  (7)

 

where again the spatial domain is finite with z ∈ −Z, Z[ ],  and spatial boundary 

conditions could be similar to (1). In (7), 

 

w z − z'( ) is the kernel function which 

quantifies the effects on the state

 

x t,z( ) at z from states in other locations 

 

z'∈ −Z,Z[ ]. Typical kernel functions are presented in figures 1 and 2.  

 
 

 
Figure 1: Positive long-range effects 

                                                        
9 From the mathematical point of view, for a wide range of kernel functions, the operator A is a 
compact operator, thus leading to the most natural generalization of finite dimensional 
continuous and bounded operators to the infinite dimensional case. This is in contrast to the case 
where A is a differential operator, which leads to unbounded and non-compact operators. 
Therefore, equation (1) for the case where A is an integral operator enjoys some nice properties 
with respect to its solvability and the qualitative properties of the solution. 
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Figure 2: Positive and negative long-range effects 
 

It should be noted that in figure 1 long-range effects are always positive, while in 

figure 2 positive and negative spatial effects are present. 

Nonlocal effects and the integral equation formulation are widely used in 

economics to model knowledge or productivity spillovers affecting the 

production function (e.g., Lucas 2001; Lucas and Rossi-Hansberg 2002) or to 

model long-range effects of knowledge accumulation (e.g., Quah 2002). For 

example a constant returns to scale production function with spatial knowledge 

spillovers can be written as: 

Q z( )= exp γ V z( )( )L z( )a K z( )b X z( )1−a−b  

where Q is the output, L is the labor input, K is physical capital, X is land, and V is 

the productivity spillover which depends on how many workers are employed at 

all other locations. The spatial productivity externality is defined as 

 

exp γV z( )( ), 

with 

 

V z( ) = δ e−δ z−z'

−Z

Z

∫ L z'( )dz' . The function 

 

e−δ z−z'  is the kernel. The productivity 

externality is a positive function of labor employed in all areas and is assumed to 

be linear and to decay exponentially at a rate δ with the distance between z and 

 

z' . The idea is that workers at a spatial point benefit from labor in nearby areas, 

and thus the distance between firms determines the production of ideas and the 

productivity of firms in a given region. A high δ indicates that only labor in 

nearby areas affects production positively. In terms of agglomeration economics, 
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the production externality is a centripetal force, i.e., a force that promotes the 

spatial concentration of economic activity. 

 Nonlocal effects are regarded as more appropriate for the analysis of 

problems where only spatial spillovers associated with economic variables are 

involved. In these models, like for example models with knowledge spillovers, 

the externality is assumed instantaneous and not emerging through the state 

dynamics. Local effects could be more appropriate for the analysis of 

environmental and resource management problems where there is explicit 

spatial movement of state variables, and the movement has local characteristics.  

 It is also possible to combine local and nonlocal effects. For example 

Genieys et al. (2006) study a reaction-diffusion equation with an integral term 

describing nonlocal effects or  

∂x t, z( )
∂t

= Dx
∂2x t, z( )

∂z2 + x t, z( ) σ t, z( )− w z − z '( )x t, z '( )dz '
−∞

∞

∫






   (7a) 

where x t, z( )  describes the density of a biological population. The first term of 

the right hand side describes local diffusion, while the second term describes 

reproduction, which is density dependent and is proportional to available 

resources σ t, z( ) . The integral term relates to the impact of nonlocal 

consumption of resources. Models with integrodifferential equations can be 

associated with the case of many marine resources where after spawning the 

larvae are transported by currents and wind over long distances.10 

The rest of this chapter will focus on local effects. 

3. Optimal Control Under Diffusion: The Maximum 
Principle 
Dynamic problems of coupled economic and ecological systems are usually 

modeled as optimal control problems with system dynamics acting as a 

constraint to the optimization problem. When system dynamics are 

characterized by spatial diffusion, the problem becomes a problem of optimal 

control of a distributed parameter system, which for the case of one state x t, z( )  

and one control u t, z( ) can be stated as: 
                                                        
10 I am grateful to a reviewer for pointing out this example. 
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max
u t ,z( ){ }

e− ρt

− Z

Z

∫ U x t, z( ),u t, z( )( ) 0

∞

∫ dzdt       (8) 

subject to 

∂x t, z( )
∂t

= f x t, z( ),u t, z( )( )+ Dx
∂x2 t, z( )

∂z2 , x 0, z( )= x0 t( ), x t,−Z( )= x t, Z( ).  
(8a)

 

 A maximum principle for this problem has been derived by Derzko et al. 

(1984) (see also Brock and Xepapadeas 2008). To use this maximum principle we 

need to introduce the Hamiltonian function 



Η x,u, p( )= U x t, z( ),u t, z( )( )+ p f x t, z( ),u t, z( )( )+ Dx
∂x2 t, z( )

∂z2









   (9) 

where p t, z( ) is the costate variable. The Hamiltonian function (9) is a generalization 

of the ‘flat Hamiltonian’ 

Η = U x t( ),u t( )( )+ p t( ) f x t( ),u t( )( )       (10) 

for Dx = 0.  The first-order conditions for the optimal control u* t, z( ) imply 

( ) ( ) ( ) ( )( )* , arg max , , , , ,uu t z x t z u t z p t z= Η . Assuming that the Hamiltonian function 

satisfies appropriate concavity assumptions, u* t, z( ) is defined, for interior solutions, 

by: 

( ) ( ) ( )( ), , , , ,
0.

x t z u t z p t z
u

∂Η
=

∂


       

 (11) 

Optimal controls are then defined in terms of the state and the costate variables as:  

u* t, z( )= g* x t, x( ),u t, z( )( ).        (12) 

The costate variable satisfies: 

( ) ( ) ( ) ( )( ) ( )* 2

2

, , , , ,, ,
X

x t z p t z g t zp t z p t z
p D

t x z
ρ

∂Η∂ ∂
= − −

∂ ∂ ∂


   (13) 

where g* x, p( ) is the optimal control function defined by (12). Note that the costate is 

interpreted as the shadow price of the stock (or the state) and that the diffusion term in 

(13) has a negative sign, while the diffusion term for the state dynamics of the system 

(8a), which reflect stock quantities, has a positive sign according to classic diffusion. 

This change in the sign of the diffusion coefficient means that prices and quantities 

move in the opposite directions in the spatial domain, for the optimally-controlled 

system. This result is in agreement with the economic intuition.  
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 Finally the following temporal and spatial transversality conditions should be 

satisfied at the optimum:  

lim
T →∞

e− ρT

− Z

Z

∫ p T , z( )x T , z( )dz = 0

p t,− Z( )= p t, Z( ).
     (14) 

 The first condition states that at an optimal solution the aggregate value of the 

state variable over the whole spatial domain, where the state variable at each site is 

valued at the local shadow price p t, z( ), remains finite as t → ∞ . The second 

condition states that the costate variable, or local shadow price, should – like the state 

– satisfy circle boundary conditions for all times. The transversality conditions 

provide boundary conditions for the solution of the problem.  

The transition equation (8a) with u t, z( ) replaced by the optimal control 

u* t, z( )= g* x t, x( ),u t, z( )( ),  along with (13) constitute a system of two partial 

differential equations. This is the Hamiltonian system which, along with the initial 

conditions and the transversality conditions (14), determines the spatiotemporal 

evolution of the state and costate functions along the optimal path. 

4.  Pattern Formation  
In reaction-diffusion systems without optimization the emergence of spatial 

patterns is analyzed through the ‘Turing mechanism.’ We briefly present the 

Turing mechanism below since this mechanism will be used to study optimal 

diffusion-induced instability. 

4.1 Turing mechanism and economic behavior  

The idea behind spatial pattern formation through the Turing mechanism can be 

presented as follows. It is expected that spatial local diffusion will eventually 

smooth out spatial patterns and produce a homogeneous landscape, or a flat 

landscape. Turing suggested that in reaction-diffusion, inhibitor-activator 

systems, where states move in space at different speeds, local diffusion might, 

under certain parameter values and contrary to what might have been expected, 

trigger the emergence of spatial patterns. To examine conditions that would 

generate spatial patterns, Turing suggested that it would be sufficient to study 

conditions under which a system which is at a stable spatially homogeneous 
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steady state could be destabilized by the introduction of spatial diffusion of the 

system’s states. The idea is that if the stable flat state is destabilized when the 

state starts moving in space due to the diffusion perturbation, then with the 

passage of time the system will not return to its original spatially homogeneous 

state and spatial patterns will start emerging. 

 The mechanism can be presented using system (3)-(4), by introducing, in 

addition to the Turing setup, economic behavior which is formulated by 

economic agents choosing the controls. The economic agents are located on the 

spatial domain and decide about harvesting at each site. That is, they choose 

controls at each site z.11 Assume that economic agents choose the controls in (3)-

(4) in a certain feedback form 

 

ux = g1 x,y,b( ), uy = g2 x,y,b( ), where b is a vector of 

economic parameters (e.g. prices, unit costs). The feedback controls could be the 

result of behavior such as optimization, imitation, rule of thumb, or open access 

competition. Then the system (3)-(4) can be written as: 

∂x
∂t

= F1 x, y,b( )+ Dx∇
2x        (15) 

∂y
∂t

= F2 x, y,b( )+ Dy∇
2y        (16) 

where, Fi x, y,b( )≡ fi x, y, gi x, y,b( )( ), i = 1,2 . 

 To define a spatially homogeneous steady state or flat steady state (FSS), 

set 

 

Dx = Dy = 0  and then define the FSS as 

 

x*,y*( ): Fi x*,y*,b( )= 0 ,i =1,2 . The FSS 

will be locally stable to temporal perturbation if the eigenvalues of the Jacobian 

matrix of the linearization of (15)-(16) evaluated at the FSS 

 

x*, y*( ) are negative 

or have negative real parts. Let this Jacobian be 

J x*, y*,b( )=

∂F1 x*, y*,b( )
∂x

∂F1 x*, y*,b( )
∂y

∂F2 x*, y*,b( )
∂x

∂F1 x*, y*,b( )
∂y





















=
a11 a12

a21 a22











.   (17) 

Therefore the linearization of (7)-(8) at the FSS will be: 



x
&y









 =

a11 a12

a21 a22











x
y









 .        (18) 

                                                        
11 To simplify we can assume that each agent is located at each spatial point. 
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 Assume that tr J( )= a11 + a22 < 0 , det J( )= a11a22 − a12a21 > 0. This implies 

that the Jacobian matrix of the linearization has two real negative eigenvalues, 

thus the FSS is locally stable to spatially homogeneous perturbations. Turing’s 

method is based on studying the stability of the FSS to spatially heterogeneous 

perturbations off the FSS. 

This is obtained by transforming the infinite dimensional system (15)- 

(16) into a countable sequence of linear systems of ordinary differential 

equations so that linear stability analysis can be used. To obtain this the usual 

approach is to consider pairs of square integrable solutions 

x t( ) z( ), y t( ) z( )( )= x t, z( ), y t, z( )( ) and construct trial solutions using an orthogonal 

basis of a Hilbert space of square integrable functions. This basis is created in 

terms of functions cos kz( ), sin kz( ), z ∈ −π ,π[ ], for mode k = 0, 1, 2, ... which form a 

complete orthogonal basis over −π ,π[ ]. Our assumptions about functions 

fi , i = 1,2  suggest that the solutions x t, z( ), y t, z( )( ) of the system (15)-(16) will be 

smooth enough to be expressed in terms of a Fourier basis. In view of this, the 

approach is to introduce now spatial perturbations and consider spatial 

dependent solutions of the form: 

x t, z( )=
k

∑cxke
σ t cos kz( ), y t, z( )=

k
∑cyke

σ t cos kz( ) ,k =
2nπ

L
, n = ±1,±2,...    (19) 

where 

 

k  is called the wavenumber and 

 

1/k, which is a measure of the wave-like 

pattern, is proportional to the wavelength 

 

ω : ω = 2π /k = L /n  at mode n, where 

L is the length of the spatial domain. 

 

σ  is the eigenvalue which determines 

temporal growth and cxk ,cyk  are constants determined by initial conditions and 

the eigenspace of 

 

σ  . These trial solutions should be understood as deviations 

from the FSS 

 

x*,y*( ). 

 In (19) the cosine terms express the spatial deviation from the FSS and 

the exp σ t( ) term the temporal deviation. The spatial deviation, which is a wave 

like pattern, is the sum of sinusoidal components with each one having a 

wavelength L n , with the wavelength being the distance between two sequential 

crests of the wave. In this case the mode corresponds to the wavelength of each 

component that forms the ‘total’ spatial deviation.  
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 Assume that 

 

−Z = 0,Z = L  so that the spatial domain has length L and that 

furthermore the spatial domain is a circle. Substituting (11) into (9)-(10) and 

noting that they satisfy circle boundary conditions at 

 

z = 0  and 

 

z = L, we obtain 

the following result: 

 Behavior of economic agents as implied by choosing controls according to 

feedback rules 

 

gi x,y,b( ), i =1,2  in the management of a reaction-diffusion system, 

generates spatial patterns around a flat steady state if 

a22Dx + a11Dy

2Dx Dy

> 0

a22Dx + a11Dy( )2

4Dx Dy

+ det J x*, y*,b( )< 0.

    (20) 

For the proof, see Brock and Xepapadeas (2010, theorem 1). 

 If the above conditions are satisfied, then when the spatially 

heterogeneous perturbations are introduced, one of the eigenvalues of the 

linearization matrix of (17) is positive and therefore the steady state FSS 

 

x*, y*( ) 

is locally unstable. This result means that once the state starts moving within the 

spatial domain with different speeds, then a spatial pattern starts emerging. This 

pattern will not die out but it will continue growing with the passage of time 

along the positive eigenvalue. Since the Jacobian matrix depends on the vector of 

economic parameters b, the economics of the problem contribute to the 

emergence or not of spatial patterns.  

The local instability analysis around the steady state suggests that a 

spatial pattern starts emerging, but does not provide firm indications about the 

structure of the spatial pattern at which the system will eventually settle at the 

steady state, since the eigenvalues analysis of the linearized system is valid only 

in the neighborhood of the FSS.  

The steady-state spatial pattern can be determined by solving the system 

(15)-(16) at a steady state where 

 

∂x
∂t

=
∂y
∂t

= 0. Then the system becomes  

∂2x
∂z2 =

1
Dx

F1 x, y,b( )
       (21) 

∂2y
∂z2 =

1
Dy

F2 x, y,b( )
.       (22) 
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System (21)-(22) is a second order system of ordinary differential 

equations in the spatial domain. Solution of this system with appropriate spatial 

boundary conditions will provide the steady-state spatial pattern for the stocks 

of the system. This pattern is determined numerically most of the times so 

additional care should be taken when the results are interpreted, especially 

regarding the temporal stability of the steady-state spatial pattern. 

A graph of emerging spatial patterns, which eventually converge to a 

spatially heterogeneous steady state, is shown in figure 3 for a state variable 

denoted by P. 

 
Figure 3: Emergence of pattern and spatially heterogeneous steady state 

4.2 Optimal diffusion-induced agglomeration 

In the analysis in the previous section, economic agents act myopically in both 

the temporal and the spatial dimensions, and do not take into account the spatial 

externality since they ignore the impact of their own harvesting on the stocks 

located on the sites of other agents. This impact emerges through the movement 

of stocks under the influence of diffusion. The spatial externality, as well as the 

temporal externality, can be taken into account by a social planner or a regulator 

that chooses the optimal control by solving problem (8)-(8a). The emergence of 

‘optimal spatial patterns’ can be studied by applying Turing’s approach to the 

Hamiltonian system of problem (8)-(8a), which can be written as:  
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 (23)
 

 In order to analyze pattern formation at the social optimum we examine 

the stability of a flat optimal steady state (FOSS) of the Hamiltonian system to 

spatially heterogeneous perturbations. A FOSS is a steady state where the state 

and the costate are spatially homogeneous. To ease notation the Hamiltonian 

system can be written in a compact way, where subscripts t,z denote partial 

derivatives with respect to t and z respectively, as 

xt = H px
+ Dx xzz

pt = ρp − H x − Dx pzz .
    …(24) 

 A FOSS is defined, from the Hamiltonian system (24), as a pair 

x*, p∗,( ) : xt = pt = 0  for Dx = 0 . It is known from the work of Kurz (1968) that 

such a FOSS will either be unstable or will have the saddle point property. 

Assume that the FOSS x*, p*( ) has the local saddle point property, which means 

that the Jacobian matrix of the linearization of (24) has one positive and one 

negative eigenvalue. To study pattern formation due to spatial diffusion around 

the FOSS, we linearize (24) at the FOSS and we introduce again spatially 

dependent solutions for the state and the costate which are expressed in terms 

of a Fourier basis, or 

x t, z( )=
k

∑ck
xeσ t cos kz( ), p t, z( )=

k
∑ck

peσ t cos kz( ) ,k =
2nπ

L
, n = ±1,±2,...  

 These trial solutions should be understood as deviations from the FOSS 

x*, p*( ). The spatial pattern of the deviations is wave like, as discussed in section 

4.1, and is determined by the sum of k components, each one corresponding to 

mode n. If for example L = 2π  then k = n.  Brock and Xepapadeas (2008) derive 

conditions under which the Jacobian matrix, which is defined for each mode of 

the linearized spatially perturbed system, may have two positive eigenvalues or 

complex eigenvalues with positive real parts at a certain mode n. This mode will 

be called an unstable mode. 
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 This result implies that a spatial pattern is emerging for the optimally-

controlled price quantity system at the unstable mode, where prices are 

represented by the costate variable and quantities by the state variable. This is 

because the component of the spatial pattern that corresponds to the unstable 

mode does not die out with the passage of time since it grows according to the 

positive eigenvalues. Thus the total patterned deviation from the FOSS does not 

die out as time goes by and therefore the system will not return to the FOSS.

 This is the optimal diffusion-induced instability since it emerges in the 

context of a dynamic optimization problem, where the classic Turing diffusion-

induced instability is not the result of dynamic optimization.  

The intuition behind this result can be described as follows. Controlling 

the system to a FOSS along the stable manifold is costly for the social planner, 

especially when the uncontrolled system is close to instability. The optimal 

diffusion-induced instability can be regarded as the result of comparing the 

current costs of stabilizing the system versus the future benefits from 

stabilization. Depending on the relative costs and benefits of controlling a system 

to a spatially homogeneous steady state and the discount rate, it might be 

desirable in economic terms to have a spatially heterogeneous system. For 

sufficiently high discount rate the present costs of controlling the system to a flat 

optimal steady state might exceed the present value of future benefits. In this 

case it might be optimal to let the system become unstable and thus to cause the 

emergence of spatial patterns. On the other hand when the discount rate is close 

to zero, spatial patterns will tend to be ‘‘smoothed out’’.  

The type of instability described here depends upon the trade-off 

between the current control cost and the present value of future gains from 

stabilization and can emerge even in systems with one state variable. Thus there 

is a difference between optimal diffusion induced instability and the standard 

Turing type diffusion induced instability which requires at least two state 

variables in the dynamics. 

 The local optimal instability analysis around the FOSS suggests that an 

optimal spatial pattern starts emerging but again does not provide firm 

indications about the structure of the spatial pattern regarding the state and the 

costate (shadow prices) in the long run. Some insights about the optimal long-
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run spatial pattern, if it exists, can be gained by solving the system (23) for 

xt = px = 0.  Then:  

xzz = −
1

Dz

H px

pzz =
1

Dx

ρpx − H x( ).
       (25) 

System (25) is a second order system of ordinary differential equations for the 

state and costate, or the quantity-price system, in the spatial domain. Solution of 

this system with appropriate spatial boundary conditions will provide the 

optimal steady-state spatial pattern for the stock and its shadow price. As before, 

additional care should be taken when the results are interpreted, especially 

regarding the temporal stability of the steady-state spatial pattern. 

Figure 4 shows a typical long-run steady-state spatial pattern in a space 

domain Z = [0, 4] , for the state variable x z( ) and the corresponding costate p z( ) 

emerging from the problems studied in Brock and Xepapadeas (2008). The state 

variable (solid line) shows higher concentration in the middle of the spatial 

domain, while its shadow price (dashed line) shows a symmetrically opposite 

pattern. Both state and costate satisfy circle boundary conditions, that is, 

x 0( )= x 4( ), p 0( )= p 4( ) . 

 
Figure 4: Spatially heterogeneous steady state for a state and a costate 
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4.2.1 Optimal agglomerations with reaction-diffusion systems  

The results obtained in the previous section are not based on a reaction-diffusion 

system, which is the basis for studying pattern formation through the Turing 

mechanism, since they were derived from a dynamical system with one state, 

while a reaction-diffusion system requires at least two states.  

 The mechanism for generating spatial pattern in an optimizing model 

with one state variable is qualitatively different from Turing’s original result, 

since it is not founded on the diffusion of two state variables at different speeds, 

but on the diffusion of one state variable and the diffusion in the opposite 

direction of its shadow price. The shadow price emerges as the costate variable 

of the optimal control problem.  

 The optimal agglomeration mechanism can be extended to a reaction 

diffusion system with two or more state variables. Thus we consider the reaction 

diffusion system (3)-(4) where a social planner or a regulator chooses optimally 

the controls ux = g1 x, y,b( ), uy = g2 x, y,b( ). 12
 

The purpose is to maximize the present value of an objective over the 

entire spatial domain subject to the spatiotemporal evolution of the state 

variables. The planner’s problem can be written as:  

 

max
u t , z( ){ } 0

∞

∫ 0

L

∫ e− ρt U x t, z( ), y t, z( ),ux t, z( ),uy t, z( )( )  dzdt

subject to (3) − (4).
   (26) 

 To use this maximum principle described above we introduce the 

Hamiltonian function: 



Η x, y,ux ,uy , px , py( )= U x t, z( ), y t, z( ),ux t, z( ),uy t, z( )( )+

px t, z( ) f1 x t, z( ), y t, z( ),ux t, z( ),uy t, z( )( )+ Dx

∂2y t, z( )
∂z2









 +

py t, z( ) f2 x t, z( ), y t, z( ),ux t, z( ),uy t, z( )( )+ Dy

∂2x t, z( )
∂z2











   (27) 

      

where p = px , py( ) is the vector of the costate variables. The Hamiltonian function 

(27) is a generalization of the ‘flat Hamiltonian’ 

                                                        
12 A similar system has been analyzed by Brock and Xepapadeas (2010). 
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Η = U x t( ), y t( ),ux t( ),uy t( )( )+ px t,( ) f1 x t( ), y t( ),ux t( ),uy t( )( )  +

py t,( ) f2 x t,( ), y t( ),ux t,( ),uy t( )( ) 
  (28) 

for 

 

Dx = Dy = 0. The first-order conditions for the optimal control vector 

  

 

u∗ t,z( )= ux* t,z( ),uy* t,z( )( ), assuming that the Hamiltonian function satisfies 

appropriate concavity assumptions, are defined, for interior solutions, by  

 ∂H
∂u j = 0 , j = x, y.       (29) 

Then the costate variables satisfy: 

 

∂pj t, z( )
∂t

= ρpj − H j x t, z( ), y t, z( ),p t, z( ),g∗ x, y,p( )( )− Dj

∂2 pj t, z( )
∂z2 j = x, y  (30) 

where   

 

g∗ x t,z( ), y t,z( ),p t,z( )( ) is the vector of the optimal control functions 

defined by (29). The costates are interpreted as the shadow prices of the stocks 

and the negative sign of the diffusion coefficient means that prices and quantities 

move in the opposite directions in the spatial domain, for the optimally-

controlled system.  Finally the following temporal and spatial transversality 

conditions should be satisfied at the optimum: 

lim
T →∞

e− ρT

0

L

∫ pj T , z( ) j T , z( )dz = 0 , j = x, y

pj t,− Z( )= pj t, Z( ).
     (31) 

 The reaction-diffusion system of (3) and (4) with u = ux ,uy( ) replaced by 

the optimal controls  u
* = g∗ x t, z( ), y t, z( ),p t, z( )( ) and the system of (30) constitute 

a system of four partial differential equations. This is the Hamiltonian system, 

which along with the initial conditions and the transversality conditions (31), 

determine the spatiotemporal evolution of the state and costate variables along 

the socially optimal path. 

 Writing the Hamiltonian in a more compact way we have:  

xt = H px
+ Dx xzz

yt = H py
+ Dyyzz

pxt = ρpx − H x − Dx pxzz

pyt = ρpy − H y − Dy pyzz .

    …(32) 

 A FOSS is defined, from the Hamiltonian system (32), as a quadruple 

 

x*,y*, px
∗, py

∗( ) : xt = yt = pxt = pyt = 0 for 

 

Dx1
= Dx2

= 0. It is known from the work 
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of Kurz (1968) that such a FOSS will either be unstable or will have the saddle 

point property. Assume that the FOSS 

 

x*,y*( ) has the local saddle point property 

which means that the Jacobian matrix of the linearization of (20) has two 

positive and two negative eigenvalues. To study pattern formation due to spatial 

diffusion around the FOSS, we linearize (32) at the FOSS and we introduce again 

spatially dependent solutions for the state and the costate which are expressed 

in terms of a Fourier basis, or: 

j t, z( )=
k

∑cjke
σ t cos kz( ), pj t, z( )=

k
∑cjk

p eσ t cos kz( ) ,k =
2nπ

L
, n = ±1,±2,.., j = x, y.  

 These trial solutions should be understood as deviations from the FOSS 

 

x*,y*( ). Brock and Xepapadeas (2010) derive conditions under which the 

Jacobian matrix of the linearized spatially perturbed system has three or four 

real positive eigenvalues or complex eigenvalues with positive real parts at some 

mode. When this happens the unstable mode grows with time and spatial 

patterns start emerging. 

Insights regarding the optimal long-run spatial pattern, if it exists, can be 

determined by solving the system (32) for 

 

xt = yt = pxt = pyt = 0. In this case we 

have the following system in the spatial domain:  

xzz = −
1

Dz

H px

yzz = −
1

Dy

H py

pxzz =
1

Dx

ρpx − H x( )

pyzz =
1

Dy

ρpy − H y( ).

         (33) 

The results of this section imply that a spatial pattern may emerge for the 

optimally controlled price quantity system, where prices are represented by the 

costate variables and quantities by the state variables. This is again the optimal 

diffusion-induced instability since it emerges in the context of a dynamic 

optimization problem.  

The analysis in this section also suggests how problems with many state 

variables can be analyzed, although increasing the state variables reduces the 
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ability to obtain analytical results since the dimension of the Hamiltonian system 

at each mode will be high. 

There is an interesting distinction between the one and the two state 

variable problems. When the system has one state variable, Turing instability 

cannot emerge in the uncontrolled system. Turing instability requires two state 

variables with different speed of moving across space. However diffusion-

induced instability can emerge in the one state optimally controlled system. In 

this case the interaction between states and costates through the optimization 

process may, given appropriate discount rates, induce spatial clustering. This is 

because state and costate variables move in opposite directions within the 

spatial domain, as stated in section 3, and this type of movement ‘mimics’ the 

differential speed required for Turing instability.  

The pattern, in the case of more than one state variable, emerges as a 

result of diffusion of the state variables and the spatial interactions of the price 

quantity system. Thus there is the possibility that the unoptimized reaction-

diffusion system will provide a spatial pattern as a result of Turing diffusion-

induced instability, while the optimized system will provide a different spatial 

pattern as a result of the diffusion-induced instability. This deviation can be 

regarded as a basis for studying spatially dependent regulation. 

5.  Summary and Conclusions 
This chapter presented methods for analyzing coupled economic and ecological 

systems, which evolve in both the temporal and the spatial dimension. These 

methods could be useful in understanding the mechanisms that create spatial 

patterns and the design of spatial regulation. The approach presented in this 

chapter, which uses continuous spatial dynamics, differs from the main body of 

the existing literature, which uses metapopulations and discrete spatial-dynamic 

models (e.g Smith et al. 2009). This increases the mathematical complication 

since it introduces distributed parameter systems and optimal control of partial 

differential equations in modeling. On the other hand it significantly reduces the 

number of state variables involved in the optimal control problems resulting 

from metapopulation models, since these problems require one state variable for 
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each patch. Thus the use of continuous spatial dynamics might make it easier to 

study models with multiple state variables with interaction among themselves.  

 This chapter presents ways to model short- and long-range spatial 

movements. Short-range movements, which relate more to ecological systems, 

are modeled through diffusion, linear or nonlinear, and partial differential 

equations. On the other hand, long-range movements are modeled through 

integral operators and integrodifferential equations, which can be regarded as a 

more appropriate method for analyzing economic phenomena such as spatial 

productivity or knowledge spillovers. 

 Whether the modeling is associated with short- or long-range spatial 

effects, the appropriate analytical framework is the framework of infinite 

dimensional systems. Thus for the case of short-range effects and diffusion, 

which is the main focus of the chapter, we present an extension of the maximum 

principle which can be used for the optimal control of partial differential 

equations with classic diffusion. 

This maximum principle leads, however, to an infinite dimensional 

Hamiltonian system, which is very difficult to handle analytically. It is shown that 

by using a Fourier basis the infinite dimensional Hamiltonian system can be 

decomposed into a countable set of finite dimensional Hamiltonian systems 

which are indexed by mode n = 0.1,2,... . This decomposition allows us to study 

the stability of a spatially homogeneous - or flat - steady state to spatial 

perturbations. If there are unstable modes, then a spatial pattern starts 

emerging. This mechanism, which is essentially the Turing mechanism for 

diffusion-induced instability, is extended to optimizing systems. It is shown in 

this chapter how unstable modes can contribute to the emergence of optimal 

diffusion- induced instability or optimal agglomerations. Also shown is how, 

given the emergence of spatial patterns, insights - although no conclusive 

evidence - regarding the existence and the structure of spatially heterogeneous 

steady states can be obtained by studying a temporal steady state in the spatial 

domain. 

 An area of further research in this analytical framework is the 

combination of local and nonlocal effects. This approach might produce 

interesting results regarding the emergence of spatial patterns and 
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agglomerations on combined ecological and economic models where short- and 

long-range effects coexist.  

The introduction of spatial dynamics using differential or integral 

operators in the optimizing models studied in economics is still relatively new. It 

may, however, provide new insights regarding mechanisms generating spatial 

patterns and inequalities, which are issues of ongoing interest in economics.  
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