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Abstract

In this paper we investigate the role of information spillovers in promoting irrigation technology adoption and diffusion. In particular, we investigate the effect of different channels of information spillovers, namely social learning and formal extension visits, while acknowledging that this effect is a function of farm-specific spatial, qualitative and socio-economic characteristics. For doing so we develop a theoretical model of irrigation technology adoption and diffusion which is applied empirically using duration analysis and a micro-dataset of olive producing farms in Crete. To the best of our knowledge, this is the first paper that brings together, both theoretically and empirically, three strands of the adoption and diffusion literature: (i) the literature on extension visits, (ii) the literature on social learning and, (iii) the literature on spatial aspects of adoption and diffusion. 
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INTRODUCTION
Advanced irrigation technology is often cited as central to increasing water use efficiency and reducing the use of scarce inputs, while maintaining current levels of farm production (Green et al., 1996). The analysis of adoption and diffusion patterns of irrigation technologies has been at the core of several empirical studies (e.g., Caswell and Zilberman, 1985, Dinar et al., 1992, Dridi and Khanna, 2005 and, Koundouri et al., 2006). These articles provided evidence that economic factors like water price, cost of irrigation equipment, crop prices, but also farm organizational characteristics and environmental conditions, do matter to explain adoption and diffusion of modern irrigation technologies. In addition to these important factors, the theoretical and empirical evidence in the technology adoption literature, underlines the significance of information acquisition and informational spillovers in defining individual farmer’s behavior (e.g., Stoneman and David, 1986; Wozniak, 1993).  Along these lines, the aim of our article is to add to this literature by providing a better understanding of informational spillovers, considering both formal communication channels (i.e., between extension agents and farmers) and informal communication channels (i.e., social interaction between farmers), in the process of irrigation technology adoption and diffusion. As far as we know, our paper is the first one in this literature to propose such an in-depth analysis of the role of information and social interactions.
 

Several studies pinpointed extension agents as a primary source of information concerning the existence and merits of the new farming technology (for a review see Rivera and Alex, 2003 and Birkhaeuser et al., 1991). Usually, extension agents target specific farmers in any particular area who are recognized as being peers exerting influence on other farmers in the area (Birkhaeuser et al., 1991).  In this respect, the distance of individual farmers from those peers, as well as from extension agencies, is likely to affect the transmission of knowledge. It is also well known that the conditions for adoption of new irrigation technology are likely to improve with the passage of time as cumulative rural experience on the new technology makes learning from others more effective. Hence the mass of information available to a potential adopter is a function not only of time and on-farm extension visits, but also of the density of adopters in the area or village at the time of deciding whether to adopt or not. 

Usually, farmers tend to exchange information and imitate farmers with whom they share common characteristics (religious beliefs, education, age, etc). Using Rogers’ (1995) terminology it is more likely that farmers imitate and gather information from their homophilic neighbours. Although the distinction made by Rogers defines homophilic population as the reference group influencing individual choices and the spread of information, this is not always the case. Very often farmers follow or trust the opinion of those that they perceive as being successful in their farming operation even though they occasionally share quite different characteristics. For instance, a young farmer with low experience will rather follow and trust more experienced farmers either from their own social network or from outside. Therefore, what determines the influential reference group for an individual farmer in the sense of affecting his/her decisions about new technologies is not straightforward but is instead a combination of several factors. In addition to determining what constitutes the influential reference group among the stock of adopters, an important dimension of effective informational provision is the spatial distribution of this reference group. Obviously farmers located far away from members of their reference group benefit less from their experience in revising their own perceptions about farming technologies.
Along these lines, our paper quantitatively measures the importance of informational spillovers by considering both formal communication channels (i.e., between extension agents and farmers) and informal communication channels (i.e., social interaction between farmers, also referred as social learning). The originality of our empirical model is to explicitly consider both individual and farm-specific characteristics and farm’s spatial characteristics (i.e., geographical location) in the definition of influential reference groups. For doing so, we develop a theoretical model of irrigation technology diffusion that explicitly incorporates the value of informational spillovers in individual adoption decisions.  

Measuring the extent of social learning is difficult for two major reasons. First, the set of neighbors from whom an individual can learn is difficult to define. Second, distinguishing learning from other phenomena (e.g., interdependent preferences and technologies, related unobserved shocks) that may give rise to similar observed outcomes is problematic. To mitigate both problems, our study uses collected information on a few characteristics of a farmer’s reference group to create observable indicators related to these reference groups. The aforementioned indicators are then used in a factor analytic model to build factors that best represent the unobserved variables that are potentially relevant for quantifying the effect of information spillovers, both via extension visits and social learning. We then use the estimated factor scores in the hazard function and estimate a duration model. 
Our sample consists of 385 randomly selected olive producing farms in Crete.. The dataset we have collected and use in this paper gives a unique opportunity to identify spillover effects because it includes information on some of the characteristics of the group with whom a farmer interacts. Our empirical results from a sample of 385 randomly selected olive producing farms, confirm the importance of formal extension visits in inducing faster technology adoption. We also find that social learning is important: farmers tend to learn from and/or imitate farmers that are “more similar” to them. The strength of both formal and informal learning depend on the geographical distance between the farmers and extension agencies and between the farmers and their influential peers, while proximity to influential peers also induces faster adoption. Finally, formal and informal informational channels are complements underlying the relative importance in technology diffusion of different informational contents. These are rather informative results for policy makers and useful in promoting efficient irrigation practices.

In section 2 we develop the theoretical model of adoption and diffusion of modern irrigation technology and in section 3 we develop the econometric model of technology adopting and diffusion using duration analysis. Next, we discuss the data we use and derive the empirical specification of the econometric model. In section 5 we use a factor analytic model to build factors that best represent each one of the unobserved variables that are potentially relevant for quantifying the effect of information provision in the diffusion of drip irrigation technologies. In section 6 we discuss the estimation results and provide relevant policy recommendations.
Theoretical Model

Following Caswell and Zilberman (1986) we define irrigation effectiveness 
[image: image1.wmf](

)

e

w

x

 as the ratio of the amount of water used by the crop (effective water, 
[image: image2.wmf]w

x

%

) to the total amount of irrigation water used on the field (applied water, 
[image: image3.wmf] 

x

w

): 


[image: image4.wmf]e

www

xxx

=

%

 or  
[image: image5.wmf]e

www

xxx

=×

%







(1)
According to Dinar et al., (1992) irrigation effectiveness is influenced by three factors: the water holding capacity of the soil, the prevailing weather conditions, and the method of water application, i.e., irrigation technology.  Hence, effective irrigation in the second equality of (1) can be expressed as a general function of the form:
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where q denotes soil water holding capacity, d is an aridity index defined as the ratio of the average temperature over the total precipitation capturing weather conditions (Stallings, 1968), and k is a technology index indicating the method of irrigation.  The effective irrigation function defined above is assumed to be non-decreasing and concave in applied irrigation water, soil water holding capacity and irrigation technology, and non-increasing and convex in weather conditions captured by the aridity index.  

We assume that farmers initially produce using a traditional irrigation technology (e.g., furrow), but they have the option to invest in a modern, more efficient technology (e.g., drip or sprinklers).  If they switch technologies, they must incur an irreversible investment cost, which may include the cost of designing a complete irrigation system and investing in the new infrastructure (e.g., pipes, filters, fertilization equipment) as well as the cost related with training both themselves and hired workers to use the new irrigation equipment appropriately.  Adoption of the new technology may not only imply a fixed cost, it might also change the marginal cost of water if, for example, advanced irrigation technologies involve higher pressurization cost. Additionally, capital intensive irrigation technologies may also affect the use of inputs in crop production. For instance, the quantity of fertilizers may be adjusted following the adoption of the new irrigation system. Also, as drip irrigation is applied through a pipeline network, we expect a reduction in labor compared to the traditional furrow system.  
Under these assumptions, farmers utilize a vector of j variable inputs 
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 (e.g., land, physical capital, intermediate inputs, labor) under any method of irrigation water application k to produce a single crop output 
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 through a well-behaved technology described by the following non-empty, closed set:
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where k denotes the choice of irrigation technique, 
[image: image10.wmf] 

c

k

Î

Â

+

 the fixed irrigation equipment specific to the choice of technique that includes all fixed costs associated with the change in irrigation technology,
 and 
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 is a strictly increasing, differentiable concave farm production function, representing the maximal output from conventional inputs and irrigation water use given soil quality, weather conditions and technological constraints.  
Following Dinar et al., (1992), farmer’s joint decision of an irrigation water application rate and irrigation technology, assuming profit-maximizing behavior, can be solved via a two-stage procedure.  First, farmers choose the optimal amount of irrigation water together with variable inputs for each technology (traditional and modern) and subsequently choose the irrigation technology yielding the highest profits.  Obviously if none of the technologies yields positive profits, farmers will not operate at all.  In addition, we assume that farmers are not myopic in a sense that they can form expectations concerning all conjectures of their future profit flows, i.e., under different choices of irrigation technology.
 
Hence, for farmers facing strictly positive prices for crop 
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, the maximal short-run profits from farming with a quasi-fixed input endowment of 
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 are those obtained from the following optimization problem:
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where, 
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 is the restricted profit function defined in terms of the irrigation technique with 
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 denoting the state of irrigation technology (i.e., traditional or modern).  It is positive linear homogeneous in output, variable inputs and irrigation water prices, non-decreasing in output price and soil water holding capacity and non-increasing in variable input and irrigation water prices and weather conditions captured by the aridity index.   

We also assume that the farmers may not have a perfect knowledge about the new irrigation technology before adoption. The quantity of information that a farmer i has at time t is likely to depend on the number of farmers, among those he/she has contact with, who have already adopted the new irrigation technology.  We also expect the farmer’s level of information about the new technology to be related to both his direct and his influential peers’ contacts with extension services. This imperfect knowledge about the new technology combined with the fact that adoption of a modern irrigation technology can be seen as an irreversible decision make information valuable (Jensen, 1986; Dixit and Pindyck, 1994).  If the farmer expects to know more about the technology as time passes (i.e., if he expects that the value of information will decrease over time because more and more farmers will adopt the technology), he may have an incentive to delay adoption (Foster and Rosenzweig, 1995).  We model the value of information at time t through the variable It, which is assumed to depend on the number and characteristics (including spatial location) of adopters, and contacts, direct and indirect, with extension services. 
If we assume that the cost of acquiring the new drip irrigation technology at time t is known to the farmers, and the adoption decision is a discrete choice, then each farmer maximizes expected profits and chooses the time of adoption, τ, which solves the following optimization problem (Kerr and Newell, 2003):
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where, 
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 are the short-run profits under the traditional and modern irrigation technologies respectively, 
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 is the cost of acquiring the new irrigation technology at the year of adoption τ, 
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 represents the value of information also at the year of adoption, and r is the discount rate.  Farmers will adopt the new irrigation technology at year τ if it is not more profitable to wait until a later period because of falling investment and information costs. The first-order condition of the maximization problem in (5), known as the arbitrage condition, implies:
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where 
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 are the gross benefits of adopting drip irrigation technology at time τ.  The arbitrage condition is sufficient if the acquiring cost is non-increasing and convex, and the expected gross benefits of adoption are non-decreasing with respect to time. Specifically, the second-order sufficient condition implies that:
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Conditions (6) and (7) are likely to hold as water availability is decreasing over time and the technology-acquiring cost generally decreases at a decreasing rate over time, eventually reaching a constant level. Hence, the general pattern implied by relation (6) is convex. In addition, in order for adoption to take place in finite time, these conditions imply that adoption must be profitable: 
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Econometric model 

Following Karshenas and Stoneman (1993), Kerr and Newell (2003) and Abdulai and Huffman (2005), we model the diffusion of drip irrigation technology using duration analysis.  Under the assumption that duration, T, is a positive random variable with a continuous probability density function, 
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, which represents the probability of survival (in our case, survival of the old technology) beyond a certain point in time.
 The hazard function or hazard rate 
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 describes the rate at which individuals will adopt the technology in period t, conditional on not having adopted before t: 
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In empirical work, it is common to specify the hazard function as the product of the baseline hazard, which is assumed to be common to all individuals and to depend only on time and some unknown parameters α, and a component which depends on adopters’ characteristics, 
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where, 
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 can be seen as the empirical counterpart of the arbitrage condition as defined in the previous section.  The vector zit includes variables that are supposed to enter the arbitrage condition determining farmers’ optimal choice, and β are the corresponding parameters to be estimated.  These variables can vary only across time (e.g., cost of acquiring the new technology), vary only across farmers (e.g., farm size, soil quality and weather conditions) or vary across both dimensions (e.g., farmer’s age).  

The choice of a specific structure for 
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 is subject to the peculiarities of each case study. Here, following the relevant literature, we assume that the random variable T follows a Weibull distribution which is flexible in the sense that it accommodates hazard rates that increase or decrease exponentially with time.
,
  The hazard function under a Weibull distribution takes the following form
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where, 
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  is the shape parameter.  The hazard rate either increases monotonically with time if 
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Under the Weibull distribution, the set of unknown parameters 
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 can be estimated by Maximum Likelihood techniques.  Since, at the time of the survey, not all farmers have adopted the modern technology, the likelihood has to account for right-censoring of some observations.  The log-likelihood is written as:
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where, 
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 if censored.  In the context of the Weibull distribution, we have: 
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with 
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 being the Gamma function, and the marginal effects of the explanatory variables on the hazard rate and on the mean expected survival time are calculated from:
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and
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Data description and model specification

The data used in this study come from a detailed survey undertaken in the Greek island of Crete about the adoption and diffusion of drip irrigation technology.  The survey was undertaken within the context of the Research Program FOODIMA financed by the European Commission under the 6th Framework Program.
  The final sample consists of 385 randomly selected olive producing farms located in the four major districts of Crete namely, Chania, Rethymno, Heraklio and Lasithi during the 2005-06 cropping period.
  Detailed information about production patterns, input use, average yields, gross revenues, and structural characteristics of the surveyed farms were obtained via questionnaire-based, field interviews.  Farmers were asked the exact time of adoption of drip irrigation technologies during the last twelve years (i.e., 1994-2005).  Also farmers were asked to recall data on some key variables including family size, irrigation water use, land tenancy, farm specialization and size, total debts and off-farm income.
  Summary statistics for these variables together with those gathered from secondary sources are reported in Table 1a. 
The dependent variable in our duration model is the length of time between adoption date and the year that drip irrigation technology was introduced, that is, the year 1994.  From the total of 385 farms in the sample, 250 (64.9%) have adopted drip irrigation technology during the 1994-2005 period. The temporal distribution of adoption times is presented in Figure 1.  Our final choice of the independent variables included in the irrigation technology diffusion model is dictated by relation (6).  According to the arbitrage condition, diffusion of drip irrigation technology is affected by: first, individual perceptions on the profitability of the two technologies (i.e., traditional and modern), second, the installation cost of irrigation equipment, and third, the value of information about the new technology.   

Profitability Perceptions

The profitability element in the optimal decision is not observable as it reflects individual subjective perceptions about future yields and profits under both types of irrigation technology.  However, according to the relevant literature, these perceptions may be realistically assumed to be influenced by the farmer’s (observable) economic and socio-demographic characteristics.  Based on the primary data collected we classify the factors affecting the diffusion of drip irrigation technology into three categories: (i) household, (ii) farm and, (iii) market characteristics.  

First, we expect more educated farmers to adopt profitable new technologies faster since the associated payoffs from innovations are likely to be greater (Rahm and Huffman 1984).  The expected impact of age on the timing of adoption is ambiguous since age captures the effect of both experience and planning horizon.  On the one hand, farming experience, which provides increased knowledge about the environment in which decisions are made, is expected to affect adoption positively. On the other hand, younger farmers with longer planning horizons may be more likely to invest in new technologies.  Farmers in our sample received 7.72 years of formal education on average, while the average age of the household head is 53.3 years.  The expected impact of farm size on adoption time is again ambiguous.  Larger farms may have a greater potential to adopt modern irrigation technologies because of the high costs involved in irrigation. On the other hand, larger farms may have less financial pressure to search for alternative ways to improve their income by switching to a different technology (Putler and Zilberman 1984). 

Since property is an element of the institutional environment, we include in our model land tenancy as an explanatory variable of irrigation technology diffusion (Braverman and Stiglitz 1986). The potential effect of land tenure on diffusion is ambiguous. A positive relationship would be consistent with the hypothesis that greater leasing (or share-cropping) motivates farmers to work harder to meet their contractual obligations.  On the other hand, a negative relationship would be consistent with agency theory, reflecting monitoring problems and adverse incentives between the parties involved that diminish business performance and hence profitable adoption decisions.  The degree of farm specialization may also affect the timing of adoption.  Specialized farms have fewer requirements for technical assistance and thus for information gathering as their know-how is continually improved over time. On the other hand, farmers growing a single crop are faced with a higher risk of income loss in case of adverse events, which in turn may induce a lower probability of adoption if farmers are risk-averse.  Farm’s specialization is measured by the Herfindhal index calculated as 
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 is the share of crop i in total farm production. In our sample, this index has an average value of 0.64, which indicates a high degree of specialization. 

Next, as relation (2) implies, adoption behavior for irrigation technology may also be influenced by the environmental characteristics of the farm that affect irrigation effectiveness as well as the extent of irrigation water use (i.e., crop needs).  Given this, we include in the diffusion model an aridity index, the altitude of the farm and four soil dummies as a proxy for soil quality.  The aridity index and the altitude of farm location reflect on-farm weather conditions, whereas the soil quality dummies reflect the water holding capacity of the soil.  The aridity index, defined as the ratio of the average annual temperature over total annual precipitation, is calculated for the whole period analyzed using data provided by the 36 local meteorological stations located throughout the island.  Since the value of the aridity index is identical for some farms that are located in the same area, we also include the altitude of farm’s location as an additional variable reflecting weather conditions. This variable was obtained from the questionnaires.  Higher altitude is more likely to be associated with adverse weather.  As shown in table 1a, the average value of the aridity index is 0.89, whereas the average altitude is 365 meters.  Using also the questionnaires, farms were classified according to four different soil types with respect to their water holding capacity.  Sandy and limestone soils exhibit a lower holding capacity than marls and dolomites soils.  The majority of farms in the sample are cultivating olive-trees in marls (35.24%), followed by limestone (28.1%), sandy soils (19.72%), and dolomites (16.92%).  Finally, using the individual questionnaires, irrigation water use was also included into the empirical model.  Obviously, the extent of irrigation water use by farmers depending on crops’ needs is affecting their profitability and hence, their choice of irrigation technique.  
Concerning market characteristics, off-farm income is hypothesized to provide financial resources for information acquisition and to create incentives to adopt new technologies (that would reduce labor) as the opportunity cost of time rises.  On the other hand, the level of off-farm income may not be exogenous but influenced by the profitability of farming itself, which in turn depends on technology adoption decisions.  However, in our survey, off-farm income arises mainly from non-farm business activities (i.e., tourism) and from employment in other non-farm sectors (i.e., public administration, construction work). Given that the skill requirements are different for these jobs, farm and off-farm income may be realistically assumed to be non-competitive. Thus, we can assume that the level of off-farm income could be largely exogenous to adoption decisions (we statistically examine this assumption). 

Further, our diffusion model of drip irrigation technology incorporates farm’s distance from the market and total debts of the household.  The village location and remoteness from the market are likely to be important features influencing the probability of adoption, while total debts are utilized to test Jensen’s (1986) hypothesis that increased financial obligations stimulate effort by producers to improve their performance in order to meet these obligations.  In our sample, farms are located 26.22 km away from the major city in their area, whereas individual household debts are 1,587 Euros on average (Table 1a).  

Installation Cost

The second decisive factor concerning individual adoption times, apart from the expected profitability of irrigation technologies, is the cost of installation of drip irrigation equipment.  This cost includes the cost of designing the new irrigation infrastructure, the cost of investment in the new equipment (i.e., pipes, hydrometers, drips) and the cost of installation on the field.  Table 1a shows that installation cost per stremma (one stremma equals 0.1 ha) was on the average €130 varying from a minimum of €98 to a maximum of €185 during the period analyzed (monetary values reported by individual farmers were deflated prior to estimation).  The rate of change of the installation cost was found to be decreasing on average by 10.1% annually (in Figure 2 the price index of installation cost per stremma for drip irrigation exhibits a decreasing trend from 1.8 in 1994 to 0.8 in 2005).  We will consider both the installation cost and the rate of change in the installation cost in our empirical model.  

Informational Incentives
The third important component arising from the arbitrage condition concerns the informational incentives that may change producers’ perceptions about the profit-effectiveness of the new irrigation technology. As it is explained in the introductory section, we have identified two communication channels that are likely to affect an individual farmer’s decisions about adoption.  The first channel is linked to formal communication sources emanating from extension services.  A farmer’s exposure to extension agencies includes not only direct contacts between extension agents and the farmer but also between the former and peer farmers who exert influence on the latter. In effect, we posit that extension agencies can indirectly affect a farmer’s decision to adopt a new technology through their contacts with the farmer’s network of influential peers. The second channel is related to the farmer’s interactions with other farmers who have already acquired experience with the new technology. In this direction, we posit that the likelihood of a farmer adopting the irrigation technology depends on the adoption behavior of farmers who interact with him/her or, in other words, on the existing stock of adopters in a farmer’s group of influential farmers. Moreover the strength of the above mentioned channels will depend on the geographical distance between the farmers and extension agencies and between the farmers and their influential peers.  Although each farmer in our sample had to provide the average age and education of his reference group’s members, this information is not sufficient to identify adoption rates, the number of extension contacts and distance to the latter and to the farmer himself. 

We thus have four unobserved or latent variables that are potentially relevant for quantifying the effect of information provision in the diffusion of drip irrigation technologies: i) the total number of adopters in the respondent’s reference group, ii) the average distance of the farmer to his reference group, iii) the overall exposure to extension services, iv) the distance of the farmer’s reference group (including himself) to extension services.  Confronted with the issue that these variables are not observed and therefore are latent, we suggest using observable indicators on the reference group in a factor analytic model to “proxy” the unobserved latent variables.  Specifically, we apply factor analysis to build factors that will best represent each of these four unobserved (or latent) variables.

The Factor Analytic Model

We perform a factor analysis with four factors and twelve manifest (or observable) variables measured at the year of adoption of drip irrigation by individual farmers.  Based on the information provided about their reference groups we construct a number of indicators that will constitute our observable variables in the factor analysis. We consider the following three indicators for the first latent variable (the total number of adopters in the respondent’s reference group): (i) the stock of adopters in the population at the year the farmer adopted (Stock); (ii) the stock of adopters having the same age and education as the household head, following Rogers (1995) definition of homophilic population (HStock)
; (iii) the stock of adopters who have the educational level and age indicated by the farmer, as typical for his/her reference group with whom he/she communicates regularly (RStock).  The second factor, which is the distance of the farmer to the adopters in his reference group, is proxied by the following three indicators: (i) the average distance
 with the stock of adopters in the population of farmers (Dista), (ii) the average distance with the stock of adopters sharing the same age and education with the household head (HDista), (iii) the average distance with the stock of adopters who have the educational level and age indicated by the farmer as typical for his/her reference group (RDista).  As for the third factor, the direct and indirect contacts with extension, we consider: (i) the number of extension visits to the farmer to capture the direct effect of informational provision (Ext); (ii) the average number of extension visits to farmers having the same age and education with the household head (HExt), (iii) the average number of extension visits to farmers having the educational level and age indicated by the respondent as typical for his/her reference group (RExt).  Finally, in order to analyze spatial differences in formal information provision, we use the following three distance indicators: (i) the distance of the respondent from the nearest extension agency (private or public) (Distx); (ii) the average distance of farmers with the same age and educational level with the respondent from the nearest extension agency (HDistx) and; (iii) the average distance of farmers having the educational level and age indicated by the respondent as typical for his/her reference group, from the nearest extension agency (RDistx).  Table 1b presents the descriptive statistics for these twelve indicators. 
The pair-wise correlations between the twelve observed indicators are presented in Table 1c.  Even though correlations between some indicators are low they are all statistically significant, therefore all indicators are used in the definition of each latent variable. Denoting by 
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 the four latent variables, we assume that the relationship between the manifest (or observed) and latent variables is given by, 
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or in matrix notation,


[image: image60.wmf]x=

μ+Γξ+v








(15b)

where, v is a 
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Equation (15) is a factor analysis model consisting of twelve manifest variables and four factors which can be estimated using a number of commercial software packages.  Principal components method with varimax rotation has been used to estimate the factor loadings which are presented in table 2.  The main variables contributing to factor 1 are the ones related to the number of extension visits and therefore we can label factor 1 as “exposure to extension”.  The heaviest loadings for factor 2 are those for the variables related to the average distance to adopters and therefore factor 2 can be interpreted as “average distance to the stock of adopters in true reference group”.  Proceeding further, the main contributors to factor 3 are the variables related to the average distance to extension services and therefore the factor can be labeled “average distance to extension”.  Finally, the variables related to stock of adopters display again the heaviest loadings for factor 4, allowing us to conclude that factor 4 is the “stock of adopters in the true reference group”. 
Under the assumption of multivariate normality of x and ξ, we have that the expected value of the latent vector for a given value of the vector of manifest variables is given by (Krzanowski, 2000):
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Therefore an obvious estimator of the factor scores ξi for the ith respondent is given by,
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Our analysis is based on a proportional hazard model, where some of the regressors are not observed (our latent variables defined above) but instead we observe some indicators that can help us predict the missing explanatory variables. Many of the proportional hazard models used in the literature including the Weibull used in the present paper assume that the conditional hazard rate in (10) can be written as:
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Let 
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Several procedures have been proposed in the literature for the proportional hazards model with missing covariates (see for example Kalbfleisch and Prentice, 2002). Regression Calibration (Carroll et al., 1995) uses the fact that 
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 could be used in the hazard rate when ξ is not available.  By further assuming that conditional on the twelve indicators, the four latent variables are uncorrelated with the observed explanatory variables z1, i.e., 
[image: image73.wmf](

)

(

)

E

E

1

ξ|z,x=ξx

, we can use the estimated factor scores from the factor analytic model in the hazard function (19).
Finally, to control for possible endogeneity of off-farm income and farm’s debts, we implement a two-stage instrumental variable procedure as suggested by Lee (1982).  In the first-stage we specify all the potential endogenous variables as functions of all other exogenous variables, plus a set of instruments.
   In the second-stage, the observed values of these variables are included along with the vector of their corresponding residuals into the duration model.  A simple t-test for the significance of the coefficients of the corresponding residuals is a test for the exogeneity of the suspicious variables (Smith and Blundell, 1986).  Since we incorporate estimated values in the duration model, we use bootstrapping techniques to obtain consistent estimates of the corresponding standard errors (Politis and Romano, 1994).
EMpirical rESULTS and Policy implications
The maximum likelihood parameter and standard error estimates of the hazard function are shown in Table 3.  The dependent variable in the diffusion model is the natural logarithm of the “length of time” variable (measured in years) from first availability of the drip irrigation technology to when the farmer adopted it. In this framework, a negative coefficient estimate in the hazard function implies a negative marginal effect on duration time before adoption, that is, faster adoption. The overall fit of our model is satisfactory, since McFadden R2 reaches 0.50.
 

Using the generalized likelihood-ratio (LR) test statistic,
 we reject the null hypothesis of a common baseline hazard across districts: α1=α2=α3=α4 in 
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 stands for the four districts of the island, namely, Chania, Rethymno, Heraklio and, Lasithi. This indicates that the rate at which farmers adopt the technology varies from one district to the other, all other things being equal. A possible explanation that explains the values of the location dummies is the location-specific availability of groundwater suitable for irrigation.  Due to low effectiveness of the monitoring system for water abstraction, farmers across the island drill and use illegal wells to irrigate their olive trees.  As a result farmers who use groundwater to irrigate their trees are faced with lower water prices, because they only pay the cost of the initial investment and cost of energy (usually electricity) for extracting water.  That is, they do not pay the total economic cost of extracted groundwater as defined by the European Union (EU) Water Framework Directive (60/2000), which is defined as the sum of financial, environmental and resource cost.  However, in Lasithi and Chania, and more specifically in the areas where olive cultivation is flourishing, groundwater is salinated to a degree that is unsuitable for irrigation.  As a result, farmers in these areas are forced to pay in order to use water from dams and other surface reservoirs.  The relevant per cubic meter payment is significantly higher than the per unit cost of illegally extracting water.  This creates a stronger incentive for fast adoption of more efficient irrigation technologies among the Lasithi and Chania farmers, compared to farmers in Heraklio who pump water from the Messara aquifer which provides them with ‘cheap’ and good quality irrigation water. Finally, the low coefficient for the local dummy of Rethymno can be attributed to the low water (irrigation) requirements due to local microclimatic conditions.  
In Table 4 we calculate the marginal effects of the explanatory variables on the hazard rate and mean expected adoption time of drip irrigation technology.  We focus our discussion on the parameters that turn out to be significant in the ML estimation of the hazard function, as shown in Table 3.  In Table 4, the variables have been ordered following their impact on adoption time (going from negative to positive effects on adoption time).  Our results indicate that exposure to extension services has a strong positive significant effect on the hazard rate and it considerably reduces adoption time (marginal effect estimated at -2.16), which confirms the hypothesis that formal information dissemination reduces time before adoption of the new technology.  This is the largest marginal effect in our model.  The important role of extension services is also reflected in the variable measuring the distance to extension outlets (marginal effect estimated at 0.01).  Even if the magnitude of the effect is rather small, it is significant: the further the farm from the extension outlet, the longer the time before adoption.  These results provide support for subsidizing extension services.  Moreover, spatial dispersion of extension outlets could also be designed in a way that allows, for example, minimization of the average distance between outlets and peer farms. 

Informational spillovers occur not only through formal channels, but also between farmers themselves: a larger stock of adopters in the farmer’s reference or influential group induces faster adoption (-0.27 years), while a larger distance between adopters increases time before adoption (0.02 years), which confirms that social interaction between farmers is a significant factor driving the diffusion of irrigation technologies.  We thus, show that both formal and informal communication channels are important determinants of technology diffusion among olive farmers in Crete.   To put it more generally, our results highlight the importance of the formal and informal information diffusion infrastructure of agricultural communities (communities can be defined by geographical proximity or communities-of-common-purpose and characteristics, such as a farmer’s reference group), for the quality of outcomes experienced by individual producers. These results allow us to explore the ways in which formal and informal learning processes build and use social capital, which can bring benefits to the communities under consideration.  These results can inform policies about managing change in the agricultural sector.  A policy focused on developing and locating social network building that achieves enhanced information spillovers between farmers, will induce faster diffusion of new technologies.  Examples of such policies are the development of local seminar series focusing on agricultural practices and the use of internet in order to build social network platforms (the latter is becoming increasing widespread and popular in the agricultural communities of developed countries).

As expected, farmers using more irrigation water per production unit will adopt the new technology earlier, which derives from the fact that the expected total gain from increased efficiency in water use is larger for these farmers.  The marginal effect is estimated at -1.65 years.  Given that our sample consists of only olive-tree farmers, higher irrigation water per production unit (keeping all other influences constant) implies production inefficiency. Our results suggest that the farmers that are inefficient with the existing technology will adopt the new technology faster.  Moreover, farmer’s characteristics, and in particular education and age, are found to play a significant role. The time to adoption of drip irrigation technologies is significantly shorter for farmers with higher level of education and for older farmers. The marginal effect of education and age on adoption time is estimated at -1.17 and -0.58 years, respectively.  One possible explanation may be that the expected payoff from the innovation (or profitability perception) is higher for more knowledgeable and more experienced farmers (because they can learn more quickly how to best use the new equipment).  The results in this paragraph indicate that a policy aiming at encouraging adoption and increasing the pace of diffusion, should be targeted at young and low-educated farmers, as well as farmers living far away from extension services. The latter derives from the result that more isolated farmers may be more uncertain about the expected profitability of the new irrigation technology.
A higher installation cost will delay adoption of the technology, as expected (marginal effect estimated at 0.81 years).  Hence, indicating the possibility of subsidization of investments in new technology.  However, indebted farmers do not appear to be more skeptical with regards to adoption.  Our results indicate that more debts induce faster adoption (marginal effect estimated at -0.25 years).  This finding confirms Jensen’s hypothesis that increased financial obligations stimulate effort by producers to improve their performance and hence induce faster adoption of the more efficient irrigation technology.  Three out of the five variables measuring environmental conditions are significant. In general, our results indicate that farmers operating in more adverse weather conditions (higher aridity and higher altitude) will adopt the new irrigation technology faster.  Also farmers operating on sandy soils, which have a lower water holding capacity than other types of soil, are likely to adopt the new technology faster.  The marginal effect is low, though (-0.1).  Again, the expected payoff from adopting the new irrigation technology is likely to be higher for farms operating in more difficult conditions.  The latter may indicate that farmers who can exert a better control on the quantity of water used for production purposes, see the innovative irrigation technology as an insurance against adverse (here drier) weather conditions.

The estimated coefficient of farm size is positive and significant, which indicates that smaller farms adopt earlier in our sample, all other things being equal. Smaller farms may be more risk averse than larger farms (under the assumption of decreasing absolute risk aversion-DARA type of preferences), which may explain faster adoption if, as suggested above, the new irrigation technology can help farmers hedge against the risk of adverse weather conditions. Smaller farms are also likely to be more constrained in terms of labor input and adopting the new technology may help them relaxing the labor constraint.  The latter could be confirmed by the negative coefficient of the variable measuring off-farm income: it is likely that off-farm income creates incentives to adopt more efficient technologies as the opportunity cost of time rises. 

To sum up, information spillovers, both formal and informal, are found to be strong determinants of technology diffusion in our sample.  Extension services are the primary information channel, followed by social interactions between adopters and non-adopters. Farmer’s characteristics (education, age), environmental variables (aridity, soil type, altitude), and cost of the equipment, are also found to be important drivers of farmers’ decisions.  Our results inform our basic understanding of the ways in which learning (both formal and informal learning processes) as part of an agricultural community can be used to bring benefits to individual farmers in this community.  In effect it conceptualises the ways in which social capital is built in interactions between individuals, and used in production decisions for increasing private, but also social welfare through inducing better management of common pool resources. These processes, now identified, can be integrated in relevant policy making. 
Greece is among the biggest beneficiaries of the Common Agricultural Policy (CAP) and it continues to defend a large CAP budget and a strong first pillar. In Greece, CAP reforms and especially the transition to decoupled farm payments, instability in world agricultural commodity prices and contradicting agricultural policy signals are the major causes of changing farming practices. Technology diffusion efforts are strongly influenced by a piecemeal policy framework and institutional rigidities. These need to change if Greek agriculture is to adopt a sustainable path.  On the 18 November 2010, the European Commission published the Communication paper on the future of the CAP (http://ec.europa.eu/agriculture/cap-post-2013/communication/com2010-672_en.pdf).  The reform aims at making the European agricultural sector more dynamic, competitive, and effective in responding to the Europe 2020 vision of stimulating sustainable growth, smart growth and inclusive growth.  Following public consultation, the Commission will present formal legislative proposals in mid-2011. Our results can provide fruitful input to this discussion.  In particular, help policy makers who would like to increase irrigation technology adoption, to improve the targeting of farmers. We show that the most effective channel is through extension services. Our model predicts that an increased number of visits from extension agents will induce faster adoption of irrigation technology.  The marginal benefit of the effort made by extension services is predicted to increase over time since a higher number of adopters will induce more social interactions between adopters and non-adopters, another factor reducing time before adoption. Farmers that should be preferably targeted are young and low-educated farmers, as well as farmers living far away from extension services.  These farmers may be more uncertain about the expected profitability of the new irrigation technology.  Moreover, regions with higher water scarcity are more likely to adopt faster.  Finally, our results also indicate that subsidies that would lower the installation cost of the new equipment would induce faster adoption.

CONCLUSIONS

In this paper we have presented evidence that there exist two communication channels that are likely to affect an individual farmer’s decisions about adoption. The first channel is linked to the farmer’s exposure to extension agencies and includes not only direct contacts between extension agents and the farmer but also between the former and peer farmers who exert influence on the latter. The second channel is related to the existing stock of adopters in a farmer’s group of influential farmers.  Both of these channels include formal and informal aspects and as such support previous empirical evidence on the importance of social learning.  Moreover the strength of the above mentioned channels will depend on the geographical distance between the farmers and extension agencies and between the farmers and their influential peers.

Information, therefore, has value, as do the network connections, both formal and informal, through which that information flows. Measurement of the effect of extension visits and extent of social learning is crucial for developing policies regarding the diffusion of technology.  However these measurements are not sufficient for the complete evaluation of the effects of policy. The speed of technology diffusion, and hence the value of a possible subsidy, depends on the endogenous process of information network formation. In particular, the speed of diffusion depends, not only on the provision and location of extension services, but also on the factors that define and maintain informal information linkages (i.e., the group of influential peers) of a potentially subsidized farmer.  These factors define the outcome of a farmer-specific costs-benefit analysis, where the farmer-specific value of information and cost of developing and maintaining this information network, are compared. In this paper we provide evidence that these defining factors are an array of farmer-specific spatial and socio-economic parameters, which should form the basis of successful policy making.
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Figure 1. Diffusion of Drip Irrigation by Cretan Farmers
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Figure 2. Cost of Installation of Drip Irrigation
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Table 1a. Definitions and Descriptive Statistics of the Variables: Household, Farm Characteristics and Environmental Conditions
	Variable
	Name
	Mean
	St Dev

	Duration length (years)
	Time
	5.63
	4.89

	Household Characteristics:
	
	
	

	Education (years of schooling)
	Edu
	7.72
	3.41

	Age (years)
	Age
	53.3
	13.1

	Farm Characteristics:
	
	
	

	Irrigation water use (m3)
	Water
	30.83
	15.12

	Land tenancy (% of rented land)
	Ten
	0.29
	0.21

	Capital stock (€)
	Cap
	3,147
	1,514

	Specialization (Herfindhal index)
	Spec
	0.64
	0.13

	Farm size (stremmasa)
	Size
	29.12
	14.52

	Environmental Conditions:
	
	
	

	Aridity index
	Ard
	0.89
	0.34

	Altitude (meters)
	Alt 
	365.4
	231.4

	Soil Type (% of farm land):
	
	
	

	Sandy
	San
	19.72
	

	Limestone
	Lim
	28.12
	

	Marls
	Mar
	35.24
	

	Dolomites
	Dol
	16.92
	

	Market Characteristics:
	
	
	

	Installation cost (€ per stremmaa)
	Cost
	130.1
	21.37

	Rate of change in installation cost (%)
	ΔCost
	-10.12
	1.32

	Interest rate (%)
	r
	8.12
	1.11

	Distance from the market (km)
	Dist
	26.22
	12.34

	Total debts (€)
	Dbt
	1,587
	942.3

	Off-farm income (€ per year)
	Off
	987.3
	678.9

	Tourist arrivals (thousands of persons)
	Tour
	432.1
	157.0

	Distance from district capital (km)
	Distc
	42.36
	14.48


a one stremma equals 0.1 ha.

Table 1b. Definitions and Descriptive Statistics of the Variables: Information 

	Variable
	Name
	Mean
	StDev

	Information:
	
	
	

	Stock of adopters in the area (no of farms)

	Stock
	31.41
	7.61

	Stock of homophιlic adopters in the area (no of farms)
	HStock
	12.32
	5.04

	Stock of adopters in the reference group (no of farms)
	RStock
	5.23
	2.76

	Distance from the stock of adopters in the area (km)
	Dista
	47.52
	20.12

	Distance from the stock of homophιlic adopters in the area (km)
	HDista
	17.21
	8.43

	Distance from the stock of adopters in the reference group (km)
	RDista
	9.87
	5.36

	No of extension visits in the area
	Ext
	5.16
	5.47

	No of extension visits in the homophιlic farms
	HExt
	2.75
	4.02

	No of extension visits in the in the reference group
	RExt
	1.65
	2.87

	Distance of extension outlets from farms in the area (km)
	Distx
	112.6
	59.03

	Distance of extension outlets from homophιlic farms (km)
	HDistx
	52.31
	34.56

	Distance of extension outlets from reference group (km)
	RDistx
	22.56
	15.32


Table 1c. Correlation Matrix of the Twelve Information Indicators.
	Variable
	Stock
	HStock
	RStock
	Dista
	HDista
	RDista
	Ext
	HExt
	RExt
	Distx
	HDistx
	RDistx

	Stock
	1.0000
	
	
	
	
	
	
	
	
	
	
	

	HStock
	0.5942
	1.0000
	
	
	
	
	
	
	
	
	
	

	RStock
	0.4747
	
0.6591
	1.0000
	
	
	
	
	
	
	
	
	

	Dista
	-0.3177
	-0.2452
	-0.3743
	1.0000
	
	
	
	
	
	
	
	

	HDista
	-0.2469
	-0.2291
	-0.2872
	0.7546
	1.0000
	
	
	
	
	
	
	

	RDista
	-0.1972
	-0.1989
	-0.2611
	0.7041
	0.9527
	1.0000
	
	
	
	
	
	

	Ext
	0.1690
	0.1807
	0.2455
	-0.3665
	-0.2971
	-0.2744
	1.0000
	
	
	
	
	

	HExt
	0.2166
	0.2018
	0.2916
	-0.4230
	-0.3534
	-0.3295
	0.9476
	1.0000
	
	
	
	

	RExt
	0.2590
	0.2405
	0.3117
	-0.4489
	-0.3878
	-0.3604
	0.9141
	0.9765
	1.0000
	
	
	

	Distx
	-0.3425
	-0.3541
	-0.4130
	0.5031
	0.4570
	0.4346
	-0.3664
	-0.4154
	-0.4479
	1.0000
	
	

	HDistx
	-0.4872
	-0.4287
	-0.4724
	0.5108
	0.4652
	0.4280
	-0.3455
	-0.4113
	-0.4541
	0.8161
	1.0000
	

	RDistx
	-0.4359
	-0.3830
	-0.3850
	0.3977
	0.3866
	0.3701
	-0.2312
	-0.2852
	-0.3201
	0.6591
	0.8470
	1.0000


All correlations are significant at the 0.01 level. Each block of bold values gives correlations within a triad of indicators.  For variable definitions, see table 1b.
Table 2. Estimation Results for the Factor Analytic Model.

	Variable
	Factor loadings (ξ’s)

	
	Exposure to Extension
	Distance to extension outlets
	Stock of adopters 
	Distance

to adopters 

	Stock
	 0.0692
	-0.2709
	 0.7478
	-0.0905

	HStock
	 0.0731
	-0.1577
	 0.8831
	-0.0740

	RStock
	 0.1571
	-0.1793
	 0.7926
	-0.1707

	Dista
	-0.2456
	 0.2487
	-0.1953
	 0.7742

	HDista
	-0.1481
	 0.1987
	-0.1150
	 0.9359

	RDista
	-0.1282
	 0.1826
	-0.0765
	 0.9332

	Ext
	 0.9555
	-0.1139
	 0.0810
	-0.1260

	HExt
	 0.9567
	-0.1615
	 0.1100
	-0.1753

	RExt
	 0.9296
	-0.1948
	 0.1431
	-0.2028

	Distx
	-0.2440
	 0.7891
	-0.1881
	 0.2726

	HDistx
	-0.2064
	 0.8611
	-0.3008
	 0.2413

	RDistx
	-0.0802
	 0.8658
	-0.2488
	 0.1732


For variable definitions, see table 1b.

Table 3. Maximum Likelihood Parameter Estimates of Hazard Function for Adoption of Drip Irrigation Technology

	Variable
	Estimate
	Std Error
	Variable
	Estimate
	Std Error

	αCha
	 2.6019
	 (0.3231)*
	βLim
	-0.0544
	(0.1124)

	αRth
	 0.6312
	(0.2432)*
	βMar
	  0.0587
	(0.0914)

	αHer
	 0.2093
	 (0.0892)*
	βCost
	  0.5234
	 (0.1231)*

	αLas
	 2.6123
	 (0.4452)*
	βΔcost
	  0.0121
	  (0.0058)**

	βEdu
	-0.3763
	 (0.1112) *
	βDistm
	  0.1121
	(0.1409)

	βAge
	-0.1364
	 (0.0509)**
	βDbt
	-0.0721
	  (0.0312)**

	βWater
	-0.6782
	 (0.2123)*
	βOff
	-0.0098
	  (0.0041)**

	βTen
	-0.0008
	(0.0082)
	βStock
	-0.0503
	 (0.0154)*

	βSpec
	 0.1542
	(0.2093)
	βDista
	  0.0078
	  (0.0033)**

	βSize
	 0.0812
	  (0.0389)**
	βExt
	-0.2312
	 (0.0764)*

	βArd
	-0.1764
	 (0.0298)*
	βDistx
	 0.0041
	  (0.0021)**

	βAlt
	-0.0773
	  (0.0382)**
	βStockExt
	 0.0123
	(0.0342)*

	βSan
	-0.0866
	  (0.0404)**
	
	
	

	βOff_Res
	0.0053
	(0.0104)
	βDbt_Res
	-0.0356
	(0.07102)

	Ln(θ)
	-274.123
	No of observations
	385

	McFadden R2
	0.5012
	No of adopters
	250


Note: * (**) indicate significance at the 1 (5) per cent level. Standard errors were obtained using block re-sampling techniques which entails grouping the data randomly in a number of blocks of farms and re-estimating the model leaving out each time one of the blocks of observations and then computing the corresponding standard errors (Politis and Romano 1994). For variable definitions, see tables 1a and 1b. 


Table 4. Marginal Effects of the Explanatory Variables on the Hazard Rate and Mean Expected Adoption Time of Drip Irrigation Adoption (indicate percentage change in the hazard rate)

	Variable
	Hazard Rate
	Adoption Time

	Extension services
	35.14
	-2.16

	Irrigation water use
	21.32
	-1.65

	Education
	20.21
	-1.17

	Age
	8.03
	-0.58

	Aridity Index
	8.12
	-0.44

	Stock of adopters
	4.95
	-0.27

	Total debts
	4.74
	-0.25

	Altitude
	3.12
	-0.15

	Off-farm income
	0.80
	-0.03

	Land tenancy
	0.28
	-0.02

	Sandy soils
	0.04
	-0.01

	Limestone soils
	0.01
	0

	Marble soils
	0.00
	0

	Distance from extension outlets
	-0.07
	0.01

	Distance between adopters
	-0.10
	0.02

	Change in installation cost
	-0.58
	0.03

	Farm size
	-3.66
	0.09

	Distance from the market
	-4.11
	0.27

	Specialization
	-4.71
	0.29

	Installation cost
	-14.88
	0.81


Endnotes

� As summarized in Conley and Udry (2010), the role of social learning in promoting growth and technology diffusion has been featured in the endogenous growth literature (Lucas, 1988; Romer, 1990), while the idea that social learning generates knowledge spillovers, is central in the large literature on urbanization and growth (Porter, 1990; Glaeser et al., 1992).


� In order to keep our model tractable, irrigation equipment is the only quasi-fixed input we consider.  The model that follows does not change if more than one quasi-fixed inputs are included. 


� In a similar context Rosenberg (1976) and Tsur et al. (1990) model the diffusion process as a result of a dynamic optimization procedure under the assumption that decision makers have perfect foresight regarding the effects of present decisions on future events.  


� For an individual farm, � EMBED Equation.DSMT4 ��� gives the probability that the farmer will have adopted the innovation by time t, but if one considers the whole population of farmers, all of whom are present at the date of innovation, it will also represent the expected diffusion of the innovation through that population of farmers, that is, the share of farmers that has adopted the innovation.


� The baseline hazard can be either semi-parametric, as in the Cox proportional hazard model where explanatory variables shift the baseline hazard function, or parametric according to which a specific functional form defines the baseline hazard for all individuals over the whole period. Semi-parametric models are more flexible as no distributional assumption is required about the shape of the hazard function. However, they ignore what happens to explanatory variables in periods where no adoption occurs. On the other hand, parametric models are more efficient in their use of information provided by the data. The most widely used parametric specifications include the logistic, Weibull, exponential, log-normal, log-logistic and Gompertz probability distributions. More details on these particular probability distributions functions within duration analysis are provided by Kiefer (1988).


� Karshenas and Stoneman (1993) suggested that the choice of a baseline hazard structure seems to make little difference as far as parameter estimates and inferences are concerned. 


� For � EMBED Equation.DSMT4 ��� the Weibull distribution reduces to the exponential distribution. For � EMBED Equation.DSMT4 ��� the Weibull distribution becomes the Rayleigh distribution which has linearly increasing hazard rate as t increases. For � EMBED Equation.DSMT4 ��� the Weibull distribution resembles closely the normal distribution whereas for � EMBED Equation.DSMT4 ���, the Weibull distribution asymptotically approaches the Dirac delta function.


� The FOODIMA project (EU Food Industry Dynamics and Methodological Advances) is financed within the 6th Framework Programme under Priority 8.1-B.1.1 for the Sustainable Management of Europe’s Natural Resources. More information on the FOODIMA project can be found in � HYPERLINK "http://www.eng.auth.gr/mattas/foodima.htm" ��www.eng.auth.gr/mattas/foodima.htm�.


� Using the Agricultural Census published by the Greek Statistical Service, farms were classified according to their size and activities. Then with the help of extension agents from the Regional Agricultural Directorate of Crete a randomly sample of farms was selected. In the case that farmers were not available or not willing to provide the required information, they were replaced by similar ones from the same area.  


� Running a pilot survey we found that nobody had adopted drip irrigation technologies before 1994.  So in the final survey, interviewers were asking recall data only for that period.


� Woittiez and Kapteyn (1998) face a similar problem in their study of female labor supply, where they postulate that the number of hours a person chooses to work may depend on the number of hours the members of their reference group choose to work.  They also proposed to use observable indicators on the reference group in a factor analytic model to “proxy” their unobserved latent variable.  


� Age groups cover 6 years: if a farmer is 38 years old, then farmers aged 35 to 41 will be considered homophilic farmers.  As for education, we consider a 2-year range. 


� All distances are distances by road.


� For the off-farm income equation, the set of instruments includes the distance from district capital in kilometers and the number of tourist arrivals in the island.  For household debts, the instruments were capital stock and a dichotomous variable indicating whether farms use mechanical harvesting equipment or not.


� To be fully consistent with the theoretical model, we should have included in our model the rate of change of all four informational factors. However, when these four extra variables were introduced, convergence could not be reached.


� The LR test statistic is computed as: � EMBED Equation.2  ��� where � EMBED Equation.2  ��� and � EMBED Equation.2  ��� denote the values of the likelihood function under the null � EMBED Equation.2  ��� and the alternative � EMBED Equation.2  ��� hypothesis, respectively. The LR-test follows approximately a chi-squared distribution with degrees of freedom equal to the number of restrictions.
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