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Abstract

In view of the ambiguities and the deep uncertainty associated with

climate change, we study the features of climate change policies that

account for spatially structured ambiguity. Ambiguity related to the

evolution of the damages from climate change is introduced into a

coupled economy-climate model with explicit spatial structure due to

heat transport across the globe. We seek to answer questions about

how spatial robust regulation regarding climate policies can be for-

mulated; what the potential links of this regulation to the weak and

strong version of the precautionary principle (PP) are; and how in-

sights about whether it is costly to follow a PP can be obtained. We

also study the emergence of hot spots, which are locations where local

deep uncertainty may cause robust regulation to break down for the

whole spatial domain.

Keywords: Climate change, ambiguity, robust control, spatial reg-
ulation.

JEL Classification: Q54,R11,D81,C61

1 Introduction

Climate change as a global phenomenon has important spatial aspects which

are related to both natural and economic forces. These forces shape the

spatial distribution of impacts which eventually determine temperature and

damages across locations. Thus, temperature and associated damage differ-

entials are expected to be different across locations, with these differences
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implying important implications for policy design.

One of the important drivers of temperature spatial differentials is the

so called polar amplification (PA) which relates to the well-established fact

in the science of climate change is that when the climate cools or warms,

high latitude regions tend to exaggerate the changes seen at lower latitudes.1

The main PA causing mechanisms are: (i) the surface-albedo feedback (SAF)

which can be traced back to Arrhenius (1897). The SAF mechanism sug-

gests that initial warming in the North Pole will melt some of the Arctic’s

highly reflective (high albedo) snow and ice cover. This will expose darker

surfaces which will absorb solar energy, leading to further warming and fur-

ther retreat of snow and ice cover. (ii) an increase in the meridional heat

transport (Langen and Alexeev 2007) which makes PA an inherent dynam-

ical property of the system. PA makes therefore the temperature anomaly

to be higher at the Poles relative to the Equator (See figure 2).

Damage differentials stem from economic-related forces which determine

the damages that a regional (or local) economy is expected to suffer from

a given increase in the local temperature. These damages depend primar-

ily on the production characteristics (e.g., agriculture vs services) or local

natural characteristics (e.g., proximity to the sea and elevation) and could

affect output, utility or total factor productivity. The interactions between

the spatially non-uniform temperature distribution and the spatially non-

uniform economic characteristics ultimately shape the spatial distribution

of temperature and damages.

The main driving force in the economics of climate change, during the

recent decades has been the integrated assessment models (IAMs), such as

the DICE, RICE models (see, for example, Nordhaus 2007, 2010). Some

of these models (e.g., the RICE model) provide a spatial distribution of

damages across the regions of the RICE model. However this model, as well

as other IAMs, does not account for the natural mechanism - heat transfer

or SAF - which induces PA and a non uniform temperature distribution

across the globe.

In the terminology of climate science, IAMs with no spatial dimension

are zero-dimensional models. Energy balance climate models (EBCMs) on

1Bekryaev et al. (2010), documents a high-latitude (> 60 N) warming rate
of 1.36 C/century for 1875—2008, with the trend being almost two times
stronger than the average Northern Hemisphere trend of 0.79 C/century.
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the other hand - one- or two-dimensional - include heat transport and SAF

across latitudes or across latitudes and longitudes (e.g., North 1975, North

et al. 1981, Wu and North 2007) and induce a spatial structure which

conforms to reality. One- and two-dimensional coupled economic-climate

models have recently been developed (Brock et al. 2014, 2013). Among

their most striking results are the generation of distributions of temperature,

fossil fuel use, and damages across latitudes and time, which are derived from

a social planner’s optimization problem, as well as the characterization of

spatially differentiated climate policy in the form of optimal carbon taxes.

Deep uncertainty in the context of climate change is mainly associated

with the natural system, and characterizes an environment where ambiguity

and concerns about model misspecification are present and significant. As

Weitzman (2009) points out, the high structural uncertainty over the physics

of environmental phenomena makes the assignment of precise probabilistic

model structure untenable, while there is high sensitivity of model outputs

to alternative modeling assumptions such as the functional form of the cho-

sen damage function and the value of the social discount rate (e.g., Stern

2006, Weitzman 2010). High structural uncertainty implies inability, for a

decision maker or regulator, to assign a unique probability distribution to

stochastic factors affecting the dynamics of climate change and the damages

that climate change may cause.

In particular, deep uncertainty or ambiguity can be regarded as a situa-

tion where a decision maker does not formulate decisions based on a single

probability model but rather on a set of probability models. Gilboa and

Schmeilder (1989) extended decision making under uncertainty by incor-

porating ambiguity and by moving away from the framework of expected

utility maximization. They adopted a maxmin expected utility framework

by arguing that when the underlying uncertainty of the system is not well

understood and the decision maker faces a set of prior probability density

functions associated with the phenomenon, it is sensible - and axiomatically

compelling - to optimize over the worst-case outcome (i.e., the worst-case

prior) that may conceivably come to pass. Doing so guards against poten-

tially devastating losses in any possible state of the world, and thus adds

an element of robustness to the decision-making process. Thus in situa-

tions characterized by deep uncertainty decision making should not rely on

expected utility but, given that preferences exhibit ambiguity aversion, on
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maxmin expected utility.

Motivated by concerns about model misspecification in macroeconomics,

Hansen and Sargent (2001a,b, 2008, 2012) and Hansen et al. (2006) extended

Gilboa and Schmeidler’s insights into dynamic optimization problems, thus

introducing the concept of robust control to economic environments. A

decision maker characterized by robust preferences takes into account the

possibility that the model used to design regulation, call it benchmark or

approximating model P, may not be the correct one but only an approx-
imation of the correct one. Other possible models, say Q1, . . .,QJ , which
surround P, should also be taken into account with the relative differences
among these models measured by an entropy measure. Hansen and Sargent

(2003) characterize robust control as a theory "... [that] instructs decision

makers to investigate the fragility of decision rules by conducting worst-case

analyses," and suggest that this type of model uncertainty can be related to

ambiguity or deep uncertainty so that robust control can be interpreted as

a recursive version of maxmin expected utility theory.

It is clear from the discussion above that robust control approaches fit

very well with climate change problems, as well as with more general en-

vironmental and resource economics problems, given the deep uncertainties

associated with these issues.2 For example a specific density function for

climate sensitivity from the set of densities reported by Meinshausen et al.

(2009) can be regarded as the benchmark model, but other possible densi-

ties should be taken into account when designing regulation. One of these

densities that corresponds to the least favorable outcome regarding climate

change impacts can be associated with the concept of the worst case.

The situation where a single model - or a unique prior - is suffi cient for

analyzing the phenomenon and formulating decision rules can be identified

as the case of pure risk or measurable uncertainty where the decision maker

is able to assign probabilities to outcomes. On the other hand the situation

where the decision maker operates in the realm of many models - or multiple

2 Issues of regulation under ambiguity have been studied using two main approaches:
smooth ambiguity and robust control. Smooth ambiguity (Klibanoff, Marinacci and Muk-
erji 2005), parameterizes uncertainty or ambiguity aversion in terms of preferences and
nests the worst-case, corresponding to robust control, as a limit of absolute ambiguity
aversion. The approach has been used in climate change issues (e.g., Millner, Dietz, and
Heal 2010), but questions regarding the calibration of the regulator’s ambiguity aversion
remain open. Robust control methods have been applied to climate change by Athanas-
soglou and Xepapadeas (2012).
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priors - is the case of ambiguity or deep uncertainty. Under ambiguity the

decision maker does not have the ability to determine a precise probability

structure for the physical or the economic model, or to put it differently, to

measure uncertainty using a single probability model.3

The inability to measure uncertainty can be viewed as associating deci-

sion making and regulation under ambiguity with the concept of a precau-

tionary principle (PP).4 Different formulations and versions of the PP can be

found in the literature. Sunstein (2002-2003, 2007) discusses two versions of

the PP: the weak PP where “lack of decisive evidence of harm should not be

a ground for refusing to regulate”; and the strong PP, suggesting that when

“potential adverse effects are not fully understood, the activities should not

proceed.”Sunstein regards the weak PP as sensible but the strong PP as a

paralyzing principle.

When the spatial dimension of the climate change problem is brought

into the picture, deep uncertainty acquires a spatial structure. In this case

ambiguity about the natural system, the effectiveness of policies and po-

tential damages are associated local characteristics. The emergence of the

spatial structure for ambiguity can be associated with the fact that even if

the approximating model of the regulator is the same for each location, loca-

tions could differ in terms of the worst-case model due to differences in the

climate change physics, or economic characteristics across these locations.

These differences cause the regulator to have different misspecification con-

cerns for different locations and thus cause ambiguity to acquire a spatial

structure. For the approximating model P and models Q surrounding it,

this means that the local entropy balls containing the local Ps differ from
location to location reflecting spatial differences in misspecification concerns

and in worst-case priors.

Since there are spatial interactions across locations in terms of both the

natural and the economic systems, regulation under localized ambiguity in

a specific location will affect regulation in other locations operating under

their own localized ambiguity conditions. If, as it is most likely, the "size" of

ambiguity and ambiguity aversion is different across locations, then a spatial

asymmetry is introduced into the regulatory process. This asymmetry is

3When the decision maker lacks adequate information to assign probabilities to events,
we are in the realm of uncertainty as introduced by Frank Knight (1921).

4For example Weisbach (2012) studies whether environmental taxes should be precau-
tionary.
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induced by spatial differences in the “deepness”of uncertainty.

What kind of impacts could be expected from these interactions that

might be of interest to regulators? Recent results on the robust control of

spatiotemporal economic systems (Brock, Xepapadeas and Yannacopoulos

2013, 2014) suggest that deep uncertainty in certain locations might have a

very important impact on the regulation for the whole spatial domain. This

is because the regulator should design the robust rules not only with respect

to the spatial characteristics of the problem in a specific location or the

average characteristics of the whole spatial domain, but also with respect to

the degree of the regulator’s ambiguity for each specific location. This means

that if deep uncertainty has a spatial structure across locations a spatially

dependent robust rule is required in order to capture these differences.

This observation allows us to identify locations, referred to as spatial hot

spots, which could be classified into two types:

Type I: Locations where robust control breaks down for the whole spa-
tial domain because of extreme ambiguity aversion in these specific

locations.

Type II: Locations where robust control is very costly as a function
of the degree of the regulator’s ambiguities across all sites, relative to

standard regulation under risk (measurable uncertainty).5

In this analytical framework the purpose of the present paper is to

present a one-dimensional spatial climate-economic model characterized by

spatially structured deep uncertainty. Our objective is to explore the ap-

plication of robust control methods to derive spatially structured climate

policies and identify conditions for the emergence of hot spots as defined

above. Furthermore, we seek to obtain insights regarding spatial robust

control regulation which can be associated with a spatially structured con-

cept of PP.

In the rest of the paper we present climate change policies with a focus

on their spatial aspects, along with Along with the survey existing results

we provide some new results regarding the solution of spatially structured

robust control problems emerging form maxmin expected utility, and we

discuss extensions and areas for further research.
5A type II hot spot can also be compatible with the case where robust control regulation

results in a larger value for the system relative to regulation under risk.
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2 Climate Change Policies

A general framework for climate change policies should consider three main

types of policies that can affect climate change and its impacts:

(1) Mitigation that involves reduction in the flow of emissions of green-

house gases (GHGs) and consequently the stock of accumulated GHGs in

the atmosphere. A reduced stock of GHGs allows a larger flux of outgoing

infrared radiation and thus less radiation is “trapped.”This is expected to

reduce pressures for temperature to increase.

(2) Adaptation that involves policies to cope with the detrimental im-

pacts of climate change which cannot be avoided. The aim is to anticipate

and adapt to the impacts in order to minimize their costs which may extend

from the local to the international level. Adaptation is both a matter of need,

as climate change is most likely unavoidable, and a matter of equity, as its

impacts falls disproportionately on those least able to bear them. Therefore

activities that use scarce resources to prevent damages from climate change

can be considered adaptation.

(3) Geoengineering that involves methods that prevent GHGs from en-

tering the atmosphere through carbon capture and storage (CCS) or carbon

capture and sequestration, or methods of solar radiation management (SLR)

that block incoming solar radiation by shading for example the earth from

the sun through the spreading of reflective particles (e.g., Schelling 1996,

Robock 2008, Shepherd 2009).

These policies can be considered as defining the foundation of a regula-

tory framework which affects the evolution of temperature and, through

adaptation, reduces damages when increases in temperature become in-

evitable even after mitigation or geoengineering methods are applied.

The basic structure of the coupled economic climate system which in-

cludes climate change policies is presented in figure 1, which describes a

climate module modelled by: an EBCM; an economic module, which is

based on a standard neoclassical growth model; and their interactions. In

this model climate change (i.e. increase in temperature) damages aggregate

output and possibly reduces utility from consumption, while the economy

generates emissions that increase the stock of GHGs and temperature.

[Figure 1]
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Regulation can affect climate change and associated damages through a

possible combination of mitigation, adaptation, and geoengineering. These

policies are, however, costly in terms of output and may lead to further

damages as for example in the case of SLR that involves pumping sulphur

dioxide into the stratosphere. (see for example Barret et al. 2014, Manoussi

and Xepapadeas 2015 ) In this paper we do not study all the aspects and

interrelations of the coupled system but we discuss two important and inter-

related aspects of the coupled system: spatial aspects and deep uncertainty

in relation to regulatory policies.

The spatial aspects of climate change are related to natural or economic

forces that shape the distribution of temperature and damages across loca-

tions. As shown in figure 1, the spatial structure of our model is induced

by two main factors: the SAF and the transport of heat from the equator

toward the Poles which produces a spatially non-uniform distribution of the

surface temperature across the globe; and (ii) economic-related forces which

determine the damages that a regional (or local) economy is expected to

suffer from a given increase in the local temperature in terms of individu-

als’utility and global production, and productivity. These damages depend

primarily on the production characteristics (e.g., agriculture vs services) or

local natural characteristics (e.g., proximity to the sea and elevation) and

have been estimated at a regional level by IAMs (e.g., the RICE model).

Deep uncertainty can be related to many aspects of the model. In the

continuous debate about the climate change and its consequences the mod-

elling and the description of damages seems to include significant and deep

uncertainties, and IAMs have attracted lots of criticisms about the way the

estimate damages and treat uncertainties associated with damages. Thus

although deep uncertainty can be associated with the evolution of the nat-

ural system and its impacts, such as for example the effectiveness of climate

change policies (mitigation, geoengineering) in affecting the rate of change of

temperature across the globe, or the effectiveness of adaptation in restrict-

ing damages due to climate change, we choose to associate uncertainty with

damages. In particular we assume that damages affect output, following the

RICE, DICE approach, but we treat damages as a state variable modelled

by a stochastic process with drift and volatility. The drift depends on the

evolution of local temperature, as well as the impacts of local adaptation
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and potential local effects from SLR methods.6 The regulator (or a social

planner) has concerns about model misspecification related to the evolution

of damages and is not able to assign a unique probability model to stochastic

factors affecting the dynamics damages that climate change may cause to

output, as shown in figure 1. Given the spatial structure of the model it

is clear that misspecification concerns acquire local characteristics and may

differ from location to location.

Since climate change policies are expected to affect the rate of change and

the distribution of temperature, as well as the distribution of damages across

the globe, a regulatory framework based on global averages might not be

effi cient relative to regulation that depends explicitly on local characteristics.

Potentially important questions in this context could be how spatial robust

regulation regarding climate policies can be formulated, what the potential

links of this regulation to the PP are, and how some insights about whether

it is costly to follow a PP can be obtained.

3 Spatially Structured Ambiguity, Precaution and

Climate Change

Ambiguity and concerns about model misspecification underlying natural

systems can be manifested in many probability models. The decision maker

cannot choose one of them to define expected utility, but the emergence of

the worst-case model could lead to severe damages or irreversible change.

To prevent these damages, which are not clearly demonstrated since the

decision maker does not know that the worst-case model will prevail, pre-

caution might be desirable in designing specific policy rules, which implies

that the decision rule should take into account the worst-case scenario. The

maxmin expected utility could be used as a conceptual framework for de-

signing good or robust management rules which will work reasonably well

given the multiplicity of the possible models.7 The worst case which is one

of many possible models that may prevail, cannot be demonstrated clearly;

therefore robust control can be regarded as adhering to a precautionary

6Geoengineering in the form of SLR is very likely to create environmental damages
such as ocean acidification or acid depositions.

7Approaches such as minimax regret, or H∞ regulation, can also be considered. We fol-
low the maxmin criterion suggested by robust control, since it clearly defines a regulatory
framework that can incorporate spatially structured ambiguity.
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behavior under conditions of deep uncertainty and ambiguity aversion.

Being robust and precautious in policy design under ambiguity can be

relevant and potentially desirable, for example in the current discussion

about whether to take strong action now or have a gradual response regard-

ing policies to address climate change, given the uncertainties associated

with the issue. However, being robust and precautious could also be costly

in the sense of Sunstein’s (2002-2003) paralyzing situation where potential

benefits are foregone due to inaction, or costly stringent regulation is called

for. In such a case, a policy maker should address the relation between deep

uncertainty and the structure or the limits of regulation, given a measure of

the “severity”of deep uncertainty.

Assume that the regulator has a benchmark or approximate model P
surrounded by other possible models, say Q1, . . .,QJ , with the difference
between P and Qs measured by relative entropy. The worst-case model that
the decision maker is willing to consider, given the existing knowledge and

information, is the one differing the most from P in terms of entropy. Thus
the size of ambiguity can be regarded as the length of the radius H of the

entropy ball that surrounds P.
A fundamental parameter in robust control problems is the weight, or the

penalty parameter or the robustness parameter, assigned by the regulator

to the possibility that the chosen probability model might not be the correct

one. Equivalently the penalty parameter can be related to a measure of “how

far” the worst-case climate sensitivity density can be from the benchmark

sensitivity. Given a benchmark probability model in the climate change

problem, the regulator can in principle approximate - given the existing

knowledge - the deviation between the benchmark and the worst-case model,

and determine the extra constraint that deep uncertainty imposes on the

regulatory processes. The impact of this extra constraint on regulation can

be associated with both the weak and the strong versions of the PP.

Regulation designed subject to the constraint that an appropriately de-

fined worst case may emerge can be associated with the weak version of

the PP in the sense. Although there is not decisive evidence that damages

associated with the benchmark model will not be exceeded, since the worst

case model may emerge; even if the worst case emerges robust regulation

can provide an acceptable outcome. So the possibility of having a worst

case does not prevent regulation and does not prevent regulated activities
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to continue. On the other hand, if the deviation between the benchmark and

the worst-case distribution exceeds a threshold, then robust control regula-

tion is not possible because the impact of the worst-case distribution is so

large that regulation using the maxmin expected utility criterion is mean-

ingless. This is because the worst case is so far from the benchmark case,

i.e. H is so large, that maximization over the worst case is not possible.

This breakdown can be viewed as a situation where an adversarial agent

who is trying to minimize the regulator’s objective can choose a worst case

which is so “bad” that it will create a very large loss for the regulator or,

put differently, it will push the regulator’s objective to minus infinity. In

such a case, any maximization on the regulator’s part would be meaningless.

Such a regulation breakdown due to deep uncertainty could be associated

with the strong version of the PP in the sense that the possibility of very

large losses implies effects are not fully understood and since regulation is

not possible activities should stop. This "stalemate" suggests the need for

actions such as acquiring more information that might reduce the entropy

ball, thus allowing regulation in the spirit of the weak PP, or completely

changing the regulatory model.

When the spatial dimension of the climate change problem is introduced,

deep uncertainty acquires a spatial structure. In such a case, concerns and

ambiguity about climate change damages and their distribution across the

globe, introduce deviations between the local benchmark model and the

worst case for the specific location. In this case there will be a benchmark

model Pn of damage evolution at each n = 1, ..., N location and a set of

possible models Qn= (Q1n, . . . , QJn). It will be reasonable to assume that

even if the benchmark model is the same across locations, the entropy ball

surrounding each benchmark model need not be the same. More precisely,

the radius of the entropy ball will be different across locations, i.e. Hn 6= Hm,

n 6= m, n,m = 1, ..., N. This observation suggests a spatial structure to

ambiguity, which is induced by differences in the “deepness”of uncertainty

across locations and by spatial interactions of the natural and the economic

systems. The spatially structured ambiguity is shown in figure 2.

[Figure 2]

Due to the local interactions, regulation under the local worst-case con-

straint in a specific location will affect regulation in other locations operating
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under their own local worst-case constraint. Thus spatially structured ambi-

guity is expected to induce spatially dependent robust regulation in terms of

mitigation, adaptation and geoengineering, which will reflect the structure

of deep uncertainty regarding local damages. This type of regulation can be

associated with a localized weak version of the PP. A spatially dependent

climate policy emerges therefore in the context of an economic EBCM with

spatially structured ambiguity. In terms of policy design this is a departure

from the spatially uniform policies mostly suggested by the IAMs. The rig-

orous formulation of optimal spatially robust climate policies is not an easy

task given the complexity of the model. A first attempt to address this issue

is presented in the appendix.

3.1 How Costly is Robust Control Regulation and the Weak
PP?

Because the constraint imposed by the worst-case model should be accounted

for, robust control regulation (or regulation by following a weak PP) is differ-

ent from regulation under risk, which is the case of measurable uncertainty

where it is accepted that the regulator trusts the benchmark model.8 There-

fore, one way of answering the question of how costly it is to follow a weak

PP, is to compare robust control regulation in climate change under deep un-

certainty, with regulation under risk which might be regarded as the “bench-

mark regulation.”A way of performing this comparison is by comparing the

optimized value of the regulator’s objective under robust control regulation

with the corresponding optimized value of the objective under benchmark

regulation (see appendix, section 5.4 for details). Optimized objective in

the case of climate change means the maximized global discounted value of

utility less damages from climate change under the regulatory scheme (see

figure 1). If the optimized objective under robust control is less than the

optimized objective under benchmark regulation, the difference between the

two maximized objectives can be interpreted as the cost of following the

weak PP.
8Confidence in the benchmark model means that Hn = 0 for all n.

12



3.2 Spatially Structured Ambiguity and Hot Spots

What are the features of spatially robust climate policies that might be of

interest to regulators? Recent results on the robust control of spatiotempo-

ral economic systems (Brock, Xepapadeas and Yannacopoulos 2013, 2014)

suggest that deep uncertainty in certain locations might have a very impor-

tant impact on the regulation for the whole spatial domain. This is because,

given the spatial structure of ambiguity in terms of worst-case models, the

regulator designs the robust rules, not only with respect to the spatial char-

acteristics of the problem in a specific location or the average characteristics

of the whole spatial domain, but also with respect to the degree of the regu-

lator’s ambiguity - the radius of the entropy ball - for each specific location.

This observation allows us to identify locations, referred to as spatial hot

spots, which are classified into two types (see appendix for details):

Hot Spot Type I : Locations where robust control breaks down for
the whole spatial domain.

Hot Spot Type II : Locations where robust control is very costly as
a function of the degree of the regulator’s ambiguities across all sites,

relative to standard regulation under pure risk.

A type I hot spot is a location where the deviation between the bench-

mark and the worst-case model exceeds a threshold, which causes the regu-

lation for the whole spatial domain to break down. This is because mistrust

of the benchmark model for this specific location is so large that it makes

regulation meaningless in the sense that the worst case for this specific loca-

tion will push the regulator’s objective to minus infinity. Since this location

is linked to the rest of the locations in the spatial domain, and regulation

should be designed for the whole domain, the severe ambiguities of the hot

spot are “transmitted” to the rest of the domain, thus making regulation

impossible. Thus an I hot spot can be associated with the strong PP.

A type II hot spot is a location where, because of ambiguity, the maxi-

mized value of the regulator’s objective under robust control is substantially

lower, relative to regulation under pure risk. This means that for a given

level of precaution, defined by the worst-case choice in each location, regu-

lation for the whole spatial domain is costly due to deep uncertainties in a
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specific location. This could happen if precaution induces costly robust poli-

cies relative to benchmark regulation, while the expected savings in terms

of damages are not suffi ciently large. The emergence of a II hot spot implies

that the mistrust of the benchmark model and worst-case considerations in

a specific location create an interesting trade-off between the weak PP and

the cost it implies.

The two types of hot spots and the associated domains for the weak and

strong PP are shown in figure 3.

[Figure 3]

A reversal of the type II may also be possible. This occurs if the value of

the regulator’s maximized objective under robust control is relatively higher

than the corresponding value when the regulator is using the benchmark

model. This could happen if the policies adopted are more costly under

robust control relative to benchmark regulation, but they generate relatively

larger benefits in terms of expected damage savings. A reversal of the type II

may be associated with the concept of optimal precaution which is the level

of precaution defined by the worst-case choice that maximizes the regulator’s

objective.

4 Concluding Remarks

This paper discusses issues which arise in the process of regulating a coupled

economic climate system when (i) there is ambiguity and concerns about

model misspecification (or deep uncertainty) associated with the mecha-

nisms of the natural system, and (ii) there are spatial interactions between

the natural and the economic systems. We explore the implications of deep

uncertainty and spatial interactions on climate change policies and link them

to the PP. Under deep uncertainty climate change policies can be regarded

as precautionary.

The main result is that the combination of deep uncertainty and spatial

interactions induces spatially structured ambiguity which is an important

characteristic for designing climate change policies. This spatial structure

may cause certain locations to emerge as spatial hot spots. The existence of

hot spots introduces a potentially important relationship between local in-

teractions and global regulation. It has recently been argued (e.g., Haldane
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2009) that increased interconnectedness among networks has made various

networks - such as ecological networks, power grid networks, transportation

networks, and financial networks - more unstable. This interconnectedness

and the potential instabilities induced can be associated with the hot spots

discussed in this paper and the impact of local properties on global regula-

tion.

In terms of climate change policies, given the existence of deep uncer-

tainties associated with various components of the system and the spatial

interrelations between the natural and the economic systems, these obser-

vations give rise to a large number of questions. For example, how large a

cost are we willing to incur in order to be precautious? Should we advocate

uniform or spatially differentiated carbon taxes or other mitigation policies?

How will deep uncertainties associated with the impact of solar radiation

management methods affect policies based on solar radiation management?

Is it likely that deep uncertainty in a specific location will cause regulation

using a specific instrument to break down globally? What is the proper

response in this case: do we immunize the whole system with respect to

the specific location - if this is feasible - or do we look for a qualitatively

different policy framework?

The general framework of spatial robust control regulation described here

could provide insights and ways of formulating informed answers to these

questions.

5 Appendix

This appendix provides a technical description of the coupled economy-

climate model presented in figure 1 and the associated robust control prob-

lem. It extends Brock, Engström and Xepapadeas (2014) by introducing:

(i) spatially structured ambiguity, and (ii) geoengineering and adaptation

expenses as additional climate change policy instruments.

5.1 Temperature and GHGs Dynamics

We develop a one-dimensional EBCMmodel with human inputs. We assume

that the surface temperature)T depends upon location φ, φ ∈
[
−π

2 ,
π
2

]
and

time t ≥ 0. We use x = sin(φ) ∈ [−1, 1], with x = ±1 corresponding to the

North and South Pole respectively, while x = 0 corresponds to the Equator.
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We refer to x as latitude, and denote by T (x, t) the surface temperature in
◦C at latitude x at time t. The temperature is affected by heat transfer due

to thermal diffusion and the solar energy input in the atmosphere, and by

human actions (GHGs emissions and geoengineering). Following Wu and

North (2007) the basic energy balance equation with human input added

can be written in terms of a partial differential equation (PDE) connecting

the temporal and spatial rates of change of the temperature, ∂T (x, t) /∂t,

with the various processes, which is of the form

Cc
∂T (x, t)

∂t
= D

∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]
− [A+B T (x, t)] +QS(x)α(x, T (x, t))

− ψ (Z) + g(M (t)), (1)

with initial condition T (x, 0) = T0(x), and a boundary condition stating

that the flux at the boundary vanishes, i.e., T must be such that:

√
1− x2

∂T (x, t)

∂x
= 0 for x = ±1 for all t ≥ 0.

The terms on the first line of the right hand side of (1) correspond to

non-human sources that affect the temperature dynamics, while the second

line collects all the human-related sources. The term D ∂
∂x

[
(1− x2)∂T (x,t)

∂x

]
is the effect of thermal diffusion effects with D a heat transport coeffi cient;

−[A + B T (x, t)] is the rate of outgoing infrared radiation to space with

A and B empirical coeffi cients; QS(x)α(x) models absorption effects from

solar energy; S(x) is the mean annual distribution of solar radiation en-

ergy; α(x, T (x, t) is the co-albedo which is one minus the albedo of the

earth—atmosphere system, with ∂α
∂T > 0 indicating that an increase in local

temperature increases the absorption of solar energy; and Cc is the effective

heat capacity per unit area of earth atmospheric system.

The term −ψ (Z (t)) models the reduction in incoming solar radiation

due to geoengineering activities of total scale Z(t) =
∫ 1
−1 z (x, t) dx, where

z(x, t) denotes local geoengineering. The global concentrationM(t) of GHGs

at time t reduces outgoing radiation thus increasing temperature. The term

g(M) models the effect that accumulated GHGs have on the reduction of

the outgoing radiation. We assume that g (M (t)) = ξ ln
(
M(t)
M0

)
where M0

denotes the preindustrial concentration of GHGs, and ξ is a temperature-

forcing parameter. GHGs emissions are assumed proportional to the amount
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q(x, t) of fossil fuel used in production process and M (t) evolves according

to:
d

dt
M(t) = βQ(t)− δmM (t) , (2)

where Q(t) :=
∫ 1
−1 q (x, t) dx is the global quantity of fossil fuel used, β is

independent of x and t, and δm is a natural decay rate for the GHGs.

To facilitate the exposition and numerical analysis we obtain a finite

dimensional model by discretization of the infinite dimensional dynamical

system described above. This is done by approximating the continuous space

[−1, 1] by a one-dimensional discrete finite lattice with N points xn ∈ X =

{x1, ..., xN} , n = 1, ...N, with x1 = −1 and xN = 1. We approximate the

function T (x) by a vector T = (T1, · · · , TN ) ∈ RN , where Ti ' T (xi), i =

1, · · · , N . By approximating the spatial derivatives with finite differences
and choosing appropriate boundary conditions, the PDE (1) is transformed

to a system of coupled ODEs in RN , of the form

CeT
′
i = D(ai,i+1Ti+1 +ai,iTi+ai,i−1Ti−1)− [A+BTi]+QSiai−ψ(Z)+g(M),

∀ i = 1, · · · , N where T ′i = dTi
dt , ai,j j = i, i ± 1 (the nearest neighbors

of the site i) are real numbers chosen so as to obtain the best possible

approximation for the second derivative, and

Z =
N∑
i=1

zi,

M ′ = β
N∑
i=1

qi − δMM,

where zi(t) = z(xi, t) and similarly for all the other functions.

The discretized system can then be written in compact form, using IN ,
the identity matrix in RN , and the vector 1N = (1, · · · , 1) ∈ R1×N , as

T ′ = AdT − ArT − Bz(Z) + Be(M) + F, (3)

where T = (T1, · · · , TN )tr, Ad is the diffusion matrix and corresponds to the

discretization of the diffusion operator, Ar = BINT , Bz(Z) = ψ(Z)1trN is

the geoengineering term which models the effects of global geoengineering

on temperature, Be(M) = g(M)1trN is the term modeling the effect of GHGs
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on climate and F = (−A+QS1a1, · · · ,−A+QSNaN )tr, all properly scaled

by Ce. We use the vectors z = (z1, · · · , zN )tr and q = (q1, · · · , qN )tr and

1N , to express Z (t) =
∑N

i=1 zi (t) = 1Nz = 1trN · z and similarly,

M ′ = β1Nq − δmM. (4)

We end up with the controlled dynamical system (3), (4) in RN × R;
(T,M) ∈ RN × R being the state variable and (z, q) ∈ RN × RN being the

control variables.

5.2 The Global Economy

We assume a representative household at location i having preferences de-

scribed by the utility function

U (ci (t) /`i) =
[ci (t) /`i]

1−γ − 1

1− γ (5)

where ci (t) and `i (t) are consumption and the size of the representative

household (equal to population) at time t for location i, respectively. Labor,

supplied inelastically, is equal to population which is assumed constant to

simplify the model.

Production takes place at each location i, according to a production

function

yi (t) = Ω (Ti (t) , φi (t) , Z (t))F (ki (t) , `i, qi (t)) (6)

where ki (t) , `i (t) , qi (t) denote capital, labor and fossil fuels respectively

used at point i, time t. F is a standard Cobb-Douglas, which is multi-

plied by a damage function Ω modelling the effects of climate change on the

economy. Local damages depend on the local temperature Ti, local adapta-

tion expenses φi that mitigate damages, and global geoengineering activities

Z (t) . It is assumed that:9

∂Ω

∂Ti
< 0,

∂Ω

∂φi
> 0,

∂Ω

∂Z
≥ 0.

As shown in Brock Engström and Xepapadeas (2014), for the global

economy, the potential world GDP can be defined as the maximum output

9The local damage function depends on global geoengineering activities to allow for
negative externalities at i due to other regions’geoengineering activities.
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that can be produced with fixed and immobile labor, given total capital

K(t) =
∑N

i=1 ki (t) available and total fossil fuel Q(t) =
∑N

i=1 qi (t) used, for

a given distribution of temperature T (t) = (T1(t), · · · , TN (t)), or

Ŷ (t) = Ω
(
{Ti (t) , φi (t)}Ni=1 , Z (t)

)
F (K,Q) . (7)

The global budget constraint is:

K ′ (t) = Ŷ (t)− [C (t) + Z (t) + Φ (t) + δK (t)] (8)

where C (t) =
∑N

i=1 ci (t) , c = (c1, ..., cN ) , Z (t) denote global consumption

and geoengineering expenses respectively, δ is the depreciation rate, and

Φ (t) =
∑N

i=1 φi (t) , φ = (φ1, ..., φN ) denote global adaptation expenses.

Under certainty a social planner will choose paths for (c, q, z, φ) to max-

imize global discounted utility

J =
N∑
i=1

∫ ∞
0

e−ρtωi`iU (ci (t) /`i) dt (9)

subject to (3),(4),(8), and initial and boundary conditions where ω = (ω1, · · · , ωN )

are time independent welfare weights associated with the utility of consump-

tion of each location.

Remark: From optimal growth models with heterogenous agents (e.g.

Lucas and Stokey 1984) we know when global utility is time additive like (9),

then if all agents, that is locations in our case, have the same utility discount

rate, ρ, the welfare weights are fixed and equal to the initial weight vector

ω0. With recursive preferences which are non time additive, the assumption

of equal discount rates can be relaxed, but in this case welfare weights are

time dependent and need to be determined by the solution of the problem. At

this stage of the problem we assume that the social planner fixes the welfare

weights for the whole planning horizon. This assumption can be justified that

the planner is not willing through climate policy the welfare weights which

are determined no more general distributional grounds among countries.

5.3 Spatially Structured Uncertainty

Uncertainty is associated with damage dynamics. We assume that the so-

cial planner does not formulate decisions regarding the paths for (c, q, z, φ)

19



based on a single probability model but on a set of probability models re-

garding climate change damages for each location i = 1, ..., N . The planner

formulates a benchmark model for climate damage dynamics defined as:

dΩi(t) = ζi (Ti(t), φi(t), Zt) Ωi(t)dt+ Ωi(t)

N∑
j=1

σijdwj(t). (10)

where now w1, · · · , wj are independent Wiener processes and the σij intro-
duce the spatial correlation.

In this formulation the drift of the damage process depends on local

temperature, local adaptation and global SLR. It is reasonable to assume

that ∂ζ
∂T > 0, ∂ζ∂φ < 0 and ∂ζ

∂Z ≥ 0. The last derivative is based on the idea

that global SLR activities may reduce temperature but may create collat-

eral damages to specific locations. The planner has concerns about model

misspecification and is willing, for each location, to consider local damage

dynamics models Qi which are within an appropriately defined entropy ball
centered at the benchmark model Pi. The entropy constraints can be written
as:

Q = {Q : H(Qi | Pi) ≤ Hi, i = 1, · · · , N} (11)

where Hi is the radius of the entropy ball indicating the planner’s mistrust

in the benchmark model, and correspond to the global entropy constraints

for GHGs and capital stock dynamics. If Hi = 0 the planner trusts the i-th

benchmark model and has no concerns about model misspecification. Since

in general Hi 6= Hj for i 6= j i, j = 1, ...N, ambiguity acquires a spatial

structure since the planner has different degrees of model mistrust across

locations. If Hi > Hj the planner trusts the benchmark model in location i

less relative to location j.

Following Hansen and Sargent, misspecification concerns can be mod-

elled as drift distortions of a multivariate Wiener process associated with

the stochastic factors affecting damage dynamics, or

dΩi(t) =

ζi (Ti(t), φi(t), Z(t)) +

N∑
j=1

σijυj(t)

Ωi(t)dt+ Ωi(t)

N∑
j=1

σijdwj(t)

(12)

where υ = (υ1, · · · , υN )tr is the vector of distortions of the benchmark mod-
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els, w is a vector Wiener process w = (w1, · · · , wN )tr associated with local

sources of uncertainty with joint distribution N(0, IN t) where IJ is theN×N
identity matrix, and σ = [σij ] ∈ RN×N . The stochastic shock affecting the
damage dynamics in the i-th location can written as Ωi

∑N
j=1 σijdwj and σ

can be interpreted as a spatial autocorrelation matrix characterizing inter-

relations among local damages, while
∑N

j=1 σijυj is the corresponding drift

distortion for damages in location i.

In this set-up the multiplier robust control problem can be written as

max
(c,q,z,φ)

min
υ
EQ

∫ ∞
0
e−ρt

N∑
i=1

ωi

`iU (ci (t)

`i

)
+
θi
2

 N∑
j=1

σijυj

2 dt


subject to temperature dynamics, GHG dynamics, and (12). (13)

where the adversarial agent chooses distortions υ to minimize the planner’s

objective. The parameters θ, the robustness parameters, can be regarded

as the Lagrangean multipliers associated with the entropic constraints (11).

The N multipliers θ1, · · · , θN correspond to the local entropic constraints

for damages.

Remark The exact value of the Lagrange multipliers θi ≥ 0 depends

on the radius of the local entropy balls, i.e., on the value of Hi. Since

θ2
i > C 1

Hi
, the limit θi → ∞ corresponds to Hi → 0, which is the case

where the planner trusts the benchmark model and has no concerns about

model misspecification. We call this limit the risk limit, in the sense that

there is noise present but the benchmark model P is trusted. The opposite

limit θi → 0 corresponds to the case where Hi → ∞, therefore the planner
has very little trust in the benchmark model and allows for very large model

misspecification. We call this limit the deep uncertainty limit.

The stochastic differential game (13) can be solved by using the associ-

ated Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation. This is expressed in

terms of the generator operator which is a second order differential operator

L, acting on the value function V = V (T,M,K,Ω), V : RN×R+×R+×Ω→
R of the game. It can be expressed as

L = L(T ) + L(M) + L(K) + L(Ω) + Ln, (14)
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where

L(T )V = (AdT − ArT − Bz(1Nz) + Be(M) + F ) · DTV

L(M)V = (β1Nq − δmM)DMV

L(K)V = (Ω(T, φ,1Nz)F (K,1Nq)− δK − [1Nc+ 1Nz + 1Nφ])DKV

L(Ω)V =
N∑
i=1

(ζi +
N∑
j=1

σijυj)Ωi
∂V

∂Ωi
= diag(Ωi)(ζ + συ)DΩV,

LnV =
1

2
Tr
(
σσ(tr)D2

ΩV
)
,

DV tr = (DTV,DMV,DKV,DΩV ) is the gradient of V with respect to (T,M,K,Ω)

(e.g., DMV = ∂V
∂M and similarly for DKV ), and D2

ΩV ∈ R(N)×(N) is the

Hessian matrix, consisting of all the second derivatives of V with respect

to Ω. Since the variance of the system dynamics does not depend on the

controls, and the decisions regarding (c, q, z, φ) and υ separate, the time

protocol regarding maximization and minimization decisions does not mat-

ter, so the min,max operators can be interchanged. This means that the

robust control static game has a Nash equilibrium, which is provided by the

solution of the HJBI equation which is of the form (Fleming and Souganidis

1989)

ρV −H(V,DV,D2V ) = 0 (15)

H(V,DV,D2V ) = max
(c,q,z,φ)

min
υ

 N∑
i=1

ωi`iU(
ci
`i

) +

N∑
i=1

θi
2

 J∑
j=1

σijυj

2

+

L(T )V + L(M)V + L(K)V + L(Ω)V + LnV
]
.

Feedback controls for (c, q, z, φ) and υ are obtained as functions of DV

by performing the optimization in (15). Substituting the feedback controls

into (15) we obtain the relevant HJBI equation as:

F(V,DV,D2V ) := ρV −Hd (DV )− 1

2
Tr
(
CCtrD2V

)
= 0. (16)
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where Hd is a highly nonlinear function of the gradient DV defined by

Hd(DV ) := max
(c,q,z,φ)

min
υ

 N∑
i=1

ωi`iU(
ci
`i

) +
N∑
i=1

θi
2

 J∑
j=1

σijυj

2

+

L(T )V + L(M)V + L(K)V + L(Ω)V
]
.

Remark 1 In the model presented here, for simplicity, we have only in-
cluded risk and uncertainty in the determination of the damage factors for

each site due to climate change. As a result of that, the second order term

of the resulting HJBI equation only depends on the second order derivatives

with respect to the state variable Ω. One can easily envisage situations where

the fluctuations and the uncertainty will also affect the other state variables,

e.g. temperature, etc. The effects of that would be two-fold. First, it would

introduce the second order derivatives with respect to the other state variables

into the HJBI equation, thus leading to a modification of the highest order

term to 1
2Tr

(
CC(tr)D2V

)
, where now D2V is the full Hessian matrix (i.e.

with respect to all variables (T,M,K,Ω)), thus alleviating possible degener-

acy of the nonlinear elliptic HJBI equation. However, at the same time it

will modify the Hd(DV ) term as now the information drift υ, will also affect

the operators L(T ),L(M),L(K) as

L(T )V = (AdT − ArT − Bz(1Nz) + Be(M) + F + C(T )v) · DTV

L(M)V = (β1Nq − δmM + C(M)v)DMV

L(K)V =
(

Ω(T, φ,1Nz)F (K,1Nq)− δK − [1Nc+ 1Nz + 1Nφ] + C(K)v
)
DKV.

5.4 Solvability of the HJBI equation, Viscosity Solutions and
Hot Spot Formation

The solvability of the robust control problem depends on the solvability

of the related HJBI equation (16). The solution of (16) will be used to

obtain the optimizers (c, φ, q, z), υ which are all defined in terms of DV,

and obtain therefore the robust feedback control policy. By inserting the

feedback rules into the state equation, we obtain the optimum path for the

controlled system.

Since our problem does not have a linear-quadratic structure, the solu-

tion of (16) is not an easy task. To address the issue we use the concept
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of viscosity solutions (e.g., Bardi and Capuzzo-Dolcetta 2008), which are

continuous but not necessarily differentiable functions that solve the HJBI

equation in a weak sense. This approach can prove very useful in address-

ing robust control problems without linear-quadratic structure, which are

exactly the problems associated with climate change. Let x = (T,M,K) .

Definition (Viscosity solutions of HJBI equation)

1. v ∈ C(RN+2) is a viscosity subsolution of (16) if for any test function

ϕ ∈ C2(RN+2) such that x is a local maximum of v − ϕ,

F(x, v(x),Dϕ(x),D2ϕ(x)) ≤ 0.

2. v ∈ C(RN+2) is a viscosity supersolution of (16) if for any test function

ϕ ∈ C2(RN+2) such that x is a local minimum of v − ϕ,

F(v(x),Dϕ(x),D2ϕ(x)) ≥ 0.

3. v ∈ C(RN+2) is a viscosity solution of (16) if it is both a viscosity

subsolution and a viscosity supersolution.

Regarding the solvability of the problem, we consider the finite horizon

version, i.e., t ∈ [0, T ] for large T and treat a parabolic version of the HJBI

equation of the form

∂V

∂t
+ F1(DV ) + F2(D2V ) = 0.

It can be shown that if the controls (c, φ, q, z) are allowed to take values

in a compact subset of RN ×RN ×RN ×RN , then under certain regularity
assumptions there exists a T ∗ ∈ [0, T ], such that equation (16) admits a

unique viscosity solution, such that |V (t, x)| ≤ C(1 + |x|2). Furthermore

it can be proved that the value of the game is the viscosity solution of the

relevant HJBI equation. The derivatives of the viscosity solution v can be

used to construct satisfactory approximate feedback controls. The optimal

state of the system can then be calculated using a forward integration of the

state equation.10

Following Da Lio and Ley (2006), the condition for existence of a super-

solution would be of the general form r−C0− C0
θ e

rT ∗ > 0 (r < ρ), where C0

10There is a well established literature on numerical methods for the calculation of
viscosity solutions of fully nonlinear elliptic and parabolic equations of the general type of
the HJBI equation obtained here (e.g., Souganidis 1985, Nikolopoulos and Yannacopoulos
2010).
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is a constant. When θ = (θ1, ..., θN , θN+1, θN+2)→ 0, the last term which is

negative dominates, and this condition cannot hold at all. This means that

the robustness parameter θ plays an important role in the loss of solutions

for the system. The next theorem whose proof follows along the lines of

Felmer, Quaas, and Sirakov (2013) states that the HJBI equation (16) does

not have a solution (even in the viscosity sense) in the limit as θ → 0.

Theorem 2 (The θ → 0 limit) Equation (16) does not have a solution in
the limit as θ → 0 in the classical or in the viscosity sense.

This breakdown of solutions at the deep uncertainty limit, as θ → 0,

induces type I hot spots. In fact, the breakdown can occur even when

just one of the θi tends to zero, as is indicated by exact results in the linear-

quadratic case (see Brock Xepapadeas and Yannacopoulos 2012, 2013). This

can be shown for general problems, by a proper modification of arguments

along the lines of Felmer, Quaas, and Sirakov (2013) which essentially boil

down to the nonexistence of a positive solution for ODEs of the form ρu+
1
θi
|u′|2− u′′ = 0 for θi → 0. We call this breakdown of solutions in the deep

uncertainty limit a type I hot spot. This means breakdown of the solution

for the whole system because there is “too much”uncertainty for just one

site which propagates to the other sites through spatial interactions.

As shown in Athanassoglou and Xepapadeas (2012) for a linear-quadratic

problem, solving the HJBI equation for a given robustness parameter θ

is equivalent to finding a robust policy for all probability models having

relative entropy less than the worst-case model, and allows us to estimate

the deviation between the benchmark and the worst case. This implies that

if the actual deviation between the worst case and the benchmark case can be

inferred from existing knowledge, then by repetitive solving of the model for

different values of θ, a value θ0 that corresponds to the actual deviation can

be calculated. This will be the ‘correct value’of the robustness parameter.

Therefore by combining solutions of (16) for vectors of robustness pa-

rameters θ and existing knowledge about possible deviations between the

benchmark and the worst case, the robustness parameters can be calibrated.

In this context two types of hot spots can be defined:

Type I hot spot. Assume that the realistic deviations between the
benchmark and the worst-case model imply low values θ0

i ∈ θ such the HJBI
equation (16) does not have a solution. This is a type I hot spot which means
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that misspecification concerns for a location cause regulation to break down

for the whole spatial domain. Thus local ambiguity breaks down regulation

globally.

Type II hot spot. Assume that the HJBI equation (16) has a solution,
either classical or viscosity, for realistic deviations between the benchmark

and the worst case. This can be associated with a weak PP and robust

control regulation is feasible. The value function in this case will be a

function of the states of the system and the robustness parameters θ. At the

risk limit (θ1, ..., θN )→∞, there is complete trust in the benchmark model,
with no entropic constraints. Let(

c (t)U , q (t)U , z (t)U , φ (t)U ;T (t)U ,K (t)U ,M (t)U
)
, (17)(

c (t)
R

, q (t)
R

, z (t)
R

, φ (t)
R

;T (t)
R

,K (t)
R

,M (t)
R
)

(18)

denote, for all i, the time paths for the control and the state variables that

correspond to the solution of (13) and the risk limit case respectively.

Define by

WU
(
cU , θU

)
= EQυ∗

[∫ ∞
0

e−ρt

{
N∑
n=1

ωUnt

[
`iU

(
cU (t)

`i

)]}
dt

]
(19)

the welfare measure for the planner where cUi (t) , n = 1, ...N is the Nash

equilibrium consumption path for (13), and by

W
R
(
c
R
)

= EP

[∫ ∞
0
e−ρt

{
N∑
n=1

ωRnt

[
`iU

(
cRn (t)

`i

)]}
dt

]
(20)

the welfare measure for the regulator in the risk limit case. Then if ∆W =

WR −WU > 0, this difference can be interpreted as the cost of following

robust control rules or the cost of been precautious. If ∂∆W
∂θi

is high for some

locations, these locations can be characterized as type II hot spots. On

the other hand if ∆W < 0, precaution is desirable and one may even dis-

cuss the optimal level of precaution in the sense that robustness parameters

(θ∗1, ..., θ
∗
N ) may exist such that they maximize the difference WU −WR, un-

der the constraint that these parameters correspond to realistic deviations

between the benchmark and the worst case.
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5.5 Extension of the model under recursive utility

The literature on recursive utility under uncertainty indicates that welfare

weights are not constant, except for special time additive model where the

"aggregator" function f takes the form f (c, V ) = u (c/`)− ρV, with V been

the stochastic utility process (Duffi e and Epstein 1992). The multiplier

robust problem (13) is observational equivalent with a corresponding risk-

sensitive problem since the have the same value functions (Hansen et al.

2006). Furthermore risk-sensitive preferences (e.g. Anderson 2005)) are

a special case of recursive preferences, which means that in problem (13)

without time additive utilities welfare weights are not constant over time.11

In this section we extend our model to include the effects of recursive

utility, which according to some authors is a better description of the agents’

attitude towards discount factors and intertemporal allocation of resources

in the presence of uncertainty and over long time horizons as compared to

the standard exponential discount model, used in the model of equation (9)).

Let us assume that the agents i = 1, · · ·N evaluate at time t the con-

sumption stream under the probability model (probability measure Q) using

recursive utility functionals Vi(t; c) characterized by felicity function Fi(c, r)

where r refers to the instantaneous discount factor. Following Dumas et al.

(2000) the recursive utility functional for agent i is defined by

Vi(t; ci) = EQ
[∫ T

t
exp(−

∫ s

t
ri(τ)dτ)Fi(ci(s), ri(s)) | Ft

]
, (21)

where

ri(t) := arg min
ν∈R
{Fi(ci(t), ν)− νVi(t; ci).

Note that (21) is a nonlinear stochastic integral equation, equivalent to a

backward stochastic differential equation, the solution of which will provide

the utility functional that can be used for the evaluation of the consumption

stream ci = {ci(t) : t ∈ [0,∞]}. If the agent wishes to evaluate the

consumption stream at t = 0 then he must calculate the value of the solution

at t = 0 and use the resulting functional ci in order to calculate the utility

derived from receiving the consumption stream ci. As Dumas et al (2000) has

11For the modeling of the time evolution of welfare weigts in models with heterogeneous
agents and recursive utility see Dumas, et al. (2000), while of the time evolution of welfare
weigts in risk-sensitive models with heterogenous agents see Anderson (2005)
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shown the determination of the utility functional Vi(t; ci) can be expressed

in terms of a dynamic programming problem of the form

λi(t)Vi(t; c) = inf
ri∈D

EQ
[∫ T

t
λi(s)F (ci(s), ri(s)) | Ft

]
(22)

s.t dλi(t) = −ri(t)λi(t)dt, λi(0) = 1.

We now consider the effect of model uncertainty in this formulation.

The risk in the model is introduced by the N dimensional Wiener process

w = (w1, · · · , wN ) which is used in order to model stochastic fluctuations

of the damage factors Ωi at each site in equation (10. Model uncertainty is

introduced as information drift υ = (υ1, · · · , υN ) for each of the stochastic

factors w = (w1, · · · , wN ), (see equation (12) which is in fact via Girsanov’s

theorem equivalent to viewing the evolution of the stochastic fluctuations

under the equivalent measure Qυ with Radon-Nikodym derivative with re-

spect to the reference measure Q

dQυ
dQ

∣∣∣∣
Ft

=Mυ(t) := exp

(∫ t

0
υ(s)dw(s)− 1

2

∫ t

0
|υ|(s)2ds

)

= exp

(∫ t

0

N∑
i=1

υi(s)dwi(s)−
1

2

∫ t

0

N∑
i=1

∫ t

0
υi(s)

2ds

)
.

Note that the exponential density process is a martingale with respect to

the reference measure (under which w is a Wiener process).

Assume that the agents i = 1, · · · , N , adopt the distorted probability
measureQυ, for some information drift υ chosen by nature. Then, effectively,

they calculate their recursive utility functionals using the recursion formula

(21) however, they condition events under the distorted probability measure

Qυ rather than the reference probability measure Q, i.e.,

Vi(t; ci, υ) = EQυ
[∫ T

t
exp(−

∫ s

t
ri(τ)dτ)Fi(ci(s), ri(s)) | Ft

]
, (23)

where we denote the utility functional as Vi(t; ci, υ) to emphasize the fact

that it is estimated under the distorted probability measure. We may use the

exponential density and its martingale property to express the conditional

expectation in (23) as an expectation under the reference measure Q, in
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terms of

Vi(t; ci, υ) = EQ[exp(

∫ T

t
υ(s)dw(s)− 1

2

∫ T

t
|υ|(s)2ds)∫ T

t
exp(−

∫ s

t
ri(τ)dτ)Fi(ci(s), ri(s)) | Ft],

which is in fact equivalent to expressing its calculation in terms of the mod-

ified dynamic programming problem of the form

λi(t)Vi(t; c, υ) = inf
ri∈D

EQ
[∫ T

t
λi(s)F (ci(s), ri(s)) | Ft

]
(24)

s.t dλi(t) = −(ri(t) +
1

2
|υ(t)|2)λi(t)dt+ λiυdw(t), λi(0) = 1.

where by υdw =
∑N

j=1 υj(t)dwj(t).

Remark 3 Our approach towards combining model uncertainty with recur-
sive utilities is inspired by the approach of Borovicka (2016). Note that here,

in contrast to Borovicka (2016), where each agent uses its own information

drift υi, in order to define the distorted probability measure for each agent,

we assume that all agents share the same distorted probability measure Qυ,

so that υ couples the dynamics for λi which model the evolution of the local

discount factors. The reason for doing that is because here, unlike Borovicka

(2016) we do not wish to model belief dispersion in the agents, and further-

more, it is not the agents themselves who chose the information drifts υi but

rather an independent agent, Nature. The choice of the model by Nature,

affects all agents and their corresponding attitudes towards discounting, and

this is shown in the dynamics in (24).

Since Nature chooses the probability measure which governs the fluctu-

ations, and Nature is considered as a malevolent agent, the agents should

consider the worst case scenario under an entropic penalization of all sce-

narios, which leads to a utility functional provided by the problem

λi(t)Vi(t; c, υ) = inf
ri,υ∈D×P

EQ
[∫ T

t
λi(s)F (ci(s), ri(s)) | Ft

]
, (25)

s.t dλi(t) = −(ri(t) +
1

2
|υ(t)|2)λi(t)dt+ λiυdw(t), λi(0) = 1.

where by υdw =
∑N

j=1 υj(t)dwj(t), and P is the set of possible allowed
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models, as parameterized by the stochastic processes υ. The allowed set P
can be determined e.g. by an allowed entropy ball or otherwise.

The problem encountered now by the social planner is to maximize the

global recursive utility functional

N∑
i=1

aiVi(0; ci), (26)

subject to (3),(4),(8), and initial and boundary conditions where a = (a1, · · · , aN )

are initial welfare weights associated with the utility of consumption of each

location. In contrast with problem (9) where the temporal evolution of the

welfare weights was introduced in an ad hoc fashion by the social planner,

and assumed to be of the form e−ρt with the same constant exponential decay

factor ρ for each geographic site, here, the evolution of the welfare welfare

weights is endogenous and determined by the discount factor dynamics
provided by the recursive utility functions, and are spatially dependent. In

order to take into account the effect of model uncertainty we have to modify

problem (27) to

max
c

inf
υ∈P

N∑
i=1

aiVi(0; ci, υ), (27)

subject to the same dynamic state constraints.

Following Dumas et al. (2000) and assuming that we start at time t

(i.e. that the social planner starts the maximization procedure at time

t rather than at time 0, and the current state of the system is given by

S0 = (T,K,M,Ω, λ), we may treat the more general problem

J(t,S) := sup
c

inf
υ∈P

N∑
i=1

aiVi(t; ci, υ),

subject to the dynamic constraints which are considered as starting at time

t at state S. Once this problem is solved, substitute t = 0 and S = S0 to

the general solution in order to obtain the solution to the original problem

required.

By the discussion in the previous paragraphs, this problem can be rep-
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resented in the equivalent form

J(t,SE) := sup
c

inf
ri∈D,υ∈P

N∑
i=1

E[

∫ T

t
λi(s)Fi(ci(s), ri(s))ds | Ft],

subject to the dynamic constraints plus the extra dynamic constraint for the

new state variables λ = (λ1, · · · , λN ), which are given in the second equation

of (25). Here we assume again that the regulator starts at t and that the

current (at time t) state of the system which is now extended to include λ

is SE = (S, λ), where λ is the new starting point for the newly introduced

state variable. If this solution is obtained, then setting t = 0 and λ = a in

it, we obtain the solution to the original problem. The constraint υ ∈ P
can be further treated by using a quadratic penalty function of the form

R(υ, θ, t) where θ = (θ1, · · · , θN ) is a vector valued parameter modelling the

uncertainty aversion at different sites. Such a quadratic penalty function

will be compatible with an entropic constraint, but in a non homogeneous

fashion. If geometric intuition is of any help to the reader, consider the

entropy ball being treated as an entropy ellipsoid instead, with the principal

axes corresponding to different uncertainty aversion in the various directions

in state space. This would lead to the equivalent problem:

J(t,SE) := sup
c

inf
r=ri∈DN ,υ=(υi)∈DN

N∑
i=1

E[

∫ T

t
λi(s)Fi(ci(s), ri(s))ds | Ft +R(υ; θ, s)],

(28)

subject to the dynamic constraints .

Remark 4 An example of such a penalty function could be

R(υ; θ, s) =
N∑
i=1

θiυi(s)
2ds,

or the more general form

R(υ; θ, s) =

N∑
i=1

N∑
j=1

θiσijυi(s)
2,

see e.g. (13).

The solution of the optimization problem 28 can be obtained in terms
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of an appropriate HJBI equation. In particular, the value function V will

satisfy the nonlinear PDE

0 = sup
c

inf
r,υ

(
N∑
i=1

λiFi(c, r) +R(υ; θs) + LEV
)

where LE = L + Lλ + L0 where L = L(T ) + L(M) + L(K) + L(Ω) is the

generator operator defined in the previous section (see (14) whereas

L(λ)V = −
N∑
i=1

(ri +
1

2
|υ|2)λi

∂V

∂λi
,

L0V =
1

2
Tr(SSTD2

λV ),

and S = (Sij)i,j=1,··· ,N , with Sij = λiυj . A quick calculation shows that

SST = |υ|2Λ,

where Λ = λλT = (Λij)i,j=1,··· ,N with Λij = λiλj , so that

L0V =
1

2
|υ|2Tr(λλTD2

λV ).

Further algebraic manipulation leads to a simplification of the resulting

HJBI as

0 = sup
c

inf
r,υ

(
N∑
i=1

λi(Fi(c, r)− (ri +
1

2
|υ|2)

∂V

∂λi
) +R(υ; θs) + LV + L0V

)

This equation has a striking difference compared to the equation we

encountered in the previous section where additive utilities were assumed,

as now the operator L0 contains the control parameter υ, and as a result

of the optimization over υ we will end up with an equation that will be

fully nonlinear in D2
λV . For example assuming for simplicity the quadratic

penalty

R(υ; θ, s) =
1

2

N∑
i=1

θiυi(s)
2,
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the minimization over υ would involve the minimization of the term

−|υ|2 1

2

N∑
i=1

λiVλi +
1

2

N∑
i=1

θiυ
2
i +

1

2
|υ|2Tr(λλTD2

λV )+

N∑
i=1

(ζi+

N∑
j=1

σijυj)ΩiVΩi ,

leading to a minimizer of the form

vj =
θjTr(λλ

TD2
λV )−

∑N
i=1 σijΩiVΩi∑N

i=1 λiVλi − θj
, j = 1, · · · , N.

Substituting this into the Hamiltonian, we derive a HJB which will be

quadratic in D2
λ. This is obtained easily since

|υ|2 = J0(D2
λV,DΩV ) :=

N∑
j=1

(
θjTr(λλ

TD2
λV )−

∑N
k=1 σkjΩkVΩk∑N

k=1 λkVλk − θj

)2

,

and

R(υ; θ, s) = J1(D2
λV,DΩV ) :=

1

2

N∑
j=1

θj

(
θjTr(λλ

TD2
λV )−

∑N
k=1 σkjΩkVΩk∑N

k=1 λkVλk − θj

)2

while

N∑
i=1

N∑
j=1

σijvjΩiDΩiV = J2(D2
λV,DΩV )

:=
N∑
i

N∑
j=1

σij

(
θjTr(λλ

TD2
λV )−

∑N
k=1 σkjΩkVΩk∑N

k=1 λkVλk − θj

)
ΩiDΩiV,

with J0, J1 being quadratic in D2
λV and all of the terms J0, J1 and J2

containing products of D2
λV with DΩV .

The minimization over r = (ri) and the maximization over c = (ci) is

more involved, as the felicity function Fi couples ci and ri. This step involves

the following terms of the Hamiltonian

∑
i=1

λi(Fi(ci, ri)− riVλi)− (

N∑
i=1

ci)DKV.
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The first order conditions are the system of nonlinear equations

∂

∂ri
Fi(ci, ri)− Vλi = 0,

λi
∂

∂ci
Fi(ci, ri)− DKV = 0,

for i = 1, · · · , N . This has to be solved as a system, but in order to compare
with the non recursive case, we adopt the following parameterization of the

solution to the first order conditions. The solution to the first equation,

given ci, can be expressed as

ri = Φi(Vλi ; ci),

where Φi is the inverse function, with respect to r of the function ∂Fi
∂r (c, r).

For example, for the choice

Fi(c, r) = βi
cγi

γi

[
− ρi − γi
γi − ρir

βi

] γi
ρi
−1

, (29)

for the felicity function (see e.g. Dumas et al. 2000) after some rather

painful algebra we obtain

Φi(x; c) =
βi
ρi

(
γi − γ

− ρi
γi

i (γi − ρi)cρix
− ρi
γi

)
Then the determination of ci is obtained by the solution of the nonlinear

algebraic equation

λi
∂

∂ci
Fi(ci,Φi(Vλi ; ci))− DKV = 0,

with respect to ci. Unfortunately, this algebraic equation cannot be solved

analytically with respect to ci, in the general case, so one has to resort to

numerical evaluation.

For the case of the explicit felicity function of (29), one may compute
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the first order conditions as

A1ic
γi
i

(
γi −

ρi
βi
ri

)−γi/βi
= DλiV,

A2ic
γi−1i
i

(
γi −

ρi
βi
ri

)1−γi/βi
=

1

λi
DKV

where

A1i =
ρi
γi

(
1− γi

βi

)
(γi − ρi)γi/ρi−1,

A2i = βi(γi − ρi)γi/ρi−1.

Taking logarithms, we end up with the linear system

γi ln ci −
γi
βi

ln

(
1− ρi

βi
ri

)
= ln

(
DλiV

A1i

)
,

(γi − 1) ln ci + (1− γi/βi) ln

(
1− ρi

βi
ri

)
= ln

(
1

A2iλi
DKV

)
,

which can be solved to obtain

1− ρi
βi
ri = Bi

(DKV )βi/(βi−1)

λ
βi/(βi−1)
i (DλiV )

γi−1
βi−1

βi
γi

, (30)

ci = Ciλ
− 1
βi−1

i (DλiV )
1
γi

βi−γi
βi−1 (DKV )

1
βi−1

with

Bi =
A
γi−1
βi−1

βi
γi

1i

A
βi
βi−1
2i

,

Ci =
A
− 1
γi

γi−1
βi−1

1i

A
1i

βi−1
2i

We may then define

J3(DλV,DKV ) :=

N∑
i=1

λi(Fi(ci, ri)−DλiV ),

where ri, ci are as defined in (30).
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We are now in position to write down the resulting HJBI. The remaining

maximizations over (q, z, φ) will essentially remain unaffected, so that the

HJBI equation is the same as before with but with the extra term

∆Jrec =
1

2
J0(D2

λV,DΩV )Tr(λλTD2
λV )− 1

2
J0λ

TDλV + J1(D2
λV,DΩV )

+J2(D2
λV,DΩV ) + J3(DλV,DKV ),

which is nonlinear in the second order derivatives with respect to λ.

The HJBI for the recursive model will now be of the form

Jrec = Jnonrec + ∆Jrec = 0.

The nonlinear terms in the higher order derivatives introduce serious

diffi culties as well as possible new features to the HJBI equation for the

recursive utility case as compared to the HJBI equation for the additive

utility, which is linear in the second order derivatives. The mathematical

treatment of this equation is under active consideration, with our prime

interest being in the qualitative features of this equation and the possibility

of occurence of hot spot formation behaviour.

The above analysis suggest that the solution of the problem with recur-

sive utilities is a formidable task. In this section we provided a set up of

the problem which we think it constitutes an interesting area for further

research.
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