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1 Introduction

In the econometric literature it is widely acknowledged that since the introduction of au-

toregressive conditional heteroskedasticity models, the so-called GARCH models, see Engle

(1982) and Bollerslev (1986), the research on this class of models has been steadily increas-

ing over the years. The study of statistical properties of the models is important from a

theoretical perspective, but also for statistical inference and applied work. The asymptotic

properties of estimators have been explored under many di¤erent model considerations, both

in the univariate and multivariate frameworks, see for instance Weiss (1986), Lee and Hansen

(1996), Lumsdaine (1996), Jensen and Rahbek (2004), Jeantheau (1998), Comte and Lieber-

man (2003) to cite a few of classical papers in the GARCH literature.

One of the most important extensions of GARCH models, that is also widely used in many

�nancial applications, is the Exponential GARCH (EGARCH) model of Nelson (1991), which

became immediately a classical GARCH model in �nancial econometrics. Comparing to the

standard GARCH model, exponential-type models enable richer volatility dynamics and the

distinctive advantage of the EGARCH is that the model captures the negative dynamic asym-

metries noticed in many �nancial series, i.e. the so-called leverage e¤ect. Also, their �tted

values of volatility are guaranteed to be positive due to their log-linear form, which implies

that non-negativity parameter restrictions are avoided. He et al. (2002) analyzed the theoret-

ical properties of this model, and Hafner and Linton (2017) proposed an alternative estimator

for the EGARCH model, which is available in a closed form and discussed its properties. The

asymptotic properties of maximum likelihood estimators1 in this model have not been fully

explored until recently, see Wintenberger (2013), Kyriakopoulou (2015), Straumann (2005),

and Straumann and Mikosch (2006).

Although the EGARCH model is in widespread use, there is no �nite sample theory

available for maximum likelihood (ML) and quasi-maximum likelihood (QML) estimators of

its parameters. The existing results in the literature cover only the GARCH models and it

seems that there is no direct extension to the case of the EGARCH model. Linton (1997)

was the �rst to provide an asymptotic expansion in the �rst-order GARCH model. The small

1Za¤aroni (2009) estimated the EGARCH parameters with Whittle methods and the asymptotic distrib-

ution theory of these estimators was established.
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sample estimation bias and properties of GARCHmodels and extension of that in the in-mean

case have been studied by Iglesias and Phillips (2002, 2011, 2012). However, little is known

about the small sample properties of the QML estimators in the EGARCH model. Only Deb

(1996) examined the �nite sample properties of the maximum likelihood and quasi-maximum

likelihood estimators of the EGARCH(1,1) process using Monte Carlo methods. He used,

however, response surface methodology in order to examine the �nite sample bias and other

properties of interest, by summarizing the results of a wide array of experiments. Perez and

Za¤aroni (2008) compared the �nite sample properties of the ML and Whittle estimators, in

terms of bias and e¢ ciency, in the EGARCH model and its long-memory version, con�rming

that maximum likelihood is more e¢ cient.

In this paper we study the �nite sample theory of maximum likelihood estimators of the

EGARCH(1; 1) parameters and to do this we �rst derive the, up to 1=T order, Edgeworth

type expansions, where T denotes the sample size. In fact, we derive the so-called Edgeworth-

B coe¢ cients, see Linton (1997). For a discussion about the Edgeworth expansion we refer

to the monograph of Hall (1992). Speci�cally, we derive conditions on the parameter space

so that the derivatives of the likelihood function are stationary. Based on the expansions we

derive, we also provide bias approximations of the same order.

For a parameter vector ' and any consistent estimator b'T an approximate bias corrected
estimator is the solution of

min
'
kb'T � '�BT (')k ; (1)

with BT (') the bias of b'T , where ' + BT (') is a (potentially stochastic) approximation of
E'b'T (see Arvanitis and Demos, 2015) and k�k denotes the Euclidean norm. The solution
of the above minimization problem is called here as full-step bias corrected estimator. It is

worth noticing that, according to Arvanitis and Demos (2015, 2016), the derived estimator in

this way is an Indirect Inference estimator with the binding function being the identity (see

e.g. Gourieroux et al., 1993 for de�nitions of Indirect Inference estimators and also Arvanitis

and Demos, 2015, Demos and Kyriakopoulou, 2013, and Gourieroux et al. 2000 for the bias

properties of them).

Another possible solution of the above minimazation problem is

e'T = b'T �BT (b'T ) ;
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where the term BT (b'T ) denotes the bias of b'T evaluated at b'T . The estimator e'T is called
here as the �rst-step bias corrected one (see Arvanitis and Demos, 2015) and is the paradigm of

a vast literature of approximate bias correction (see Cordeiro and McCullagh, 1991, Cordeiro

and Klein, 1994, Cox and Hinkley, 1994, Fernandez-Val and Vella, 2011, Gourieroux et al.,

2000, Iglesias and Phillips, 2011, Linton, 1997, MacKinnon and Smith, 1998, and Rilstone et

al., 1996).

To asymptotically approximate E'b'T , one could assume that b'T can be represented as
a ratio of quadratic forms in normal (see Magnus, 1986) or non-normal (see Ullah and Sri-

vastava, 1994) random variables and consequently, an asymptotic approximation of the ex-

pectation is given by the subsequent integral. Examples are provided by Phillips (2012), and

Bao and Ullah (2007b) in the context of maximum likelihood estimator. Another procedure

is to employ expansions of b'T , as in e.g. Bao and Ullah (2007a), MacKinnon and Smith
(1998), Newey and Smith (2004), or Rilstone et al. (1996), and then by employing Nagar

(1956) type arguments (see Rothenberg, 1984), to approximate E'b'T by the expectation of
the expansion. In fact, this is the way we follow in this paper, i.e. E'b'T is approximated by
the expectation of the Edgeworth-B expansion of b'T .
The approximation of E'b'T by Edgeworth-B means can yield analytically intractable

functions of the parameter vector ' as (some of) the corresponding coe¢ cients may depend on

nuisance parameters, analytically intractable moments etc., especially for the QML estimator.

In order to deal with such cases, we approximate them by employing the equivalent quantities

using the standardized residuals. To this end, a Monte Carlo exercise is conducted and the

results are presented and discussed. We provide two types of the bias correction mechanism,

i.e. the �rst- and the full-step bias corrected, as they have been discribed above, in order to

decide for the bias reduction in practice for the popular model of Nelson. Furthermore, we

employ the residual bootstrap to approximately bias correct the (Q)ML estimators, so that

we end up we three available approximations. We then compare the three approximately bias

corrected estimators in terms of bias and also mean squared errors (MSE). This can be seen

as the �rst time where analytically2 the higher order biases appear in the GARCH literature

2Fiorentini, Calzolari and Panattoni (1996) argue that the computation of analytic derivatives of the log-

likelihood is essential, as the computational bene�t of their use is really substantial for estimation purposes.
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for a nonlinear model like the EGARCH one and these results can now be used as to be

incorporated into the relative analysis of other similar speci�cations, see e.g. Linton (1997),

Iglesias and Linton (2007), Iglesias and Phillips (2012). We conclude that, for given sets of

parameters values, the three approximately bias corrected estimators perform satisfactory.

However, the full-step bias corrected one has relative advantages over the other two.

Notice also that one can employ these type of expansions, the Edgeworth-B distributions,

to construct testing procedures or con�dence sets with possibly better re�ned asymptotic

properties that hold again independent of the choice of local alternatives (see e.g. Hoque et

al., 2006, Phillips and Park, 1988, and Rothenberg, 1984).

The plan of the paper is as follows. The EGARCH model and its estimation are presented

in Section 2. The main results and our contributions are given in Sections 3-5. First, analytic

derivatives and their expected values are presented. Second, conditions for stationarity of the

log-variance derivatives are investigated. In the sequel, the theoretical bias approximations

of ML and QML estimators are calculated and the simulation results for the bias correction

of the estimators are presented. Finally, conclusions can be found in Section 6. Proofs are

collected in the Appendix.

2 The model and estimators

We consider the following model, where the observed data fytg are generated by the �rst-order

EGARCH process of Nelson (1991), i.e. EGARCH(1; 1), in which the conditional variance of

futg, denoted by fhtg, depends on both the size and the sign of the lagged residuals, i.e.

yt = �+ ut = �+ zt
p
ht; t 2 Z (2)

ln (ht) = �+ �zt�1 +  jzt�1j+ � ln (ht�1) ; (3)

where � 2 R, j�j < 1, and fztg is independently and identically distributed (i.i.d.) with

zero mean and unit variance, allowing for the possibility of nonnormality in the conditional

distribution of yt.

The parameters �;  2 R are for the asymmetries that the model captures. That is, �

shows the e¤ect of the sign of ut and, if it is negative, � is the leverage e¤ect parameter.
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On the other hand, the term  jztj represents a magnitude e¤ect and consequently,  is the

coe¢ cient of the magnitude e¤ect. Hence, the coe¢ cients (� + ) and (� � ) (if zt � 0 and

zt < 0, respectively) show the asymmetry in response to positive and negative ut. Both terms

together imply that �z +  jzj � 0, for all z 2 R (see Straumann, 2005) and it makes sense

to impause the inequality  � j�j, i.e. ht as a function of zt�1 should be non-increasing on

the negative real line and nondecreasing on the positive real line. It is worth mentioning that

� is expected to be negative to incorporate the negative correlation between current shocks

and future conditional variance, the well known levarage e¤ect in the stock market returns3.

Furthermore, for �nancial data one expects that 0 < � < 1, to incorporate the volatility

clustering. However, for other data sets this is not the case (see e.g. Arvanitis and Demos,

2004, and McAleer et al., 2007). Finally, one could consider the parameter � to be function

of time, i.e. to have �t, in order to accommodate the e¤ect of any non-trading periods of

forecastable e¤ects (as in Nelson, 1991).

Note from (3) that ln (ht) constitutes a causal AR(1) process with mean �= (1� �) and

error sequence �zt�1 +  jzt�1j. The unique stationary solution to (3), provided that j�j < 1,

is given by its almost sure (a.s.) representation of an MA(1), that is

ln (ht) = � (1� �)�1 +
1X
k=0

�k (�zt�1�k +  jzt�1�kj) ;

which further implies that the log-volatility is lower bounded as

ln (ht) � (�+ E jztj) (1� �)�1 a.s.

The unconditional mean and variance of yt are given by

E (yt) = �;

and

V ar (yt) = exp

�
�

1� �

� 1Y
i=0

E
�
exp

�
�i (�z0 +  jz0j)

��
:

From Theorem 2 in He et al. (2002) and Proposition 1 in Demos (2002) we get that, under

normality of the errors, the variance becomes

V ar (yt) = exp

0@�� 
q

2
�

1� �

1A 1Y
i=0

"
exp

 
�2i (�)2

2

!
�
�
�i�

�
+ exp

�
�2i�2

2

�
�
�
�i�
�#
;

3For an alternative de�nition of the leverage and asymmetry e¤ect see McAleer (2014).
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where � =  + �, � =  � � and � (k) is the value of the cumulative standard Normal

distribution evaluated at k, i.e. � (k) =
R k
�1

1p
2�
exp

�
�x2

2

�
dx.

By far, the most popular estimation method to estimate the parameters of an EGARCH

model is the Maximum Likelihood (ML), assuming that the standardized errors zt are inde-

pendently and identically distributed (i.i.d.) standard normal random variables. However, for

most applications, it is di¢ cult to justify the normality assumption, and consequently the like-

lihood function may be misspeci�ed. However, one can still obtain estimates by maximizing

a Gaussian log-likelihood function even if the normality assumption is violated. The derived

estimators are the so-called Gaussian Quasi Maximum Likelihood ones (QMLEs). This is the

method employed here and is justi�ed by empirical evidence that conditional distributions of

asset returns are often thick tailed.

An important and interesting feature of the EGARCH model is that the assumption of

the block diagonality of the information matrix no longer holds, even if the distribution of

the standardized errors is symmetric. This is also the case for the ARCH-in-Mean model

and the asymmetric Augmented ARCH model, see Bera and Higgins (1993), p. 34 and also

Bollerslev et al. (1994), p. 2981. This fact implies that the o¤-diagonal blocks involving

partial derivatives with respect to both mean and variance parameters are not null matrices,

while this is the case in other GARCH-type models. Below we present analytic proofs of

this argument in the context of the EGARCH(1; 1) model and these results disaccord with

Malmsten (2004), even if the distribution of the innovations is symmetric, which implies that

Ez3 = 0.

In the EGARCH(1,1) model, the exact conditional log-likelihood function is not known,

as it depends on unobserved initial values z0 and h0. Here we assume that z0 = 0 and

ln (h0) =
�
1�� and consequently, we maximize an approximation of the Gaussian log-likelihood.

Under the appropriate conditions, the �ltered conditional variances converge to the true

ones at an exponentially fast rate. This is the base for the almost sure convergence of the

QML estimator (see Straumann, 2005, and Straumann and Mikosch, 2006). However, these

conditions are di¢ cult to check and almost imposible to impose. Hence, the approximate
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average conditional Gaussian log-likelihood function is given as follows

`T (�; �; ; �; �j z0; h0) = �
1

2
ln (2�)� 1

2

1

T

TX
t=1

"
ln (ht) +

(yt � �)2

ht

#
: (4)

Notice that ht and zt are both functions of the parameters. We denote the parameter vector

by ', i.e. '=(�; �; ; �; �)0. The �rst order conditions are recursive and consequently do not

have explicit solutions.

The likelihood function is derived as though the errors are conditionally normal and is still

maximized at the true parameters (see Straumann, 2005). Having speci�ed the log-likelihood

function, the QML estimator of ' is then de�ned as any measurable solution of

b'T = argmax
'2�

`T (') : (5)

The parameter space is of the form

� = R�D � [0; 1)� R;

where

D =
�
(�; )0 2 R2 j � 2 R;  � j�j

	
:

3 Stationarity of the log-variance derivatives

In this section we investigate under which conditions the log-variance derivatives are station-

ary, needed for the existence and the evaluation of the log-likelihood derivatives, and hence

in order to calculate the bias expressions of the QMLEs. The uniqueness of stationary and

ergodic derivatives of the conditional variance is important when studying the validity of a

Taylor series expansion of the �rst order log-likelihood derivatives. For the next Proposition

we make the following assumption:

Assumption 1 let us denote zt by z, for simplicity. We assume that the following conditions

hold true.

1.
��� � 1

2
E jzj

�� < 1
2.
���2 + 1

4
�2 + 1

4
2 � �E jzj+ 1

2
�E (z jzj)

�� < 1
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3.

������ �
3 + 3

4
��2 + 3

4
�2 � 1

8
�
�
�2 + 32

�
E (z3)� 3

2
�2E jzj

+3
2
��E (z jzj)� 1

8

�
2 + 3�2

�
E jzj3

������ < 1
Proposition 1 If Assumption 1 is satis�ed, then the second-order stationarity of all log-

variance derivatives follows.

Proof. The proof comes from the analytic results of the log-variance derivatives that are

presented in the supplemented Technical Appendix (TA)4.

As we have already mentioned, it is reasonable to believe that  and � are positive, at

least for data that exhibit volatility clustering. Consequently, the conditions in the above

proposition may seem to be restrictive, at least at a �rst glance. However, we might con-

sider the following example that sheds some light on those conditions. Consider (�; ; �)0 =

(0:9; 0:7;�0:4)0, which is the �rst set of parameters that we consider in the simulations section.

Then, under the assumption of normality of errors we get that the conditions of Assumption

1 take the values of: 1. 0:621, 2. 0:392, and 3. 0:354, where for (�; ; �)0 = (0:9; 0:6;�0:2)0

the condition values are: 1. 0:661, 2. 0:422, and 3. 0:324.

Let us now illustrate the content of this section by considering the following example,

where this notation applies: ht;� =
@ ln(ht)
@� , ht;�;� =

@2 ln(ht)
@�@� etc.

ht;�ht;�� =
1

4
(�zt�1 +  jzt�1j)h2t�1;� +

1

4
(�zt�1 +  jzt�1j)

�
� � 1

2
�zt�1 �

1

2
 jzt�1j

�
h3t�1;�

+

�
� � 1

2
�zt�1 �

1

2
 jzt�1j

�
ht�1;�;�

+

�
� � 1

2
�zt�1 �

1

2
 jzt�1j

�2
ht�1;�ht�1;�;�: (6)

In order to calculate the expected value of the above expression, we �rst assume that E
�
h2t;�
�
,

E
�
h3t;�
�
, and E (ht;�;�) exist. Next, de�ne

A (zt�1) =
1

4
(�zt�1 +  jzt�1j)h2t�1;�

+
1

4
(�zt�1 +  jzt�1j)

�
� � 1

2
�zt�1 �

1

2
 jzt�1j

�
h3t�1;�

+

�
� � 1

2
�zt�1 �

1

2
 jzt�1j

�
ht�1;�;�;

4This is available from the authors if any reader is interested in those results.
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and

B2 (zt�1) =

�
� � 1

2
�zt�1 �

1

2
 jzt�1j

�2
:

Then,

ht;�ht;�� = A (zt�1) +B
2 (zt�1)ht�1;�ht�1;�;� =

= A (zt�1) +
1X
k=1

k�1Y
i=0

B2 (zt�1�i)A (zt�1�k) :

The in�nite sum converges almost surely. To see this, let

Sn = A (zt�1) +

nX
k=1

k�1Y
i=0

B2 (zt�1�i)A (zt�1�k) :

Then we have

E (Sn) = E [A (zt�1)] +
nX
k=1

E

"
k�1Y
i=0

B2 (zt�1�i)

#
E [A (zt�1�k)]

= E [A (zt�1)]

"
nX
k=0

�
E
�
B2 (zt�1�i)

�	k#
:

Thus, E (limn!1 Sn) = E [A (zt�1)] f1� E [B2 (zt�1�i)]g�1 <1, providing thatE [A (zt�1)] <

1. In order to ensure the existence of a stationary solution to the (6), we should impose the

condition that

E
�
B2 (zt�1�i)

�
< 1:

In a similar manner, the rest stationarity conditions of all log-variance derivatives and prod-

ucts of them follow.

4 Finite sample properties and bias approximations

In this section we develop the bias approximations for ML and QML estimators in the

EGARCH(1; 1) model5. One of the main advantages of developing the bias expressions is

to employ them as a bias correction mechanism. This is one of the practical applications

of the bias approximations. Moreover, these results help to analyse the consequences of in-

troducing restrictions in the log-variance parameters. With these expressions, one can also
5Iglesias and Phillips (2002) developed theoretical bias approximations for the MLEs of the parameters in

an ARCH(1) model.
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compute the Edgeworth approximate distribution. It is also important to explore the theo-

retical properties of the estimators so that statistical inference can be possible.

We employ a McCullagh (1986) result for the standardized estimator having a stochastic

expansion and taking expectations we end up with the asymptotic bias of the QML estimator.

Our next step is to check our bias approximations through simulations. Note that McCullagh�s

expansion has already been applied in the literature to retrieve the bias in many nonlinear

models, such as Linton (1997) and Iglesias and Phillips (2012). When dealing with nonlinear

models, it is very common to have the bias expressions in terms of expectations and applying

these expressions for bias correction. At this point, it is important to state brie�y the main

di¤erences between our analysis and that of Linton (1997). We generalize the �nite-sample

analysis of heteroskedastic time series models considering a non-symmetric distribution of

the errors. Furthermore, we show that the block-diagonality of the information matrix does

not hold in our case, which implies that new terms appear in the bias expressions of the

estimators. This means that we cannot use the results that appear in the literature from the

analysis of the classical GARCH model, since our case seems not to be a direct extension.

Notation 1 In what follows, for i; j; k = f�; �; ; �; �g,

� i =
1

T

TX
t=1

E (ht;i) ; � i;j =
1

T

TX
t=1

E (ht;iht;j) ; � ij;k =
1

T

TX
t=1

E (ht;ijht;k) ;

� i;j;k =
1

T

TX
t=1

E (ht;iht;jht;k) :

Also,

� =
1

T

TX
t=1

E

�
1

ht

�
, and �i =

1

T

TX
t=1

E

�
1

ht
ht;i

�
:

Assumption 2 We assume that the errors have bounded J th moments, for some J > 6, and

we denote by �3 and �4 their third and fourth order cumulants, where the latter is given by:

�4 = E
�
z4t � 3

�
:

Under the Assumption 2, we are now able to present our next Theorem, which is useful

for the evaluation of the bias approximations of all estimators and also to construct the

Edgeworth expansions in this setting. This result may be viewed as generalization of that in
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Linton (1997). Valid Edgeworth expansions in the case of the GARCH model are established

by Corradi and Iglesias (2008). The next Theorem uses the same notation as in Linton (1997),

i.e. Li; Lij; and Lijk denote the derivatives with respect to i; j; k of the log-likelihood `T (').

Theorem 1 Given that zt � iid (0; 1) and non-symmetric, and for i; j; k = f�; �; ; �; �g,

unless the parameter � is used separately to underline the di¤erence, the following moments

of the log-likelihood derivatives (see Appendix A for analytical expressions) converge to �nite

limits as T !1:

cij =
1
T
E (Lij) = �1

2
� i;j;

cijk =
1
T
E (Lijk) = �1

2
(� ij;k + � ik;j + � jk;i � � i;j;k) ;

cij;k =
1
T
E (LijLk) = �1

4

�
� zzk;i;j � (�4 + 2) (� ij;k � � i;j;k)

�
;

c�� =
1
T
E (L��) = �

�
� + ��;�

2

�
;

ci�� =
1
T
E (Li��) = �i � 1

2
(� i;�� + 2��i;� � ��;i;�) ;

c��� =
1
T
E (L���) = �1

2

�
3���;� � � 3�

�
+ 3��;

ci�;� =
1
T
E (Li�L�) = �1

4

8<: 4�i � (�4 + 2) (� i�;� � � i;�;�)

+� zz�;i� + 2�
zh
i;� + 2�3

�
2�hi;� � �hi�

�
9=; ;

ci�;j =
1
T
E (Li�Lj) = �1

4

�
� (�4 + 2) (� i�;j � � i;j;�) + � zz�;i� + 2�3�hij

	
;

c��;i =
1
T
E (L��Li) = �1

4

�
� (�4 + 2) (���;i � � i;�;�) + � zzi;�� + 4�3�hi;�

	
;

cij;� =
1
T
E (LijL�) = �1

4

8<: � (�4 + 2) (� ij;� � � i;j;�) + � zz�;ij + 2� zhi;j
+2�3

�
2�hi;j � �hij

�
9=; ;

c��;� =
1
T
E (L��L�) = �1

4

8<: 8�� � (�4 + 2) (���;� � ��;�;�)

+� zz�;�� + 2�
zh
�;� + 2�3

�
3�h�;� � �h��

�
9=; ;

where

� zzk;i;j =
1

T

XX
s<t

E
��
z2s � 1

�
hs;kht;iht;j

�
; � zhi;j =

1

T

XX
s<t

E

�
zs

1p
ht
ht;iht;j

�
;

�hi;� =
1

T

TX
t=1

E

�
1p
ht
ht;iht;�

�
and �hi� =

1

T

TX
t=1

E

�
1p
ht
ht;i;�

�
:
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Proof. The proof comes immediately from the auxilliary Lemma 1 (in Appendix C) and the

results of Appendix B.

In the following, we make use of the summation convention mechanism6, that is cijZj =X
j

cijZj , in which repeated indices in the expression are to be summed over. Note that

cij is the i; j-element of the matrix inverse of fcijg. Let us �rst consider the case when the

mean parameter is supposed to be equal to zero and not estimated. With techniques of

McCullagh (1986), the standardized estimators, derived from choosing ' to solve Li (') = 0,

for i = f�; �; ; �g, have the following stochastic expansion

p
T
�b'T;i (�)� 'i	 = �cijZj + 1p

T

�
cijcklZjkZl � cijcklcmncj lnZkZm=2

	
+OP

�
T�1

�
; (7)

where

Zj = T
�1=2Lj

and

Zjk = T
�1=2 fLjk � E (Ljk)g

are evaluated at the true parameters and are jointly asymptotically normal. Raising pairs of

indices signi�es components from the matrix inversion. In order to derive the bias approxi-

mations, we need to �nd expressions for their following components: cij; cijk and cjk;l.

Taking expectations of the right-hand side in (7), and up to order O
�
T�1=2

�
, we get

E
hp
T�0 fb'T (�)� 'gi = 1p

T
�ic

ijckl fcjk;l + cjkl (�4 + 2) =4g ;

where � is the 4 � 1 choice parameter vector, i.e. if one wants the expectation for only the

parameter  then � = (0; 0; 1; 0; 0)0. It also allows to evaluate the expectation for a linear

combination of the parameters of interest, e.g. if one is interested in the expectation of +2�

then � = (0; 2; 1; 0; 0)0. If �4 = 0, QML equals ML and then the above formula equals the

one of Cox and Snell (1968), i.e.

E
hp
T�0 fb'T (�)� 'gi = 1p

T
�ic

ijckl
�
cjk;l +

1

2
cjkl

�
:

6This is a technique for simplifying expressions including summations of vectors, matrices, and general

tensors.
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Let us now consider the other case, where the mean parameter is unknown and estimated,

i.e. i = f�; �; ; �; �g. Hence, if we incorporate the e¤ects of estimating �, the up to order

OP
�
T�1=2

�
stochastic expansions now take the following form

p
T
�b'T;i � 'i	�pT �b'T;i (�)� 'i	 = 1p

T

�
cijcklZjkZl � cijcklcmncj lnZkZm=2

	
;

where now i; j; k; l = f�; �; ; �; �g. Taking expectations of the right-hand side, we �nd the

asymptotic bias of the estimators.

Tables 1 and 2 show the evolution of the bias in absolute value of all parameters, for known

values of (�; �; ; �) which are � = 0:1; � = 0:9;  = 0:7; � = �0:4, under the assumptions

of normality and mixture of normals, respectively. The results were checked through Monte

Carlo simulations with 5000 replications. By far the constant � presents the highest bias.

Further, the QMLEs are more biased than the MLEs, especially for smaller sample sizes.

In terms of the mean squared error, from (7) we have up to O (T�1)

E
hp
T�0 fb'T � 'gi2 = ��icij (�4 + 2) =2; (8)

which is the asymptotic variance. If we let the remainder to be of order O
�
T�3=2

�
, then the

mean squared error is again evaluated by (8), with the di¤erence now that there would be

added terms of order O (T�1). Of course, as T !1, the mean squared error approaches the

asymptotic variance.

5 Simulations

In this section we make a simulation exercise in order to check the adequacy of our theoretical

results and be able to proceed with the bias correction of the estimators. We draw random

samples of size 500; 750; 1500; 3000; 5000; 10000; 25000; 50000 observations and 500 observa-

tions for initialization, under �rst the assumption of normality and second the assumption

of mixture of normals. We make 5000 replications for all sample sizes. The mean parameter

� is supposed to be equal to zero and hence is not estimated, so the parameter vector is

' = (�; �; ; �)0. We check the performance of the bias correction mechanism for di¤erent

sets of parameter values and we will present the results for three sets, i.e. (0:1;�0:4; 0:7; 0:9)0,

14



(�0:1;�0:2; 0:6; 0:9)0 and (0:5;�0:5; 0:8; 0:5)0. The �rst two sets include values for the para-

meters that are close to what is observed from �nancial data. We multiply the bias by T and

not
p
T , i.e. E (T kb'T � 'k), as in this way we keep a constant term in the bias expressions

that is important to distinguish what happens when we increase the sample size, as the next

terms in the expressions will tend to zero, as T !1.

The bias correction mechanism is constructed, �rst, under the speci�cation of two meth-

ods. The �rst one, called �rst-step correction, is the classical one, in which we estimate the

model and we retrieve the estimated parameters. Next, we compute the bias expressions

by using the estimates and we are then able to correct the bias of the estimators with the

corresponding values of the bias, i.e.

e'T = b'T � 1

T
bias (b'T ) ;

where bias (b'T ) is the 1
T
term in the expansion of E (b'T ) evaluated at b'T , i.e. all cij; cij;k; and

cijk; for i; j; k = f�; �; ; �g, are evaluated at b'T and the nuisance parameters are estimated
from the standardized residuals. Further, notice that there is nothing to prevent the case ofe'T being outside the admissible area (see also Linton, 1997 as well as Iglesias and Linton,
2007). This will a¤ect both the estimated bias and the MSE of the �rst-step bias corrected

estimator.

The second method that we employ, called full-step correction, is a method proposed by

Arvanitis and Demos (2015), in which we solve the optimization problem in (1), and the

full-step correction estimator, denoted by b'FT , is given by
b'FT = argmin

'2�

b'T � '� 1

T
bias (')

 ;
where bias (') is the 1

T
term in the expansion of E (b'T ) as a function of ' and the nuisance

parameters are, again, estimated from the standardized residuals. In this respect, this method

is a multi-step maximization procedure, using numerical derivatives. This justi�es the name

of the �rst method, which is the �rst step of the multi-step optimization problem. In this

way, the second method incorporates the constraints that are imposed on the coe¢ cients and

as a consequence the corrected estimate of the EGARCH parameters cannot lie outside the

admissible region, i.e. the corrected � will be less than one in absolute value.
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Furthermore, as a third bias corrected estimator we evaluate the bootstrapped one7. For

each Monte Carlo experiment we perform H = 5000 bootstraps to the standardized residuals,

estimated employing the (Q)MLE. For each bootstrap sample we then evaluate the (Q)MLEs

and form the bias corrected bootstraped estimator as:

b'BT = 2b'T � 1

H

HX
i=1

b'iT :
Figures 1 and 2 represent the bias correction performance under the normality assumption,

of the �rst two sets of parameters. To conserve space, the results for the third set of parameters

is not presented, as the are qualitatively the same. In both �gures we present T
S

SX
i=1

b'T;i � ',
an estimator of E (T kb'T � 'k), for S = 5000; the number of Monte Carlo experiments

and b'T;i any of the four estimators, i.e. the MLE (b'T ), the �rst-step bias corrected (e'T ),
the full-step bias corrected

�b'FT �, and the bootstrap corrected one �b'BT �. For the �rst set
of parameter values (Figure 1) we see that the bias correction works in all cases and the

approximate corrected bias estimators have estimated biases almost 25% of the estimated

MLE. The same applies for the second set of parameters (Figure 2). Hence, we can conclude

that all three approximate bias corrected estimators, i.e. �rst-step, full-step, and bootstrap

corrected, reduce the bias of the MLE by 75%, at least for the set of parameters considered

here. It is worth mentioning that the estimated biases of the MLE is close to the theoretical

ones, i.e. for the �rst set of parameter values the theoretical bias is 21:75, whereas for the

second one is 19:86,

When dropping the normality assumption, we run the simulations under the hypothesis of

mixture of normals for standardized random variables (see Figure 3 and Figure 4). In fact, the

errors are drawn from a normal distribution with mean 0:01 and variance 9, with probability

0:1, and with probability 0:9 they are drawn from a normal distribution with mean �0:001

and variance 0:111. In this way, the theoretical mean and variance of the distribution are 0

and 1, respectively. Notice that with these hyperparameter values the theoretical skewness

and kurtosis of the random errors are 0:0266 and 24:334 respectively, approximately matching

the sample counterparts of most high frequency �nancial data.

From Figures 3 and 4 it seems that the estimated biases of the corrected estimators are

7For asymptotics, see Bickel and Freedman (1981).
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almost 50% lower the ones of the QMLEs. The only exception is the �rst-step corrected

estimator for the �rst set of parameter values. This is attributed to the fact that in more

than 10 Monte Carlo cases, the bias corrected estimator of � is outside the admissible interval,

i.e. the estimated values of � are greater than 1. Again, the estimated biases of the QMLEs

are close to the theoretical ones which are 50:23 and 39:38, for the two set of parameter values,

respectively.

It seems that the non-normality of the errors increases, almost doubles, the bias of the

QMLEs, for both set of parameter values. in which we have selected di¤erent values of

the coe¢ cient �, i.e. low (0:5) and high (0:9). Figure 1 (under normality) and Figure 4

(under mixture of normals) are constructed under the same set of parameter values and it

is interesting to compare between the two cases. As in the case of normality, we see that

in Figure 4 the bias correction of the estimators works in most cases and the results are

satisfactory. In Figure 3, the corrected bias is again under the bias of the MLEs, indicating

that the theoretical results correct the bias, under the assumptions made.

In terms of mean squared error, in Figure 5 we present the estimated MSEs, multiplied

by the number of observations T , of the four estimators for the �rst set of parameter values,

whereas Figure 6 present the ones for the second set, both under normality. It seems that all

estimators have the same, more or less, MSEs.

Dropping normality, it seems that the estimated MSEs are double, as compared to the

ones under normality, for both set of parameters values (see Figures 7 and 8). The exception

is again the MSE of the �rst-step bias corrected one, due to the few cases over correction for

the parameter �.

In all, it seems that, in terms of bias and MSE, the full-step and bootstrap approximate

bias corrected estimators perform better than the classical �rst-step one, with litle di¤erence

between them. However, there is a big di¤erence between the two in terms of time e¢ ciency.

Table 3 presents the average CPU time per Monte Carlo iteration for the �rst set of para-

meters, under normality8. It is obvious that the procedure to get the full-step approximate

bias corrected estimator is from 178 to 293 times faster than the boostrap one. Of course,

8To solve the optimization problems the same routine is employed, i.e. the NAG routine EO4JBQ in

Fortran.
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one could improve the time performance of the boostrap estimator by decreasing the number

of bootstraps. This, however, would increase the bootstrap error and thereby increasing the

MSE of the bootstrap corrected estimator. To investigate the optimal number of bootstraps,

in terms of time-MSE, is outside the scope of the present paper.

6 Conclusions

In this paper we study the �nite sample properties of ML and QML estimators in the

EGARCH(1; 1) model of Nelson (1991). We present analytic derivatives of both the log-

likelihood and the log-variance functions. We further develop theoretical bias approximations

for the estimators of the model parameters, up tp order O (T�1), and we derive conditions for

the second-order stationarity of the log-variance derivatives. We employ the provided formu-

lae to produce approximate bias corrected estimators, for both ML and QML estimators. As

these estimators are solutions of multistep minimization procedures are called full-step bias

corrected estimators. In fact these estimators are Indirect Inference ones, where the binding

function is the identity.

In a simulation exercise, we compare the performance of the suggested approximate bias

corrected estimator with the commonly employed "feasibly biased corrected" one, called here

�rst-step, as it is an one-computational step approximation of the suggested estimator and

the bootstrap corrected one. The results suggest that the full-step estimator avoids the

overcorrection of the �rst-step one. Further, its bias parformance is more or less the same as

the bootstrap corrected one and they share the same MSEs. However, the suggested method

is considerably faster than the bootstrap one.

An interesting idea for future research would be the investigation of necessary and su¢ cient

conditions for the existence and validity of the Edgeworth approximations in this context.

Also, one might consider the case of the EGARCH-in-Mean model and employ the results

presented here. This model examines the relation between the level of market risk and required

return and its estimation theory and asymptotic properties of the QMLE have been studied

by Hafner and Kyriakopoulou (2017).
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Appendix A Analytic derivatives of the log-likelihood

function

In this Appendix we present analytic derivatives of the log-likelihood function, which are

needed to evaluate the asymptotic bias of the QMLEs and to calculate the cumulants of

the Edgeworth distribution. It is of great importance to mention here that there are no

such analytic results in the related literature of the �nite sample theory of the conditional

heteroskedastic models, and it is especially this feature that makes this analysis to di¤er from

the previous one, that of Linton (1997), who studied the case of the GARCH(1; 1) model. Let

us proceed with the derivatives of the log-likelihood function and their analytic representation.

In the following, ht;� denotes the �rst derivative of the log-variance, ht;�;� the second deriv-

ative and so on. The derivatives of the log-likelihood function with respect to all parameters
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are stated below
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The cross derivatives are given by the following expressions
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Note that the log-likelihood derivatives are expressions of the log-variance derivatives, ht;�,

where the latter are given in the Appendix. The expected values of the log-likelihood deriv-

atives are also given in the Appendix.
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The cross-products of the log-likelihood derivatives for i; j = f�; �; ; �g are
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Appendix B Expected values of cross products of the

log-likelihood derivatives

Here we present the expected values of cross-products of the log-likelihood derivatives. To

conserve space, we present only some indicative. That is,
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At this point, we should note that these results di¤er from those in the paper of Linton

(2007), due to the fact that we assume non-symmetric distribution of the errors and also none

of these expressions are zero, since the block-diagonality of the information matrix in the case

of the EGARCH(1; 1) model does not hold.

Analytic proof of the �rst result is given as follows
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Appendix C Auxilliary Lemma

Lemma 1 (log-likelihood derivatives) The expected values of the second and third log-

likelihood derivatives are given by the following expressions.

30



For i; j = f�; �; ; �g ;

E (Lij) = �T
2
E (ht;iht;j) ;

E (L�j) = �T
2
E (ht;�ht;j) ;

E (L��) = �TE
�
1

ht

�
� T
2
E
�
h2t;�
�
;

and

E (Liii) = �
T

2
E
�
3ht;iht;i;i � h3t;i

�
;

for i = f�; �; ; �g ; and j = f�; �; ; �; �g ;

E (Liij) = �
T

2
E
�
ht;jht;i;i � h2t;iht;j + 2ht;iht;i;j

�
;

for i; j = f�; �; ; �g ; and k = f�; �; ; �; �g ;

E (Lijk) = �
T

2
E (ht;jht;i;k + ht;kht;i;j + ht;iht;j;k � ht;jht;iht;k; ) ;

for i = f�; �; ; �g ; and j = �;

E (Lijj) = �
T

2
E
�
ht;iht;j;j + 2ht;jht;i;j � ht;i (ht;j)2

�
+ TE

�
1

ht
ht;i

�
;

for j = �;

E (Ljjj) = �
T

2
E
�
3ht;jht;j;j � h3t;j

�
+ TE

�
3
1

ht
ht;j

�
:

Proof. The results come immediately from applying the expectation to the terms of the

log-likelihood derivatives which are given in the Appendix A. Analytic results of these expec-

tations to what they are equal to are given in the Technical Appendix (TA).
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T b� bias b� bias b bias b� bias
500 0:0389 �0:0048 �0:0134 �0:0046

750 0:0257 �0:0029 �0:0101 �0:0031

1500 0:0123 �0:0014 �0:0043 �0:0013

3000 0:0063 �0:0007 �0:0028 �0:0006

5000 0:0036 �0:0004 �0:0017 �0:0003

10000 0:0020 �0:0003 �0:0008 �0:0001

25000 0:0009 �0:0001 �0:0005 �0:0001

50000 0:0003 0:0000 �0:0001 �0:0001

Table 1: Biases of ML estimators under normality with � = 0:1; � = 0:9;  = 0:7; � = �0:4:

T b� bias b� bias b bias b� bias
500 0:0720 �0:0163 �0:0560 �0:0139

750 0:0492 �0:0107 �0:0401 �0:0073

1500 0:0194 �0:0036 �0:0229 �0:0008

3000 0:0089 �0:00017 �0:0106 �0:0001

5000 0:0056 �0:0010 �0:0085 �0:0001

10000 0:0030 �0:0006 �0:0034 �0:0002

25000 0:0003 �0:0001 �0:0014 0:0001

50000 0:0001 0:0000 �0:0008 �0:0001

Table 2: Biases of QML estimators under mixture of normals with

� = 0:1; � = 0:9;  = 0:7; � = �0:4:
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T Full-Step Bootstrap

500 0:20 52:23

750 0:22 64:65

1500 0:30 95:31

3000 0:54 148:26

5000 0:73 163:44

10000 1:43 254:67

25000 3:11 683:49

50000 5:23 1202:35

Table 3: Average CPU time/MC iteration, �rst set of parameter values, under normality

Figure 1: Bias of all estimators under normality with � = 0:1; � = 0:9;  = 0:7; � = �0:4:
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Figure 2: Bias of all estimators under normality with � = �0:1; � = 0:9;  = 0:6; � = �0:2:

Figure 3: Bias of all estimators under mixture of normals with

� = 0:1; � = 0:9;  = 0:7; � = �0:4:
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Figure 4: Bias of all estimators under mixture of normals with

� = �0:1; � = 0:9;  = 0:6; � = �0:2:

Figure 5: MSEs of all estimators under normality with � = 0:1; � = 0:9;  = 0:7; � = �0:4:
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Figure 6: MSEs of all estimators under normality with � = �0:1; � = 0:9;  = 0:6; � = �0:2:

Figure 7: MSEs of all estimators under mixture of normals with

� = 0:1; � = 0:9;  = 0:7; � = �0:4:
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Figure 8: Bias of all estimators under mixture of normals with

� = �0:1; � = 0:9;  = 0:6; � = �0:2:
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