
1  

 

MODEL SELECTION FOR ESTIMATING CERTAINTY EQUIVALENT 

DISCOUNT RATES 
 

 

Ben Groom∗ Phoebe Koundouri† Ekaterini Panopoulou‡ 

Theologos Pantelidis§ 

 

January 14, 2004 

 

 

 
Abstract 

In a recent paper, Newell and Pizer (2003) (N&P) build upon Weitzman (1998, 2001) 

and show how uncertainty about future interest rates leads to ‘certainty equivalent’ for - 

ward rates (CER) that decline with the time horizon. Such Declining Discount Rates 

(DDR’s) have important implications for the economic appraisal of the long-term policy 

arena (e.g. climate change) and inter-generational equity. This paper discusses the im- 

plications of N&P’s transition from the theory to practice in the determination of the  

schedule of discount rates for use in Cost Benefit Analysis (CBA). Using both UK & 

US data we make the following points concerning this transition: i) to the extent that  

different econometric models contain different assumptions concerning the distribution 

of stochastic elements, model selection in terms of specification and ‘efficiency criteria’ 

has important implications for operationalising a theory of DDR’s that depends upon  

uncertainty; ii) mispecification testing naturally leads to employing models that account 

for changes in the interest rate generating mechanism. Lastly, we provide an analysis of 

the policy implications of DDR’s in the context of climate change and nuclear build in  

the UK and the US. 
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1 Introduction 

 
The deleterious effects of conventional exponential discounting on present values of costs 

and benefits that accrue in the distant future, and the issues of intergenerational equity  

that arise, are well documented (see e.g. Pearce et al 2003). The emergence of a long-term 

policy arena containing issues as diverse as climate change, nuclear build and decommis- 

sion, biodiversity conservation, groundwater pollution etc., and the use of social Cost  

Benefit Analysis (CBA) to guide decision-makers in this arena has brought the discussion 

of long-run discounting to the fore. Discount rates that decline with the time horizon (De- 

clining Discount Rates or DDRs) have often been touted as an appropriate resolution to 

what Pigou (1932) described as the ‘defective telescopic faculty’ of conventional discount- 

ing, and there has been much discussion about the moral and theoretical justification for 

such a strategy (see e.g. Sozou (1998), Dybvig et al (1996), Portney and Weyant (1999), 

Weitzman (1998, 2001), Gollier (2002a)). Of particular interest are the declining yet so- 

cially efficient discount rates resulting from the analysis of Weitzman (1998) and Gollier 

(2002a, 2002b) both of which appear to offer a theoretical path through the ‘dark jungles 

of the second best’ (Baumol 1968) and the intergenerational equity-efficiency trade-off 

contained therein. 

If these theoretical solutions offer even a partial resolution of the problems of con- 

ventional discounting then it is clearly important that they can be operationalised and 

a schedule of DDRs determined. In the case of Gollier (2002a) and Weitzman (1998) 

it is uncertainty that drives DDRs, with regard to future growth and the discount rate  

respectively, thus the question of implementation is one of characterizing the uncertainty 

of these primals in some coherent way. However, of these two approaches it is Weitzman 

(1998) that has proven to be more amenable to implementation mainly because the in- 

formational requirements stop at the characterization of uncertainty, and do not extend 
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to  specific attributes  of future generations’ risk preferences  as would be unavoidable in  

the case of Gollier (2002a, 2002b)1. 

Weitzman’s Certainty Equivalent Discount Rate (CER) is derived from the expected 

discount factor and is therefore a summary statistic of the distribution of the discount 

rate. The level and behavior over time of this statistic is clearly dependent upon the man- 

ner in which uncertainty is characterized and the two applications that exist have taken 

different approaches stemming from different interpretations of uncertainty. Weitzman 

(2001) defines uncertainty by the current  lack of consensus  on the appropriate discount  

rate for the very long term. His survey of professional economists results in a gamma prob- 

ability distribution for the discount rate which leads to the so-called ‘gamma discounting’ 

approach, a version of which can also be seen in Sozou (1998). More recently, in this jour- 

nal, Newell and Pizer (2003) (N&P) suggest that while we are relatively certain about 

the level of discount rates currently, there is considerable uncertainty in future. From this 

standpoint they assume that the past is informative about the future and  characterize 

interest rate uncertainty econometrically by estimating a reduced form time series pro- 

cess using historical US interest data. This yields a working definition of the CER based 

upon an econometric model and allows estimation of the CER schedule from a forecasting 

simulation. 

These applications bring to light some interesting issues concerning the characteri- 

zation of interest rate uncertainty. Firstly it is interesting to note that the decline in 

discount rates in both of these approaches depends upon the persistence of interest rates 

over time. The theoretical model of Weitzman (2001) has this persistence in-built, the 

1Weitzman (1998) assumes risk  neutral  agents  for  exposition,  but  this  represents  a  special  case  of 

his general point. For realistic scenarios, determination of DDRs a  la  Gollier  (2002a,  2002b)  requires 

knowledge of the 4th and 5th derivatives  of  utility  functions,  something  that  he  admits  is  very  far  from 

being accomplished. 



4  

e 

η 

 
assumption being that each individual discounts the future at their preferred constant 

rate. I.e. each of the responses that make up the probability distribution remain con- 

stant over time. In N&P however, the existence of persistence is an empirical question, 

and the existence or otherwise of a unit-root in the series determines the rate of decline 

of the CER. Secondly, beyond choosing a different sample of humanity, it is not imme- 

diately clear how one might improve upon the empirical approach taken by Weitzman 

(2001). However, in the case of N&P there are several additional avenues available for  

the characterization of interest rate uncertainty and the resulting definition of the CER. 

It is these empirical issues that are the main concern of this paper and we build upon 

the following two points. Firstly it is clear that, if we believe that the past is informative 

about the future, it is important to characterize the past as accurately as possible. Indeed, 

the selection of the econometric model is of considerable moment in operationalising a 

theory of DDRs that depends upon uncertainty and defines the CER in statistical terms, 

since each specification differs in the assumptions made concerning the time series pro- 

cess. This will affect the attributes of the resulting schedule of CER. Secondly, selection 

among these models is also an empirical question. Tests for stationarity, model misspeci- 

fication and comparisons among models based upon efficiency criteria should guide model 

selection for the practitioner. N&P, for example, specify a simple AR(p) model of interest 

rate uncertainty, which limits the characterization of uncertainty to a process in which 

the distribution of the permanent and temporary stochastic components is constant for 

all time2. Such a process guarantees declining CERs whilst ignoring the possibility of 

structural breaks. 

2The AR(1) model that they describe provides the following expression for the certainty equivalent 

discount rate: 

r 2 2 
 

= η − tση − σεΩ (ρ, t) . 

Since Ωt (.) > 0, and the variance of the permanent component of the interest rate, σ2 , and the temporary 
 component, σ2, are constant over time, r is a declining function of t. 

o e 
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We revisit these issues for US and UK interest rate data and show that in both 

cases misspecification testing generates a natural progression away from the simple AR(p) 

specification towards models which explicitly consider changes in the time series process 

over time. We select among alternative econometric models by comparison of i) their  

forecasting performance and the associated Mean Square Error (MSE) and ii) efficiency 

criteria derived from the empirical distribution of the future path of the discount factor: 

e.g. coefficient of variation, the proximity of upper and lower percentiles, preferring  

narrower percentiles and lower coefficients of variation. 

These points are illustrated using US and UK interest data and we show the policy 

implications of interest rate uncertainty and model selection in two case studies. The first, 

the value of carbon damages, allows a direct comparison to the work of N&P. We use  

identical data and analyze the same policy issue. The second case study is the appraisal 

of nuclear build in the UK and this brings to light the different econometric specifications 

that are appropriate in the UK context and highlights the limitations of DDRs in resolving 

the issues of inter-generational equity. 

The paper is organized as follows. In Section 2, we introduce the theory of CER 

offered by Weitzman (1998), our methodology for model selection and the econometric 

models used to characterize the uncertainty of interest rates in both the US and UK  

contexts. The results of the estimation and the simulations are presented in Sections 3 

and 4, respectively. Section 5 draws policy implications for model selection in two case 

studies and Section 6 concludes the paper. 



6  

− 

t 

et t
E(P t) 

e 

using the discount factor Pt, where Pt = exp( 
i=1 

exp(− ri) 

 

2 From Theory to Practice 

 
2.1 The Certainty Equivalent Discount Factor and Rate 

 
Discounting future consequences in period t back to the present is typically calculated 

Pt 

 

discounted value of a dollar delivered after t years is: 

 

 

Ã 
X 

! 

 

 

Following Weitzman (1998) we define (1) as the certainty equivalent discount factor, and 

the corresponding certainty-equivalent forward rate for discounting between adjacent pe- 

riods at time t as equal to the rate of change of the expected discount factor: 

− 
dE(Pt)/dt 

= r ≤ E [r ] (2) 

 
where rt is the instantaneous period-to-period rate at time t in the future. This definition 

contains the assumption that individuals are risk neutral, i.e. they are only concerned 

with the expected value of discounted values, rather than higher order moments. This 

represents the economic theory of uncertainty causing a DDR, the result coming from 

noting that (2) is effectively a restatement of Jensen’s Inequality. Operationalising this 

theory requires the determination of the stochastic nature of ret. 

2.2 Parametrization of real interest rates 

 
N&P employed a simulation method to forecast discount rates in the distant future, 

which was properly designed to account for uncertainty in the future path of interest  

rates and was mainly based on the estimation results of two econometric models, namely 

an autoregressive mean-reverting (MR) model and a random walk (RW) model. They 

ri). When r is stochastic, the expected 

E(Pt) = E (1) 
i=1 
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estimated the following AR(p) model3: 

 

 

 
rt =    η + et (3) 

p 

et = aiet−i + ξt 

i=1 

where ξ 
 

 

∼ N (0, σ2), η ∼ N 
¡
η, σ2

¢ 
and 

Pp 
ρ < 1 for the mean-reverting model, while 

k=1 ρk = 1 for the random walk model4 . This model gives their definition of the CER 
 

as follows5: 

 

 

 
r 2 2 

t = η − tση − σξ f (ρ, t) (4) 

 
where η is the mean discount rate and (4) is a declining function of t (See N&P (2003) 

for details). 

Before introducing some alternative econometric models which seem to fit our data 

better, we briefly discuss the importance of model selection in inference and forecasting. 

The selected model should be able to capture the dynamics of the data generating process 

in order to achieve an adequate description of the series under scrutiny. The complexity 

of the model and the restrictions it imposes should correspond to the level of uncertainty 

of the true data generating process. Otherwise, inference can be misleading and the 

forecasting performance of the model may be very poor. 

Model selection should be based on data observation, statistical and misspecification 

testing. For example, the results of unit root tests are crucial in determining a class of 

appropriate models.  Furthermore, misspecification testing is always necessary to check 

the adequacy of econometric models. The existence of autocorrelation, heteroscedasticity 

3The data used was annual long-term government bonds for the period 1798 to 1999 converted to real 

 

rate by subtracting a ten-year moving average of the expected inflation of the CPI. 

4The estimation results are not reported to save space. More details can be found in N&P (2003). 

5 1−ρ2−2 log(ρ)ρt+1(1+ρ−ρt+1 )  1 2 
Where f (ρ, t)=  

2(1−ρ)3 (1+ρ) 
for MR and f (ρ, t)= 12 (1 + 6t + 6t ) for RW. 

p 

t 
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or parameter instability is useful information that the researcher should use to select a  

model that better fits the data. Finally, an out-of-sample forecasting exercise is often 

very useful to examine the forecasting performance of the model. 

We now introduce alternative econometric models that can be used to parametrize the 

real interest rates. As we will see in the following sections, the results of misspecification 

tests will indicate how appropriate these models are in the US and UK cases. It turns out 

that misspecification testing generates a natural progression away from the simple AR(p) 

specification towards models which exhibit heterogeneity. 

First of all, we introduce the AR(p) - GARCH(l, m) model which is often used in 

empirical studies to describe processes that exhibit heteroscedasticity. Using such a model  

to describe the real interest rates gives us: 

rt =  η + et 

p 

et = aiet−i + ξt 

i=1 

ξ =    h1/2zt (5) 

ht =    c + 
X

β ξ2 + 
X

γ ht−i 

 

where the variables are as before and zt is an i.i.d. zero-mean normally distributed random 

variable with unit variance. l and m represent the lags on the terms which make up ht. 

This is a more flexible representation of rt than the AR (p) model. Above all the AR(p) 

- GARCH(l, m) model allows more efficient estimation in the presence of (conditionally) 

heteroscedastic errors and is often thought to better reflect the processes of financial 

variables (Harvey 1993). 

Both the AR(p) and AR(p) - GARCH(l, m) models assume that  the  parameters 

driving the stochastic process are constant over the sample period. This is likely to be an 

unrealistic assumption for the period for which we have data and certainly for forecasting 

the CER over the long-term policy horizon in hand which, following N&P, we assume 

i=1 i=1 
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extends for 400 years. For example, the behavior of interest rates is strongly affected by 

the economic cycles as well as shocks destabilizing them, i.e. periods of economic crisis. 

In the US, for example, during the period 1979 through 1982, the Federal Reserve (FED) 

stopped its usual practice of targeting interest rates and decided to use non-borrowed 

reserves (NBRs) as a target instrument for monetary policy.  As a result, the volatility  

of interest rates increased dramatically during that period. Other factors inducing high 

volatility to the U.S. interest rates were the OPEC oil crisis (1973-1975), the October 

1987 stock market crisis and wars involving the U.S. For this reason a more appropriate 

econometric model might be one that allows for changes in the behavior of interest rates. 

Moreover, the strong persistence in the volatility of the estimated GARCH model6 is an 

indication of a regime-switching mechanism, as it can be an artifact of changes in the rate 

generating mechanism (see for example Gray (1996)). 

Two possible models are used to account for the possibility of time varying parameters 

and regime changes. Firstly, we employ a Regime-Switching (RS) model with two regimes. 

This model provides a more flexible characterization of uncertainty than the simple, single 

regime, AR (p) model. Each regime incorporates a different speed of mean-reversion, along 

with a different permanent component, ηk, and error variance. Specifically, the model is 

as follows: 
 
 

 
 

rt =   ηk + et (6) 
p 

et =    
X

aket−i + ξt 
i=1 

 
 
 
 

where ξt is an i.i.d. zero-mean normally distributed random variable with variance σ2, 

k = 1, 2 for the first and second regime, respectively. At any particular point in time 

6Estimation results are presented in the following sections. 
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there is uncertainty as to which regime we are in. The probability of being in each regime 

at time t is specified as a Markov 1 process, i.e. it depends only on the regime at time 

t − 1. We define the probability that the process remains at the first regime as P, while 

the probability that the process remains at the second regime is Q. The matrix with the 

transition probabilities is assumed to be constant7 . 

Secondly, we model time varying parameters using a State Space (SS) (autoregressive 

random coefficient) model. This is given by the following system of equations: 

 

 
 

rt =   η + αtrt−1 + et (7) 

p 

αt = ηiαt−i + ut 

i=1 
 

where et and ut are serially independent, zero-mean normal disturbances such that: 

 

  

et     
 0  

 

 
 

 σ
2

 

0   

 

 
 

 

ut

 
 ∼ N  

 , 
 0 σ2 

 . (8) 

 

In other words, the interest rate is modelled as an AR(1) model with an AR(p) coefficient. 

This model represents a more flexible representation of the stochastic process than the 

”constant parameter” models. 

Finally, we allow the possibility of multivariate models in order to exploit covariation 

 
between UK and US interest rates. We estimate a VAR model with endogenous variables 

7The matrix of probabilities can be thought of as follows, where Rt refers to the regime at time t. 

 
Pr ob(Rt = 1 | Rt−1 = 1 )= P 

Pr ob(Rt = 2 | Rt−1 = 2) = Q 

Pr ob(Rt = 2 | Rt−1 = 1)= 1 − P 

Pr ob(Rt = 1 | Rt−1 = 2) = 1 − Q 

0 u 
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the real UK and US interest rates. The specification of the model is typically the following: 
 

 

uk       

 
  

  

n1        X 

 
 

 

t−i       

  

e1t       

 

us 

 =  
 +

 i=1 Ai ∗  rus 

t−i  +  
e2t 

 (9) 

 

where Et = (e1t, e2t)0 follows a bivariate normal distribution and Ai are (2x2) matrices 

of coefficients. The VAR models incorporate the interactions between the endogenous 

variables which is important from the perspective of forecasting. 

 

3 Empirical Results for the US 

 
3.1 Estimation Results 

 
First of all, we test the stationarity of the US real interest rates. The Augmented Dickey- 

Fuller (ADF) test failed to reject the null hypothesis of a unit-root. In addition, we 

applied a variety of unit-root tests8 to examine the stationarity of the series, the details 

of which can be found in Table A.1 of Appendix 1. The results generally favoured the  

existence of a unit-root in the series (both levels and logs were examined). However, since 

it is well-known that unit-root tests often lack the power to reject a false hypothesis of 

a unit-root for alternatives that lie in the neighborhood of unity, we estimated both a  

Random Walk (RW) and a mean-reverting (MR) models. Three lags were included in 

both models (p = 3)9 .  Although these models account well for the dependence in the 

mean of the series (as indicated by the tests for serial correlation in the residuals of the 

8We used the  following  unit  root  tests:  the  Augmented  Dickey-Fuller (Dickey  and  Fuller  (1979)), 

the Dickey-Fuller test with GLS detrending (Elliott and al. (1996)), the Elliot-Rothenberg-Stock Point 

Optimal test (Elliott and  al.  (1996)),  the Phillips-Perron  test (Phillips,  P.C.B. and  P. Perron  (1988)), 

the KPSS test (Kwiatkowski et al.  (1992)) and the Ng-Perron test (Ng and Perron.(2001)). 

9Throughout this paper, we use the Scwharz Information Criterion to select the lag-length of the 

alternative models. 

n2 t r 

p 
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regression), they ignore important properties of the data which determine the properties 

of the CER.. 

First of all, the Lagrange Multiplier (LM) test for autoregressive conditional het- 

eroscedasticity (ARCH) in the residuals fails to accept the null hypothesis of homoscedas- 

ticity. In order to accommodate this aspect of interest rate uncertainty, we estimated an 

AR(3) − IGARCH(1, 1) model10.   The estimation results are reported in Table B.1 of 

Appendix 1. 

 
However, the strong persistence in the volatility of the estimated GARCH model is an  

indication of a regime-switching mechanism, as we mentioned previously. Therefore, we 

employed both the RS and SS models to allow for changes in the generating mechanism 

of the US rates. In the case of RS, each regime was modelled as an AR(2) process. The 

SS model was characterized as follows: 

 

 
 

rt =    η + at ∗ rt−1 + et (10) 

at =   η1 ∗ at−1 + ut 

 
which allows the autoregressive coefficient of the process (at) to be an AR(1) process, 

which turns out to be a random walk. The parameter estimates for each of these models  

are presented in Tables C.1 and D.1 of Appendix, 1 respectively. 

So far, we have estimated five alternative models for the US interest rates. It is 

important to compare these models on the basis of the level of uncertainty they allow 

in the generating mechanism of US rates. MR is the simpler model, since it assumes 

second-order stationarity and constant parameters. RW increases the level of uncertainty 

by relaxing the assumption of stationarity. However, it still assumes constant variance 

10Initially,  we  estimated  an  AR(3) − GARCH(1, 1) model.   However,  statistical  testing  indicated  that 

β1 and γ1 sum up to unity. 
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(homoscedasticity) and constant parameters. The AR-GARCH model allows for time- 

varying conditional variance (heteroscedasticity). On the other hand, the RS model and 

the SS model entail a higher degree of uncertainty, since they both allow for time-varying 

coefficients. The RS model describes a non-stationary process with two different regimes. 

However, the process is ”stationary in each regime”. In this regard the autoregressive 

coefficient of SS changes in each period and as a result allows for the higher level of  

uncertainty. 

 

3.2 Certainty-equivalent discount rates and discount factors (US) 

 
Having specified five alternative models for the US rates, we estimated the schedule of 

CER associated with each one from simulations of the discount factor11 . The discount 

factors and the certainty-equivalent discount rates of the models described so far are 

presented in Tables 1 and 2 below12. We can see that the models produce certainty- 

equivalent discount rates with substantial differences in their behavior. The RW model 

and the AR-GARCH model produce lower rates than MR. For example, the certainty- 

equivalent discount rates of the RW model and the AR-GARCH model fall from 4% to 

1.1% and 1.6% after 200 years, respectively. As a result, the discount factors produced by 

the RW model and the AR-GARCH model are substantially greater than those produced 

by the mean-reverting model. For example, at the end of the 400-year forecast period, 

the discount factor of RW is 169 times greater than that of MR. To a great extent this  

reflects the importance of persistence as a determinant of declining discount rates. 

 

{INSERT TABLE 1 AND 2 HERE: 1: Discount Factors , 2: CERs} 

 

The discount factors and the certainty-equivalent discount rates of the RS model and 

the SS model are presented in Tables 1 and 2. Initially, the certainty-equivalent discount 

11The design of the simulation is similar to that of N&P and it is explained in detail in Appendix 4. 

12An initial value of 4 percent is used in the simulation of the future path of the US interest rates. 
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rate of RS is substantially greater than that of SS. However, the certainty-equivalent 

discount rate of RS becomes smaller than that of SS during the last 90 years. Finally, at  

the end of the forecast period, the discount factor of SS is about 38 times greater than 

that of RS. 

In summary, the forecasts of the alternative models differ substantially. However, the 

specification tests show that a model with constant coefficients is not able to fully capture 

the dynamics of the U.S. interest rates over the period examined. Given that we believe 

that the past is informative about the future, it is important to characterize the past as  

well as possible. The RS and SS model are properly designed to account for changes over 

time in the generation mechanism of the interest rates and therefore these two models 

seem eminently preferable. 

 

3.3 Model Selection 

 
In this subsection, we mainly focus on RS and SS, since we believe that these two models 

are preferable to the other three models. In addition to calculating the expected discount 

factor E (Pt) the simulations generated various measures of the empirical distribution of 

Pt such as the standard deviation and the empirical percentiles of the simulated Pt
13. 

These properties of the empirical distributions serve as the basis for the evaluation of 

and selection among our models, as it is desirable to have not only the “correct” discount 

factor, but also the one with the minimum deviation. Models with lower coefficients of 

variation and tighter 5th and 95th quantiles, represent more reliable forecasts. This is 

especially important for the evaluation of the distant future. We compare all the models 

on this basis and the results are summarized as follows: 

(i) The SS model provides the highest CER for the extreme long-run, i.e. for periods 

 
beyond 350 years. On the other hand, the RS model provides the highest CER over the 

13We calculate the following percentiles: 1%, 2.5%, 5%, 10%, 50%, 90%, 95%, 97.5% and 99%. 
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first 200 year horizon. 

 
(ii) The RS model exhibits a tighter band between the 5th and 95th percentile than  

the SS model. Figures B and C in Appendix 3 depict this behavior for the RS and the  

SS model, respectively. 

(iii) On the other hand, judging by the coefficient of variation, the SS model is the 

one with the lower coefficient of variation suggesting the lower deviation from the mean 

as a proportion of the mean.  Figure A in Appendix 3 shows the relative performance of 

the models employed. 

Evaluating the forecasting performance of these two models for the long run is impos- 

sible due to limitation of data, as forward rates exist for a maximum period of 30 years.  

Next, we attempt to discriminate between these models (along with the remaining three 

models) on the grounds of their forecasting performance over a 30-year horizon using 

available real data. We specifically make use of  annual nominal forward  rates suggested 

by the term structure of the US government bonds.  As a measure of inflation expecta- 

tions, we extract the implied inflation rate from inflation-indexed US government bonds 

of similar maturity dates. Then,  we calculate the commonly-used Mean Square Error 

(MSE) and judge the models by this criterion. Alternatively, we calculate four modified 

MSE criteria by incorporating four kernels14 which weigh observations by their relevant 

proximity to the present. The results are presented in Table 3. 

 

{INSERT TABLE 3: Average MSEs: US} 

 

 
Interestingly, the various specifications of the MSE criterion unanimously rank the SS 

model first followed by RS model in most of the cases. The AR-GARCH model ranks 

third followed by MR and then RW. The ranking of the models according to the MSE 

14The Bartlett, the Parzen, the quadratic-spectral (QS) and the Tukey-Hanning (TK) kernels are the 

weighting functions used in our evaluation. 



16  

 
criterion is inversely related with the uncertainty notion as incorporated in our models,  

with the most ‘uncertain’ model being the best and the most ‘certain’ being the worst. 

In sum, if we select the models on the basis of their ability to characterize the past  

and their accuracy concerning forecasts of the future we are inclined to accept the SS  

model for the US case. Our second best choice would be the RS model. 

 

4 Empirical Results for the UK 

 
4.1 Data 

 
To estimate the model of interest rate behavior, we compiled a series of real market  

interest rates over the two-century period 1800 to 2001. The nominal interest rate used 

is the United Kingdom 2 1/2% Consol Yield, while inflation is calculated by the annual 

change in the Consumer Price Index15. Our choice of interest rate is limited by the 

availability of data as well as our desire for the longest time series available. Based on 

these nominal rates, we calculate real rates by subtracting the 10-year moving average 

inflation rate, so as to smooth short-term price fluctuations. However, even this technique 

leads to negative real rates for specific years due to mainly extreme events, such as oil 

crises or wars. In order to make our model invariant to these economic crises, which affect 

interest rates temporarily, we estimated the crisis-induced level of inflation by including 

a dummy in a small model for the inflation rate.  The estimated extra-level of inflation 

is then subtracted from the inflation in the periods of crises and our series of positive 

real rates is obtained. We then convert these rates to their continuously compounded 

equivalents. We estimate our models, employed in the simulation of the interest rate, 

using a 3-year moving average of the real interest rate series to smooth very short-term 

fluctuations. Moreover, due to the fact that our models employed in the simulation of 

15Data provided by the  Global Financial Data, Inc, available at http://www.globalfindata.com. 

http://www.globalfindata.com/
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the interest rates do not rule out the possibility of persistent negative discount rates, we 

use the natural logarithms of the series in the estimation procedure. 

Regarding the estimation of multivariate model (9), the US real interest rate employed 

was calculated in a similar mode. The nominal interest rate used is the United States 

10-year Bond Constant Maturity Yield, while inflation is calculated by the annual change 

in the Consumer Price Index16. Further calculations were exactly the same as in the UK 

case, in order to ensure a comparable series used in the estimation of the VAR model. 

 

4.2 Estimation Results 

 
Similarly to the US case, we used a simple AR model as our starting point and undertook 

specification testing. Once again, this process generated a natural progression away from 

the simple AR(p) models towards models that incorporate time-varying coefficients. How- 

ever, in contrast to the US context, the unit root tests revealed the absence of a unit root 

in the UK interest rate series17. As a result, we only estimate a mean-reverting AR(4) 

model, since the estimation of a Random Walk model is not justified. The parameter 

estimates are reported in Table B.2 of Appendix 2. The sum of the autoregressive coef- 

ficients is 0.85, substantially less than unity. As well as being in contrast to the findings 

of N&P for the US, this effectively reduces the extent of uncertainty in interest rates and 

will reduce the extent of the decline in CERs over time. 

The Langrange Multiplier (LM) test for autoregressive conditional heteroscedasticity 

suggests that heteroscedasticity is present in the residuals of the AR(4) model. This 

suggests that more efficient estimates would be obtained by an AR(p) − GARCH(l, m) 

model. We estimate an AR(4) − GARCH(1, 1) model. However, the sum of the GARCH 

coefficients18  is  substantially  greater  than  unity  (β1 + γ1  ∼=  1.20),  i.e.   the  conditional 

16Data provided by the  Global Financial Data, Inc, available at http://www.globalfindata.com. 

17Table A.2 of Appendix 2 provides details on the unit root tests conducted. 

18Estimation results are not reported because it seems that the AR-GARCH model is inappropriate to 

http://www.globalfindata.com/
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variance process is explosive. The estimation results lead us to the estimation of a regime- 

switching model. We estimate the RS model given in (6), where p = 2, that is, each regime 

is an AR(2) mean-reverting process. 

The estimation results for the RS model are presented in Table C.2 of Appendix 2.  

The probability of changing regime while being in the first regime is estimated at 23.3 

%. The probability of changing regime falls to 6.8 % when the process is in the second 

regime. Furthermore, the first regime is more volatile than the second as indicated by 

the higher variance of the error term,  while less persistent as indicated by the sum of 

the autoregressive coefficients. In addition, the estimated values of the constant and 

autoregressive terms indicate that the mean of the process in the two regimes varies. 

Overall, the estimates of this model suggest that periods of low interest rates are quickly 

mean-reverting, surrounded by greater uncertainty and transit more often to periods of 

high interest rates which are more persistent and less uncertain. 

As an alternative approach to modelling changes in the data generating mechanism,  

we estimate a SS model identical to that used for the US data. Lastly we estimate a VAR 

model to account for any interactions between the US and the UK rates. The estimation 

results for these two models are presented in Table D.2 and E.2, respectively. Table 

D.2 shows that the state process is highly persistent, almost a random-walk process, 

as indicated by the estimate of the autoregressive coefficient. Having estimated four 

alternative models, we simulate and compare the CER for the UK. 

 

4.3 Certainty-equivalent discount rates and discount factors (UK) 

We now simulate 100.000 possible future discount rate paths for each model starting in 

2002 and extending 400 years into the future. For each model presented and estimated in 

the previous section the simulations are based on the estimates presented in Tables B.2 

describe the UK interest rates (as indicated by the estimates). 
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to E.2. Initial values for any lags of the real interest rate necessary for the simulation  

are set at 3.5 per cent, the rate used for CBA by the UK Treasury (HM Treasury 2003).  

The simulation design varies considerably with the model used, and the process of picking 

parameters and shocks is discussed separately for each model in Appendix 4. Moreover, 

we calculate the certainty-equivalent discount rate employing a discrete approximation to 

equation (2). 

The simulated expected discount factors for the mean reverting AR(4) model are  

presented in the first column of Table 4 for a time horizon of 400 years, together with a 

column of discount factors based on a constant rate of 3.5 percent19. The discount factor 

for the AR(4) model halves in first 20 years and falls to less than 10 % of the initial value 

in the first 80 years. Compared to the constant discounting model, the AR(4) model 

discount factor is three times higher in the first three quarters of our forecasting horizon, 

and 22 times higher after 400 years. The certainty-equivalent discount rate is, with the 

exception of the first 80 years, consistently lower than the constant rate of 3.5 per cent,  

falling to 0.39% after 400 years. The simulated discount factors of the GARCH model 

are not reported as the explosive conditional variance yields counter-intuitive results. 

However, as described above both the mean-reverting model and the GARCH model 

suffer from estimation problems. 

The discount factors for the RS model, reported in Table 4, are comparable to those  

of the AR(4) model especially during the first 200 years. However, during the second half, 

the discount factors are lower, leading to a higher terminal value for the discount rate of 

2.1 per cent compared with a value of 0.39 % for the AR(4) model. 

The SS model is the only one for which the discount factors remain of significant 

magnitude until the end of the 400-year period. Compared to the constant-discounting 

model, this model yields increasingly higher valuations, which reach almost 1.500 times 

193.5 percent is the the rate used for CBA by the UK Treasury. 
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the constant valuation by the end of the period. The SS CER falls relatively slowly from 

 
2.2 per cent in the first 20 years to 1.4 per cent at the period-end. 

 
The expected discount factors of the VAR model are 390 times higher at the end of the 

400-year period than those derived by the constant discount rate and the CER declines  

faster than the other models from 3.5 per cent to 0.35 per cent at the end of the period.  

The associated discount rates are shown in Table 5 for the UK case. 

 

{INSERT TABLE 4 and 5 HERE: 4: Discount Factors and 5: CERs} 

 

 
In summary, our main findings are as follows: 

 
(i) Regarding the discount factors, the SS model gives the higher ones followed by the 

RS, while the lower ones are given by the AR and the VAR model. In any case, these  

differences are more pronounced during the first half of the forecast horizon. Only the 

SS and the VAR model sustain some value in the distant future (400 years). Specifically, 

the SS discount factor 400 years in the future is 0.0016 and 0.00041 for the VAR model. 

(ii) Naturally, the certainty-equivalent discount rates implicit in the discount factors 

simulated reveal the opposite picture. The model that yields the higher rates during the  

first half of the sample is the AR(4), while during the second half the RS model yields 

the higher rates. On the other hand, the SS fluctuates in the range of 2.2 to 1.4 per cent. 

The terminal rates (i.e. after 400 years) range from 0.35 to 2.1 per cent for the VAR and 

the SS model, respectively. 

 

4.4 Model Selection 

 
The estimation procedure revealed that among the models employed, the RS and SS 

models are more appropriate characterisations of the data generating process and best fit 

the data. The question again arises: how do we select among these models? As above, we 

do this by reference to the empirical distribution generated by each of the models. For 
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comparison purposes, we will comment on the outcomes of all models. Our main findings 

are summarized as follows: 

(i) A measure of the uncertainty of our projections is the standard deviation of the  

empirical distribution of every simulated path, which is level dependent, though. In this 

mode, we evaluate our models by the coefficient of variation (i.e. the ratio of the standard 

deviation over the mean). Figure D of Appendix 3 displays this measure for all our models  

and reveals that the model with the lowest coefficient is the SS followed by the VAR model 

, whereas the AR(4) model yields the highest coefficient. 

 
(ii) Alternatively, as a measure of uncertainty, we employ the 5% and 95% empirical 

percentiles. Figures E and F of Appendix 3 show these percentiles for RS and SS, re- 

spectively. This measure seems to favor the RS model, which has the tightest confidence 

intervals, suggesting that uncertainty over the expected discount factor is considerably  

reduced. On the other hand, the percentiles of the SS model are relatively wide. 

Summing up, our results suggest that long-term forecasting and consequently distant 

discounting should be carried out by employing a model that can accommodate changes 

in its structure. Such properties are prevalent in our RS and SS model, which outperform 

the simple AR(4) model, justifying our preference for them. Of the SS and the RS models,  

the former has the lowest coefficient of variation and the latter the tightest confidence 

intervals. Therefore, our preference for either of these models needs to be justified by 

alternative means. 

In this mode, we evaluate the UK models by the alternative MSE criteria described  

analytically in Section 3.3. The average MSEs for the UK models are presented in Table 

6. 

 

{INSERT TABLE 6: Average MSEs: US} 

 

 
Once again, the various specifications of the MSE criterion unanimously rank the SS 
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model first followed by RS model. The MR model ranks third followed by the bivari- 

ate one, justifying our choice for univariate models. The inverse relationship between 

uncertainty and forecasting performance is valid, once more. 

In sum if we select the models on the basis of their ability to characterize the past and 

their accuracy concerning forecasts of the future we are inclined to accept the SS model 

for the UK case. Our second best choice would be the RS model. 

 

5 Policy Implications of Model Selection 

 
The foregoing has established the importance of model selection in determining a sched- 

ule of declining discount rates for use in CBA. The differences that arise from alternative 

specifications of the time series process have been revealed and a method for selecting 

one model above another has been proposed. In this section we highlight the policy im- 

plications of declining discount rates and the impact of model misspecification by looking 

at two case studies relevant to the long-term policy arena. Firstly we follow N&P and 

consider climate change20. We establish the present values of the removal of 1 ton of 

carbon from the atmosphere, and hence the present value of the benefits of the avoidance 

of climate change damages for each of the specified models. Secondly, we look at nuclear 

build in the UK from the perspective of DDRs. This is directly related to the measure- 

ment of climate change mitigation above, since nuclear power can benefit from obtaining 

carbon credits under a system of joint implementation and carbon trading (see Pearce et 

al. (2003)). The analysis uses the US data in the first case study and the UK data and 

models in the latter case. 

20See N&P (2003) for the assumptions concerning the modelling of carbon emissions damages. 
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5.1 The Value of Carbon Mitigation 

 
Table 7 shows the present value per ton of carbon emissions with respect to the US models 

described in Section 3.1. 

 

{INSERT TABLE 7 HERE} 

 

 
The only noticeable difference in values occurs in the case of SS. In this case, the  

value of carbon emissions reduction is over 150 % larger than that under constant dis- 

counting at 4 %. In addition, the RW model values carbon reduction 33.3 % higher than 

under constant discounting21. Similarly, employing the mean reverting model, we find 

an increase in value of only 12 % compared to the 14% difference noted by N&P under 

their mean reverting equivalent. The preceding discussion has argued that the RS and SS 

models are to be preferred over the others since they allow for changes in the interest rate 

generating process and have desirable efficiency qualities. From the policy perspective we 

have established that both of these models provide well specified representations of the 

interest rate series. However, on the one hand the RS model provides roughly equivalent 

values of carbon to the constant discounting rate values (there is a 9% difference), while 

on the other the SS produces values up to 150% higher. Comparing the performance 

of our models to the RW model used by N&P, we find that RW produces larger values 

of carbon than all models other than the SS model, which exceeds the RW model by 

about 88.8 %. In our case this represents a 88.8% increase compared to the methodology 

employed by N&P. 

The disparity between the RS and the SS models, and the proximity of the carbon 

 
values generated by the former to those generated by conventional constant discounting 

21The values for the RW model and MR model are nearly bu not exactly the same as those reported 

by N&P. This is as  a result of some  of the  additional data  transformations that we  have  undertaken and  

the choice of p for these models. 
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represents a clear signal of the policy relevance of model selection in determining the  

CER. It is crucial from a policy perspective to make a clear judgement as to which of the 

two models is most appropriate to the case in hand. It also highlights the importance of 

the presence of persistence in this estimation, recalling that the autoregressive process of 

the SS model parameters was effectively a RW model. In this case we have found that 

in addition to the lower coefficient of variation, the SS model is also preferable to RS 

model due to its lower MSE for the 30-year horizon. Hence we suggest it is reasonable to 

assume that the SS model is preferable in this case. This means that the carbon values  

are increased by 150% compared to conventional discounting and 88% compared to N&Ps 

approach. 

Given that the value of carbon depends upon model selection for discount rates, it 

is interesting to examine the implications of this for climate change prevention projects  

and/or the appraisal of investments in carbon intensive sectors of the economy. For this 

reason we look at the implications of using the regime switching and state space models 

in the appraisal of nuclear power investments in the UK. 

 

5.2 The Appraisal of Investments in Nuclear Power 

 
New nuclear build in the UK is still being considered as an option to ensure security of  

energy supply and adherence to Kyoto targets, and the Performance and Innovation Unit 

(Performance and Innovation Unit, 2002) recommended that the nuclear option should 

be kept open. Decommissioning represents a long-term implication of such investments, 

however the present-value of decommissioning costs is insignificant using conventional 

discounting. These costs are naturally sensitive to the use of declining discount rates. 

Following the same cost and price assumptions, and time horizons for construction, oper- 

ation and decommissioning as Pearce et al. (2003), we compare the NPV of investment  

in a nuclear power station using the DDRs associated with the state space and regime 
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switching models. Furthermore, following Pearce et al (2003), we investigate the im- 

pact of carbon credits given to the nuclear industry based upon the social cost of carbon 

reflecting the lower intensity of carbon production possible compared to conventional en- 

ergy. As we have seen above, the use of declining discount rates can improve the relative 

economics of nuclear generation by raising the social cost of carbon. The implications of 

these two countervailing effects, and the comparison to conventional constant discounting 

is presented in Table 8. 

 

{INSERT TABLE 8 HERE} 

 

 
The aforementioned appraisal shows that although the SS model has significant con- 

sequences for the present value of revenues and carbon credits, the present value of de- 

commissioning and operating costs is also increased considerably. Moreover, both the SS 

and the RS models increase the NPV of the project by more than 8 %. To this extent the 

present value of nuclear build is affected only marginally by the implementation of these 

models of declining discount rates. 

This case study highlights the limitations of DDRs in accounting for intergenerational 

equity.  There is a tension between benefits and costs that accrue in the far distant 

future and the use of DDRs raises both of these simultaneously: both carbon credits and 

decommissioning costs increase since to a large extent they accrue simultaneously. When 

appraising projects, which have time profiles of costs and benefits of this nature emphasis 

is perhaps better directed towards a more comprehensive understanding the trade-offs 

faced intra-temporally, by particular future generations, rather than the inter-temporal 

trade-off made by the current generation that DDRs address directly22. 

22For more on this issue see Horowitz (2002) 
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6 Conclusions 

 
In response to the need to appraise projects over ever longer time horizons a number 

of theoretical discussions have arisen concerning the appropriacy of discount rates that 

fall with the time horizon considered. Such Declining Discount Rates (DDRs) would add 

greater weight to the costs and benefits that accrue to future generations and thereby at 

least partially address the issue of inter-generational equity that so often besets the long 

term policy arena. 

Weitzman’s (Weitzman 1998) theoretical justification for DDRs depends upon uncer- 

tainty of the discount rate and therefore the operationalisation of this theory is highly 

dependent upon the manner in which one interprets and characterizes uncertainty. Weitz- 

man (2001) suggested that it was the lack of consensus current about the correct discount 

rate to employ in the far distant future that was the source of uncertainty and his esti- 

mated gamma distribution provided the means of operationalising this theory and deter- 

mining the declining Certainty Equivalent Rate (CER). Newell and Pizer (2003) (N&P) 

took an alternative view, suggesting that the future is the source of uncertainty and this  

interpretation lead naturally to an econometric forecasting approach to the measurement 

of uncertainty and the determination of the CER. 

This paper builds on N&Ps approach in determining DDRs and it makes the following 

points concerning the model selection and the use of DDRs in general. Firstly, N&Ps 

approach is predicated upon the assumption that the past is informative about the future  

and therefore characterizing uncertainty in the past can assist us in forecasting the future 

and determining the path of CERs. We have argued that if one subscribes to this view it is 

important to characterize the past as well as possible by correctly specifying the model of 

the time series process. This is particularly so when dealing with lengthy time horizons 

where the accuracy of forecasts is important. Indeed the selection of the econometric 
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model is of considerable moment in operationalising a theory of DDRs that depends 

upon uncertainty, because econometric models contain different assumptions concerning 

the probability distribution of the object of interest. We have shown for US and UK 

interest rate data that the econometric specification should allow the data generating 

process to change over time, and that State Space and Regime Switching models are 

likely to be appropriate. Secondly, selection between well specified models can and should 

be undertaken by reference to measures of efficiency such as coefficients of variation, 

confidence bounds and out-of-sample forecast MSEs. 

Our estimations, simulations and case studies bear out this assertion. The path of the 

CER differs considerably from one model to another and therefore each places a different 

weight upon the future. The policy implications of these estimates is revealed in the 

estimation of the value of carbon emissions reduction, with values which are up to 150% 

higher than when using constant discount rates, and up to 88% higher than the Random 

Walk model employed by N&P. 

The assessment of UK nuclear power reveals the limitations of DDRs in accounting for 

intergenerational equity. The fact that decommissioning costs and the benefits of carbon 

emissions reductions (for which we assume nuclear power receives credits) both accrue in 

the distant future means that the use of DDRs does not change the policy prescription: 

both values are increased by DDRs and the net present value remains negative.  This 

example highlights the importance of the question of valuing static/intra generational as 

well as intertemporal/intergenerational costs and benefits. 
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Table 1. Certainty Equivalent Discount Factors for the US. 

Year 
4% 

Constant 
N&P 

(MR) 

Random 

Walk 

AR 

IGARCH 
Regime 

State 

space 
1 0.96154 0.96154 0.96154 0.96154 0.96154 0.96154 

20 0.45639 0.45906 0.45177 0.45876 0.45390 0.56424 

40 0.20829 0.21661 0.20917 0.21250 0.19576 0.33136 

60 0.09506 0.10471 0.10480 0.10062 0.08458 0.20296 

80 0.04338 0.05150 0.05777 0.04894 0.03700 0.12889 

100 0.01980 0.02567 0.03482 0.02455 0.01647 0.08408 

150 0.00279 0.00476 0.01333 0.00529 0.00238 0.03132 

200 0.00039 0.00095 0.00683 0.00178 0.00041 0.01255 

250 0.00006 0.00022 0.00419 0.00104 0.00010 0.00526 

300 0.00001 0.00006 0.00289 0.00086 0.00003 0.00227 

350 0.00000 0.00002 0.00215 0.00080 0.00002 0.00100 

400 0.00000 0.00001 0.00169 0.00078 0.00001 0.00044 

 
 

Table 2. Certainty Equivalent Rates for the US. 

Year N&P(MR) 
Random 

Walk 

AR 

IGARCH 
Regime 

State 

space 
1 4.00 4.00 4.00 4.00 4.00 

20 3.91 4.05 3.96 4.22 2.79 

40 3.76 3.76 3.88 4.31 2.59 

60 3.65 3.28 3.74 4.26 2.38 

80 3.58 2.80 3.60 4.18 2.23 

100 3.51 2.37 3.42 4.09 2.10 

150 3.36 1.59 2.75 3.79 1.91 

200 3.16 1.14 1.62 3.31 1.79 

250 2.87 0.85 0.65 2.46 1.72 

300 2.43 0.66 0.23 1.83 1.67 

350 1.87 0.53 0.09 0.95 1.64 

400 1.41 0.44 0.04 0.70 1.61 

 

Table 3. Average MSEs for the US. 

Criterion N&P(MR) 
Random 

Walk 

AR 

IGARCH 
Regime 

State 

space 
AMSE 2.058 2.171 2.102 2.323 1.832 

AMSE (B) 1.692 1.724 1.692 1.687 1.499 

AMSE (P) 1.725 1.746 1.720 1.683 1.426 

AMSE (QS) 0.842 0.870 0.848 0.879 0.760 

AMSE (TH) 1.769 1.797 1.765 1.738 1.550 
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Table 4. Certainty Equivalent Discount Factors for the UK 

Year 
3.5% 

Constant 
AR(4) Regime State space VAR 

1 0.96618 0.96618 0.96618 0.96618 0.96618 

20 0.50257 0.48208 0.51472 0.61857 0.47492 

40 0.25257 0.23676 0.26746 0.40678 0.22915 

60 0.12693 0.11778 0.13981 0.27722 0.11376 

80 0.06379 0.05912 0.07354 0.19368 0.05798 

100 0.03206 0.02997 0.03890 0.13775 0.03035 

150 0.00574 0.00569 0.00813 0.06172 0.00707 

200 0.00103 0.00115 0.00177 0.02882 0.00227 

250 0.00018 0.00027 0.00041 0.01379 0.00105 

300 0.00003 0.00008 0.00010 0.00669 0.00066 

350 0.00001 0.00003 0.00003 0.00328 0.00050 

400 0.00000 0.00002 0.00001 0.00161 0.00041 

 

Table 5.Certainty Equivalent Rates for the UK 
Year AR(4) Regime State space VAR 

1 3.50 3.50 3.50 3.48 

20 3.68 3.35 2.22 3.80 

40 3.58 3.31 2.02 3.63 

60 3.52 3.28 1.87 3.50 

80 3.48 3.25 1.76 3.36 

100 3.43 3.22 1.68 3.20 

150 3.33 3.14 1.57 2.65 

200 3.13 3.05 1.51 1.96 

250 2.77 2.93 1.47 1.24 

300 2.17 2.75 1.45 0.72 

350 1.12 2.45 1.43 0.45 

400 0.39 2.14 1.44 0.36 

 

Table 6. Average MSEs for the UK 

Criterion AR(4) Regime 
State 

space 
VAR 

AMSE 2.330 1.486 0.195 2.620 

AMSE (B) 0.875 0.527 0.135 0.973 

AMSE (P) 0.562 0.332 0.132 0.609 

AMSE (QS) 0.659 0.407 0.071 0.740 

AMSE (TH) 0.818 0.480 0.137 0.905 

 

Table 7. Value of Carbon Damages according to Model Selection (1989$/tonne, Base Year 1995) 

Model 
Carbon Values 

($/tc 400years) 

Relative to 

Constant Rate 

Relative to Mean 

Reverting 

Relative to 

Random Walk 

Regime Switch 5.22 -9.0% -18.7% -31.7% 

Conventional (4.0%) 5.74  -10.7% -25.0% 

AR-IGARCH 6.37 +10.9% -1.0% -16.8% 

MR 6.43 +12.0%  -16.0% 

RW 7.65 +33.3% +19.0%  

State Space 14.44 +151.7% +124.7% +88.8% 



33 
 

 
 

Table 8: The Costs and Benefits of Nuclear Build in the UK 

 

(UK pounds/KW) 
 

CAPEX 
 

OPEX 
 

DECOM 
 

Rev/es 
 

C C  
 

NPV Relative to Flat 

3.5% Flat 2173 2336 427 4062 228 -646 – 

AR(4) 2167 2245 396 3904 215 -689 -6.6% 

Regime Switching 2178 2401 479 4176 249 -633 8.0% 

State Space 2196 2973 1126 5170 547 -577 8.9% 

VAR 2167 2211 387 3845 215 -705 -22.1% 
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Appendix 1: US Estimates 

 

Table A.1: Unit Root Tests for the US rates23 

US Lags 24/ Stat. 5% Decision 

TEST Bandwidth25 
 

crit. value 
 

ADF 13 -2.314 -2.877 non-stationary 

Phillips-Perron 12 -3.251 -2.876 non-stationary 

DF-GLS 13 -0.473 -1.942 stationary 

ERS Point-Optimal 12 19.733 3.17 non-stationary 

Ng-Perron 12 -0.824 -8.100 non-stationary 

KPSS 15 1.158 0.463 non-stationary 

 

Table B.1: Estimation results:AR(3)-IGARCH(1,1) model 

 

Coefficient Estimate Std. Error t-Statistic p-value 

n 1.330 0.104 12.811 0.0000 

a1 1.951 0.085 23.033 0.0000 

a2 -1.322 0.156 -8.472 0.0000 

a3 0.355 0.080 4.441 0.0000 

c 8.60E-05 2.66E-05 3.236 0.0012 

β 0.442 0.092 4.805 0.0000 
 

23The results reported are based on the natural logarithm of the series. 

24We use SIC to determine the number of lags of the dependent variable in the test specification. 

25The kernel sum-of covariances estimator with Parzen weights is used. The bandwidth is selected  by 

using the Newey-West bandwidth selection method. 
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Table C.1 : Estimation results: Regime-switching model 

 

Coefficient Estimate St.Error t-Statistic p-value 

n1 1.189 0.128 9.327 0.00 

a1 
1 1.589 0.078 20.36 0.00 

a1 
2 -0.660 0.086 -7.630 0.00 

n2 1.714 0.238 7.206 0.00 

a2 
1 1.787 0.050 35.55 0.00 

a2 
2 -0.800 0.049 -16.395 0.00 

σ2 
1 0.004 0.0007 5.651 0.00 

σ2 
2 0.0003 4.40E-05 6.070 0.00 

P 0.867 0.058 14.934 0.00 

Q 0.917 0.035 25.976 0.00 

 

Table D.1: Estimation results: State space model 

 

Coefficient Estimate St.Error t-Statistic p-value 

n 0.510 0.082 6.185 0.00 

n1 0.999 0.002 438.9 0.00 

ln(σ2) 
e -9.158 1.324 -6.917 0.00 

ln(σ2 ) 
u -6.730 0.144 -46.63 0.00 
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Appendix 2: UK Estimates 

 

Table A.2: Unit Root Tests for the UK interest rates 

UK Lags 26/ Stat. 5% Decision 

TEST Bandwidth27 
 

crit. value 
 

ADF 3 -3.189 -2.876 stationary 

Phillips-Perron 20 -4.070 -2.876 stationary 

DF-GLS 3 -3.186 -1.942 stationary 

ERS Point-Optimal 20 0.965 3.164 stationary 

Ng-Perron 20 -27.945 -8.100 stationary 

KPSS 13 0.0421 0.463 stationary 

 

Table B.2: Estimation results: AR(4) model 
 

Coefficient Estimate Std. Error t-Statistic Probability 

n 1.201 0.177 6.777 0.00 

α1 1.054 0.058 18.165 0.00 

α2 -0.125 0.089 -1.392 0.16 

α3 -0.443 0.070 6.308 0.00 

α4 0.368 0.035 10.452 0.00 

σ2 
ξ 

0.064 0.005 13.733 0.00 
 

26We use SIC to determine the number of lags of the dependent variable in the test specification. 
27The kernel sum-of covariances estimator with Parzen weights  is  used.  The  bandwidth  is  selected  by 

using the Newey-West bandwidth selection method. 
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Table C.2: Estimation results: Regime-switching 
 

Coefficient Estimate Std. Error t-Statistic Prob 

n1 0.760 0.244 3.117 0.002 

α1 
1 0.700 0.312 2.249 0.025 

α1 
2 -0.212 0.312 -0.679 0.497 

n2 1.306 0.082 15.892 0.000 

α2 
1 1.397 0.079 20.573 0.000 

a2 
2 -0.530 0.058 -9.094 0.000 

σ2 
1 0.219 0.047 4.694 0.000 

σ2 
2 0.014 0.002 8.106 0.000 

P 0.767 0.101 7.543 0.000 

Q 0.933 0.033 28.617 0.000 

 

Table D.2: Estimation results: State space 
 

Coefficient Estimate Std. Error t-Statistic Prob 

n 0.266 0.044 6.091 0.00 

n1 0.999 0.002 438.82 0.00 

ln(σ2) 
e -2.503 0.104 -24.049 0.00 

ln(σ2 ) 
u -6.462 0.594 -10.884 0.00 
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Table E.2: Estimation results: VAR model 
 

Coefficient Estimate Std. Error t-Statistic 

n1 0.235 0.069 3.387 

n2 0.156 0.045 3.481 

α1 
11 1.006 0.076 13.204 

α2 
11 -0.236 0.077 -3.063 

α1 
12 0.152 0.104 1.462 

α2 
12 -0.120 0.104 -1.162 

α1 
21 0.115 0.049 2.335 

α2 
21 -0.125 0.050 -2.514 

α1 
22 1.353 0.067 20.096 

α2 
22 -0.475 0.067 -7.086 



 

Appendix 3: Figures A-F 
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Figure A: US Coefficients of variation 
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Figure B: US Mean, 5% and 95% 

percentiles (Regime model) 
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Figure C: US Mean, 5% and 95% 

percentiles (State space model) 
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Figure D: UK Coefficients of variation 
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Figure E: UK Mean, 5% and 95% 

percentiles (Regime model) 
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Figure F: UK Mean, 5% and 95% 

percentiles (state space model) 

Mean 5% 95% 
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Appendix  4.  Simulation  Methodology  for  each  Specification 

 
AR(p) Model: Regarding our first model (AR(p) model), we use the normal distri- 

bution to draw random values for the coefficients of (3) taking into account the estimated 

variance-covariance matrix of the coefficients. Another draw from a normal distribution 

is employed for the estimated variance. 

AR(p)- GARCH (l,m): The simulation methodology is similar to the AR(p) model, 

except from the fact that the multivariate normal distribution is used to generate random 

draws for the coefficient values of the GARCH model. 

Regime Switching: The RS model offers the most computationally intensive simu- 

lation and is conducted as follows. First, we generate random values for the probabilities 

P and Q from a Beta(k, j) distribution. The values of the parameters k and j of the 

Beta distribution are properly chosen in order to correspond to a Beta distribution with  

mean and standard deviation equal to the ones estimated. Specifically, for the US case 

the parameters k and j are equal to 28.8 and 4.42 for P , respectively. The corresponding 

values for Q are 55.17 and 5, respectively. Using the values of P and Q, we calculate the 

probability of being in each regime for each of the future 400 years, namely Pt and Qt. 

A univariate normal distribution is used to get random draws for σ2 and σ2 separately 
1 2 

 

according to the estimates presented in Tables C.1 and C.2 for the US and UK case re- 

spectively. Similarly to our previous simulations, the random values for the coefficient 

estimates, n1, n2, a1  a1  a2 and a2 are drawn from a multivariate normal distribution. 
1,    2,  1 2 

 

Then, we simulate the future interest rate path 100.000 times on the grounds of the 

probabilities Pt and Qt and the random draws of the coefficients. 

State Space: The simulation design for the SS model is straightforward as we ran- 

domly draw the coefficient values from univariate normal distributions according to the 

estimated values. 

VAR: The difference between the VAR model and the univariate models is that it 
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demands both UK and US real interest rates to be simulated in the future. The way the 

simulation is designed follows the line of the previously mentioned experiments. 
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