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1 Introduction

This paper presents the first, to our knowledge, dynamic equilibrium model of a coupled

biota-climate system integrated with an economic growth model at the global scale. It

introduces this coupled system to aspects of resilience theory, which may be new to both

economists working on climate-economy models as well as natural scientists working on

models of climate and ecosystems. In particular, we show how the resilience of the coupled

system is affected by perturbations within both the human and natural system. Before

proceeding further, we believe that this paper is best motivated, by providing a short

historical background of model foundations and discussing the role played by the biota

in climate regulation at the outset.

The idea of Earth as an intertwined system where the biosphere, and its constituents,

acts as a regulatory environment, having a stabilizing effect on the climate, was originally

proposed as the Gaia Hypothesis by James Lovelock (Lovelock, 1972) and later formalized

in detail in a series of papers by Lovelock and Margulis (1974a,b); Margulis and Lovelock

(1974). The Gaia hypothesis embraced the notion that Earth’s living and nonliving

components constitute a set of interactive feedback processes, reflecting a whole system,

having properties and displaying phenomena not likely to be revealed by the study of

each subsystem by itself. Lovelock and Margulis suggested that through the interactions

between these processes the biota made the physical environment more fit for life, a

clear departure from earlier scientific ideas (Schneider, 2001). A starting point for the

hypothesis was the recognition that the atmospheric composition of earth was profoundly

anomalous to the expected atmosphere of a typical planet interpolated between Mars
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and Venus. In particular, the simultaneous presence of carbon dioxide and methane

at the present levels violated the equilibrium laws of chemistry, which differed vastly

from the near equilibrium conditions of Mars or Venus (Lovelock and Margulis, 1974a).

Geological records further showed that this perturbed state had also been stable over a

very long period of time. Likewise, Earth’s average surface temperature had also remained

fairly stable although the amount of incoming solar radiation had increased vastly since

the origins of life.1 Altogether, this lead Lovelock and Margulis to propose the Gaia

hypothesis of ”atmospheric homeostasis by and for the biosphere”, adding that both the

oxidation state and the acidity of the Earth’s surface are anomalous, compared with our

planetary neighbors, and can therefore be tolerated by life (Lenton, 1998).2

The Gaia hypothesis has raised much debate in the scientific community and has

given rise to two American Geophysical Union Chapman Conferences addressing the

topic (Kerr, 1988; Kump, 2009). The critic of the Gaia hypothesis has been for example,

that planetary self-regulation would require foresight or planning on part of unconscious

organisms (Doolittle, 1981; Dawkins, 1983) or that the hypothesis would be difficult or

perhaps impossible to test (Kirchner, 1989). In order to address some this critic, while

still avoiding the immense complexity of real earth system dynamics where the role of the

biosphere was poorly understood, Lovelock constructed a simple parable model of Earth

he called the Daisyworld (Lovelock, 1983; Watson and Lovelock, 1983). The purpose of

Daisyworld was to demonstrate how planetary self-regulation could emerge automatically

from physically realistic feedback mechanisms between life and its environment in order

to show how environmental regulation could arise within a simple Earth like model (Wood

et al., 2008).

Since its birth the Daisyworld model has given rise to a slew of papers which have

tested its assumptions and explored its self regulating properties using e.g. alternative

population models (Maddock, 1991), enhanced biodiversity (Harding and Lovelock, 1996),

adaptation and competition for resources (Stöcker, 1995; Robertson and Robinson, 1998;

Lenton and Lovelock, 2000; Staley, 2002), different seeding strategies (Seto and Akagi,

2005), spatial extensions (Von Bloh et al., 1997; Adams et al., 2003; Ackland et al., 2003),

hydrological modeling (Baldocchi et al., 2004; Salazar and Poveda, 2009), maximum en-

tropy production (Pujol, 2002; Ackland, 2004; Dyke, 2008), food-web dynamics (Harding,

1999; Bagdassarian et al., 2007), chaotic dynamics (Zeng et al., 1990a,b; Jascourt and

Raymond, 1992) and much more. A recent review of the literature on Daisyworld can be

1Some geochemists have asserted that there is no need to invoke life to explain the maintenance of
habitable conditions on Earth (Lenton, 1998). For example, they argue that abiotic, purely geochemi-
cal and geophysical feedbacks are enough to maintain a favourable climate, offering silicate-weathering
negative feedback (Walker et al., 1981).

2Stephan H. Schneider has collected a series of a articles on Gaia containing critical discussion among
scientists from various disciplines in (Schneider and Boston, 1992; Schneider et al., 2004). Homeostasis
refers to the property of a system to regulate its internal environment maintaining a constant state when
subject to external forcing.
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found in Wood et al. (2008). Although, there has also been contradictory papers showing

how life could also possibly act to destroy regulation (Keeling, 1992), the basic homeo-

static property has still proven to be remarkably resistant to many kinds of alternative

engineering attempts which shows that environmental regulation can arise under minimal

assumptions (McDonald-Gibson et al., 2008). Perhaps due to its simplicity, the model

has also become widely used in teaching see e.g. Hartmann (1994); Ford (1999); Kump

et al. (1999); McGuffie and Henderson-Sellers (2005); Pierrehumbert (2008).

In this paper we will extend the Daisyworld model in a completely novel direction by

populating the planet with humans.3 Surprisingly, despite all evidence of anthropogenic

activities influencing the Earth system, this has previously not yet been explored in

the Daisyworld literature. We will set the stage in the late anthropocene where human

development on Daisyworld has just passed through an industrial revolution much like

the one that took place on Earth at the beginning of the 19th century.4 The influence of

human development on the biosphere of the Daisyworld can thus be characterized using

the theory of economic growth. We will use one of the most predominant and well known

models of economic growth namely the Solow growth model (Solow, 1956). The Solow

model has become the workhorse model of macroeconomics and it is probably safe to say

that this model is currently taught to all undergraduate students of economics across the

globe.5 The model is remarkably simplistic, it cuts through many real world complications

concerning for example individual tastes, abilities, incomes as well as sectoral varieties

and multi-level social interactions. It consists of a single economic sector in a simple

one-good economy, where little reference is made to individual decision making. Despite

its simplicity the Solow model has still succeeded well in explaining several stylized facts

of growth that has been observed over time in modern industrialized economies.6

We will connect the biosphere of Daisyworld to the Solow model following the tradi-

tion of many integrated assessment models (IAMs) of climate change see e.g. Nordhaus

(1992).7 Carbon dioxide emissions arising from production in the Solow economy are

thus assumed to accumulate into the atmosphere, hence altering the energy balance of

the planet. This results in changes in average planetary temperature which carries a

feedback into the economy in terms of damages to aggregate production.8 Using this

3Several possible model formulations of Daisyworld exists in the literature. We have chosen to extend
the version analyzed by Weber (2001) as this paper provides a complete analytical solution of the model
and hence serves us well as a baseline model.

4The Solow growth model we will be using here was designed to fit the behavior of economies that
had passed through the industrial revolution (Lucas, 2002).

5See for example Robert J. Barro and Xavier Sala-i-Martin (2003) for a graduate level textbook or
Jones (1998) undergraduate level.

6See (Jones, 1998) Chapter 2.
7See (Stanton et al., 2009) for a recent review of popular IAMs in the literature.
8Although, we believe this to be the most straightforward method of integration many alternative

connections could have been explored. As an example one could consider harvesting strategies of daisies
analogous to harvesting in fishery models see e.g. Clark (1976) or let humans compete for space on the
planet having a different albedo. This goes beyond the scope of this article and is left for future research.
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setup, we proceed by following the typical equilibrium analysis that has become common

practice in the Daisyworld literature. The homeostatic properties of the model are thus

explored by considering perturbations in the amount of incoming solar radiation (solar

lumonosity).9 Understanding the response of the climate system to changes in solar lu-

monosity has recieved much attention in the climate literature. In particular, Lovelock

recognized that the Sun is thought to have warmed by about 25% since the origin of life

on Earth over 3.8 billion years ago, an increase which should have raised temperature by

a much larger amount than the current prevailing conditions (Lenton, 2002), something

which is not captured in simple energy balance models. Likewise, we explore the affect of

policy parameters such as saving and in particular the emission control rate. An immedi-

ate finding is that the resilience of the system to perturbations is reduced when humans

inhabit Daisyworld.10 To be more precise, in our coupled Solow-Daisyworld model, the

current value of solar luminosity lies closer to a specific point, where further increases in

solar luminosity would cause a shift to a basin of attraction where both the black and

white daisies become extinct resulting in an approximate doubling of global average tem-

perature. Such shifts are commonly observed in many ecological systems characterized

by multiple basins of attractions (Scheffer et al., 2001). Similar to the original model the

shift would also be followed by a hysteresis effect implying that after the bifurcation has

occurred, large reductions in solar luminosity are needed in order to restore the model to

its original state. We also explore issues concerning the balanced growth path. In partic-

ular how assumptions concerning exogenous growth affects our coupled Solow-Daisyworld

model.

So what can we learn from studying economic growth in this parable world? In par-

ticular, quantitative researchers might feel frustrated that the two daisies lack effective

counterparts to the real world. However, despite the fact that the model cannot be

properly quantified, the skeptical economist might still recognize that this highly stylized

Earth system model has survived almost three decades of scrutiny by many very promi-

nent natural scientists, and it still remains on of the most recognized workhorse models

where no other alternative model, similar in size, seems to be getting as much attention

(Schneider et al., 2004; Wood et al., 2008). Further, human dependence on the biosphere

today goes unrepresented in most IAMs of climate change. To our knowledge, only the

IMAGE model (MNP, 2006) has included elements of the biosphere.11 However, the IM-

AGE model is very large and complex making it very difficult for any single person to

gain a thorough understanding of its dynamics. As was explicitly recognized in the 2001

report from the Intergovernmental Panel on Climate Change (Houghton et al., 2001),

simple and complex models play complementary roles in the science of climate change.

9Here a homeostasic equilibrium refers to an equilibrium temperature which is hardly sensitive to
variations in the solar luminosity over a large range of values.

10Here the term resilience follows the definition of Holling (1973).
11By biosphere we mean the global sum of all ecosystems.
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Our personal opinion is that the main contribution of the Solow-Daisyworld model de-

veloped in this paper lies both in highlighting the three-way dependence between human

development, the biosphere and the climate. As pointed out in a recent in the editorial

of The Economist, 26 May, 2011, reporting from the 3rd Nobel laureate symposium on

global change: - Humans have changed the way the world works. Now they have to change

the way they think about it, too.

As many high level scholars of various disciplines are recognizing that global scale prob-

lems requires an understanding of global scale interactions the analogies put forth in the

Solow-Daisyworld model analyzed in this paper could help serve as an interdisciplinary

teaching tool accessible, and to some parts familiar, to students within various fields such

as ecology, climatology and economics. Models remain important tools in understanding

complex dynamics and the Solow-Daisyworld model could thus help bridge the under-

standing between scholars of various disciplines. However, to gain further insights into

real world dynamics, might still require a model having descriptive features corresponding

to the real world (Petersen, 2004). The paper is structured as follows. Section 2 describes

the Daisyworld model used in this paper and its connection to the Solow model. Section

3 analysis how Daisyworld attributes are affected by the dynamics of the Solow model.

Section 4 discusses economic features. Section 5 concludes.

2 The Daisyworld

The original Daisyworld model featured an imaginary planet, similar to Earth, but with

no clouds, a negligible atmosphere and a simplified biota consisting of two species of life,

black and white daisies. The black and white daisies compete for open space on the planet

with expansion rates determined by a single environmental variable, temperature. The

two daisies differ in their respective albedo’s. The black daisies have a low albedo and

hence absorb more of the incoming solar radiation while the white daisies reflect most

of the incoming energy back out to space. In this way the daisies modify the radiative

heat budget of the planet. The feedback mechanisms of the global temperature are other-

wise governed by the same geophysical laws which are usually applied in energy balance

models (North et al., 1981). Together this produces a highly nonlinear system which

demonstrates how a planets biota could help stabilize its environment when subjected to

chocks or other large variations in external variables. This feature is generally referred

to as homeostasis.

In this paper we employ an alternative Daisyworld model taken directly from We-

ber (2001), which provides a thorough analytical derivation of the model. We follow

a Daisyworld system consisting of white aw and black ab daisies, regulating local daisy

temperatures Tw,b as well as global temperature level T . The Daisyworld system is given
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by:

daw
dt

= aw [(1− ab − aw) βw (Tw)− γ] (1a)

dab
dt

= ab [(1− ab − aw) βb (Tb)− γ] (1b)

βj (Tj) = 1− 4
(Tj − Topt)2

(Tmax − Tmin)2
, j = b, w (1c)

Tj = q(A− Aj) + T, j = b, w (1d)

A = awAw + abAb + (1− ab − aw)Ag (1e)

dT

dt
= SL(1−A)− (Ψ + λT ) (1f)

This is slightly modified version of the original model by Watson and Lovelock (1983), the

main difference being that it uses a linear form for the long-wave radiation term. Such a

linear form is often applied in box models of the global heat budget. The error introduced

by this is small, because the temperature range achieved by the model is small compared

to the absolute temperature (North et al., 1981). The model results do not change in any

significant manner, when a fourth-order term is used (Saunders, 1994). The base case

parameter values are the same as those used by Weber (2001) and are displayed in Tab.

2. The baseline value for lumonosity L is unity but this parameter will later become one

of our bifurcation parameters.

Parameter Description Value
Ψ 130 Long-wave radiation constant (W/m2)
λ 2 Long-wave emission parameter (W/m2◦C)
S 340 Incoming solar radiation (W/m2◦C)
Aw 0.75 Albedo of white daisies
Ag 0.5 Albedo of uncovered ground
Ab 0.25 Albedo of black daisies
Tmin 2.5 Minimum temperature (◦C)
Topt 20 Optimal temperature (◦C)
Tmax 37.5 Maximum temperature (◦C)
γ 0.3 Death rate
q 20 Redistribution parameter (◦C)

Table 1: The geophysical parameter values for the base case.
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3 Introducing humans into the daisyworld

Human development is introduced in system as a an augmented Solow model having

exogenous technological and population growth. The economy is described as follows

K̇ = sYn − δK, (2)

Yn = Ω(T )(1− Λ(µ))F (K,AN), (3)

Ṅ = nN, Ȧ = gA (4)

where, Yn denotes output of goods and services, net of abatement and damages. As is

standard in the Solow model, capital K accumulates via a fixed saving s net depreciation

δ. Ω(T ) represents the damages to the economy (climate damages as fraction of output)

as a function of temperature. We will assume a quadratic damage function Ω(T ) =

(1+θT 2)−1 as is common in many climate-economy models (See e.g. Nordhaus (2007)).12

Λ(µ) represents the abatement cost function (abatement costs as fraction of output), we

adopt a similar function as in Nordhaus (1994) and set Λ(µ) = φµ2, where µ ∈ [0, 1]

represents the emission control rate. F (K,AN) is a constant returns to scale production

function, where technology (A) and population (N) grow at exogenous rate g and n.13

Production in the Solow economy also generates carbon dioxide emissions in the following

way:

E = σ(1− µ)F (K,AN) (5)

Here, σ denotes the emission to output ratio which is assumed to improve at an exogenous

rate ϕ so that σ = σ0e
−ϕt. Emissions then affect global temperature thru an increase

global carbon dioxide concentration M which is modelled in as simplified box-diffusion

model (See fore example Nordhaus (1994)) which can be written as:

Ṁ = βE − δM(M −M0) (6)

where M is the atmospheric CO2 mass, M0 is the pre- industrial atmospheric CO2 mass,

β is the fraction of emissions that enters the atmosphere and δM represents the natural

removal rate of atmospheric CO2 over time.14

12This function is concave-convex for all T > 0, θ > 0. However, for a certain temperature range, for
example T ∈ [0, 10], it remains concave for a low enough value for θ. Nordhaus (2007); Nordhaus and
Boyer (2000) exploits this property as he is only concerned with a certain predicted range of tempera-
tures, where Ω(T ) remains concave (hence marginal damages are increasing with temperature over the
temperature range of interest) for his calibrated value of θ. This function also works reasonably well as
damage function in the Daisy-Solow world since decreasing temperature is also of interest and assumed
to be bad. Hence, a temperature departing from the current level is assumed to affect the economy
negatively.

13Throughout the rest of this paper we will for explicit calculations assume that the production function
takes on the standard cobb-douglas form: F (K,AN) = Kα(AN)1−α.

14For the parameter values of equation (5)-(6) we will rely on previous work by in Nordhaus (1994).
He provides the following estimates σ0 = 0.52, β = 0.64 and δM = 0.0083, where σ and β are his
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The accumulation of carbon dioxide in the atmosphere affects the global mean tem-

perature by increasing the amount of radiative forcing. The temperature equation (1f) is

thus modified to include the impact of radiative forcing via carbon dioxide emissions in

the following way:

Ṫ = SL(1−A)− (Ψ + λT ) + ξ ln
M

M0

(7)

ξ ln M
M0

captures the approximate relationship between an increase in the amount of at-

mospheric carbondioxide and radiative forcing. IPCC (2001) provides an estimate of

ξ = 5.35.

Then after defining capital per effective worker k = K
AL

and transforming the model

into intensive form the complete model can thus be written as:

daw
dt

= aw [agβw (Tw)− γ] (8a)

dab
dt

= ab [agβb (Tb)− γ] (8b)

β(Tj) = 1− 4
(Tj − Topt)2

(Tmax − Tmin)2
, j = b, w (8c)

Tw = q(A− Aw) + T (8d)

Tb = q(A− Ab) + T (8e)

A = awAw + abAb + agAg (8f)

with ag := (1− ab − aw) (8g)

dM

dt
= βE − δM(M −M0) (8h)

dT

dt
= SL(1−A)− (Ψ + λT ) + ξ ln

M

M0

(8i)

dk

dt
= sΩ(T )

(
1− ψµ2

)
f(k)− (δ + n+ g)k (8j)

E = σ(1− µ)f(k)AL (8k)

Ω(T ) = (1 + θT 2)−1 (8l)

where f(k) denotes production per effective worker.15 In the following we will refer to

this system as the Daisy Solow system (DS) as opposed to the Daisy original (DO) given

by system 1. The Solow model introduced above was done in a way consistent with

own empirical estimates and δM corresponds to a 120 year initial e-folding time of CO2 estimated by
the Intergovernmental Panel on Climate Change Watson et al. (1990). It should be noted that this
parametrization has been heaviliy critized (see e.g. Schultz and Kasting (1997)), however for the current
modelling excerise they should serve us well. Finally, the inclusion M0 in equation (6) implies that
if emissions remain zero for all time periods the equilibrium level of carbon dioxide should eventually
stabalize around pre-industrial levels.

15This transformation exploits the constant returns to scale property of the aggregate production
function.
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the standard macroeconomic notion of a balanced growth path, meaning that aggregate

capital, consumption and production all grow at a constant rate (g + n) > 0 while the

capital output ratio K/Y remains constant. However, in doing so we have also rendered

the entire system non-autonomous.16 In the original Solow model, a necessary prerequisite

for the model to converge to a balanced growth path is that the production function

takes on a labor augmenting form i.e. F (K,AL) (Acemoglu, 2007).17 As formalized in

Proposition 1 this is not enough to ensure the existence of a balanced growth path in the

economy supported by Daisyworld.

Proposition 1 (unbounded exogenous dynamics) Inclusion of unbounded exogenous

dynamics in the production function implies that the system (8) does not have a steady-

state equilibrium solution and therefore the economy does not approach a balanced growth

path unless emissions are abated at a rate larger or equal to population plus technological

growth rates (g + n). 2

The proof can be found in appendix B.

Brock and Taylor (2010) develop a model they refer to as the Green Solow model. In

this model they define the sustainable growth rate as the amount of abatement that

exactly offsets emissions, while still sustaining a rising per capita income. As their model

does not involve feedback effects from emissions onto production both sustainable and

unsustainable balanced growth paths arise. This is not the case in the DS system. As

becomes clear from Proposition 1 unsustainable growth is inconsistent with the notion of

a balanced growth path since global temperature becomes unbounded. In order to avoid

such scenarios we assume that growth is sustainable in the sense of Brock and Taylor and

that the emissions to output ratio improves at a rate large enough to offset emissions due

to technology and population growth i.e. we have ϕ ≥ g + n.

In the following analysis it is thus important to recognize that the effect of intro-

ducing humans into Daisyworld is done under the assumption that economic growth is

already sustainable implying that (i) new technology is emission neutral and (ii) that

aggregate emissions are independent of population size. Most notably, besides the brave

assumption of emission neutral technology, it is also clear that population size is strongly

correlated with the aggregate amount of carbon dioxide emissions (Onozaki, 2009). In

this sense our numerical analysis that follows could be considered as a lower bound in

robustness framework exploring the remaining problem after population growth and dirty

technologies has already been taken care of.

16By non-autonomous we mean that the dynamical system depends explicitly on time.
17An assumption which also makes the Solow model autonomous in the transformed variable k.
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4 Equilibrium analysis

As in Weber (2001) we will do an equilibrium and local stability analysis for the system

(8). The analysis is primarily done using the a the Matcont software for bifurcation

analysis in Matlab.18 In appendix we have also derived some analytical results in terms

of comparitive static results. Weber (2001) derives an analytical solution to the sys-

tem (1) and shows that it possesses four equilibria for the present state of lumonosity

(L = 1), where one is stable and three are unstable. This result remains unchanged

in our augmeted system (8). We proceed by comparing how the results found in our

augmented system compares to those of Weber (2001) and Solow (1956). Figure 1 plots

the global mean temperature as a function of solar lumonosity for the original model of

Weber (2001) and the Solow augmented model.19 This plot is typical of the Daisyworld

literature. It shows how the feedback mechanisms inherent in daisy system counteracts

the effect of changes in solar lumonosity on temperature compared to a dead planet.

This property gives support to the Gaia argument and shows how an active biosphere

could have regulated global temperature keeping it stable despite the 25% increase in

solar lumonosity since the origins of life (Lenton, 2002). As previously mentioned this

property is referred to as homeostasis which is a robust feature of all Daisyworld models

of this type (Weber, 2001). In both graphs plotted in figure 1 the thick dashed (blue)

line which is fairly inelastic to changes in the solar luminosity, represents stable equilibria

of the system for different values of solar lumonosity L. Along this line both daisies are

alive (i.e. {aw, ab} > 0) and hence covering a land area larger than zero. This shows

that when both daisies are alive they actively help regulate the global temperature. The

vertical upward sloping line, from the left lower hand corner to the right upper hand

corner, shows the temperature affect without the regulating capacity of the daisies i.e.

along this line both daisies are dead so that {aw, ab} = 0. Now, imagine that the system

is initially in the state where luminosity is unity (L = 1). The plot shows how the system

responds to changes in solar lumonosity. At, L = 1 the system has only one entirely

stable equilibrium where both daisies cover positive amounts of land. This equilibrium

lies on the thick blue dashed line in the left and right figure. The small differences in tem-

peratures between the two systems shows for this value of solar luminosity the regulatory

capacity of the daisies. However, what can not be seen from figure 1 is that the balance

between the black and white daisies has been disturbed in the DS system compared to

DO system. In DO the daisies cover approximately 33% of available land each whereas

in DS white daisies cover approximately 50% while the black cover only 16%. As we

now move to the right (left), increasing (decreasing) lumonosity, along the dashed line

the system bifurcates at the branch point (BP) where the black (white) daisies become

18See (Dhooge et al., 2003). The starting equilibria was calculated using the OCMAT toolbox (See
Grass et al. (2008) ch. 7).

19Note that the left plot of figure 1 is identical to figure 1 of Weber (2001).
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Figure 1: Equlibrium temperature as a function of solar lumonosity. No daisies (solid
line), only black daisies (dash-dot line), white daisies only (dotted line). Thick lines
are complete stability. Blue thin lines have 4 negative eigenvalues. Green lines have 3
negative eigenvalues. BP denotes branching points, indicating a change in the sign of an
eigenvalue. LP are the limit points or saddle-node bifurcations of the system. H denotes
a Hopf bifurcation.

extinct. At this stage the equilibrium has coincided with the unstable equilibrium on

the lower (upper) branch. For higher (lower) values of lumonosity the temperature the

elasticity has now increased. Further decreases (increases) in solar luminosity thus causes

larger variations in temperature up to a limit point (LP) or saddle-node bifurcation where

the equilibrium disappears and system moves to the only stable equilibrium where both

daisies are extinct.20

After this shift in the point of attraction it can be seen from the figure that a crossing

of this threshold implies that the we get a hysteresis effect. By this we mean that

after crossing the threshold given by the limit points (LP’s) of the figure, decreasing

(increasing) the luminosity does not imply that the system moves back to its previous

branch. Now luminosity must be decreased (increased) until it reaches the branching

point (BP) where the equilibrium loses stability and shifts back to the positive daisy

20From here on the term limit point and saddle-node bifurcation will be used interchangeably. A
definition can be found in Kuznetsov (1998).

11



population state.

4.1 Capital

We have now looked at the global temperature variation. So what happens to capital?

Figure 2 plots the corresponding bifurcation diagram for the DS system but with capital
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Figure 2: Equlibrium capital as a function of solar lumonosity. No daisies (solid line), only
black daisies (dash-dot line), white daisies only (dotted line). Thick lines are complete
stability. Blue thin lines have 4 negative eigenvalues. Green lines have 3 negative eigen-
values. BP denotes branching points, indicating a change in the sign of an eigenvalue.
LP are the limit points of the system. H denotes a Hopf bifurcation.

as a function of solar lumonosity. From this graph we can really see the positive effect

of daisies on the capital stock. The difference is large between a system without daisies

which follows the green line and the system with daisies along the dashed thick lines.

At the point L = 1 the equilibrium with a positive coverage of daisies (lying on the

dashed line) has almost three times the capital stock compared to the point on the green

line where the two daisies are extinct. This shows how the biosphere supports a higher

capital stock and hence production than a world without a biosphere. Further, the figure

also illustrates how the homeostatic properties of the daisies make the equilibrium capital

stock is fairly robust to changes in solar luminosity compared to the case with zero daisies.

Hence an economy supported by the regulatory power of the biota is not as sensitive to

external forcings.
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Combing the Daisyworld system with the Solow model thus illustrates how the econ-

omy might depend on the ability of nature to regulate the earth system in a way which

makes it robust to external forcings.

5 Resilience and the distance to the closest saddle-

node bifurcation point

Resilience refers to the capacity of a social-ecological system to undergo disturbances

without collapsing into a qualitatively different state that is controlled by a completely

different set of processes.21 The concept of resilience is widely used in a great variety of

interdisciplinary work concerned with the interactions between people and nature. An

underlying assumption of resilience analysis is that social-ecological systems generally

contain thresholds and can exhibit hysteretic and irreversible behavior making it impor-

tant to identify and understand their underlying processes (Walker et al., 2002). However

as pointed out in Carpenter et al. (2001) the concept of resilience, typically has multiple

levels of meaning, ranging from the metaphorical to the very specific.

In Daisyworld, resilience can be thought of as the ability of the present state of the

model to maintain its qualitative features when subject to perturbations in the parameter

space such as the effect of changes in solar lumonosity. In figure 1 we saw how the

resilience of global temperature in Daisworld is affected after being coupled to the Solow

model. Here, resilience is measured as the distance from the point of origin, i.e. the

present solar luminosity (L = 1), to the closest of the two limit points. If we denote

L0 as the solar luminosity at our point of origin and L∗ as the closest limit point, here

L∗ ≈ 1.42, the distance between these two points can be thought of as a measure of the

resilience of temperature w.r.t the amount of incoming solar radiation. This distance

to bifurcation point approach to evaluating resilience has previously been applied as a

measure of resilience in purely ecological systems (See Ludwig et al. (1997)). This way of

approaching resilience gives us a measure of how robust any particular stable equilibrium

of a system is to changes in given parameters of that system.22

However, in a complex system such as DS there is usually not only one, but sev-

eral parameters that might become subject to perturbations due to outside disturbances.

Hence, an analysis looking at only one of these parameters at a time will miss impor-

tant scale effects that might be inherent within such a system. This line of thought has

and is receiving much attention within the literature on electrical engineering, address-

ing phenomenon known as voltage instability which typically occurs in heavily loaded

21See www.resalliance.org/
22It is important to notice that although parameters might be assumed to be held constant within the

borders of a simple model they might still be subject to external changes and could thus alternatively
be seen as slow moving variables (Carpenter et al., 2001).

13



electrical power systems (Dobson and Chiang, 1989; Dobson, 2003). Voltage instability

can become a major source of uncontrollable drops in voltage power leading to electrical

blackouts. When modeling electrical systems using the theory of differential equations

such a collapse can then be described as the loss of stability that occurs when a stable

equilibrium disappears into a saddle-node bifurcation. Assessing the robustness of such

a system can thus be seen as a problem of finding the saddle-node bifurcation closest to

the point at which the system is currently being operated. Depending on the number of

parameters that might become subject to perturbation this can be viewed as a geometric

problem of calculating distances in a multidimensional parameter space. This becomes

increasingly relevant if one considers that dynamical systems often are calibrated based

on statistical inference implying where each parameter estimate is an approximation of

its true value. For instance, when estimating the equations of a dynamical system by

ordinary least squares the law of large numbers and the central limit theorem tells us

that, given certain conditions, we will obtain consistent estimates having asymptotically

normal distributions. If the estimated parameters are then used as best guess estimates

of some parameters of a dynamical system their corresponding variances provide us with

a confidence region for the model. Moreover, if these normally distributed parameters

have independent uncertainties, then a closest bifurcation can be interpreted as a most

likely bifurcation (Dobson, 2003). In order to make this point clear we setup a simple

example which illustrates this approach. Consider a simple system consisting of a single

differential equation:

dx

dt
= b̂1 − x− b̂2x

2, x ∈ R, {b̂1, b̂2} ∈ R (9)

Here, b̂1 and b̂2 are assumed to be approximate estimates of their true values (b1, b2) drawn

from a normal probability distribution with equal variances. Given these estimates the

system has two equilibrium solution branches given by:

x̂1,2 = − 1

2b̂2

±

√(
1

2b̂2

)2

+
b̂1

b̂2

(10)

where a real valued solution exists given that
(

1

2b̂2

)2

+ b̂1
b̂2
> 0.23 The corresponding

eigenvalues of the two equilibria are λ̂1,2 = ±
√(

1

2b̂2

)2

+ b̂1
b̂2

. A saddle-node bifurcation

thus occurs when the two equilibria collide and disappear. When this happens the bi-

furcation point is characterized by a single equilibrium having a zero eigenvalue. From

(10) we see that
(

1

2b̂2

)2

+ b̂1
b̂2

must equal zero at this point which further implies that

sign(b̂1) 6= sign(b̂2) becomes a necessary condition for a saddle-node bifurcation to oc-

23For the case of b̂2 = 0 the solution is simply x̂ = b̂1.
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cur. An example of this is depicted in figure 3 in the b̂1− b̂2 parameter space. The figure

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

b2

b 1

I

II

III

B2

B1

B0

B3

Figure 3: Parameter space of equation (9). I and III are regions where no real valued
solution to (10) exist. The lines bordering to these regions are the saddle-node bifurcation
curves. The arrows gives distances from the point B0 to different bifurcation points along
the curve. The resilience of the system w.r.t. perturbations in B1 or B2 could thus be
thought of as the distance from an equilibrium point lying in region II to the closest
saddle-node bifurcation.

separates three different regions within the parameter space. In area II there exists two

equilibrium solutions while area I and III do not possess any real valued solutions. The

lines separating these regions are bifurcation curves depicting all points where saddle-

node bifurcations can occur. B0 is assumed to the vector containing the approximate

values b̂1 and b̂2 while B1, B2 and B3 denote points on the bifurcation curve. given

above the shortest distance approach gives the best estimate of the most likely bifurca-

tion. However, whether this applies or not will of course depend upon what is assumed

regarding these uncertainties.

How can resilience be measured given the above arguments? Typically, a system as the

one above constitutes a vast simplification trying to capture general features underlying

complex processes, existing in the real world. Therefore an assessment of the systems

resilience should challenge the assumption that b̂1 and b̂2 are both constants. Here we

have assumed that these approximations are normally distributed estimates with equal

variances. In this case measuring resilience of the system becomes a problem of calculating
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the geometrical distance function to the closest bifurcation point present in the system.24

This is shown in figure 9. Consider the approximated best guess estimated point B0 in

figure 9. As can be seen from the figure, when only observing changes in the parameter

b̂2, the resilience of the system seems in fairly good shape since the distance from our

best-guess approximation B0 is relatively far from the saddle-node bifurcation occurring

at B3. However, when considering also bifurcations in the parameter b̂1 one notices that

the resilience of the system is not as in good shape since the distance B0-B2 is relatively

shorter. Further, due to the concave shape of the bifurcation curve surrounding region III,

we notice that the closest distance to a bifurcation point lies in between these horizontal

and vertical vectors and is given by the vector going from B0 to B3. If we denote Σ ∈ R2 as

the set of parameter values lying on one of the saddle-node bifurcation curves, B̃ ∈ Σ as a

point on this curve, this implies that the resilience measure of the system or alternatively

the closest bifurcation point w.r.t changes in B0 thus becomes the solution to the problem

of minimizing the distance D(B̃) = ‖B0 − B̃‖ s.t. B̃ ∈ Σ, where ‖ · ‖ denotes the vector

length/norm. However in a more complex situation the probability distributions of the

above parameters need not be normal and the most likely bifurcation will thus be an

increasingly complex multidimensional stochastic problem.

Coming back to the Solow-Daisyworld model figure 4 applies these principles of re-

silience w.r.t. changes in not only in L but also in ξ. It has been deeply acknowledged

within the field of atmospheric science that the sensitivity of the global temperature to a

doubling of the amount of carbon dioxide in the atmosphere is highly uncertain (Roe and

Baker, 2007).25 Hence, based on the discussion above this calls for a bifurcation analysis

also in the climate sensitivity parameter ξ in order to get an acceptable measurement of

resilience in the system. Figure 4 depicts the parameter space L-ξ in the Solow-Daisy

model. Here, v1 and v2 are vectors of equal length starting at the best guess estimates of

these parameters (the initial point). The (blue) dashed circle denotes all points having

equal length to these vectors. The (red) dash-dot line denotes the saddle-node bifurcation

surface of the system. Although, its hard to see from the figure the bifurcation surface

is slightly concave implying that the points located in between the vectors v1 and v2 lie

closer to the initial point. This implies that a measure of resilience of the system w.r.t

only solar luminosity would lead us to assume that the system is more resilient than if

resilience was considered w.r.t both solar lumonosity and climate sensitivity.

Although the difference here is almost neglegible in comparison to the earlier example

this still serves to illustrate a point that if bifurcations in the multi dimensional parameter

space are ignored this might give an unsatisfactory measure of resilience implying that

24This can also give rise to so called codim 2 bifurcations (Kuznetsov, 1998).
25In Roe and Baker (2007) the distribution of the climate sensitivity parameter follows from a transfor-

mation of a normal feedback parameter. Using this probability distribution in the DS system is beyond
the scope of the present paper and instead it is simply assumed to be normally distributed with the
similar variance as the solar luminosity.
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Figure 4: Resilience with respect to the solar luminosity and climate sensitivity. The
(red) dash-dot line denotes the saddle-node bifurcation surface. The blue dashed line is
a circle depicting the length of the vectors v1 and v2.

thresholds or tipping points might be closer than expected.

6 Conclusions

This paper has explored several aspects of human biosphere interdependence, self-regulation

and resilience within a climate-biota model coupled to an economic growth model. In

particular, the model developed in this paper stresses human dependence upon the bio-

sphere but also shows how human development can threaten not only the biosphere per

se but also human existence in itself. This is a point which was also made clear at the

summit of the 3rd Nobel Laureate symposium held in Stockholm in Maj 2011. At the

symposium a document stressing the dependence and influence that human species have

on the biosphere was signed by several of the former laureates and influential thinkers

attending the meeting. Among other things the following statement was made:

Humans are now the most significant driver of global change, propelling the

planet into a new geological epoch, the Anthropocene. We can no longer ex-

clude the possibility that our collective actions will trigger tipping points, risk-

ing abrupt and irreversible consequences for human communities and ecologi-

cal systems. (Stockholm Memorandum, 2011)
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Although the model developed here is fictive in nature, it still captures the interdepen-

dence between humans and the biosphere which is currently not being modeled in many

models of the climate and the economy. The Daisy-Solow model is thus an attempt to

explore what possible aspects that might be missing in current models that do not include

these types of feedbacks. The direction for future research is clearly to move towards a

model with elements that better portrays real world entities or processes than that of the

two daisies.
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A Appendix

The analytical solution can be characterized as follows:

A steady-state equilibrium of the system (8) consist of a fixed point [âw, âb, T̂ , k̂, M̂ ] ∈
R5 where daw

dt
= dab

dt
= dT

dt
= dM

dt
= dk

dt
= 0 for all t ∈ [0,∞). Hence, for the two daisies it

implies that either:

aw = 0 or (1− aw − ab)β(Tw)− γ = 0 (11)

and

ab = 0 or (1− aw − ab)β(Tb)− γ = 0 (12)

must hold.

A.1 Case 1 ((1−aw−ab)β(Tw)−γ = 0 and (1−aw−ab)β(Tb)−γ = 0)

This implies that β(Tw) = β(Tb) ⇒ T 2
w = T 2

b + 2Topt(Tw − Tb). From condition (8d) and

(8e) we derive that Tw − Tb = q(Aw − Ab) and we can thus write:

T 2
w = (Tw − q(Aw − Ab))2 + 2Toptq(Aw − Ab)

T 2
b = (Tb − q(Ab − Aw))2 + 2Toptq(Ab − Aw)

from this we can thus derive the equilibrium local temperatures T̂w and T̂b :

T̂w = Topt +
q

2
(Aw − Ab) (13)

T̂b = Topt −
q

2
(Aw − Ab) (14)

from these we also directly obtain âg and β̂.

âg =
γ

1 + kd(
q
2
(Aw − Ab))2

with kd = 4/(Tmax − Tmin)2

implying that from (8g) the albedo can be written as:

A = awAw + (1− âg − aw)Ab + âgAg = (1− âg)Ab + âgAg + (Aw − Ab)aw (15)

By substituting (13) and (14) back into (8d) and (8e) and we get an explicit expression

for the relationship between temperature and planetary albedo:
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T − Topt = q

(
Ab + Aw

2
−A

)
(16)

rewrite (8i):

dT

dt
= SL

(
1− Ab + Aw

2

)
+ SL

(
Ab + Aw

2
−A

)
− (Ψ + λT ) + ξ ln

M

M0

(17)

substitute (16) into (17) we get:

dT

dt
= SL

(
1− Ab + Aw

2

)
+
SL

q
(T − Topt)− (Ψ + λT ) + ξ ln

M

M0

(18)

By setting dT
dt

= 0 we can now derive the following expression for global temperature T

as a function of carbon dioxide:

T =

(
SL

q
− λ
)−1(

Ψ− SL
(

1− Ab + Aw
2

)
+
SL

q
Topt − ξ ln

M

M0

)
(19)

From this we see that in the two daisy regime, an increase in carbon dioxide M decreases

temperature. This thus works in the same direction as an increase in solar luminosity L.

Next, we take on the cobb-douglas form form the production function, f(k) = kα, and

after setting dk
dt

= 0 of (8j) we can solve for k:

k =

(
s

δ̃
Ω(T )(1− ψµ2)

) 1
1−α

(20)

where δ̃ = δ + n + g set dM
dt

= 0 of (8h) and using (8k) we can write M as a function of

temperature:

M = M0 +
β

δM
σ(1− µ)

(
s

δ̃
Ω(T )(1− ψµ2)

) α
1−α

AN (21)

Assuming that the growth rate in the emission to output ratio σ(t) exactly offsets in-

creased emissions due to population and technological growth ϕ = g + n we can thus

normalize and set A = N = 1 and write the equilibrium temperature T̂ as:

T̂ =

(
SL

q
− λ
)−1

(
Ψ− SL

(
1− Ab + Aw

2

)
+
SL

q
Topt − ξ ln

(
M(T̂ )

M0

))
(22)

Equation (22) is a fixed point problem that can be solved using numerical methods.26

26See for example Judd (1998).
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B Proof of proposition 1

Proof From (18) and (21) we have can write:

dT

dt
= SL

(
1− Ab + Aw

2
− Topt

q

)
−Ψ +

(
SL

q
− λ
)
T

+ ξ ln

(
1 +

β

δMM0

σ(1− µ)

(
s

δ

(1− ψµ2)

1 + θT 2

) α
1−α

AN

)
(23)

A steady-state equilibrium is defined as a fixed point [âw, âb, T̂ , k̂, M̂ ] ∈ R5 of (8), where
daw
dt

= dab
dt

= dT
dt

= dM
dt

= dk
dt

= 0 for all t ∈ [0,∞). Hence this requires that there exists

a fixed T̂ ∈ R that solves (23) for dT̂
dt

= 0 for all t ∈ [0,∞). Assume that growth is

unsustainable i.e. we have ϕ < g + n.

Then, since limt→∞ σAN = ∞ then for any finite T̂ , the limit as t → ∞ of the last

term in logarithm (i.e. ξ ln(·)) will be infinity, which violates the condition that dT
dt

must

equal zero in steady-state. From this it follows that neither capital K or net output Yn

grow at constant rates since both dK/dt
K

and dYn/dt
Yn

depend on T . Hence the economy

supported by Daisyworld does not converge to a balanced growth path unless ϕ ≥ g+n.

C Comparitive statics

Since this equilibrium turns out to be stable we can thus do some comparitive statics

and have a look at how the equilibrium temperature changes with respect to the policy

parameters s and µ. First define k̂ ≡
(
s
δ
Ω(T̂ )(1− ψµ2)

) α
1−α

C.1 Comparitive statics w.r.t. the saving rate s

We start with comparitive statics on T̂ (s) w.r.t. s which can be derived from (22):

d ˆT (s)

ds
−
(
SL

q
− λ
)−1

ξ
M0

M(T̂ (s))

∂M(T̂ (s), s)

∂s
= 0 (24)

where:

∂M(T̂ (s), s)

∂s
=

β

δM
σ(1− µ)

∂k̂

∂s

(1− ψµ2)

δ

(
Ω(T̂ ) + s

∂Ω(T̂ )

∂T̂

∂T̂

∂s

)
(25)
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and hence:

dT̂ (s)

ds
=

(
SL
q
− λ
)−1

ξ M0

M(T̂ (s))

β
δM
σ(1− µ)∂k̂

∂s
(1−ψµ2)

δ
Ω(T̂ (s))

1−
(
SL
q
− λ
)−1

ξ M0

M(T̂ (s))

β
δM
σ(1− µ)∂k̂

∂s
(1−ψµ2)

δ
s∂Ω(T̂ (s))

∂T̂

where ∂k̂
∂s
> 0. For T̂ < 0 the sign of dT̂ (s)

ds
is ambiguous and will depend among other

things the emission control rate µ. However, if T̂ > 0 then ∂Ω(T̂ )

∂T̂
< 0 which implies that

dT̂ (s)
ds

> 0 and an increased saving rate will thus imply an increase in the equilibrium

temperature T̂ .

C.2 Comparitive statics w.r.t. the emission control rate µ

From (22) we can write:

d ˆT (µ)

dµ
−
(
SL

q
− λ
)−1

ξ
M0

M(T̂ (µ))

∂M(T̂ (µ), µ)

∂µ
= 0 (26)

where:

∂M(T̂ (µ), µ)

∂µ
=
βσA

δM

(
−k̂ + (1− µ)

∂k̂

∂µ

s

δ̃

(
∂Ω(T̂ )

∂T̂

∂T̂

∂µ
(1− ψ1µ

ψ2)− ψ2ψ1µ
ψ2−1Ω(T )

))

and hence:

d ˆT (µ)

dµ
=

(
SL
q
− λ
)−1

ξ M0

M(T̂ (µ))

βσ
δM

(
−k̂ − (1− µ) ∂k̂

∂µ
s
δ̃
ψ2ψ1µ

ψ2−1Ω(T )
)

1−
(
SL
q
− λ
)−1

ξ M0

M(T̂ (µ))

βσ
δM

(
(1− µ) ∂k̂

∂µ
s
δ̃

(
∂Ω(T̂ )

∂T̂
(1− ψ1µψ2)

)) (27)

where ∂k̂
∂µ

< 0. Here the sign of d ˆT (µ)
dµ

depends on the magnitude of the chosen model

parameters.
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