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Abstract

Statistical models are usually thought of as means for describing statistical regularities.

Concerning stock returns, many empirical regularities have been documented in the literature

together with their corresponding models. The main task of this paper is to investigate, under

the prism of the philosophy of science, the conditions that a statistical model has to satisfy in

order to be deemed as explanatory adequate for the existing regularities. We distinguish two

alternative sets of criteria for the explanatory adequacy of a statistical model. The �rst one is

given by the Deductive-Statistical model of explanation, put forward by Hempel (1962). The

second set, which contains much stricter conditions than the �rst, corresponds to the Deductive-

Probabilistic-Nomological model suggested by Railton (1978). It is shown that the two most

important statistical models of stock returns, namely the multivariate GARCH model and the

Factor Model with persistent betas, are D-S explanatory. It is also shown that the Factor Model

partially satis�es the D-N-P conditions for explanatory adequacy whereas the GARCH model

fails completely in this respect.
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1. Introduction

There exist two broad categories of empirical regularities: deterministic and statistical.

Statistical regularities are described by statistical models. A single statistical model,

M; usually describes more than one empirical regularity, that is a set S of empirical

regularities S1; S2; :::; Sn: Following Ellis (1956), we de�ne a regularity Si to be of higher-

order or more fundamental than another regularity Sj; if Sj can be deduced by Si but

not vice versa, that is when Si =) Sj and Sj ; Si: In this case, Sj may be referred

to as "derivative" regularity. Furthermore, two regularities are of the same order if

each can be inferred from the other. It is important to note that the true relata in the

aforementioned "=)" relationships are the probabilistic interpretations, Di and Dj; of

Si and Sj; respectively, rather than the regularities themselves. This in turn implies

that the extent to which Sj is derived from Si depends on the corresponding probabilistic

interpretationsDi andDj adopted by the statistician. For example, if Sj were interpreted

byD0
j instead of Dj; then a proposition of the formDi =) D0

j might not be valid. In such

a case, Sj is not derived from Si: This feature introduces some ambiguity to the extent

that a given regularity is deduced from another one, since the necessary deducibility

relationship may be obtained under one probabilistic interpretation but may fail under

another.

The selection of the relevant theoretical interpretation at any given time depends

on the "background theory" that prevails at this particular time. Historically, it has

been observed that the same empirical regularity has derived alternative probabilis-

tic/theoretical interpretations at di¤erent points in time (see, for example, Brewer and

Lambert 200????). From now on, when we say that a regularity, Sj; is deduced from

a broader regularity, Si or that Si entails or implies Sj; we shall mean that there exist

(at least) two corresponding probabilistic interpretations Di and Dj (in the sense de�ned

above) respectively, such that Di =) Dj:

Next consider the set S= fS1; S2; :::; Sng to be the set of known regularities for the

phenomenon of interest. Assume that there are two regularities, say S1 and S2 which
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are of higher-order than all the rest, namely S1 =) Si, i = 3; 4; :::; n and S2 =) Si,

i = 3; 4; :::; n: Moreover, assume that S1 and S2 are of the same order, that is S1 () S2:

There are two statistical models M1 and M2 constructed with the aim to describe S1

and S2, respectively. Put di¤erently, M1 and M2 were born out of the probabilistic

interpretations D1 and D2, respectively, of S1 and S2, respectively. This means that M1

andM2 are of purely empirical origins, since no "theoretical" subject-matter information

is assumed to be involved in their conception. In other words, M1 andM2 were produced

with the sole aim to "describe" (in a probabilistic sense) S1 and S2, respectively. However,

despite their inductive/empirical origins, and descriptive aspirations,M1 andM2 can also

be "explanatory" in a sense that will be de�ned below. Indeed, one of the main questions

in this paper is whether the aforementioned relationships among the elements of S and

the postulated origins of M1 and M2, imply that M1 and M2 are equivalent with respect

to their explanatory power.

Before we attempt to answer the question raised above, we must �rst de�ne the sense

in which a statistical model can be explanatory. In a series of papers, Box and his

co-authors classi�ed statistical models in two broad categories, the �rst including the so-

called empirical or interpolatory models, and the second the explanatory or mechanistic

ones (see Box and Hunter 1965, and Box and Draper 1987). Lehmann (1990) summarises

the main di¤erences between these two types as follows: �Empirical models are used as

a guide to action, often based on forecasts of what to expect from future observations.

In contrast, explanatory models embody the search for the basic mechanism underlying

the process being studied; they constitute an e¤ort to achieve understanding�(Lehmann

1990, p. 163). This classi�cation, though intuitively appealing, leaves one fundamental

question unanswered: under what objective conditions �understanding�is considered to

be achieved? In other words, in the context of a statistical model what are the criteria

that a purported explanation has to satisfy in order to be deemed scienti�cally or formally

(rather than subjectively) adequate?

The question of what constitutes an adequate statistical explanation of an empirical
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regularity has been central in the philosophy of science literature since 1948, year at which

Hempel and Oppenheim published their seminal paper on the structure of explanation

(see also Hempel 1962, 1965). The main point in the Hempelian view of explanation, is

that explanation is achieved through derivation. More speci�cally an explanation of an

empirical regularity is an argument to the e¤ect that this regularity (expressed in the form

of an exact probabilistic statement) is derived from other (more fundamental) empirical

regularities (also expressed in the form of probabilistic statements) by means of probabil-

ity theory. This model of explanation is usually referred to as the Deductive-Statistical

(D-S) model of explanation. D-S explanations are special cases of the so-called "covering

law" explanations, in the context of which a narrow empirical regularity is explained by

being subsumed under a broader empirical regularity, with the latter being referred to as

the covering law of the purported explanation. In the context of D-S, the statistical mod-

elsM1 andM2 introduced above are both D-S explanatory for fS3; S4; :::; Sng : Moreover,

they are D-S equivalent. Indeed, as mentioned above M1(M2) was constructed with the

aim to represent in a speci�c parametric form the set of probabilistic properties D1(D2)

which was chosen to probabilistically interpret the empirical regularity S1(S2): Since it

has been assumed that S1 =) fS3; S4; :::; Sng and S2 =) fS3; S4; :::; Sng in the sense

that D1 =) fD3; D4; :::; Dng and D2 =) fD3; D4; :::; Dng ; respectively we conclude that

M1 =) fD3; D4; :::; Dng and M2 =) fD3; D4; :::; Dng : This in turn implies that all the

known empirical regularities S3; S4; :::; Sn can be derived and hence explained by both

models. Moreover, in terms of the higher order regularities S1 and S2 these models are

equivalent since M1 can be used as a "covering law" for deducing S2 and, symmetrically,

M2 can play the role of covering law in a deductive argument terminating in S1:

However,M1 andM2 may not be equivalent under a di¤erent set of stricter criteria for

explanatory adequacy. These criteria are based on the thesis that all explanation must

be causal, which in turn has produced the so-called "causal mechanistic" (C-M) models

of explanation. A prominent member of the CM class is the Deductive-Nomological-

Probabilistic (D-N-P) model of explanation suggested by Railton (1978, 1981). Accord-
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ing to D-N-P, the mere subsumption of a narrow regularity, say S3, under the broader

regularity, say S1; or equivalently under the statistical model M1; does not constitute an

explanation of S3; unlessM1 is backed up with �a theoretical account of the mechanism(s)

at work.�More speci�cally, S3 is explained by placing it within a web of �inter-connected

series of law-based accounts of all the nodes and links in the causal network culminating

in the explanandum, complete with a fully detailed description of the causal mechanisms

involved in the theoretical derivations of all covering laws involved�(Railton 1981, pp.

174). This means that M1 in itself cannot form the sole basis for a satisfactory explana-

tion of S3 unless M1 is derivable from a theory accounting for the causal mechanism at

work. Assume now that M1 is indeed derivable from such a theory whereas M2 is not.

In such a case, the explanatory value of M1 is higher than that of M2 because M1 as

opposed to M2 is derivable from a theoretical account of the chance mechanism at work.

This enables M1; but not M2; to function as a link in the causal network culminating in

the explanandum.

Given the de�nitions/criteria of statistical explanation introduced above, the types

of explanation that we have obtained for S3; in the context of the aforementioned ex-

ample, are the following: (i) An M1�dependent, D-N-P explanation for S3: (ii) An

M1�dependent, D-S explanation for S3: (iii) An M2�dependent, D-S explanation for

S3: Note that due to the lack of deducibility of M2 from a theoretical account of the

chance mechanism at work, no M2�dependent, D-N-P explanation for S3 exists.

As far as stock returns are concerned there are currently certain statistical regularities

which are widely recognized as "stylized facts", since they appear to be common across

many di¤erent markets, assets and time periods. These regularities may be classi�ed

in two broad categories: The �rst category, hereafter "Regularities of Type-I" (RT-I),

refers to the individual temporal behaviour of each returns series Ri;t i = 1; 2; :::; n: The

most important regularities in RT-I are the following: (i) Fast Mean Reversion (FMR),

that is the tendency of stock returns to revert to an average value quite rapidly. Put

it di¤erently, the degree of persistence of returns�deviation from this average value is
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very low, if not zero. (ii) Volatility Clustering (VC), that is the fact that "large (price)

changes tend to be followed by large changes, of either sign, and small changes tend to

be followed by small changes" (Mandelbrot 1963, pp. ???). (iii) Empirical Leptokurtosis

(EL), namely the empirical distributions of stock returns are characterised by heavy tails

with positive excess kurtosis. (iv) Empirical Aggregational Gaussianity (EAG), that is

the fact that the degree of leptokurtosis in the empirical distributions tends to diminish

as the return horizon increases. (v) Empirical Aggregational Independence (EAI), that

is the observation that the volatility clustering e¤ects tend to disappear as the returns

horizon increases or equivalently, as we move from higher to lower frequencies (e.g. from

daily to quarterly observations).

The probabilistic interpretations/descriptions of these empirical regularities have taken

the following forms: FMR is described by assuming that the stochastic sequence fRi;tg is

martingale di¤erence (MD) with respect to its own past history. VC is usually interpreted

as "dynamic conditional heteroscedasticity" (DCH) which is a speci�c type of non-linear

temporal dependence of fRi;tg, arising through the conditional variance. EL has a natural

interpretation in terms of theoretical leptokurtosis (TL) of the (stationary) distributions

of the random variables Ri;t: EAG is interpreted as a tendency of the aggregate random

variables, Ri� (k) =
Pk

l=1Ri;t�k+l to converge in law to the Normal distribution as the

returns�horizon k increases (AG). Finally, EAI is described by the probabilistic property

that the random variables Ri� (k) and Ris(k); � 6= s tend to be independent as the returns

horizon k increases (AI).

Among the above mentioned regularities and their theoretical intepretations, VC/DCH

proved to be of higher-order than the rest. This is due to the fact that VC/DCH moti-

vated the birth of the Martingale-Di¤erence GARCHmodel (MD-GARCH) in the context

of which EL/TL, EAG/AG and EAI/AI are derived, whereas FMR/MD is imposed (see,

for example, Engle 1982, Bollerslev 1987 for DCH =) TL and, for example, Diebold

1988, Drost and Nijman 1993 and Meddahi and Renault 2004 for DCH =) AG and

DCH =) AI).
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The second category, hereafter referred to as "Regularities of Type-II" (RT-II) refers

to the joint temporal behaviour of all returns series or to the joint behaviour between

each returns series Ri;t and another factor (or factors). The most important regularity

in RT-II is the fact that the stock prices tend to move together over time. In other

words, stock returns appear to be positively correlated temporally. Roll and Ross (1980)

refer to the common variability of stock returns as �the single most widely-acknowledged

empirical regularity�(1980, pp. 1073). Moroever, the degree of these comovements do

not appear to be constant over time, but rather exhibit "clustering" patterns, similar to

VC (see for example, Christodoulakis 2001). This empirical regularity will be referred to

as "covariation clustering", abbreviated as CC. An obvious probabilistic interpretation

of CC is to assume that the conditional covariance matrix �t of the (stationary) random

vector Rt = [R1;t; R2;t; :::; Rn;t]
> is a function of the past history of Rt, that is it exhibits

dynamic conditional heteroskedasticity. This interpretation has given rise to the so-called

multivariate MD-GARCH models (M-MD-GARCH).

Another empirical regularity in RT-II is based on the observation that stock returns

tend to respond to (unanticipated) changes in one or more variables, such as the market

portfolio (more precisely a proxy of it) or certain macroeconomic and/or �nancial vari-

ables/factors. This regularity will be referred to as "common factor" regularity (CF).

Sharpe (1964) refers implicitly to this regularity as follows: "it is common practice for

investment councelors to accept a lower expected return from defensive securities (those

which respond little to changes in the economy) than they require from aggressive securi-

ties (which exhibit signi�cant response)" (1964, pp. 442). In the simplest case of a single

factor, Xt, the probabilistic interpretation of CF takes the form of a linear regression

model, Ri;t = ai+ �iMt+ ui;t, where Mt = Xt�E(Xt j �t�1): Concerning the identity of

Xt, the majority of empirical studies have identi�ed the single factor with (a proxy of)

the return on the "market portfolio", following the theoretical suggestions of the Capital

Asset Pricing Model (CAPM). The error term, ui;t; is assumed to be a zero-mean i.i.d.

process with �nite variance, satisfying the condition E (ui;t jMt) = 0; for i = 1; 2; :::; n.
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The slope coe¢ cient, �i; is interpreted as a measure of the systematic risk of the stock

i, and is usually referred to as the �beta coe¢ cient�, or simply the �beta�of the stock

i. In the context of this model, the returns on all the existing assets, i = 1; 2; :::; n, are

related only through Mt. This assumption amounts to the covariance matrix, �u, of ui;t,

i = 1; 2; :::; n, being diagonal, that is, Cov(ui;t; uj;t) = 0 for j 6= i. Following the relevant

literature, this particular description of CF will be referred to as the single factor model

(SFM).

Initially, an implicit assumption in the CF regularity mentioned above was that the

degree of response of each stock to changes in the factor, was constant over time. There-

fore, the corresponding description of this degree of response in the context of SFM took

the form of a time-invariant beta. However, more detailed statistical analysis showed

that the estimates of beta were not constant over time. As a result the CF regularity was

replaced by a more general regularity according to which stock returns tend to respond

to changes in the factor with the degree of this response changing over time. Some re-

searchers took the view that the variation in the degree of response is random (see, for

example, Blume 1971, 1975, Fabozzi and Francis 1977) whereas others believed that this

variation exhibits signs of temporal persistence (see, for example, Fisher and Kamin 1985,

Sunder 1980, Bos and Newbold 1984, Collins, Ledolter and Rayburn 1987, Andersen et

al. 2005, and Jostova and Philipov 2005). As a result, the original CF regularity was

replaced, by the the more general CFP one, which states that "the degree of response

of each stock to changes in the factor changes over time in a persistent fashion". CFP

may be probabilistically described by a single factor model in which the stochastic se-

quence f�itg is assumed to be a �rst-order autoregressive process, �i;t = 'i�i;t�1 + "i;t:

The resulting SFM model will be referred to as SFM-AR.

By noting that VC is a special case of CC, we may collect the aforementioned empirical

regularities of stock returns in the following set SR;

SR = fCC;CFP; FMR;EL;EAG;EAIg:
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As mentioned above, CC motivated the birth of M-MD-GARCH, whereas CFP gave

rise to SFM-AR. The main task of this paper is to compare the explanatory power of

M-MD-GARCH with that of SFM-AR, under the D-S and D-N-P criteria of explanatory

adequacy. The paper is organised as follows: Section 2 begins with a brief outline of

the basic features of the D-S model of statistical explanation. Then it proceeds to criti-

cally review the existing econometric results demonstrating that M-MD-GARCH entails

FMR (tautologically) as well as EL; EAG; and EAI. This model also implies CFP in

the case that the single factor is the returns on the market portfolio (see Bollerslev, En-

gle and Wooldridge 1988). Section 3 proves that SFM-AR also entails FMR; EL; EAG;

and EAI. This section also shows that SFM-AR produces deductively CC; regardless

of whether the risk factor is the market index or any other variable. The combined re-

sults of Sections 2 and 3 lead to the conclusion that M-MD-GARCH and SFM-AR are

D-S explanatory equivalent. Section 4 examines whether this equivalence carries forward

to the case in which the stricter D-N-P criteria for explanatory adequacy are adopted.

This section starts with a brief presentation of the D-N-P model of explanation and then

proceeds to compare this model with D-S. Then it examines the extent to which M-MD-

GARCH and SFM-AR satisfy the D-N-P conditions of explanatory adequacy. It is shown

that SFM-AR dominates M-MD-GARCH in terms of the D-N-P criteria, although it falls

short of achieving the ideal explanatory text, with the latter being de�ned as the upper

limit of a D-N-P explanation. This section argues that one of the main reasons for the

partial failure of SFM-AR to satisfy the D-N-P criteria is that this model does not reveal

the identity of the risk factors. A special version of SFM-AR which stems from CAPM

fares better with respect to the issue of risk factor identi�cation, although other prob-

lems pertaining to the causal interpretation of the identi�ed factor are present. Section

5 examines whether the true causal risk factors can be identi�ed empirically. Here, the

basic obstacle towards achieving this task lies in the general di¢ culty of reducing causal

relationships to statistical correlations. Various attempts to employ extra-statistical in-

formation for unravelling causal connections, such as the adoption of the principle of

8



temporal priority of causes over their e¤ects, are discussed. Section 6 concludes the

paper.

1 Deductive Statistical Explanations of the M-MD-GARCHModel

As already mentioned in the Introduction, the Hempelian D-S model of explanation iden-

ti�es explanation with derivation. This model �...is used to explain a statistical regularity

by showing that it follows with necessity from one or more statistical laws (and initial

conditions in some cases).�(Salmon 1984, pp. 295). Kinoshita (1990) comments on the

issue of regularity explanation as follows: �A regularity explanation does not amplify

the nature of a particular regularity, but rather orients the regularity relative to other

regularities. Regularity explanations show a regularity to be reasonable or proper by

showing it to be a special case of one or more (more comprehensive) regularities.�(Ki-

noshita, 1990, pp. 301). Speci�cally, an explanation of Sj orients this regularity within a

complex hierarchy of regularities by showing that Sj is a special case or manifestation of

Si. Friedman (1974) de�nes explanation in terms of uni�cation or conceptual economy.

If the number of empirical regularities that have to be assumed as �brute�is minimized,

then our understanding of the phenomenon is increased. For example, if Si and Sj are

two di¤erent regularities, then the case in which Si implies Sj achieves a higher order of

understanding, than the case in which Si and Sj are independent. Friedman (1974, pp.

15) argues: �I claim that this is the crucial property of scienti�c theories we are looking

for; this is the essence of scienti�c explanation - science increases our understanding of

the world by reducing the total number of independent phenomena that we have to ac-

cept as ultimate or given. A world with fewer independent phenomena is, other things

being equal, more comprehensible than with more�. Hempel, himself appraises the role of

uni�cation in explanation as follows: �What scienti�c explanation, especially theoretical

explanation aims at is not [an] intuitive and highly subjective kind of understanding,

but an objective kind of insight that is achieved by a systematic uni�cation, by exhibit-
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ing the phenomena as manifestations of common, underlying structures and processes

that conform to speci�c, testable, basic principles� (Hempel, 1966, pp. 83, emphasis

added???????????).

The precise situation in which a regularity Si explains another regularity Sj in the

D-S sense may be described as follows: (i) The empirical regularity, Si; is detected. (ii)

Si derives a probabilistic interpretation, say Di: (iii) Di motivates or inspires the creation

of a statistical model M1: For example, M1 may be thought of as an attempt to express

Di in an explicit parametric form. (iv)M1 is subject to theoretical analysis which reveals

that M1 exhibits an additional probabilistic property, Dj; over and above Di, that is

M1 =) Dj; with Dj 6= Di: (v) Assume that there exists an empirical regularity Sj whose

probabilistic interpretation is Dj: (i)-(v) imply that (a) Si "explains" Sj in the D-S sense,

and (b) M1 is D-S explanatory for Sj:

Since M-MD-GARCH is an extention of the univariate MD-GARCH, we shall begin

our discussion focusing on the latter model. Let us consider a market with n assets

(stocks) and let Ri;t be the one-period continuously compounded return on an individual

stock, de�ned as Ri;t = pi;t � pi;t�1; where pi;t is the natural logarithm of the price of

the particular stock. By dropping the subscript, i, for notational economy, the simplest

MD-GARCH model (MD-GARCH(1,1)) takes the following form:

Rt = c+ "t (1)

"t = ht�t

h2t = a0 + a1h
2
t�1 + a2"

2
t�1; a0 > 0; a1 � 0; a2 � 0

�t � IID(0; �2�)

The process fRt � cg where fRtg is described by (1) is martingale di¤erence. This model

was motivated by the empirical regularity of volatility clustring (VC) and its probabilis-

tic interpretation, as dynamic conditional heteroskedasticity (DCH). It is worth noting
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that there have been historical eras in which VC had derived probabilistic interpretations

di¤erent from DCH. Speci�cally, Mandelbrot (1963) was the �rst to detect volatility clus-

tering and empirical leptokurtosis. However, his interpretation of VC was not in terms

of DCH. Instead, he argued that the proper probabilistic interpretations of the observed

VC (and EL) should take the form of in�nite unconditional variance in the theoretical

distribution of stock returns. In other words, Mandelbrot intepreted these regularities

not as evidence for non-linear temporal dependence in the returns generating process,

but rather as evidence for the non-existence of the second-moments of the returns�un-

conditional distribution. In his seminal study of scienti�c progress, Kuhn (1962) argues

that the way by which a scientist interprets a given body of evidence at a speci�c point

in time depends on his own theoretical framework formed by the theoretical concepts

prevailing at that time. At the beginning of 1960s, probability theory had already pro-

duced important limit theorems allowing for convergence of a sum of random varibales to

non-Gaussian distributions with in�nite variance (see Levy 1925). These results were at

the heart of Mandelbrot�s "in�nite variance" interpretation of empirical leptokurtosis and

volatility clustering. On the other hand, results on non-linear stochastic processes, char-

acterised by the property of "asymptotic independence" (or mixing) were not available,

or at least widely known, at that period.

As mentioned above, DCH (combined with FMR) motivated the birth of the uni-

variate MD-GARCH model by Engle (1982) and Bollerslev (1986). One of the earliest

theoretical result concerning this model is that it entails leptokurtosis of the unconditional

distribution of Rt: Another result, which was also proved relatively early, was that fRtg

is a second-order stationary process if a1 + a2 < 1; in which case the unconditional vari-

ance of Rt exists and is equal to a0=(a1 + a2): Under this parametric restriction, Diebold

(1988) showed that MD-GARCH implies AG and AI. These results were based on the

fact that fRtg being a covariance stationary and asymptotically independent (mixing)

process, belongs to the domain of attraction of the normal law. This in turn implies that

the classic Central Limit Theorem (CLT) apply which in turn entail AG.

11



The preceding discussion suggests that starting with the assumption that the high

frequency returns process, fRtg ; is MD-GARCH, we are led to the conclusion that the

low frequency returns process fR�g is approximately normal, since R� is the sum of the

Rt�s occured within � . This property (AG) also has implications for the dependence

properties of the sequence fR�g : More speci�cally, if leptokurtosis is a manifestation

of GARCH e¤ects, then the decrease of leptokurtosis, implied by AG, means that the

GARCH e¤ects are diminishing as we move from higher to lower frequencies. Hence,

Aggregational Independence emerges.

However, early estimates of a1 and a2 were found to be in the viscinity of the unit

root area, that is a1 + a2 ' 1: These estimates gave rise to the so-called Integrated

GARCH process (MD-IGARCH), that is a process described by (1) with a1 + a2 = 1:

This process is clearly not covariance stationary since the unconditional variance is in�nite

although it is still strictly stationary and ergodic (see Nelson 1990). The near to unit

root estimates of the conditional variance raise the question of whether CLT applies

in the presence of an in�nite variance, which in turn generates doubts as to whether

MD-IGARCH entails AG. To this end, Kourogenis and Pittis (2008) showed that the

unconditional variance of an IGARCH process is "barely in�nite", meaning that all the

moments with order less than two exist! In the context of (1) with a1 + a2 = 1 the

barely in�nite variance hypothesis is stated as E jRtj� < 1 for every 0 � � < 2: If

the sequence fRtg has �nite second moments of order �; 0 � � < 2, then the normal

distribution may well be the limit of the (properly standardized) partial sums of fRtg :

This assertion stems from a limit theorem due to Bradley (1988) which states that under

some weak conditions, ��mixing sequences with barely in�nite variance belong to the

(non-normal) domain of attraction of the normal distribution. Peligrad (1990) obtains a

similar result for ��mixing processes. These results suggest that an IGARCH process

may obey the CLT. A �nal answer to this question was given very recently by Zhang

and Lin (2012). Speci�cally, Zhang and Lin proved that for a general class of GARCH

models, that covers the case of IGARCH, the central limit theorem holds.The di¤erence
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between the "barely in�nite variance" IGARCH process de�ned by (1) with a1 + a2 = 1

and the independent Stable Paretian process proposed by Mandelbrot (1963) is huge as

far as their asymptotic properties are concerned. More speci�cally, in spite of having

(barely) in�nite variance, an MD-IGARCH process is in the domain of the attraction of

the normal law. These results imply that both MD-GARCH and MD-IGARCH entail

theoretical leptokurtosis, aggregational normality and aggregational independence. This

means that DCH produces TL, AG, and AI even in the case in which DCH is quite strong

(IGARCH). The theoretical relationships, DCH =) fTL;AG;AIg may be translated in

terms of empirical regularities as V C =) fEL;EAG;EAIg:

Moving to a multivariate setting, we may argue that the multivariate equivalent of

VC is CC which in turn gave rise to M-MD-GARCH. To this end, Bauewens, Laurent

and Rombouts (2006) claim that "the most obvious application of multivariate GARCH

models is the study of the relations between volatilities and co-volatilities of several

markets" (2006, pp. 79). Many alternative M-MD-GARCH models have been proposed

in the literature stemming from alternative parsimonious speci�cations of the conditional

covariance matrix (see, for example, Bollerslev 1990, Engle 2002). The question that we

now face is whether any of these M-MD-GARCH speci�cations entail CFP. Such a result

is obtained by Bollerslev, Engle and Wooldridge (1988) in the context of a multivariate

GARCH-in-mean model, for the case in which the risk factor is the market portfolio.

(ADDITIONAL RESULTS????)

To sum up: This section has surveyed theoretical results, showing that CC =)

fCFP;EL;EAG;EAIg; where CFP is de�ned solely with respect to market portfolio.

Note that CC by itself does not imply FMR; since the probabilistic property of dynamic

heteroskedasticity" is independent to that of "martingale di¤erence". Nonetheless, a

multivariate GARCH model, in which the MD assumption has been imposed, is capable

of functioning as a covering statistical law in D-S explanations for the full set of stock

returns regularities, SR.
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2 Deductive-Statistical Explanations of the SFM-AR model

Following the discussion in Introduction, we assume that Ri;t is related to a single factor,

Mt, via the following relationship:

Ri;t = ai + (�i + �i;t)Mt + ui;t; i = 1; 2; :::; n (2)

where ai and �i are real numbers, and ui;t, �i;t, are zero-mean sequences of random

variables whose exact properties will be de�ned below. Equation (2) can be written in

vector form as follows

Rt = a+Mt(� + �t) + ut; (3)

where R0
t = [R1;t; R2;t; : : : ; Rn;t], a

0 = [a1; a2; : : : ; an], �
0 =

�
�1;t; �2;t; : : : ; �n;t

�
and u0t =

[u1;t; u2;t; : : : un;t].

Assumption M: �i;t follows a zero-mean AR(1) process,

�i;t = 'i�i;t�1 + "i;t; j'ij < 1, 1 � i � n (4)

and 266664
ut

Mt

"t

377775 � NIID
0BBBB@0;

266664
�u 0 0

0 �2m 0

0 0 �"

377775
1CCCCA (5)

where "t = ["1;t; "2;t; : : : ; "n;t]
0, �u = diag

�
�2u1 ; �

2
u2
; : : : ; �2un

�
, �" = (�i;j)1�i;j�n and

Et�1 [Mt] = 0, where by Et�1 [�] we denote the expectation conditional on the infor-

mation set that is generated by all the random variables under consideration up to time

t� 1.

Let us denote �2"i = V ar("i) = �i;i, 1 � i � n,

�� := V ar(�t) = E [�t�
0
t] =

�
�i;j

1� 'i'j

�
1�i;j�n
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and

�2�i = V ar (�i) =
�2"i

1� '2i
.

Note that under assumption M, equation (3) implies that Rt is a strictly stationary

process with �nite second moments. Equation (4) can be also written in vector form as

�t = ��t�1 + "t , (6)

where �=diag f'1; '2; : : : ; 'ng.

The most important result of this section, namely SFM�AR =) fCC;FMR;EL;EAG;EAIg

takes the form of the following two theorems.

Theorem 1

Equation (2) together with Assumption M, imply that

(i) The conditional covariance matrix of Rt is given by

V art�1 (Rt) = �
2
m�" + �u + �

2
m

�
� +��t�1

� �
� +��t�1

�0
(ii) The unconditional distribution of Rt is a mixture of normal distributions and is

described by

Rt �MN
�
a;�u + �

2
m(� + �t)(� + �t)

0� , (7)

where MN stands for the mixed normal distribution.

(iii) The kurtosis coe¢ cient of the unconditional distribution of Ri;t is given by

Kurt(Ri;t) =
E
�
(Ri;t � E[Ri;t])4

�
(V ar(Ri;t))

2 = 3 +
12�2�2��

4
m

(V ar(Ri;t))
2 : (8)

(iv) The process fRt � ag is a martingale di¤erence.

Proof: see Appendix.

Before we present Theorem 2, concerning EAG and EAI, we need to introduce some

further notation. Let us, �rst, de�ne the k-period return pt � pt�k, where pt is the
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logarithm of the stock price at time t. Since we study non-overlapping returns, the

series of k-period returns under consideration will be of the form f: : : ; pt�k � pt�2k;

pt � pt�k; pt+k � pt; : : :g. For this reason, we introduce a new index, denoted by � , which

represents the k-period interval, in terms of t. More speci�cally, if t and � correspond to

the same moment in time, then � + 1 will coincide with t + k. In other words, one unit

in terms of � corresponds to k units in terms of t. By dropping the subscript, i, for

notational economy, this change of index allows us to denote the k-period returns by

R� (k) = pt � pt�k =
kX
i=1

Rt�k+i .

Respectively, for the k-period return at lag 1, we use the notation

R��1(k) = pt�k � pt�2k =
kX
i=1

Rt�2k+i

and so forth. In the subsequent paragraphs we will make use of the notation �� � l�and

�� + l�, instead of �t � lk�and �t + lk�, where l � 0. We directly observe that since

R� (k)� ka is a martingale di¤erence process,

V ar(R� (k)) = kV ar(Rt) = k
��
�2 + �2�

�
�2m + �

2
u

�
. (9)

The next theorem proves that the sequence of weighted sums of returns, as described

by SFM-AR, satis�es an invariance principle. To this end, let us �x some t0 2 Z, set

St0;k =
kX
i=1

(Rt0+i � E [Rt0+i])

and for 0 � r � 1, de�ne

Wk(r) =

[rk]X
i=1

(Rt0+i � E [Rt0+i]) ,
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where for r < 1=k, Wk(r) := 0. Now we are ready to present Theorem 2.

Theorem 2

Equation (2) together with Assumption M, imply that

1p
V ar(R� (k))

Wk
D! W , as k !1,

where W is a standard Brownian motion and �D!�denotes the usual weak convergence

on the real line.

Remark:

Note that R� (k) does not have a well de�ned limit as k ! 1. This fact, does not

allow us to obtain any conclusion with respect to the independence between R� (k) and

R��1(k) as k !1, since the de�nition of asymptotically independent random sequences

requires that they are stochastically bounded. On the other hand, Theorem 2 implies

that

K� (k) := (R� (k)� E [R� (k)]) =
p
V ar(R� (k))

d! N(0; 1) as k !1, (10)

where by N(0; 1) we denote the standard Gaussian distribution. By virtue of (9), we can

re-write (10) as follows:

(R� (k)� E [R� (k)]) =
p
k

d! N
�
0;
�
�2 + �2�

�
�2m + �

2
u

�
(11)

as k !1. The left hand sides in (10) and (11) provide us with sequences (of k) with well

de�ned limits. Theorem 2 implies that for every � , K��1(k) andK� (k) are asymptotically

independent as k !1. In other words, this proves the asymptotic independence between

the de-meaned and properly standardized long-horizon returns K��l(k) and K� (k), for

every l 6= 0, as the return horizon, k, tends to in�nity.
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3 Causal Mechanistic Explanation: M-MD-GARCH versus SFM-

AR

The previous sections have shown that both M-MD-GARCH and SFM-AR entail all the

empirical regularities of stock returns that belong to SR. Is this all that we require in order

to claim that the regularities in SR have actually been explained by M-MD-GARCH and

SFM-AR? Or do we need to trace the causal process that led to the emergence of M-MD-

GARCH and SFM-AR? In Salmon�s terms : is explanation achieved merely by showing

"that phenomena �t into a nomic nexus"? Or explanation requires the achievement of

the far more ambitious task of demonstrating "how phenomena �t into a causal nexus"?

(1984, pp. 20). In the context of explanations of stock returns regularities, the last

question may be translated into the following one: �where do M-MD-GARCH and SFM-

AR come from?�. Do we need to answer this question in order to have an adequate

explanation of SR? Or instead, is the subsumption of SR under M-MD-GARCH or SFM-

AR all that matters for the explantion of SR? In the context of D-S model, the answer

to the last question is �yes�. According to Hempel, the obvious question �what is the

explanation of M-MD-GARCH or SFM-AR?�, or �where does M-MD-GARCH or SFM-

AR come from?� is an entirely di¤erent question, which does not have to be answered

before an explantion of SR is achieved.

More speci�cally, one of the distinctive features of the D-S type of explanations an-

alyzed above is that once an empirical regularity Sj is derived from Si; that is once the

result Si =) Sj is established, a D-S explanation of Sj (by means of the broader regu-

larity Si) is achieved. Moreover, this explanation is complete in the sense that there is

no need to inquire into the origins of the "covering" regularity Si: The latter may have

purely empirical grounds, that is, it may have been inductively inferred from the available

data.

Next, assume that the aforementioned covering regularity Si is explained by an even

broader empirical regularity Sk. The fact Sk =) Si is considered to be another D-S
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explanation, (of Si in terms of Sk) the presence of which does not add to the value of

the �rst explantion, Si =) Sj: Salmon (1984) comments on this issue as follows: " Such

explanations (D-S) are complete. If one wants an explanation of a law that entered into

the �rst explanation (Si, in our case) it can be supplied by deriving that law from more

general laws or theories (Sk, in our case). The result is another explanation. The fact

that a second explanation of this sort can be given does nothing to impugn the credentials

of the �rst explanation" (1984, pp. 156).

As already mentioned, Railton (1978, 1981) disagrees with this view by arguing that

the principle aim of explanation is to enhance our understanding of �how the world

works.�His D-N-P model, which belongs to the class of C-M models of explanation, as-

serts that the mere subsumption of a narrow regularity, Sj, under the broader regularity,

Si does not constitute an explanation of Sj unless Si is backed up with �an account of

the mechanism(s) at work.�More speci�cally, Sj is explained by placing it within a

web of �inter-connected series of law-based accounts of all the nodes and links in the

causal network culminating in the explanandum, complete with a fully detailed descrip-

tion of the causal mechanisms involved in the theoretical derivations of all covering laws

involved� (1981, pp. 174, emphasis added). This means that in the case under study,

neither M-MD-GARCH nor SFM-AR in themselves can form the sole basis for a satis-

factory explanation of SR, unless either M-MD-GARCH or SFM-AR is derivable from a

theory concerning the causal mechanism at work. Railton�s view is best expressed in the

following paragraph "If one inspects the best-developed explanations in physics or chem-

istry textbooks and monographs, one will observe that these accounts typically include

not only derivations of lower-level laws and generalizations from higher-level theory and

facts but also attempts to elucidate the mechanisms at work (1981, pp. 242, italics in

original). This means that a D-N-P explanation of Sj is achieved only when the covering

law regularity Si - or more precisely the model that was originated by it - is itself deduced

from the theoretical account of the chance mechanism at work.

The explanatory web mentioned above is what Railton de�nes as �an ideal explanatory
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text.� The full derivation of M-MD-GARCH or SFM-AR from their elementary parts

constitutes the full ideal text relevant to M-MD-GARCH or SFM-AR. In other words,

full understanding of M-MD-GARCH or SFM-AR requires the full ideal D-N-P text.

The preceding discussion must have clari�ed the central role that the notion of "mech-

anism", in general, and "chance mechanism", in particular, play in the context of D-N-P

explanations. This is why D-N-P explanation is usually thought to be a special case of the

so-called "causal mechanistic explanations". But what exactly a "mechanism" is? Rail-

ton does not o¤er an exact de�nition of this concept, but rather he describes it indirectly

by arguing that an �account of the mechanism(s)�is �a more or less complete �lling-in

of the links in the causal chains�(1978, pp. 748, emphasis added). Glennan (2002) gives

the following de�nition "A mechanism for a behavior is a complex system that produces

that behavior by the interaction of a number of parts, where the interactions between

parts can be characterized by direct, invariant, change-relating generalizations." (2002,

pp. 344). Based on this de�nition, he then proceeds to de�ne the so-called mechanis-

tic explanation of empirical regularities: "To mechanistically explain a regularity, one

describes a mechanism whose behavior is characterized by that regularity" (2002, pp.

346). Similarly to Railton�s view of explanation, Glennan�s account of explanation of

an empirical regularity requires a description of the internal workings of the mechanism

that produces this regularity. This view gives rise to the so-called mechanical model:

"A mechanical model is a description of a mechanism, including (i) a description of the

mechanism�s behavior; and (ii) a description of the mechanism which accounts for that

behavior." (2002, pp. 347).

Cohnitz (????) argues that the causal-mechanistic approach to explanation supports

the following claims: "(I) If some explanatory mechanism M can be reduced to some more

fundamental mechanismM�, any explanation E�referring to M�contains more information

about the ideal explanatory text than any explanation E referring to M". and "(II) If

some explanation E�contains more information about the ideal explanatory text than

some rival explanation E, E�has a higher explanatory value than E" (????, pp. 23).

20



The preceding discussion suggests that according to the mechanistic view of explana-

tion, an adequate explanation of the set SR of stock returns regularities is not achieved

unless either M-MD-GARCH or SFM-AR are deduced from the chance mechanism at

work in the stock market. In other words, these models should have been derived from

some kind of theory about the mechanism that produces returns, "without appeal to par-

ticular facts". Only then, an "understanding of the process" by which returns are gener-

ated would have been achieved. Moreover, as will be discussed below, the extra-statistical

condition, referred to as C1, implied by the phrase "without appeal to particular facts" is

particularly binding for both M-MD-GARCH and SFM-AR. It must be emphasized at the

outset that C1 imposes severe restrictions on the allowable origins of these models, which

are not usually met in econometric practice. Wold (1969) remarks that "the construction

process (of models) alternates several times between the empirical and theoretical sides,

building up the model by layer after layer of empirical and theoretical knowledge." (1969

pp. 437).

The extent to which M-MD-GARCH and SFM-AR satisfy the conditions of D-N-P

model of explanation, that is the extent to which these models have purely theoretical

origins, is analyzed below.

3.1 Theoretical Origins of M-MD-GARCH

Since M-MD-GARCH is a direct descendent of the univariate MD-GARCH model, the

discussion will be focused on the origins of the latter. The theoretical origins of MD-

GARCH are poor if non-existent. This model was born out of purely empirical consider-

ations of the behaviour of stock returns. The success of this model does not stem from

its theoretical underpinnings, but rather from its ability to generate forecasts for the

volatility of stock returns. It is noteworhty that, despite the widespread adoption of the

MD-GARCH models in the empirical �nance literature, these models originated in the

context of empirical macroeconomics. Engle (2003) describes the genesis of this model as

an attempt to "...get variances into macroeconomic models, because some people thought
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it was actually not the expected value of economic variables but rather their variability

that was relevant for business cycle analysis" (2003, pp. 1176). Indeed, �rst this model

was applied to the UK in�ation rate (see Engle 1982). Moreover, the MD-GRCH mod-

els were not developed as a direct attempt to capture the volatility patterns that were

observed in macroeconomic time series but instead with the aim of obtaining a powerful

test for detecting bilinearity. As Engle remarks "...I discover the model from the test,

rather than the other way round" (2003, pp. 1177).

The purely empirical origins of MD-GARCH are also re�ected on the plethora of

alternative conditional variance speci�cations that have been suggested in the literature

during the last thirty years or so. Each time that a "new regularity" was detected (or was

thought to be detected) MD-GARCH was enjoyed (or su¤ered) ad hoc modi�cations in

an attempt to account for this regularity. As a result, the econometrics literature (with

the present paper being no exception) is �ooded with acronyms whose common subset is

the word ARCH (EXAMPLES????).

The preceding discussion suggests that MD-GARCH and M-MD-GARCH, having

no theoretical origins, do not satisfy the conditions of the D-N-P model, thus failing

to explain the regularities in SR: As a result, the usual claim that "conditional het-

eroskedasticity explains leptokurtosis" is considered to be false under the prism of the

D-N-P model.

3.2 Theoretical Origins of SFM-AR

Since SFM-AR is an extention of the constant-beta SFM, the discussion will naturally

begin from the theoretical origins of the latter. SFM is de�ned as follows:

Ri;t = ai + �iMt + ui;t; i = 1; 2; :::; n (12)

where Mt is the unanticipated changes of the risk factor, Xt; that is Mt = Xt � E(Xt j

�t�1): Concerning, the non-systematic term, ui;t, a minimal assumption is that it is a
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martingale-di¤erence with respect to the publicly available information set �t�1: For

reasons that will become clear in the sequel, let us introduce the multiple factor model,

MFM,

Ri;t = ai + �1;iM1;t + �2;iM2;t + :::+ �k;iMk;t + ui;t; i = 1; 2; :::; n; (13)

where Ml;t = Xl;t�E(Xl;t j �t�1); l = 1; 2; :::; k: The �rst thing to note is that according

to the inventors of this model, SFM (or MFM) violates the D-N-P condition C1, which

states that the thoretical derivation of the model should be made "without appeal to

particular facts". Roll and Ross (1980) state explicitly this fact: "...the APT (Arbitrage

Pricing Theory) is based on a linear return generating process as a �rst principle..."

(1980, pp. 1074). They motivate the birth of this model by appealing not to a theory but

to observable facts, namely to "the single most widely-acknowledged empirical regularity

of asset returns, their common variability" (1980, pp1073).

However, this statement does not do justice to the theoretical origins of SFM (or

MFM). Even if all that motivated SFM was to account for the common variability of

returns, the speci�c way by which SFM does so is causal. More speci�cally, SFM accounts

for the common variabilty of stock returns by adopting the "common cause principle",

(CC). This principle states that if two events A and B are correlated in the sense that

P (A \B) > P (A)P (B) (14)

then either A probabilistically causes B; or B probabilistically causes A, or A and B

are independent but there is a common cause, C, causing both A and B: In the latter

case the three events form a "conjuctive fork", ACB; that is, they satisfy the following

relationships:
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P (A \B j C) = P (A j C)P (B j C) (15)

P (A \B j C) = P (A j C)P (B j C)

P (A j C) > P (A j C)

P (B j C) > P (B j C)

Moreover, as Reichenbach (1946????) showed, relationships (15) imply (14). These

relationships imply that: (i) conditioning on a common cause and conditioning on the

absence of a common cause, renders the e¤ects independent, and (ii) the existence of a

common cause raises the probability of both e¤ects individually.

The CC interpretation of SFM assumes that Mt is the only common cause of Ri;t;

i = 1; 2; :::; n: This in turn implies that the observed correlations among the Ri;t�s stem

solely from their common causal relationship to Mt: This causal interpretation of SFM

imposes a restriction on the error terms ui;t; i = 1; 2; :::; n (which is sometimes ignored in

the literature), namely that their correlation matrix, �u; is diagonal. The diagonality of

�u may be thought of as a "theoretical" restriction re�ecting the view that the common

risk factor Mt "screens o¤" the correlations among the Ri;t�s.

Further analysis of the CC interpretation of SFM reveals that this model is likely to

have deeper theoretical origins. More speci�cally, what is the "causal process" by which

a change in Mt brings about a change in Ri;t; i = 1; 2; :::; n? Economic theory answers

this question as follows: Assume that investors in the market are risk averse so that

they require a (time-invariant) risk premium, �i; in order to hold the risky asset i. This

premium is the expected returns promised by the asset i over and above the return of a

risk-free asset, that is

E(pi;t j �t�1)� pi;t�1 = �i + r (16)

where pi;t is the logarithm of the price of asset i at period t. The above relationship shows
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that the demand for the risky asset i at t� 1, and hence the current price pi;t�1; depend

on investors�expectation, E(pi;t j �t�1); for next period�s asset price. This expectation

in turn depends on the expectation, E(Xt j �t�1) that investors form about the future

level of the variable Xt: This is because investors themselves have chosen this particular

variable to "drive" their decisions. This reasoning may be represented by the following

causal chain:

E(Xt j �t�1) �! E(pi;t j �t�1) �! pi;t�1: (17)

How does the price of the asset i change between periods t � 1 and t, that is how the

returns Ri;t = pi;t� pi;t�1 are generated? At period t, the actual value of the factor Xt is

realized. Investors compare the actual value Xt with their expectations E(Xt j �t�1) for

this value that formed at period t� 1. If Xt � E(Xt j �t�1) > 0; that is when a positive

surprise occurs, investors update their expectations E(Xt+1 j �t) upwards, which in turn,

via the causal chain (17), leads to the formation of a price pi;t higher than pi;t�1: As a

result, positive (negative) surprises concerning the factor X lead to positive (negative)

returns for asset i. Moreover, the response of asset price to a factor surprise is not the

same for all the n assets. This makes investors to require a greater risk premium for

holding asset i than that for holding asset j if the response (beta) of asset i is greater

than that (beta) of asset j.

It is important to note that in spite of the fact that all the quantities in (17) appear

to be simultaneously determined at period t-1, in reality (that is, in actual rather than

in model�s time) the underlying events occur in a well-de�ned temporal order. First, an

event from the information set �t�1 materializes, second the expectation E(Xt j �t�1)

is formed, third, the expectation E(pi;t j �t�1) is generated and �nally the price pi;t�1 is

determined. This temporal order characterising the sequence of relevant events leading to

the formation of price is consistent with the philosophical principle that "causes precede

their e¤ects in time". Of course, the time intervals between the occurence of the afore-

mentioned events may be quite small. The E¢ cent Market Hypothesis (EMH) asserts
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that the speed at which the information �t�1 is processed and re�ected to price pi;t�1 is so

high that the events may be thought of as "simultaneous". However, the "instantaneous"

process of information, usually met in the de�nitions of EMH, should not be interpreted

literally but instead should be taken to imply that this information processing is com-

pleted in very short time. We shall return to the issue of temporal priority of causes over

their e¤ects in the next Section, in which the role of the exact time of occurence of the

relevant events in the identi�cation of risk factors will be analyzed in detail.

EMH is usually identi�ed with the rational expectations hypothesis (REH). REH

asserts that investors�subjective expectations, E(Xt j �t�1), coincide with the objective

mathematical expectations, that is E(Xt j �t�1) = E(Xt j �t�1): REH may be thought of

as referring to properties (expectations) of the constituent parts (investors) of the stock

market mechanism. Moroever, SFM in conjuction with REH implies that fRi;tg (or more

accurately fRi;t � aig) is a martingale di¤erence sequence. This can be easily seen by

operating on both sides of (12) with the objective operator E(� j �t�1): On the contrary,

if E(Xt j �t�1) 6= E(Xt j �t�1); then it can be shown that

E(Ri;t j �t�1) = ai + biE(Xt j �t�1)

with E(Xt j �t�1) 2 �t�1: In such a case, fRi;t � aig is not MD with respect to �t�1:

Remark

The MD property of asset returns in the context of SFM is "derived", rather than

imposed. As a result the corresponding empirical regularity FMR is derived from the

(more fundamental) regularity CF. On the contrary, in the context of the MD-GARCH

model, MD has to be imposed as an independent assumption, since it is not deducible

from DCH.

The preceding paragraphs have presented a brief outline of the argument underlying

the causal interpretation of (12) or (13). This argument is theoretical in the sense that

it could have been advanced out of purely theoretical considerations of the "mechanism"
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under study, without any appeal to empirical evidence.

One important caveat of SFM that has serious implications for its causal interpre-

tation concerns the identity of the risk factor Xt (or, more generally, the identity of

X1;t; X2;t; :::; Xk;t in (13)). To this end, we may distinguish two cases: (i) The risk fac-

tors are not measurable, that is they are not expressed in terms of observable random

variables. The employment of unobservable theoretical concepts in the construction of

a scienti�c theory is justi�ed so long as these concepts appear only in higher-level hy-

potheses being eventually eliminated as the theory passes to lower-level hypotheses or

empirical generalizations (see, for example, Braithwaite 1964). However, in the case un-

der study, the unobservable entities, namely the risk factors appear to be present not

in the higher-level assumptions (or the most primitive parts of the mechanism at work)

but in the lower-level empirical hypotheses, namely SFM itself. In such a case, the only

viable alternative is to approximate the true unobservable factors with some observable

proxies. In fact, this is what is usually done in practice. However, as will be shown

below this practice has very serious implications for the explanatory status of SFM. (ii)

The risk factors are observable. In this case, the theoretical account of the mechanism

at work ought to reveal the identity of these factors, if the ideal explanatory text is to

be achieved. As in the previous case, if the risk factors that are eventually identi�ed as

such are not the true causal (and observable) factors, then the explanatory value of SFM

is seriously weakened.

On this point, Roll and Ross themselves raise the question "What are the common or

systematic factors?" (1980, pp. 1077). In searching the identity of these factors, Roll and

Ross argue as follows: "If there are only a few systematic components of risk, one would

expect these to be related to fundamental economic aggregates, such as GNP, or to interest

rates or weather (although no causality is implied by such relations)" (1980, pp. 1077,

emphasis added). Roll and Ross seem to suggest that the systematic components of risk

(the real causal factors) are likely to be non-identi�able. However, they suggest that the

true factors are likely to be related to observable macroeconomic variables such as GNP.
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As a result, in empirical tests of APT, these macroeconomic variables can approximate

the true causal risk factors. However, one important question that has already been

raised above is the following: What are the implications of replacing the true causal

factors with the approximating ones for the causal interpretation of (12) or (13)? The

answer to this question is "devastating". Salmon has forcefully argued that if we wish to

put "cause" back to "because", then we should be able to identify the true causal factors

for the phenomenon of interest (see Salmon 1971, 1984, 1989). If we fail to do so, then

the purported explanation is �awed, because irrelevancies are harmless to predictions but

fatal to explanations. To draw an analogy, "explaining" the returns Ri;t by means of the

symptomatic factor Yt rather than the true causal factor Xt is equivalent to explaining

the level of rainfall in a particular region by means of the readings of a well-functioning

barometer rather than the atmospheric conditions in that region.

The failure of SFM (or MFM) to identify the identity of the causal factors, provided

that these factors are indeed identi�able (observable) is surely a major drawback of this

model as far as its explanatory status is concerned. Nevertheless, the analysis of the

origins of SFM presented above seems to suggest that some parts of the ideal explanatory

text have been produced. More speci�cally, the aforementioned theory may be thought

of as accounting for the "structure", but not for the "identity of the constituent parts",

of the chance mechanism at work. In fact, this theory already delivers more than was

intended to do, because SFM (or MFM) was not meant to be explained by some higher-

level theory, but instead it was put forward as the starting point for developing APT.

Roll and Ross state explicitly this fact: "...the APT is based on a linear return generating

process as a �rst principle..." (1980, pp. 1074). As already mentioned, they motivate

this model by appealing not to a theory but to observable facts, namely to the common

variability of asset returns. As Roll and Ross admit "We do consider the basic underlying

causes of the generating process of returns to be potentially important area of research,

but we think it is an area that can be investigated seperately from testing asset pricing

theories" (1980, pp. 1077).
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The question which naturally arises at this point is the following: If we think of the

stock market as a chance mechanism that generates the observed stock returns regular-

ities, then is there any detailed theory that trace the causal chains leading up to SFM

(or MFM), with the identity of the factor(s) being identi�ed by the theory itself? The

answer to this question is partially yes. As already mentioned, a special version of SFM

corresponds to the case in which Xt represents the returns of the "market portfolio". A

well-known theory that leads to this result is o¤ered by the Capital Asset Pricing Model

(CAPM). This case is analyzed below.

3.2.1 SFM and CAPM

It is well known that the history of asset pricing theory starts with CAPM, proposed by

Sharpe (1964) and Litner (1965). One feature of CAPM that makes it quite attractive as a

theory that describes the internal workings of the stock market mechanism is that it starts

by postulating fundamental properties of the constituent parts of the mechanism. More

speci�cally, CAPM is based on some (rather strong) assumptions concerning investors�

preferences and behaviours. Indeed, Roll and Ross admit that "elegant derivations of

the CAPM equation have been concocted beginning from the �rst principles of utility

theory" (1980, pp 1074). Since CAPM is very well known, we shall focus only to the

points which are relevant for the intended discussion.

An intermediate result in the context of CAPM is that the expected utility E(Uj) of

investor j is a function of only two parameters, namely the objective mean �(Rp) and the

objective standard deviation �(Rp) of the returns, Rp; of the portfolio p of risky assets.

This result, hereafter referred to as Expected Utility Property (EUP), consists of two

parts. The �rst part is that each agent j evaluates alternative portfolios p in terms of

only the �rst two subjective moments �ej(Rp) and �
e
j(Rp) of Rp: The second part is that
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all the agents have homogeneous beliefs in the sense

�ej(Rp) = E(Rp) � �(Rp); 8j (18)

�ej(Rp) = �(Rp); 8j:

Since EUP is fundamental in deriving the CAPM-based SFM equation, the question

which naturally arises at this point is how EUP itself is derived. Two alternative types of

su¢ cient conditions for EUP have been suggested in the literature. The �rst type imposes

restrictions on the distribution of returns, whereas the second imposes restrictions on the

form of investors utility functions. As will be shown below, these two sets have di¤erent

implications for the explanatory status of the CAPM-based SFM.

The �rst type of conditions, referred to as CAPM-D, assumes that the joint distribu-

tion of the returns Ri of all the existing assets, i = 1; 2; :::; n is Gaussian (or more gener-

ally, elliptical see Owen and Rabinovitch 1983). A further assumption within CAPM-D

is that each investor�s subjective joint probability distribution F ej;[R1;R2;:::;Rn](y1; y2; :::; yn)

of returns coincides with the corresponding objective one F[R1;R2;:::;Rn](y1; y2; :::; yn), that

is

F ej;[R1;R2;:::;Rn](y1; y2; :::; yn) = F[R1;R2;:::;Rn](y1; y2; :::; yn), 8(y1; y2; :::; yn) 2 R
n: (19)

with the latter, F[R1;R2;:::;Rn](y1; y2; :::; yn); being Gaussian (or more generally, elliptical).

The rationality condition (19) implies that all investors share the same ex ante views

�ej and �
e
j of the mean vector � and the covariance matrix � of the random variables

R1; R2; :::; Rn respectively, and also that these views turn out to be "correct". Speci�cally,

�ej = �; 8j (20)

�ej = �; 8j
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As a consequence of (20), and since any Rp is a linear function of the jointly normal

random variables R1; R2; :::; Rn, it follows that all investors agree that the distribution of

Rp is normal with mean and standard deviation equal to E(Rp) and �(Rp) respectively.

Hence, equalities (18) obtain.

The relations (18) state that the agents not only share the same ex-ante views of the

mean and standard deviation of the returnsRp of each possible portfolio p, but these views

coincide with the "true" or "objective" mean and standard deviation of Rp. Moreover,

the joint normality assumption implies that the distribution of any possible Rp is not only

perceived by investors to be normal but it is actually normal. The rationality assumption

establishes a link between ex ante beliefs and ex post realizations and is based on the

thesis that investors do not make systematic mistakes. More speci�cally, each investor

tests the "correctness" of his own beliefs �ej and �
e
j by comparing these beliefs with the

objective moments � and �; respectively. If he observes systematic deviations between

the subjective and objective moments then he tends to revise his beliefs in the direction

of the objective moments. This procedure, referred to as statistical learning ensures

that each investor will eventually equate his subjective beliefs with the corresponding

objective ones, and by this mechanism the homogeneity of beliefs is achieved. Ross

(1978) comments on this as follows: " ... it is natural to assume that investors do not err

in a systematic fashion in their a priori beliefs. It follows that the ex post distribution

from which returns are drawn will be the ex ante one on which investors based their

actions" (pp. 889). From these assumptions, it follows immediately that each investor�s

expected utility E(Uj) is now de�ned with respect to the true mathematical operator

E(�); that is E(Uj) = E(Uj) and also that E(Uj) is a function of E(Rp) and �(Rp); thus

ensuring EUP.

The preceding analysis reveals a fundamental inconsistency in the causal chain of

events leading to the CAPM-based SFM. More speci�cally, in order for the investors to

act in the manner implied by EUP, the result of their actions, namely the joint distribu-

tion of returns, must be known. Put it di¤erently, before the cause is determined the e¤ect
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must have occured. This circularity is usually overshadowed by the fact that CAPM-D

is intended to describe investors�behaviour in a state of equilibrium. As such, however,

CAPM-D does not describe the path to equilibrium, or put di¤erently, the causal mech-

anism by which this equilibrium is achieved. This may be thought of as an instance of

what Hoover (1993) refers to as "a great historical divide in economics between analyses

based on process and analyses based on equilibrium" (1993, pp. 695). For these reasons,

we can conclude that CAPM-D does not satisfy the conditions for an adequate D-N-P

explanation of SFM.

The second type of su¢ cient conditions for EUP, hereafter refered to as CAPM-U, are

restrictions on the form of investrors�utility functions, which in turn imply restrictions on

investors�s preferences. Speci�cally, utility functions are assumed to be quadratic. Under

quadratic utility functions, each investor expected utility E(Uj) is a function of his own

subjective beliefs on the �rst two moments of Rp, namely �ej(Rp) and �
e
j(Rp): However,

this fact alone does not ensure EUP, since this property requires homogeneity of beliefs in

the sense �ej(Rp) = �
e(Rp) and �ej(Rp) = �

e(Rp); 8j: Put di¤erently, the homogeneity of

beliefs is not ensured in any way by the assumption of quadratic utilities. This assumption

must be established independently of the assumption of quadratic utilities. Therefore,

the question which arises at this point is how this homogeneity of beliefs is established

in the absence of any reference to something "objective" such as rationality condition

(19). In the case of CAPM-D, we showed that the homogeneity of beliefs is achieved

by the mechanism of statistical learning. In the case of CAPM-U, the homogeneity of

beliefs has to be achieved by another mechanism. We refer to this mechanism as Bayesian

conditionalization and we analyze its basic structure below.

First of all, each investor has his own measures of beliefs (subjective probabilities) of

events of the type (R1 2 [a; b]; R2 2 [c; d]; :::; Rm 2 [k; l]): If CAPM-U is construed as a

normative theory of decision under uncertainty, then these subjective probabilities have to

satisfy the constraints of probability calculus (see Kyburg 1978). The usual justi�cation

for this rationality of subjective beliefs is that no investor is susceptible to a Dutch Book,
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with the latter being a sequence of bets which the investor may accept individually, but

which collectively guarantee investor�s loss with absolute certainty (see ????). This new

type of rationality ensures that each investor computes �ej(Rp) and �
e
j(Rp) from his own

subjective probabilities on R1; R2; :::; Rm according to the rules of probability calculus.

Second, assume that initially �ej(Rp) and �
e
j(Rp) are initially di¤erent among the investors.

However, the ranking of alternative portfolios by a speci�c investor, s, in terms of his

own �es(Rp) and �
e
s(Rp) may turn out to be systematically more pro�table than the

rankings of the other investors. In the light of this evidence, the other investors are likely

to update their beliefs bringing them closer to those of investor s. If this updating by

conditionalization continues for some periods, then the beliefs of all the investors will

converge towards the beliefs of the most pro�table investor, s. Sooner or later, all the

investors, through the process of Bayesian conditionalization will end up having adopted

the beliefs of the investor s, and homogeneity of beliefs will have been achieved. Note

that this process does not involve any reference to the objective probability distribution

of returns. However, such a concept can still be de�ned in terms of hypothetical limiting

frequencies, or (after some periods at which the CAPM-U procedure is repeated) actual

relative frequencies. The question is how do these objective probabilities relate to the

subjective ones. In the case that there exists an objective reality whose probabilistic

structure is independent of agents beliefs, or probabilities whose behavior is in the words

of Fitelson, Hajek and Hall (2006) "independent of anyone�s mental state", then standard

"convergence theorems" may be used to claim that subjective beliefs will converge to

the corresponding objective probabilities. To this end Fitelson, Hajek and Hall (2006)

argue: "Bayesians reply that various convergence theorems show roughly that in the long

run, agents who do not give probability 0 to genuine possibilities, and whose stream of

evidence is su¢ ciently rich, will eventually be arbitrarily close to certain regarding the

truth about the world in which they live" (????, pp. ???). However, in the case under

study, there is no "reality" in the form of a physical system, existing independently

of the investors� subjective beliefs. The only reality that is relevant are the observed
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stock returns themselves, whose emergence and hence relative frequencies depend heavily

on investors subjective beliefs. Since there is no clear dichotomy between subjective

beliefs and objective world, the convergence theorems mentioned above might not apply.

However, another type of convergence may be contemplated: If all the investors end up

having homogeneous subjective probabilities (produced by Bayesian conditionalization),

then it is tempting to assume that the objective probabilities which will eventually emerge

will be equal to these subjective probabilities. In a sense the equation (19) re-emerges

although from a di¤erent route. In CAPM-D, it is the objective probabilities that come

�rst and dictate the way at which the subjective probabilities are formed. In CAPM-U,

it is the other way round; the subjective probabilities come �rst, dictate investos�actions

and generate returns, whose relative frequencies are the objective probabilities.

The preceding discussion seems to suggest that CAPM-U is closer to achieving the

theoretical objectives set by the causal mechanistic view of explanation. However, the

assumption of quadratic utilities impose a strong and rather unrealistic restrictions on

investors preferences. Moreover, as analyzed above, the theory is still in need of the as-

sumption that all investors agree on the means and standard deviations of all the available

candidate portfolios. The way by which such homogeneity is achieved may be the process

of learning by experience discussed above. However, many authors believe that the as-

sumption of homogeneity of beliefs is actually imposed without any realistic justi�cation.

As Ross (1978) puts it "Given that such homogeneity is going to be imposed eventually,

it would seem natural to begin the CAPM story with restrictions on distributions, rather

than preferences" (1978, pp. 888). In other words, it seems "more natural" to obtain

the key assumption of CAPM by imposing restrictions on the returns generating process

itself rather than by imposing restrictions on investors�preferences. As Ross puts it: "A

theory that obtains strong implications for equilibrium asset prices from restrictions on

perceived distributions and permits heterogeneity in preferences is surely to be preferred

to one which obtains similar market implications, but imposes restrictions on preferences

along with strong similarity of beliefs" (1978, pp. 888). In view of the above analysis,
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we conclude that we cannot have, in the context of CAPM, a fully satisfactory account

of the causal mechanism that leads up to the CAPM-based SFM.

The inability of CAPM to provide a well articulated account of the chance mechanism

at work, leading up to the CAPM-based SFM equation, is also re�ected on the fact that

this equation cannot derive a causal interpretation. This shortcoming is due to the

violation of the temporal asymmetry between cause and e¤ect implied by the nature of

the variable identi�ed by CAPM as the risk factor. More speci�cally, the unique risk

factor in the CAPM-based SFM is the (excess) returns, RM;t; of the "market" portfolio:

This factor RM;t, being de�ned as the weighted average of the returns of all the assets

in the economy, includes the returns, Ri;t; of the speci�c asset i. This in turn deprives

the CAPM-based SFM from a causal interpretation consistent with the principle that

causes preceed their e¤ects in time. Indeed, RM;t is not determined until all the returns

in the economy, including Ri;t, are determined. In Wold�s words the equation (12) is

"not realizable in the sense of computer simulation". More speci�cally, the right-hand

variable, RM;t; in (12) "makes input in the computer simulation, and the left-hand side

variables (Ri;t; in the present case) are the output of the simulation; it is not realizable

to require that the output of a simulation process is part of the input." (1969, pp. 465).

Therefore, RM;t cannot be thought of, even in principle, as a causal determinant of Ri;t:

4 Empirical Identi�cation of Risk Factors

The analysis of the previous sections provides us with the necessary background to ad-

dress the following question: To what extent is it currently possible to derive the ideal

explanatory text concerning the empirical regularities of stock returns? Below we list the

conclusions we have reached with respect to the extent to which a derivation of SFM (or

MFM) from a theoretical account of the chance mechanism at work, is currently possible

:

(i) A complete version of such an account, describing the causal nexus in full detail
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is clearly missing. Our best theories, based on the common cause principle, EMH and

forward looking behaviour, can o¤er at best an outline of the structure of the chance

mechanism. Returns are generated by investors�e¢ cient reactions to (rationally) unan-

ticipated changes in common risk factors.

(ii) Our best theories have failed, so far, to identify the identity of the true causal

risk factors. This failure is more sever if these factors are indeed identi�able (observ-

able). Those that have attempted to do so (CAPM) pay a rather high "identi�cation

cost", namely they are forced to sacri�ce the fundamental causal principle, stipulating

that causes precede their e¤ects in time. Moreover, the single factor identi�ed by CAPM,

namely the returns on the market portfolio, is unobservable, which results in some prox-

ies for the market portfolio being employed in empirical applications (see Roll�s (1977)

critique of CAPM) . This, however, raises doubts on the empirical validity of the CFP reg-

ularity itself. Is CFP a true or a spurious empirical regularity? This point is emphasized

in (iii) below.

(iii) Failure to identify the true causal risk factors makes the empirical truth of the

CFP regularity suspect. Indeed, if Mt in (12) (M1;t; M2;t; :::;Mk;t in (13)) is (are) not the

true causal factor(s), then the empirical observation that �i in (12) ( �1;i; �2;i; :::; �k;i in

(13)) is (are) time-varying and persistent, may simply be wrong. Put it di¤erently, the

time variation in betas may not be a genuine empirical regularity, but rather an accidental

one, resulting from model misspeci�cation. In such a case, the D-S explanations of SR,

based on SFM-AR, obtained in Section 3, are potential rather than actual explanations.

(iv) Related to (iii), any future attempts towards unravelling the identity of risk factors

must ensure that the purported factors are genuine, rather than spurious common causes.

This is intimately related to the issue of temporal priority of causes over their e¤ects.

The following analysis assumes that the true causal factors are indeed observable and

examines alternative, non-theoretical, routes for identifying them. More speci�cally, in

the absence of a well-developed causal theory that reveals the identity of the risk factors

in MFM, (under the assumption that these factors are identi�able), the question which
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naturally arises is whether these factors can be identi�ed empirically. Put di¤erently, if

theoretical reasoning alone has failed to achieve this task, then is it possible to appeal to

empirical procedures instead? However, before we turn our attention to this question, we

must �rst answer the following: Why is the identi�cation of the true causal risk factors so

important for the explanation of the regularities in SR? After all, the theoretical results

of Section 3 have shown that SFM-AR o¤ers D-S explanations of all the regularities in

SR, without putting any conditions either to the identity or even to the probabilistic

properties of the risk factors. Indeed, SFM-AR explains all the regularities in SR mainly

by means of the autoregressive nature of beta, regardless of which factor is associated

with this beta. Therefore, one is justi�ed to ask, why is the issue of factor identi�cation

deemed as fundamental for the adequacy of either D-S or C-M explanations of SR?

The answer to this question consists of the following two parts:

(i) As mentioned above, the presence of autoregressive betas alone can indeed o¤er

D-S explanations for all the elements of SR, conditional on the fact that betas are indeed

autoregressive. However, establishing the autoregressive nature of betas, to begin with,

requires the employment of the true causal risk factors in regression models such as (12)

or (13). As already mentioned, �i in (12) may be autoregressive with respect to a spurious

non-causal factor Mt; but time-invariant with respect to the true causal factor M 0
t :

(ii) Apart from D-S explanations, the risk-factor identi�cation is a necessary con-

dition for explanatory adequacy for C-M explanations as well. The necessity of factor

identi�cation is a manifestation of the philosophical thesis that "Explanation consists in

identifying causal relations" (Kitcher 1985, pp. 638). Let us analyze this thesis in the

context of the following case: Imagine for a moment, that the variables Ri;t andMt in (12)

represented the amount of rainfall in a particular region over a speci�c period of time, t;

and the readings (just before t) of a well-functioning barometer, respectively. Moreover,

assume that we could use this statistical model to deduce some probabilistic properties

of Ri;t that correspond to some empirical regularities, SR; of Ri;t: According to the D-S

model, we have obtained perfectly adequate D-S explanations of SR: Moroever, apart
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from regularities, this model could be used for explaining or predicting the occurence of

a singular event, for example the amount of rainfall occured in a speci�c point in time

t0 (see, Hempel 1965, for the so-called Inductive-Statistical explanations of single events

and the Explanation-Prediction symmetry thesis). According to the C-M model however,

the empirical law represented by (12) cannot form the basis for an adequate explanation

of the empirical regularities in SR: This is due to the fact that these regularities are

explained in terms of a symptomatic factor, such as the barometer readings, instead of

a true causal factor, such as, for example, the atmospheric conditions in that region.To

repeat Salmon�s aphorism, causal irrelevancies might be harmless for predictions but fatal

for explanations.

The preceding discussion must have made clear why the identi�cation of the true

causal risk factors is essential for the adequacy of both D-S and C-M explanations of the

empirical regularities of stock returns. It is now time to turn our attention to examining

the possibility of identifying the causal risk factors empirically. It must be noted at the

outset that this possibility, even if successfully implemented, signi�es a departure from

the strict ideal standards set by the D-N-P model of explanation. However, knowing the

causes of a speci�c e¤ect is explanatory useful even if we are unable to provide all the

causal links and interactions leading up to that e¤ect. For example, it is explanatory

relevant to have established that "smoking" probabilistically causes "lung cancer", even

if we cannot describe in full detail all the biochemical reactions in which this process is

completed. Kitcher (1985) remarks on the possibility of having di¤ferent levels of expla-

nation as follows: "There are degrees of scienti�c understanding, and, equally, degrees

of ununderstanding. An explanation is ideally complete if it eliminates all our ununder-

standing. An account may advance our understanding without being ideally complete.

We may have to settle for less." (1985, pp. 633) Indeed, the possibility that, quite often,

we have to settle for less was already ackowledged by Railton, who admits that obtaining

an ideal explaantory text is often impossible. He asks this question: �Is it preposterous

to suggest that any such ideal could exist for scienti�c explanation and understanding?
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Has anyone ever attempted or even wanted to construct an ideal causal or probabilistic

text?�(1981, pp 246-247). Railton answers his own question as follows: �It is not pre-

posterous if we recognize that the actual ideal is not to produce such texts, but to have

the ability (in principle) to produce arbitrary parts of them.� (1981, pp 246-247). Put

di¤erently, the absence of the full text does not imply complete lack of understanding of

the observed regularities. As Psillos (2002) puts it, the ideal D-N-P text �is more of a

regulative ideal than what, in practice, we need and should strive for. In practice, what

we (or the scientists) need and should strive for is �explanatory information� relevant

to the explanandum. Such information, if indeed it is information relevant to the ex-

planandum, will be part of the ideal D-N-P text. By producing such parts, no matter

how underdeveloped and incomplete they may be, scientists understand why a certain

explanandum happens. Finding more and more bits of the ideal texts, we move closer to

the ideal of a full understanding�(2002, pp. 260). Railton (1981) himself refers to the

ideal D-N-P text as �a yardstick for pro¤ered explanations of chance phenomena�and

also allows for these pro¤ered explantions to take various forms and �still be successful in

virtue of communicating information about the relevant ideal text�(1981, pp. 246-247).

In the case under study, MFM which involves only the true causal risk factors with the

latter being empirically identi�ed, may be thought of as an intermediate case between a

statistical model of purely inductive origins and one which is produced from a theoretical

account of the chance mechanism at work. As such, the explanatory status of this model

may be thought of as lying between the simple D-S and the ideal D-N-P ones.

Given the discussion above, can we identify the true causal risk factors empirically?

The answer to this question depends to a large extent on whether true causal relationships

can be reduced to empirical correlations. One of the �rst attempts towards this direction

is Salmon�s (1971, 1984) Statistical Relevance (S-R) model of explanation, which is based

on the "screening-o¤" relations and conjuctive forks, introduced in the previous Section.

In the context of S-R an explanation of an event is no longer an argument (as in the I-S

case) but rather "an assemblage of factors relevant to the occurrence or nonoccurence
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of the event to be explained, along with the associated probability values" (Causal and

theoretical explanation blue book pp.108). This in turn implies that an S-R explantion of

an event E has been achieved when the probability of E conditional on all the relevant

factors for E has been obtained, regardless of whether this probability is high or low.

This probability is interpreted as the relative frequency of E within the "homogeneous"

reference class, that is the reference class which is generated by partitioning the initial

class solely by relevant conditions. Partitioning by irrelevant conditions/factors, that is

factors that are screened-o¤ by relevant ones, is prohibited in the context of S-R model.

As Salmon (???- athird dogma...pp.98) puts it: "On this model, high probability is not

the desideratum; rather the amount of relevant information is what counts. According

to the S-R model, a statistical explanation consists of a probability distribution over a

homogeneous partition of an initial reference class. A homogeneous partition is one that

does not admit of further relevant subdivision. The subclasses in the partition must also

be maximal - that is, the partition must not involve any irrelevant subdivisions" (emphasis

added). This is because although irrelevant partitions are "harmless to arguments" such

as I-S they are "fatal to explanations" such as S-R. With the term "maximal" Salmon

means that the reference class is the broadest possible one in the sense that the initial

class has not been erroneously narrowed by irrelevant factors.

The preceding discussion focuses on explanations of single events or local explanations.

In the context of SFM, which is stated in terms of random variables, explanation refers

to types of events (those represented by the corresponding random variables), which

means that explanation is global. Niiniluoto (1982) draws a distinction between these

two modes of explanation as follows: "Explanation may be local or global with respect

to the explanandum depending upon whether the explanandum is a particular statement

or a whole class of statements" (1982, pp. 171). An S-R global explanation of empirical

regularities in SR requires the identi�cation of the risk factors (and only those) which

are statistically relevant for Ri;t. Initially, Salmon (1971) held the view that the set

of all the statistically relevant factors coincides with the set of all the genuinely causal

40



factors. Later he changed his view arguing that statistical relevance relations alone,

are not su¢ cient to unravel causal relevance relations. Instead, they merely constitute

evidence of causal relations. In his 1984 book Salmon admits: "It seemed obvious at the

time that statistical relevance relations had some sort of explanatory power in themselves.

As I have said repeatedly throughout this book, that view now appears to be utterly

mistaken...Their fundamental import lies in the fact ...that they constitute evidence for

causal relations." (1984, pp. 191-192). One of the main reasons for the inability of

statistical relations to identify causal ones is that there is a certain type of factors, which

function as screeners-o¤ without being causal. This case will be analyzed in detail in the

next subsection.

The preceding analysis suggests that the reduction of causal relations to statistical

relevance relations is extremely di¢ cult (if not impossible) to be achieved without any

extra-statistical information. The latter may come from accepting the aforementioned

principle of "temporal priority" asserting that "causes precede their e¤ects in time". In

view of the signi�cance of the issue of temporal priority in the empirical identi�cation of

risk factors for asset returns, we analyze it in more detail below.

4.1 The Issue of Temporal Priority of Causes over their E¤ects

In his analysis of probabilistic causality, Suppes (1970) assumes explicitly that "a cause

precedes its e¤ect in time" (1970, pp. 11). As a result, the timing of occurrence of

the various events "are included in the formal characterization of the probability space"

(1970, pp. 12). Suppes de�nes the event Bt0 to be a prima facie cause (or a prima facie

positive cause) of the event At if and only if

(i) t0 < t (21)

(ii) P (Bt0) > 0

(iii) P (At j Bt0) > P (At)
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An event which satis�es the conditions (21) that is an event which is a prima facie

cause of At can still prove to be a spurious cause of At. More speci�cally, Bt0 is a spurious

cause of At if and only if there is a t00 such that

t00 < t0 < t (22)

and an event Ct00 such that P (Bt0 \ Ct00) > 0 and

P (At j Bt0 \ Ct00) = P (At j Ct00) (23)

In Salmon�s terminology, Suppes�s condition (23) states that Bt0 is a spurious cause of At

if it is screened-o¤ by an earlier event Ct00 : In Suppes�s own terms, a prima facie cause

becomes spurious "if there exists an earlier event that eliminates the e¤ectiveness of the

cause when that event occurs" (1970, pp. 25).

Condition (23) can be employed to characterise an event Bt0 as a non-spurious or

genuine cause of At : Bt0 is a (prima facie genuine) cause of At if (21) holds and there is

no further event Ct00 with t00 � t0such that (23) holds. Another useful de�nition is that of

"direct cause" (see De�nition 5, pp. 28). More speci�cally, if there is no event Ct00 with

t0 < t00 < t (24)

satisfying the probabilistic relationship (23), thenBt0 is called a direct cause ofAt: In other

words, Bt0 is a direct cause of At if there is no causal chain of the form Bt0 �! Ct00 �! At

satisfying the causal Markov property.

The preceding analysis implies that the probabilistic relationship (23) may have quite

di¤erent implications for the causal status of Bt0 forAt depending on the time of occurence

of the third event Ct00 : In particular, if Ct00 occured at a time earlier than Bt0 then Bt0 is a

spurious cause of At: If however, Ct00 occured later than Bt0 then (23) is consistent with the

case in which Bt0 is an indirect cause of At, that is it causes At through its direct causing
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of Ct00 : In this case, the screening-o¤ of Bt0 from the intermediate event Ct00 is the result

of the Markov property according to which the information of the intermediate event Ct00

renders information about the earlier event Bt0 irrelevant to the probability of the later

event At: The moral from this analysis is that (unfortunately for the probabilistic theories

of causality) there are certain types of events, referred to as "intermediate causes" which

exhibit screening-o¤ properties without being genuine (common) causes.

Let us summarise the aforementioned probabilistic causal relationships as follows:

(a) The conditions (22), (21) and (23) imply the following causal structure, C1:

At

%

Ct00

&

Bt0

(b) The conditions (24), (21) and (23) imply the following causal structure, C2:

Bt0 �! Ct00 �! At:

The preceding analysis suggests that any theory that aims at revealing the identity

of the genuine, causal, common factors of returns must explicitly take into account the

times of occurence of events, represented by these factors.

4.2 Identi�cation of Risk Factors in Practice

As mentioned above, the task of empirically identifying the exact set of true causal risk

factors in MFM faces serious di¢ culties, stemming from the problem of reducing causal

relationships to statistical correlations. How can we be certain that the employed risk

factors X1;t; X2;t; :::; Xk;t are truly causal? Put di¤erently how can we be certain that

some or all of these factors are not symptomatic? One source of di¢ culty is the fact that

the true causal risk factors may be unobservable. Various solutions to the problem of
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"factor speci�cation" have been suggested in the literature including solutions of purely

statistical nature such as principal component analysis (see Chamberlain and Rothschild

1983, Connor and Korajczyk 1985, 1986). Another popular solution amounts to approx-

imationg the risk factors by the so-called "mimicking portfolios". A well-known example

in this direction is the approach of Fama and French (1993) in which characteristics such

as the �rm size or the book-to-market ratio are supposed to capture the e¤ects of some

unobservable risk factors (see also, Rosenberg, Reid and Lanstein 1984, Chan, Hamao

and Lakonishok 1991). An immediate implication of such an approach is that the mim-

icking portfolios are by de�nition symptomatic factors in the sense that if the true causal

factors had been included, the mimicking portfolios would become statistically irrelevant.

In other words, the true factors would screen o¤ the mimicking portfolios. This in turn

raises questions on the explanatory power, in terms of statistical relevance of the factor

models that employ mimicking portfolios as factors.

To overcome this problem, other approaches assume that the set of the causal factors

in question is a subset of the set of all possible observable macroeconomic variables. Chen

Roll and Ross (1986), follow this approach and identify the following risk factors for stock

returns: unanticipated changes in in�ation, unanticipated changes in GDP, unanticipated

changes in the default premium of corporate bonds, and unanticipated shifts in the yield

curve. A necessary condition for accepting these four factors as the causal ones is that any

other possible macroeconomic variable is screened-o¤by these four factors. The screening-

o¤ procedure is implemented in two steps: In the �rst step m time series regressions are

run with Ri;t i = 1; 2; :::; n being the dependent variable and a set of potential factors D

being the independent variables. Assume that this step is �nished when a subset Ds of

the initial set of candidate variables is found to be statistically signi�cant for all the m

time series regression under study. In the second step, we decide which of the variables

in Ds explain the cross-sectional variation in returns, that is which variables are actually

priced by the market. Assume we end up with Dc which contain only the priced variables.

The variables in Ds�Dc are screened-o¤ in the second step of the procedure. The �nal set
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Dc of the surviving variables in both steps of the screening-o¤ procedure are the causally

relevant factors. A rather surprising result emerging from the study of Chen Roll and

Ross (1986) is that "well established" factors such as the value-weighted New York Stock

Exchange Index turn out to be symptomatic since they are screened o¤ in the second

step by apparently, more relevant macroeconomic factors.

However, the aforementioned procedure is problematic because it does not account

for the exact time of occurence of the relevant events. Let us analyze this in more detail.

In practical applications, the estimation of (13) is usually carried out by employing data

observed in one of the usual frequencies ( for example monthly). As already mentioned,

the common time subscript in (13) means that the factors Xj;t; j = 1; 2; :::; k and the

dependent variable Ri;t are simultaneously observed which in turn implies that the corre-

sponding events represented by these variables occur simultaneously. However, in reality

this is not the case. Some of these factors may be observed early in the month, some

others in the mid of the month and the rest towards the end of the month. In view of the

discussion in the previous section, this di¤erentiation in the actual time of observation

raises some important issues about the causal status of each of the factor for Ri;t: For

example assume that the values x1;t of X1;t are usually observed on 5 January whereas the

values x2;t of X2;t are usually observed on 20 January. The values yt of Ri;t are observed

on 31 January. In the econometrician�s dataset, however, these di¤erences are wiped out

and x1;t; x2;t and yt are treated as the January observations of Ri;t; X1;t and X2;t, respec-

tively. This in turn implies that the event B1t = fX1;t = x1tg occurs at a time earlier

than B2t = fX2t = x2tg and that both B1t and B2t occur earlier than At = fRi;t = ytg.

Assume that the estimation results from a linear regression of Ri;t onX1;t andX2;t suggest

that X1;t is insigni�cant at the usual signi�cance levels, whereas X2;t is not. At the same

time, a regression of Ri;t on X1;t alone, suggests that X1;t is a signi�cant "explanatory"

factor for Ri;t: How does the combination of the results from the two regression ought to

be interpreted? If the aforementioned di¤erences in the actual time of observations are

ignored, and X1;t and X2;t are assumed to be simultaneously observed, then the results
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imply that X1;t is a spurious causal factor of Ri;t being screened-o¤ by X2;t: On the other

hand, if the fact that X1;t is observed prior to X2;t is taken into account, then the insignif-

icance of X1;t does not imply that X1;t is a spurious causal factor of Ri;t. On the contrary,

X1;t may well be an indirect causal factor of Ri;t, causing Ri;t through its e¤ect on X2;t:

For this to be the case, a Markov condition in the chain B1;t �! B2;t �! At must hold

for all possible events B1;t; B2;t, At that can be de�ned in terms of the random variables

X1;t; X2;t and Ri;t, respectively. In this case, we end up having erroroneously identi�ed

X2;t; instead of X1;t as a causal factor of Ri;t: If a necessary condition for the explanation

of a regularity is to identify all the genuine causal factors of it and only those, then the

aforementioned statistical procedure has clearly failed to satisfy this condition.

4.3 From SFM to SFM-AR

The preceding analysis has shown that SFM, as opposed to MD-GARCH, enjoys some

degree of theoretical justi�cation, in terms of theoretical properties of the mechanism at

work such as "operation of a common cause", "e¢ cient use of available information" and

"forward looking behaviour". Moreover, SFM gives a broad outline of the functioning of

this mechanism in the state of equilibrium without touching upon the issue of how this

equilibrium state is achieved. As already mentioned, the transition from SFM to SFM-AR

was motivated by purely empirical considerations. This in turn generates the question of

whether there is any "causal" theory, complementary to the basic theory underlying SFM,

that accounts for the time-variation and persistence in betas. It is important to note at

the outser that the time variation of betas does not (necessarily) alter the "equilibrium"

status of the factor models. Indeed, as was shown in Section 3, under some parameter

restrictions, SFM-AR represents a second-order stationary returns process.

To this end, Berk, Green and Naik (1999) suggest a theoretical model which implies

that a �rm�s systematic risk and expected returns change through time in a predictable

way as a result of temporal variations in �rm�s growth and investment opportunities.

More speci�cally, this model illustrates how the stochastic behaviour of systematic risk
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is driven by �rm�s value maximizing choices, with the latter exhibiting some degree of

persistence. In a similar vein, Avramov and Chordia (2006) attribute some of the well-

known anomalies of the empirical literature, such as the size and book-to-market e¤ects

to the persistent behavior of betas (see also Petkova and Zhang, 2005, Ang and Chen,

2007, and Zhang, 2005). Although, these studies do not satisfy the (rather impossi-

ble) task of providing the full account of the causal mechanism at work that produces

SFM � AR, nonetheless they enhance our understanding of the possible origins of the

persistent variation in sytematic risk. In doing this, they convey relevant information for

the explanandum.

5 Conclusions

This paper examined the sense in which statistical models of stock returns explain em-

pirical regularities. It was argued that there are alternative de�nitions of "statistical

explanation", developed in the philosophy of science literature, according to which a sta-

tistical model can be classi�ed as "explanatory" rather than"descriptive". It was shown

that a statistical model may be called "explanatory" even if its birth was motivated

purely by empirical considerations. Moreover, a statistical model can be explanatory

in more than one ways, or it may be explanatory in one sense, but non-explanatory in

another. This paper focused on two distinct models of probabilistic explanation, namely

D-S and D-N-P, with the latter being a prominent member of the class of C-M models of

explanation.

In the context of D-S, an explanation of an empirical regularity, Si; by a statistical

model M1 is achieved, when Si is deduced from M1: D-S poses no restrictions on the

origins of M1 other than M1 is not born out of the probabilistic interpretation of Si

itself (in which case, M1 explains Si trivially). On the other hand, D-N-P sets the much

stricter condition ofM1 being derived from a theoretical account of the chance mechanism

at work.
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The analysis in this paper showed that the M-MD-GARCH model satis�es the D-S

criteria, since it entails the empirical regularities CFP; EL; EAG; and EAI. SFM-AR

also satis�es the D-S criteria with respect to CC; FMR; EL; EAG and EAI: Note that

M-MD-GARCH and SFM-AR imply (CC;FMR) and CFP; respectively in a trivial way,

since (CC;FMR) and CFP were the "generating regularities" of M-MD-GARCH and

SFM-AR, respectively.

The explanatory status of SFM-AR and particularly M-MD-GARCH changes drasti-

cally, with respect to the C-M criteria set by the D-N-P model. There is no doubt that the

origins of M-MD-GARCH are purely empirical. This model is a direct descendent of the

univariate MD-GARCH model which, according to the testimony of its initiator, emerged

from a well-designed mispeci�cation test for dynamic heteroskedasticity. There was no

theory of how the internal workings of the stock market mechanism produce volatility

clustring, which is the motivating regularity of this model.

On the other hand, SFM-AR seems to have much stronger theoretical origins. Of

course, the existing theory does not describe in detail the causal nexus of the market

mechanism that brings about the observed behaviour of stock returns. Rather, it gives

an outline of the general structure of this mechanism, operating in a state of equilibrium,

which is based on the principles of "common cause", "e¢ cient information processing"

and "forward looking behaviour". The existing theory, however, is not capable of identi-

fying the identity of the risk factors that appear in SFM-AR. This task is usually carried

out empirically, using standard statistical methods. It was argued that the empirical

identi�cation of the true causal risk factors is at best questionable due to the di¢ culty

of reducing probabilistic causal relationships to statistical correlations. However, even if

the empirical identi�cation of the causal factors were succesful, the explanation of the

stock returns regularities in terms of these (true) factors would still not satisfy the D-N-P

ideal. Indeed, in a case like this, we would have obtained an accurate description of the

"outter" behaviour of the chance mechanism at work without, however, having gained

any insight into the internal workings of the mechanism. To achieve the latter task, more
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theoretical work aiming at identifying the causal risk factors from �rst principles seems

to be necessary if an "ideal" causal mechanistic explanation of the empirical regularities

of stock returns is to be achieved.
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APPENDIX

Proof of Theorem 1:

(i) We have

V art�1 (Rt) = Et�1
�
(Mt(� + �t) + ut) (Mt(� + �t) + ut)

0�
= �2mEt�1

�
(� + �t) (� + �t)

0�+ �u
= �u + �

2
m

��
� +��t�1

� �
� +��t�1

�0
+ �"

�
= �2m�" + �u + �

2
m

�
� +��t�1

� �
� +��t�1

�0
(25)
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(ii) First note that from the independence between ut, wt and "t, postulated in assumption

M, conditional on the realization of �t and all the information that is generated up to

time t� 1, we have that E�t [Rt] = a and V ar�t [Rt] = �u + �
2
m(� + �t)(� + �t)

0. The

result then follows from the normality of the random vector.

(iii) First note that

(V ar(Ri;t))
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Moreover, for the fourth central moment of Ri;t we have

E
�
(Ri;t � E[Ri;t])4

�
= E
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where we have used the fact that for the Gaussian distributions, the third moment is zero

and fourth moment equals to three times the square of the second. Hence, the kurtosis

coe¢ cient of the unconditional distribution of stock returns is given by

Kurt(Ri;t) =
E
�
(Ri;t � E[Ri;t])4

�
(V ar(Ri;t))

2 = 3 +
12�2i�

2
�i
�4m

(V ar(Ri;t))
2 : (28)

(iv) By virtue of (3) and Assumption M, we have

Et�1 [Rt � a] = Et�1 [Mt(� + �t) + ut] = Et�1 [Mt]Et�1 [� + �t] = 0

Proof of Theorem 2:

For the proof we use the relatively recent invariance principle of Peligrad and Utev

(2005), stated below:
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Theorem PU (Invariance Principle of Peligrad and Utev (2005)): Let fXigi2Z
be a stationary sequence with E [X0] = 0 and E [X2

0 ] <1. Assume that

1X
n=1

kE [SnjF0]k2
n3=2

<1 . (29)

Then,
�
max
1�k�n

S2k=n

�
n�1

is uniformly integrable and n�1=2Wn
D! p

�W , where � is a

non-negative random variable with �nite mean E [�] = �2 and independent of fW (t)gt�0.

Moreover, � is determined by the limit limn!1 (E [S
2
njI] =n) = � in L1 , where I is the

invariant sigma �eld. In particular, limn!1 (E [S
2
n] =n) = �

2.

AssumptionM implies that

E [Rt0+i � E [Rt0+i] jFt0 ] = 0 a.e.

Therefore kE [St0;kjFt0 ]k2 = 0 and condition (29) is trivially satis�ed. By virtue of the

existence of �nite second moments for all random variables involved, we can apply The-

orem PU. From the joint normality of �t, Mt and ut, we have that fRtgt2Z is ergodic,

hence the invariant �-�eld is trivial. Applying, now, (9) we obtain

� = lim
n!1

E [S2k ]

k
= lim

k!1

V ar (R� (k))

k
= �2�2m + �

2
u + �

2
��

2
m 2 R:

QED
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