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Abstract

In this paper we investigate whether the empirical regularities of stock returns are inde-

pendent of each other or whether any one of them implies all the others. If such a regularity

exists, it is called �fundamental� and is usually thought of as a "deductive explanation" of

the others. We demonstrate that such a fundamental regularity of stock returns is the one

represented by the single factor model with a stochastically persistent beta coe¢ cient (SFM-

AR). Indeed, this regularity alone entails all the usual regularities of stock returns, including

conditional heteroskedasticity, leptokurtosis aggregational Gaussianity and aggregational Inde-

pendence. Hence, SFM-AR may be thought of as an "explanatory uni�er" of the empirical

regularities of stock returns. However, since the theoretical origins of SFM-AR are weak, its

explanatory status falls short of meeting the standards of the "ideal explanatory text".
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1 Introduction

Can statistical models be explanatory, and - if yes - in what sense? During the �rst half

of the twentieth century, the majority of scientists and philosophers, under the dominant

in�uence of logical positivism, gave to this question a negative reply. Bunge (1979)

summarizes this negative attitude as follows: "It is a widespread opinion that statistical

statements are purely descriptive, that they are in need of being explained, without being

entitled to perform an explanatory function." (1979, pp. 302). This attitude begun to

change gradually since the early 1940�s, when many philosophers came to realize that

the so-called "stochastic revolution" in the �eld of theoretical physics should somehow

be accounted for by any acceptable theory of scienti�c explanation. Rescher (1962)

comments on this change of attitude as follows: "Only since the 1940�s, with the fading

in�uence of logical positivism, so heavily imbued with nineteenth-century conceptions,

have statistical explanations come to be recognized as deserving not only a measure of

acceptance but almost a place of prominence." (1962, pp. 202). Indeed, since 1948,

the year in which the seminal work of Hempel and Oppenheim on scienti�c explanation

was published, a lot of e¤ort has been directed towards analyzing the nature and the

structure of scienti�c explanation in general and statistical or probabilistic explanation

in particular.

Statisticians have also attempted to analyze the concept of statistical explanation from

a more pragmatic viewpoint, namely in relation to the origins and functions of statistical

models. To this end, Box and his co-authors, in a series of papers, classi�ed statistical

models in two broad categories, the �rst including so-called empirical or interpolatory

models, and the second explanatory or mechanistic ones (see Box and Hunter 1965, and

Box and Draper 1987). Lehmann (1990) summarizes the main di¤erences between these

two types as follows: "Empirical models are used as a guide to action, often based on

forecasts of what to expect from future observations. In contrast, explanatory models

embody the search for the basic mechanism underlying the process being studied; they

1



constitute an e¤ort to achieve understanding" (Lehmann 1990, pp. 163). Indeed, a

major theme in the philosophy of science since the early sixties has been the de�nition

of statistical (or probabilistic) explanation, the analysis of its logical structure and the

introduction of alternative sets of criteria for explanatory adequacy.

Concerning the object of statistical explanation, it can be either a speci�c event, or

a statistical regularity. For example, an event that an interested investor might wish to

"explain" is the following: "The price of the Citigroup stock on 22/02/11 fell by more

than 4%". Note that the event to be explained has to be well de�ned spatiotemporally.

On the other hand, an empirical regularity refers to a class of similar events occured in

di¤erent points of time or space. For example, a well-known regularity of stock returns

is their tendency to be distributed symmetrically around a constant mean. A statistical

explanation of a single event di¤ers in some important respects from that of a statistical

regularity. The most important one is that the explanation of a single event usually takes

the form of an inductive argument, whereas that of a statistical regularity retains its

deductive structure. In this paper we shall focus exclusively on the alternative models of

explanation for empirical regularities. For a thorough discussion of the speci�c features of

explanations of single events and how these features di¤er from those akin to regularities,

the interested reader may be referred to the classic papers of Hempel (1965), Salmon

(1970), or more recently Fetzer (1993).

The existing literature, mainly in the philosophy of science, has put forward more

than one sense in which an explanation of a regularity is de�ned. As a result, more

than one models of statistical explanation have been proposed. In most of these models,

deducibility from a "covering law" is the key concept through which statistical explanation

is achieved. Redhead (1990) comments on this issue as follows: "So what do probabilistic

or statistical explanations achieve? Well, they enable us to deduce and hence to explain

the limiting relative frequencies with which events of a given kind turn up in a long-run

repetition of the set-up producing the phenomenon." (1990, pp. 137). In other models,

however, deducibility is just one among several others conditions that must be met by an
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adequate explanation. The main aim of this paper is to summarize these models, analyze

their relevance for the empirical regularities of stock returns and identify alternative

sets of criteria with respect to which adequate explanations of these regularities may be

produced.

Before we analyze the aforementioned models of explanation of statistical regularities

in some detail, let us �rst focus on the object of explanation itself, namely the concept of

statistical regularity. In the minds of many philosophers of science, a statistical regularity

is nothing but the type of the empirical distribution of a set of observations produced by

a "long-run repetition" of the underlying chance mechanism. Implicit in this de�nition is

the interpretation of the empirical distribution by a corresponding theoretical one, usually

that producing the best �t. However, the aforementioned de�nition is appropriate only

for the case of independent and identically distributed (iid) observations, such those

produced in controlled experiments. In the case of non-experimental data, such those

obtained in the �eld of economics, the concept of statistical regularity must be augmented

to accommodate the presence of temporal dependence and time heterogeneity in the

stochastic process fYtgt2Z that generated the available data. For example, in the case

of a dependent but stationary process fYtgt2Z, one regularity may take the form of the

unconditional (stationary) distribution,D(y); of Yt, in the spirit of the Redhead de�nition,

cited above. However, another regularity may be de�ned in terms of the type of the

conditional distribution Dt(y j Ft�1) where Ft�1 is the information set available at t� 1.

The preceding discussion suggest that a set of statistical regularities may be de�ned in

terms of a set of probabilistic properties of fYtgt2Z: These properties may be classi�ed in

three major categories, namely distributional, temporal dependence and time heterogene-

ity ones. The procedure of characterizing a statistical regularity may take the following

two steps: First, a statistical regularity, S1; is diagnosed. Second, a probabilistic property,

P1; of the underlying process that is capable of producing S1 is identi�ed. We may refer

to P1 as the theoretical counterpart of S1: Once P1 is found, it replaces S1 as the object

to be explained (explanandum). It must be noted a given regularity may be described
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by more than one probabilistic properties, in which case additional criteria pertaining to

"empirical adequacy" are likely to be employed.

Hempel and Oppenheim (1948) and Hempel (1965) de�ne the concept of statistical

explanation of an empirical regularity, S2, in terms of �deducibility�or �nomic expectabil-

ity�of S2 from a broader or more comprehensive empirical regularity, S1. Explanation

is achieved through derivation. Speci�cally, S2 is thought to be explained if it can be

deduced from a set of �explanans� that consists of S1 and (possibly) some antecedent

conditions. In this case, S2 may be thought of as a manifestation of the more funda-

mental regularity S1. It must be noted that �deducibility�of S2 from S1 amounts to a

mathematical proof of the type P1 ) P2. This in turn implies that the extent to which

S2 is explained by S1 depends on the choice of probabilistic descriptions P1 and P2 of S1

and S2, respectively. For example, if S2 were (chosen to be) described by P 02 instead of

P2, then a proposition of the form P1 ) P 02 might not be valid. In such a case, S2 is not

explained by S1. This feature introduces some ambiguity to the extent that a given reg-

ularity is explained by a broader regularity, since the necessary deducibility relationship

may be obtained under one probabilistic interpretation but may fail under another.

The selection of the relevant theoretical interpretation at any given time depends on

the �background theory� that prevails at this particular time. Historically, alternative

theoretical interpretations have been used at di¤erent points in time in order to explain

the same empirical regularity (see, for example, Brewer and Lambert, 1993). From now

on, when we say that a regularity, say, S2 is explained by a broader regularity, say, S1 or

that S1 entails or implies S2, we shall mean that there exist (at least) two corresponding

descriptions P1 and P2 (in the sense de�ned above) such that P1 ) P2. In such a case,

we may say that S1 �! S2:

The model of explanation mentioned above is usually referred to as the Deductive-

Statistical (DS) model of explanation which �...is used to explain a statistical regularity

by showing that it follows with necessity from one or more statistical laws (and initial

conditions in some cases).� (Salmon 1984, p. 295). Kinoshita (1990) comments on the
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issue of regularity explanation as follows: �A regularity explanation does not amplify the

nature of a particular regularity, but rather orients the regularity relative to other regu-

larities. Regularity explanations show a regularity to be reasonable or proper by showing

it to be a special case of one or more (more comprehensive) regularities.� (Kinoshita,

1990, p. 301). Speci�cally, an explanation of S2 orients this regularity within a com-

plex hierarchy of regularities by showing that S2 is a special case or manifestation of S1.

Friedman (1974) de�nes explanation in terms of uni�cation or conceptual economy. If the

number of empirical regularities that have to be assumed as �brute�is minimized, then

our understanding of the phenomenon is increased. For example, if S1 and S2 are two

di¤erent sets of regularities then the case in which S1 implies S2 achieves a higher order of

understanding than the case in which S1 and S2 are independent. Friedman (1974, p. 15)

argues: �I claim that this is the crucial property of scienti�c theories we are looking for;

this is the essence of scienti�c explanation - science increases our understanding of the

world by reducing the total number of independent phenomena that we have to accept

as ultimate or given. A world with fewer independent phenomena is, other things being

equal, more comprehensible than with more�.

Amore demanding model of statistical explanation, the so-called Deductive-Nomological-

Probabilistic (DNP) model of explanation was put forward by Railton (1977, 1981). In

the context of this model a regularity is explained in terms of the mechanism that pro-

duced this regularity. "The goal of understanding the world is a theoretical goal, and

if the world is a machine - a vast arrangement of nomic connections - then our theory

ought to give us some insight into the structure and workings of the mechanism, above

and beyond the capability of predicting and controlling its outcomes." (1978, pp. 208).

A regularity S1 does not explain the regularity S2 unless S1 is backed up with "an ac-

count of the mechanism(s) at work". In other words, S1 in itself cannot form the basis

for a satisfactory explanation of the explanadum event, unless S1 is "derivable from our

theory without appeal to particular facts." (1978, pp. 215). The DNP model does not

reject the idea that "deducibility from a law" is an important feature of explanation.
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However, it puts forward the view that "discovering the mechanism that produced that

law" is another, equally important, condition for obtaining a satisfactory explanation of

an empirical regularity. It must be noted that Railton�s account of probabilistic expla-

nation allows partial or incomplete explanations to qualify as adequate. This case arises

when the relevant theory gives only a partial (rather than full) account of the statistical

model that implies S1: In such a case, the o¤ered explanation does not illuminate all the

explanatory text but only parts of it, that is, it furnishes explanatory information. In

the limiting case, the corresponding explanation is called "ideal" explanation.

The DNP model of explanation seems to subscribe to the so-called "principle of micro-

reduction" according to which "the properties of wholes are explained in terms of the

properties of their parts" (Brittan, 1970, pp. 447). Put di¤erently, S1 does not explain

S2 unless S1 itself is reduced to (and explained in terms of) a micro-theory about the

component parts that give rise to S1: In contrast, the DS model of explanation does

not place such severe conditions of explanatory adequacy. A necessary and su¢ cient

condition for the explanation of S2 by S1 is the nomic deducibility of the former from

the latter, namely S1 �! S2: In the context of DS, the origins of S1 are allowed to be

left unexplored. Salmon (1990) argues that DS explanations, of the type S1 �! S2 are

complete. "If one wants an explanation of a law that entered into the �rst explanation

(S1, in our case) it can be supplied by deriving that law from more general laws or

theories. The result is another explanation. The fact that a second explanation of this

sort can be given does nothing to impugn the credentials of the �rst explanation" (pp.

156, emphasis added).

As far as stock returns are concerned there are currently certain statistical regularities

which are widely recognized as �stylized facts�, since they appear to be common across

many di¤erent markets, assets and time periods. These regularities may be classi�ed

in two broad categories: The �rst category, hereafter �Regularities of Type-I� (RT-I),

refers to the individual temporal behavior of each returns series Ri;t, i = 1; 2; :::; N . The

most important regularities in RT-I are the following: (i) Fast Mean Reversion (FMR),
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that is, the tendency of stock returns to revert to an average value quite rapidly. Put

di¤erently, the degree of persistence of returns�deviation from this average value is very

low, if not zero. (ii) Volatility Clustering (V C), that is, the fact that �large (price)

changes tend to be followed by large changes, of either sign, and small changes tend to

be followed by small changes�(Mandelbrot 1963, p. 418). (iii) Empirical Leptokurtosis

(EL), namely, the empirical distribution of stock returns are characterized by heavy tails

with positive excess kurtosis. (iv) Empirical Aggregational Gaussianity (EAG), that is,

the fact that the degree of leptokurtosis in the empirical distributions tends to diminish

as the return horizon increases. (v) Empirical Aggregational Independence (EAI), that

is, the observation that the volatility clustering e¤ects tend to disappear as the returns

horizon increases or equivalently, as we move from higher to lower frequencies (e.g. from

daily to quarterly observations).

The probabilistic interpretations/descriptions of these empirical regularities have taken

the following forms. FMR is described by assuming that the stochastic sequence fRi;tg

is martingale di¤erence (MD). V C is usually interpreted as �dynamic conditional het-

eroskedasticity� (DCH) which is a speci�c type of non-linear temporal dependence of

fRi;tg. DCH may be further described, for example, by a parametric GARCH(p; q)

model. EL has a natural interpretation in terms of theoretical leptokurtosis (TL) of the

(stationary) distributions of the random variables Ri;t. EAG is interpreted as a tendency

of the aggregate random variables, Ri;� (k) =
Pk

l=1Ri;t�k+l, to converge in law to the Nor-

mal distribution as the returns�horizon k increases (AG). Finally, EAI is described by

the probabilistic property that the random variables Ri;� (k) and Ri;s(k), � 6= s, tend to

be independent as the returns horizon, k, increases (AI). From the very beginning of the

DCH interpretation of V C, the following relationship was proved to hold: CH ) TL

(see, for example, Engle 1982, Bollerslev 1986). Moreover, within the GARCH(p; q)

model, and under some parametric restrictions ensuring asymptotic independence (mix-

ing) and �niteness of the unconditional variance it is quite easy to show that CH ) AG

and CH ) AI. To this end, Drost and Nijman (1993) and, more recently, Meddahi and
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Renault (2004) have proved AG and AI within the weakGARCH model, by showing that

the weak GARCH coe¢ cients tend to zero under temporal aggregation. Finally, there is

no implied relationship between MD and DCH. These two probabilistic properties are

independent of each other.

By mapping the aforementioned theoretical results back to empirical world, we may

say that V C �! fEL;EAG;EAIg although FMR = V C. This in turn implies that

there is no regularity in the set R = fFMR; V C;EL;EAG;EAIg that can be thought

of as �fundamental�or �unifying�, that is, a regularity in terms of which all the other

regularities in R are explained. Nonetheless, V C seems to possess some quite signi�cant

unifying properties.

The second category, hereafter referred to as �Regularities of Type-II�(RT-II) refers

to the joint temporal behavior of all return series or to the joint behavior between each

returns series Ri;t and another factor (or factors). The most important regularity in

RT-II, referred to as empirical contemporaneous correlation (CC), is the fact that the

stock prices tend to move together over time. In other words, stock returns appear to

be contemporaneously correlated . Roll and Ross (1980) refer to the common variability

of stock returns as �the single most widely-acknowledged empirical regularity�(1980, p.

1073). An obvious way to describe CC is to assume that the correlation matrix � of the

(stationary) random vector [R1;t; R2;t; :::; RN;t]> is non-diagonal. This assumption will be

referred to as theoretical contemporaneous correlation (TCC).

Another empirical regularity in RT-II is based on the observation that stock returns

tend to respond to (unanticipated) changes in one or more variables, such as the market

portfolio or certain macroeconomic variables/factors. This regularity will be referred to

as �common factor� regularity (CF ). Sharpe (1964) refers implicitly to this regularity

as follows: �it is common practice for investment counselors to accept a lower expected

return from defensive securities (those which respond little to changes in the economy)

than they require from aggressive securities (which exhibit signi�cant response)�(1964,

p. 442). In the simplest case of a single factor, Xt, the probabilistic interpretation of
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CF takes the form of a linear regression model, Ri;t = ai + �iMt + ui;t, where Mt =

Xt � E(Xt j Ft�1). The error term, ui;t, is assumed to be a zero-mean i.i.d. process

with �nite variance, satisfying the condition E (ui;t jMt) = 0, for i = 1; 2; :::; N . The

slope coe¢ cient, �i, is interpreted as a measure of the systematic risk of the stock i,

and is usually referred to as the �beta coe¢ cient�, or simply the �beta�of the stock i.

In the context of this model, the returns on all the existing assets, i = 1; 2; :::; N , are

related only through Mt. This assumption amounts to the covariance matrix, �u, of ui;t,

i = 1; 2; :::; N , being diagonal, that is, Cov(uj;t; ui;t) = 0 for j 6= i. Following the relevant

literature, this particular description of CF will be referred to as the single factor model

(SFM). It is well known that the following relationship holds, SFM ) TCC, which is

re-interpreted as CF �! CC. This last relationship is taken to imply that the observed

positive correlations among stock returns are explained exclusively by the presence of a

common factor causing all stock returns simultaneously. The relationship CF �! CC

means that between CF and CC, the �rst is the fundamental regularity which explains

the second.

Initially, an implicit assumption in the CF regularity mentioned above, was that

the degree of response of each stock to changes in the factor was constant over time.

Therefore, the corresponding description of this degree of response in the context of

SFM took the form of a time-invariant beta. However, more detailed statistical analysis

showed that the estimates of beta were not constant over time. As a result the CF

regularity was replaced by a more general regularity according to which stock returns

tend to respond to changes in the factor with the degree of this response changing over

time in an unpredictable fashion. Some researchers took the view that the variation in the

degree of response is random (see, for example, Blume 1971, 1975, Fabozzi and Francis

1977) whereas others believed that this variation exhibits signs of temporal persistence

(see, for example, Fisher and Kamin 1985, Sunder 1980, Bos and Newbold 1984, Collins,

Ledolter and Rayburn 1987, Andersen et al. 2005, and Jostova and Philipov 2005). As a

result, the original CF regularity was replaced by either the �random-variation�regularity
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or the �persistent-variation� one, referred to as CF � R and CF � P , respectively.

These new regularities may be probabilistically described by a single factor model in

which the stochastic sequence
�
�i;t
	
is assumed to be a �rst-order autoregressive process,

�i;t = 'i�i;t�1+"i;t: The resulting SFMmodel accommodates both the CF�R and CF�P

regularities in the form of the cases ' = 0 and ' 6= 0, respectively. From now on, the

SFM model with ' = 0 and ' 6= 0 will be referred to as SFM � R and SFM � AR,

respectively.

The questions we try to answer in this paper are the following: Are the CF � R or

CF �P regularities of type II independent of the set R of regularities of type-I? Or is it

the case that one type of regularities implies the other, in which case the �rst type is more

fundamental than the second? Put di¤erently, is the regularity implied by SFM �R or

SFM � AR the most fundamental regularity of stock returns? Moreover, if the answer

to this question is a¢ rmative, what are the implications for the explanatory status of

SFM � R or SFM � AR? Does SFM � R or SFM � AR enjoy, in a certain sense, a

higher degree of explanatory adequacy than other models for stock returns, such as, for

example, GARCH models? Moreover, even if SFM � R or SFM � AR is explanatory

adequate in relative terms (that is compared to other models), is it also explanatory

su¢ cient in absolute terms? Put di¤erently, does the explanatory status of SFM �R or

SFM � AR satisfy the criteria of the DNP model of statistical explanation?

The answers to these questions may be summarized as follows: (i) The most im-

portant result of the paper is that SFM � AR ) fMD;DCH; TL;AG;AIg, which is

re-interpreted as CF �P �! fFMR; V C;EL;EAG;EAIg. This result implies that the

only type of regularity regarding stock returns, that should be assumed as brute is the

following: CF � P = �stock returns respond to unanticipated changes in the risk fac-

tor, with the degrees of response (betas) evolving over time in a stochastically persistent

fashion�. This type of regularity alone entails all the other aforementioned regularities

of stock returns. (ii) Although SFM � AR is explanatory adequate in the DS sense,

it fails to meet the standards of DNP. This is due to the fact that none of the existing
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asset pricing theories can serve as a description of the chance mechanism that gives rise

to SFM � AR. (iii) The relevant theory that comes closer to achieving the explanatory

ideal is a speci�c version of the Capital Asset Pricing Model (CAPM).

The remainder of this paper is organized as follows: Section 2 de�nes the SFM �AR

model and summarizes existing results showing that this model exhibits the theoretical

properties of martingale di¤erence, dynamic conditional heteroskedasticity and leptokur-

tosis. Section 3 proves that an invariance principle holds for the properly standardized

sequence of partial sums of SFM-AR returns. This, in turn, implies that Aggregational

Gaussianity holds for SFM-AR returns and that two sequential long-horizon returns tend

to be independent as the return horizon increases (Aggregational Independence). Section

4 discusses which (if any) of the existing asset pricing theories may serve as a description

of the chance mechanism that gives rise to SFM � AR, thus satisfying the conditions

of DNP explanatory adequacy and producing the ideal explanatory text. Section 4 con-

cludes the paper.

2 The Single Factor Model with Autoregressive Beta (SFM-AR)

Let us consider a market with n assets (stocks) and let Ri;t be the one-period continuously

compounded return on an individual stock, de�ned as Ri;t = pi;t � pi;t�1; where pi;t is

the natural logarithm of the price of the particular stock. Following the discussion of the

previous section, we assume that Ri;t is related to a single factor, Mt, via the following

relationship:

Ri;t = ai + (�i + �i;t)Mt + ui;t; i = 1; 2; :::; n (1)

where ai and �i are real numbers, and ui;t, �i;t, are zero-mean sequences of random

variables whose exact properties will be de�ned below. Equation (1) can be written in

vector form as follows

Rt = �+Mt(� + �t) + ut; (2)
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where R0
t = [R1;t; R2;t; : : : ; Rn;t], �

0 = [a1; a2; : : : ; an], �
0 =

�
�1;t; �2;t; : : : ; �n;t

�
and u0t =

[u1;t; u2;t; : : : un;t].

Assumption M: �i;t follows a zero-mean AR(1) process,

�i;t = 'i�i;t�1 + "i;t; j'ij < 1, 1 � i � n (3)

and 266664
ut

Mt

"t

377775 � NIID
0BBBB@0;

266664
�u 0 0

0 �2m 0

0 0 �"

377775
1CCCCA

where "t = ["1;t; "2;t; : : : ; "n;t]
0, �u = diag

�
�2u1 ; �

2
u2
; : : : ; �2un

	
, �" = (�i;j)1�i;j�n and

Et�1 [Mt] = 0, where Et�1 [�] = E [� j Ft�1] and Ft�1 denotes the information set that

is generated by all the random variables under consideration up to time t� 1.

Let

�� := V ar(�t) = E [�t�
0
t] =

�
�i;j

1� 'i'j

�
1�i;j�n

:

Then, for i = j, 1 � i � n, the diagonal elements of ��; are given by:

�2�i = V ar (�i) =
�i;i
1� '2i

.

Note that under assumption M, equation (2) implies that Rt is a strictly stationary

process with �nite second moments. Equation (3) can be also written in vector form as

�t = ��t�1 + "t ,

where �=diag f'1; '2; : : : ; 'ng.

Koundouri et. al (2014) show that the SFM � AR model de�ned above exhibit the

properties of martingale di¤erence, conditional heteroskedasticity and leptokurtosis. In

the rest of this section, we prove that SFM � AR implies asymptotic Gaussianity and
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asymptotic independence as well. To do this, we must analyze the temporal aggregation

properties of the SFM � AR process.

In order to simplify notation, let us assume that n = 1 and de�ne the k-period return

pt � pt�k, where pt is the logarithm of the stock price at time t. Since we study non-

overlapping returns, the series of k-period returns under consideration will be of the form

f: : : ; pt�k � pt�2k; pt � pt�k; pt+k � pt; : : :g. For this reason, we introduce a new index,

denoted by � , which represents the k-period interval, in terms of t. More speci�cally, if

t and � correspond to the same moment in time, then � + 1 will coincide with t + k. In

other words, one unit in terms of � corresponds to k units in terms of t. This change of

index allows us to denote the k-period returns by

R� (k) = pt � pt�k =
kX
i=1

Rt�k+i .

Respectively, for the k-period return at lag 1, we use the notation

R��1(k) = pt�k � pt�2k =
kX
i=1

Rt�2k+i

and so forth. In the subsequent paragraphs we will make use of the notation �� � l�and

�� + l�, instead of �t� lk�and �t+ lk�, where l � 0.

3 Aggregational Gaussianity and Independence

Before proceeding to the next theorem, which proves the Aggregational Gaussianity of

stock returns under SFM�AR, we can �rst observe that since R� (k)�ka is a martingale

di¤erence process,

V ar(R� (k)) = kV ar(Rt) = k
��
�2 + �2�

�
�2m + �

2
u

�
. (4)

Next theorem proves that the sequence of weighted sums of returns, as described by
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SFM � AR, satis�es an invariance principle. To this end, let us �x some t0 2 Z, set

St0;k =
kX
i=1

(Rt0+i � E [Rt0+i])

and for 0 � r � 1, de�ne

Wk(r) =

[rk]X
i=1

(Rt0+i � E [Rt0+i]) ,

where for r < 1=k, Wk(r) := 0. Then, we have the following theorem :

Theorem 1Under Assumption M,

1p
V ar(R� (k))

Wk
D! W , as k !1,

where W is a standard Brownian motion and �D!�denotes the usual weak convergence

on the real line.

Proof. See Appendix D.

Remark 2Note that R� (k) does not have a well de�ned limit as k !1. This fact, does

not allow us to obtain any conclusion with respect to the independence between R� (k) and

R��1(k) as k !1, since the de�nition of asymptotically independent random sequences

requires that they are stochastically bounded. On the other hand, Theorem 1 implies that

K� (k) := (R� (k)� E [R� (k)]) =
p
V ar(R� (k))

d! N(0; 1) as k !1, (5)

where by N(0; 1) we denote the standard Gaussian distribution. By virtue of (4), we can

re-write (5) as follows:

(R� (k)� E [R� (k)]) =
p
k

d! N
�
0;
�
�2 + �2�

�
�2m + �

2
u

�
(6)
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as k !1. The left hand sides in (5) and (6) provide us with sequences (of k) with well

de�ned limits. Theorem 1 implies that for every � , K��1(k) and K� (k) are asymptotically

independent as k !1. In other words, this proves the asymptotic independence between

the de-meaned and properly standardized long-horizon returns K��l(k) and K� (k), for

every l 6= 0, as the return horizon, k, tends to in�nity.

4 Does SFM-AR provides an ideal explanatory text for the empir-

ical regularities of stock returns?

In the previous two sections we showed that SFM � AR ) fMD;DCH; TL;AG;AIg.

Is this all that we require in order to claim that fMD;DCH; TL;AG;AIg have actually

been explained by SFM�AR? Or do we need to explore the origins of SFM�AR itself?

In other words, do we also have to answer the question of �where does SFM �AR come

from?�In the context of the DS model, the answer is �no�. In contrast, in the context of

DNP, the answer is "yes". According to DNP, SFM �AR in itself cannot form the sole

basis for a satisfactory explanation of fMD;DCH; TL;AG;AIg unless SFM � AR is

derivable from a theory on the causal mechanism at work. Put di¤erently, DNP requires

an account of the explanatory web that gave rise to SFM � AR:

The explanatory web mentioned above is what Railton de�nes as �an ideal explanatory

text.�The full derivation of SFM � AR from its elementary parts constitutes the full

ideal text relevant to fMD;DCH; TL;AG;AIg. In other words, full understanding of

fMD;DCH; TL;AG;AIg requires the full ideal DNP text, which gives deeper insights

into the details of the process that ends up in the emergence of the SFM�AR regularity.

Is the requirement of obtaining such an ideal text a very strict one? Railton himself asks

this question: �Is it preposterous to suggest that any such ideal could exist for scienti�c

explanation and understanding? Has anyone ever attempted or even wanted to construct

an ideal causal or probabilistic text?� (1981, pp. 246-247). Railton answers his own
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question as follows: �It is not preposterous if we recognize that the actual ideal is not

to produce such texts, but to have the ability (in principle) to produce arbitrary parts

of them.� (1981, pp. 246-247). Put di¤erently, the absence of the full text does not

imply complete lack of understanding of the observed regularities. As Psillos (2002)

puts it, the ideal DNP text �is more of a regulative ideal than what, in practice, we

need and should strive for. In practice, what we (or the scientists) need and should

strive for is �explanatory information�relevant to the explanandum. Such information,

if indeed it is information relevant to the explanandum, will be part of the ideal DNP

text. By producing such parts, no matter how underdeveloped and incomplete they may

be, scientists understand why a certain explanandum happens. Finding more and more

bits of the ideal texts, we move closer to the ideal of a full understanding� (2002, p.

260). Railton (1981) himself refers to the ideal DNP text as �a yardstick for pro¤ered

explanations of chance phenomena�and also allows for these pro¤ered explanations to

take various forms and �still be successful in virtue of communicating information about

the relevant ideal text�(1981, pp. 246-247).

The preceding discussion generates naturally the following question: Is there any

ideal explanatory text concerning SFM � AR? In order to answer this question, we

must examine whether SFM � AR can be derived deductively from a certain theory,

accounting for the chance mechanism at work. If such a theory exists, then the regularity

represented by SFM �AR would be reduced and explained in terms of the properties of

the component parts postulated by the given theory. To this end, we shall �rst examine

whether an ideal explanation for the simple, constant-beta SFM model can be produced.

If this attempt turns out to be successful, then we shall examine under what additional

conditions the purported explanation can be adapted in order to explain SFM � AR:

In the context of Arbitrage Pricing Theory (APT) put forward by Ross (1973), such

a derivation is not available. In fact, the constant-beta SFM constitutes the starting

point of the theory. Roll and Ross state explicitly this fact: "... the APT is based on a

linear return generating process as a �rst principle..." (1980, pp. 1074). They motivate
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this "law" by appealing not to a theory but to observable facts, namely to the common

variability of stock returns. This means that at least within APT the origins of SFM (let

alone SFM�AR) are left unexplored. As Roll and Ross admit "We do consider the basic

underlying causes of the generating process of returns to be potentially important area

of research, but we think it is an area that can be investigated separately from testing

asset pricing theories" (1980, pp. 1077).

Apart from the absence of any derivation of SFM from any "underlying causes" the

standard APT does not shed much light on the identity of the factor Mt, or the factors

M1t;M2t; :::;Mlt in a multi-factor model (MFM). On this point Roll and Ross themselves

raise the question "What are the common or systematic factors?" (1980, pp. 1077). In

searching the identity of these factors, Roll and Ross argue as follows: "If there are only a

few systematic components of risk, one would expect these to be related to fundamental

economic aggregates, such as GNP, or to interest rates or weather (although no causality

is implied by such relations)" (1980, pp. 1077, emphasis added). Roll and Ross seem

to suggest that the systematic components of risk (the real causal factors) are likely to

be non-identi�able. However, they suggest that the true factors are likely to be related

to observable macroeconomic variables such as GNP. As a result, in empirical tests of

APT, these macroeconomic variables can approximate the true systematic (causal) risk

factors. In fact this is exactly what they do in Chen Roll and Ross (1986). However, one

important question is raised at this point: What are the origins of the statistical, possibly

non-causal, relationship between the true risk factors and macroeconomic variables? If

the risk factors causally a¤ected the macroeconomic variables, then we have a case in

which the empirical version of SFM employs symptomatic factors (the macroeconomic

variables) rather than the true causal ones. However, this is fatal to any attempts to use

SFM in order to "explain" facts such as "returns of stock A at time t was x%". Indeed,

explaining such facts by appealing to symptomatic factors is equivalent to explaining the

storm by appealing to the drop in the barometer rather than to a fall in the atmospheric

pressure. If the risk factors do not a¤ect the macro variables then where does their
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statistical relationship come from? Are there any other set of variables (common causes)

that jointly a¤ect the risk factors and the macro variables? If yes, then this set of variables

should play the role of the true risk factors inMFM since their presence inMFM would

screen o¤ the original set of "factors".

The preceding discussion suggests that our aim of deriving SFM � AR (or at least

SFM) from theoretical principles cannot be achieved in the context of APT. This means

that alternative theories must be examined. Next section deals with this issue.

4.1 Capital Asset Pricing Model

One prime alternative candidate to APT is the Capital Asset Pricing Model (CAPM) of

Sharpe (1964) and Litner (1965). Indeed, Roll and Ross admit that "elegant derivations

of the CAPM equation have been concocted beginning from the �rst principles of utility

theory" (1980, pp 1074). Although the theoretical details of CAPM are in general well

known, a brief but careful outline of some aspects of this model are necessary in order

to assess whether CAPM can be thought of as providing the missing explanatory web

behind SFM � AR: To this end, we must distinguish between two alternative versions

of CAPM, hereafter referred to as CAPM-D and CAPM-U. The �rst version produces

the well-known CAPM theoretical result by making some speci�c assumptions on the

joint distribution of stock returns, with the most common one being that of Gaussianity.

The second version does not make any direct assumptions on the stochastic process that

generates returns but instead, it assumes that investors�utility functions are quadratic.

Both CAPM-D and CAPM-U conclude that the risk premium E(Ri)�R0 for any asset i is

linearly related to its "beta", bi; with the latter being de�ned as
Cov(Ri;RM )
V ar(RM )

: This feature is

the connecting link, or as Nagel (1961) puts it the "condition of connectability", between

the theoretical mechanism described by CAPM and the empirical law represented by

SFM .

Careful consideration of the "causal chain" leading to SFM reveals some aspects

which threaten the apparent derivation of SFM from solely theoretical �rst principles.
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More speci�cally, let us consider the two alternative versions CAPM-D and CAPM-U

under which SFM is derived. Under CAPM-D, the joint distribution of returns Ri of all

the existing assets, i = 1; 2; :::; n is Gaussian and stationary over time. This means that

in the derivation of the statistical law SFM for stock returns another statistical law,

namely that of joint normality of returns, has been assumed. This creates a circularity

in the arguments producing SFM similar to the circularity of the APT arguments. Put

it di¤erently, both APT and CAPM derive SFM not by appealing solely to theoretical

principles but to empirical facts as well. As Roll and Ross put it "In both instances,

the return generating process is taken as one of the primitive assumptions of the theory"

(1980, pp. 1077). The basic problem can be stated as follows: If the returns generating

process is one of the primitive assumptions of the theory then how could it be possible for

the theory to yield a returns generating process other than the one that has already been

assumed? In other words, how is it possible to "derive" the returns generating process

from a theory since it has already been assumed to be a building block of that theory?

What is required, instead, is to have a theory whose possible structure is the following:

Investors�ex ante probabilistic beliefs (plus preferences, endowments etc) are speci�ed;

based on these beliefs or any other assumption not referring explicitly to the returns

generating process an asset pricing relationship is derived; this relationship dictates in-

vestors�actions; as a result of their actions, ex post returns are generated; these ex post

returns de�ne the distribution of relative frequencies; this is the objective probability

distribution of stock returns. In this scheme, no primitive assumption on the statistical

law governing the generation of stock returns has been made; instead this law is derived

from a theoretical account of the mechanism at work.

In view of the above objections let us consider CAPM-U. This case does not make any

explicit assumption on the "objective" process generating returns and hence, it appears to

be less vulnerable than CAPM-D to the circularity argument discussed above. However,

the assumption of quadratic utilities imposes a strong and rather unrealistic restrictions

on investors preferences. Moreover, as analyzed above, the theory is still in need of the
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assumption that all investors agree on the mean �(Rp) and standard deviation �(Rp) of all

the available candidate portfolios p. The way by which such homogeneity is achieved may

be a process of statistical learning. However, many authors believe that the assumption

of homogeneity of beliefs is actually imposed without any realistic justi�cation. As Ross

(1978) puts it "Given that such homogeneity is going to be imposed eventually, it would

seem natural to begin the CAPM story with restrictions on distributions, rather than

preferences" (1978, pp. 888). In other words, it seems "more natural" to obtain the

key assumption of CAPM, namely that each investor�s expected utility is a function of

only �(Rp) and �(Rp), by imposing restrictions on the returns generating process itself

rather than on investors�preferences. As Ross puts it: "A theory that obtains strong

implications for equilibrium asset prices from restrictions on perceived distributions and

permits heterogeneity in preferences is surely to be preferred to one which obtains similar

market implications, but imposes restrictions on preferences along with strong similarity

of beliefs" (1978, pp. 888). However, withstanding the aforementioned criticisms, CAPM-

U comes closer to �ll some gaps of the ideal explanatory text than any other of the

theoretical models proposed so far.

More recent work attempts to add pieces of the ideal explanatory text by investigating

the theoretical origins not only of SFM but of SFM � AR itself from an alternative

perspective. For example, Berk, Green and Naik (1999) suggest a theoretical model

which implies that a �rm�s systematic risk and expected returns change through time

in a predictable way as a result of temporal variations in �rm�s growth and investment

opportunities. More speci�cally, this model illustrates how the stochastic behavior of

systematic risk is driven by �rm�s value maximizing choices, with the latter exhibiting

some degree of persistence. In a similar vein, Avramov and Chordia (2006) attribute some

of the well-known anomalies of the empirical literature, such as the size and book-to-

market e¤ects to the persistent behavior of betas (see also Petkova and Zhang, 2005, Ang

and Chen, 2007, and Zhang, 2005). Although, these studies do not satisfy the impossible

task of providing the full account of the causal mechanism at work that produces SFM�
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AR, they enhance our understanding of the possible origins of the persistent variation in

systematic risk. In doing this, they convey relevant information for the explanandum.

5 Conclusions

Back in 1974, Friedman puts the very idea of scienti�c understanding as follows: �I claim

that this is the crucial property of scienti�c theories we are looking for; this is the essence

of scienti�c explanation - science increases our understanding of the world by reducing

the total number of independent phenomena that we have to accept as ultimate or given.

A world with fewer independent phenomena is, other things equal, more comprehensible

than with more� (1974, p. 15). In the present paper we demonstrated that the sta-

tistical regularity of the systematic risk changing over time in an autoregressive fashion

may serve as a fundamental uni�er of the most well established empirical regularities

of stock returns. These regularities include some of the most well known ones, such

as unconditional leptokurtosis, conditional heteroskedasticity, aggregational gaussianity

and aggregational independence. Moreover, whether the act of uni�cation alone can

be thought of as su¢ cient for explanation of the well established empirical regularities

of stock returns depends on the model of explanation that one is willing to adopt. In

the context of the Hempelian Deductive Statistical model of explanation, the fact that

SFM � AR deductively implies all the empirical regularities of interest is su¢ cient for

the explanation of those regularities.

On the other hand, in the context of Railton�s Deductive - Nomological - Probabilisitc

model, the mere subsumption of the aforementioned empirical regularities under SFM �

AR is not su¢ cient unless SFM � AR is backed up with an account of the chance

mechanism at work that produced SFM . To this end, the existing asset pricing theories

fail to give a full account of the process that results in SFM � AR. However, a speci�c

version of CAPM succeeds in conveying explanatory relevant information which weaves

the web of the �ideal explanatory text�.
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Appendix
Proof of Theorem 1:

For the proof we use the relatively recent invariance principle of Peligrad and Utev

(2005), stated below:

Theorem PU (Invariance Principle of Peligrad and Utev (2005)): Let fXigi2Z
be a stationary sequence with E [X0] = 0 and E [X2

0 ] <1. Assume that

1X
n=1

kE [SnjF0]k2
n3=2

<1 . (7)

Then,
�
max
1�k�n

S2k=n

�
n�1

is uniformly integrable and n�1=2Wn
D! p

�W , where � is a

non-negative random variable with �nite mean E [�] = �2 and independent of fW (t)gt�0.

Moreover, � is determined by the limit limn!1 (E [S
2
njI] =n) = � in L1 , where I is the

invariant sigma �eld. In particular, limn!1 (E [S
2
n] =n) = �

2.

AssumptionM implies that

E [Rt0+i � E [Rt0+i] jFt0 ] = 0 a.e.

Therefore kE [St0;kjFt0 ]k2 = 0 and condition (7) is trivially satis�ed. By virtue of the

existence of �nite second moments for all random variables involved, we can apply The-

orem PU. From the joint normality of �t, Mt and ut, we have that fRtgt2Z is ergodic,

hence the invariant �-�eld is trivial. Applying, now, (4) we obtain

� = lim
n!1

E [S2k ]

k
= lim

k!1

V ar (R� (k))

k
= �2�2m + �

2
u + �

2
��

2
m 2 R:
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