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Abstract

In this paper we define a set of Indirect Inference estimators based on mo-
ment approximations of the auxiliary ones. Their introduction is motivated by
reasons of analytical and computational facilitation. Their definition provides an
indirect inference framework for some "classical" bias correction procedures. We
derive higher order asymptotic properties of these estimators. We demonstrate
that under our assumption framework and in the special case of deterministic
weighting and affi nity of the binding function these are second order unbiased.
Moreover their second order approximate Mean Square Errors do not depend
on the cardinality of the Monte Carlo or Bootstrap samples that our definition
may involve. Consequently, the second order Mean Square Error of the auxiliary
estimator is not altered. We extend this to a class of multistep Indirect Inference
estimators that have zero higher order bias without increasing the approximate
Mean Squared Error, up to the same order. Our theoretical results are also
validated by three Monte Carlo experiments.
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1 Introduction
Indirect Inference estimators (IIEs) are usually emerging from two-step optimization
procedures. They are defined as (potentially measurable selections of approximate)
minimizers of criteria (inversion criterion) that are functions of an auxiliary estimator,
itself derived as an extremum estimator. The latter minimizes a criterion function
(auxiliary criterion), that reflects (part of) the structure of a possibly misspecified aux-
iliary model. The inversion criterion depends on a mapping connecting the underlying
statistical models, termed as the binding function. Minimization of the inversion cri-
terion essentially inverts the binding function, which, usually, is not analytically known
and is approximated numerically. This approximation may involve some kind of Monte
Carlo integration of an arg min functional with respect to which the auxiliary estima-
tor is defined. Moreover the arg min is also usually approximated by some numerical
procedure. Hence the derivation of the analogous IIE involves nested numerical op-
timizations that impose a large computational cost (see the GARCH (1, 1) example
below). The same IIE under a more involved assumption framework can also have
desirable high order asymptotic properties.1 This framework creates a trade off be-
tween numerical cost considerations and asymptotic properties that could cast these
estimators unattractive. In fact, under some appropriate conditions, the IIE which is
most numerically involved possess the desirable property of reducing the bias of the
auxiliary one (see e.g. Gourieroux et al. [36], Arvanitis and Demos [8]). This property
has been exploited in dynamic panel setup (see e.g. Gourieroux, Phillips and Yu [35])
as well as in time series (see e.g. Demos and Kyriakopoulou [20], Gourieroux and
Monfort [33], Phillips [56]).
Part of the scope of the present paper is the introduction of a class of (potentially

multistep) IIEs, where the binding functions depend on approximations of the first
moment of the auxiliary estimator that avoid the aforementioned numerical cost. This
is due to the fact that even when these approximations involve numerical integration,
the integrands are analytically tractable,2 hence the resulting IIEs avoid nested nu-
merical optimizations. This comes at the fixed cost of the analytical derivation of the
moment approximation. Under a relevant assumption framework, higher order asymp-
totic properties of these estimators are potentially similar to the ones in the previous
paragraph. Hence this class of estimators can reduce the trade off.
Furthermore, the analysis of higher order asymptotic properties of the aforemen-

tioned class of IIEs, along with already established results, provide us with an inter-
esting unification of distinct procedures of approximate bias correction. For example,
in cases where the auxiliary estimator (say βn) is consistent, the analysis that follows

1See e.g. Gourieroux and Monfort [33], and Gourieroux, Renault and N. Touzi [36].
2 i.e. they are analytically tractable functions of the Monte Carlo sample. Hence their Monte Carlo

integration does not involve any extra numerical procedure.
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defines the considered IIEs as solutions of the procedure

min
θ
‖βn − θ −Kn (θ)‖

where θ + Kn (θ) is a (potentially stochastic) approximation of Eθβn. Notice that
the first order approximation of the solution to the previous problem θ∗n + βn −
Kn (βn) satisfies this definition as an extreme case.3 θ∗n is essentially the paradigm
of a vast literature of approximate bias correction (see e.g. Bao and Ullah [10], Bao
and Ullah [11], Cordeiro and McCullagh [15], Cordeiro and Klein [16], Cox and Hinkley
[18], Fernandez-Val and Vella [23], Gourieroux et al. [36], Iglesias and Phillips [40],
Linton [46], MacKinnon and Smith [49], and Rilstone, Srivastava and Ullah [57]). The
definition also allows for intermediate cases in which some of the elements of Kn (θ)
are evaluated in θn. In fact, by unifying these procedures in an IIE framework, we are
able to provide suffi cient conditions for their validity.
Given the statistical model and βn, the definition of the considered class of IIEs

presupposes the existence of a valid asymptotic approximation for Eθβn, for any θ. We
assume that the auxiliary estimator has a standard

√
n rate of convergence independent

of θ, the mean approximation is polynomial in 1√
n
and the approximation error is

o
(
n−

s
2

)
for some positive integer s and for any θ. However, IIEs could also be defined

and exist even if the restriction on the rate of convergence is weakened, at the potential
cost of invalidating the subsequent methodology, employed for the derivation of higher
order asymptotic properties.
The asymptotic approximation of Eθβn can be established in a variety of ways.

In the first instance, one assumes that βn, with suffi ciently high probability, can be
represented as a ratio of quadratic forms in normal (see Magnus [51]) or non-normal
(see Ullah and Srivastava [70]) random variables and thereby the procedures of these
papers can be employed along with an asymptotic approximation for the subsequent
integral. Examples are provided by Phillips [56] (see Theorem 4) in the context of the
AR (1) model with βn the OLSE, and by Bao and Ullah [11] in the context of the
maximum likelihood estimator in spatial models. A second way is to employ expansions
of βn, as in e.g. Bao and Ullah [10], MacKinnon and Smith [49], Newey and Smith
[53], or Rilstone et al. [57], and then by employing Nagar [52] type arguments (see
Rothenberg [59]) approximate Eθβn by the expectation of the expansion.
Alternatively, the mean approximations can be derived as Edgeworth means. This

can be validated if for any θ,
√
n (βn − b (θ)) admits an Edgeworth expansion of

suffi ciently high order due to lemma AL.2 (b denotes the limit binding function). Given
the rate of convergence this approach is certainly more general than the first case
since the question now concerns the validation of suffi cient conditions under which the

3Ignoring potential diffi culties with the parameter space we have that θ∗n =
arg minθ ‖βn − θ −K∗

n‖ where K∗
n + Kn (βn) which is obviously by construction independent of θ.
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Edgeworth expansion holds and does not restrict so much the form of βn. This is the
methodology employed here. Theorem 7.1, in appendix B, provides a set of suffi cient
conditions and it is a pointwise reformulation of Theorem 3.2 of Arvanitis and Demos
[9]. Hence the needed result rests upon the verification of the four theorem’s conditions
(see the discussion in appendix B for more on this). Notice that due to lemma AL.2
the means of the estimators are valid. However, this is not the case for the first two
ways (see e.g. Srinivasan [68] and Sargan [60] on this).
The approximation of Eθβn by Edgeworth means can yield analytically intractable

functions of θ due to the fact that (some of) the corresponding coeffi cients may
depend on nuisance parameters, analytically intractable moments etc. In order to
tackle such cases, we require the existence of random elements that in turn approximate
the intractable parts of the mean approximation. In our examples, when needed, the
existence of these random elements is "natural", as they have, first, the form of
a standardized sums of simulable random elements or, second, some asymptotically
smooth approximation of such forms.
In any case we construct a (possibly) stochastic binding function that can be

employed for the definition of the introduced IIEs. Their existence is facilitated by
standard continuity arguments of this binding function w.r.t. (with respect to) θ. In
the first case considered above this is satisfied by mere inspection of the moment ap-
proximations. In the second case under analytical tractability the theorem in appendix
B provides suffi cient conditions for these continuity arguments. Under analytical in-
tractability we further suppose that the stochastic parts of the approximations are also
almost surely continuous.
Given the existence of the proposed IIEs, we provide their consistency employing

continuity conditions along with conditions that restrict the rates of the stochastic
parts of the binding function so that they do not become asymptotically non tight. We
then derive higher order properties of them, with a view towards approximate bias and
MSE functions. At this point our remaining methodology necessitates the validity of
an Edgeworth expansion of βn. Given this, some technical conditions concerning the
asymptotic properties of the random elements appearing in the weighting matrices,
the stochastic approximations of the intractable parts of the binding function and
their derivatives, we establish their valid Edgeworth expansions. Finally, given these
expansions, we provide their approximate bias andMSE functions. The aforementioned
technical conditions can be verified, in general, by the employment of appropriate
Edgeworth expansions for those random elements when needed.4 This is the case for
our examples, as well.
In section 2 we review several classes of IIEs that have already been defined. Notice

that indirect inference algorithms were initially employed by Smith [64], were formally

4Again this procedure can be also easily employed for the IIE of Phillips [56] in the context of the
AR (1) model, with βn the corresponding OLSE.
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introduced by Gourieroux et al. [34], complemented by Gallant and Tauchen [27] and
extended by Calzolari, Fiorentini and Sentana [13], and Garcia, Renault and Veredas
[28]. Properties similar to those studied here were studied in Gourieroux et al. [36]
and were validated and extended in Arvanitis and Demos [8]. In section 3 we define
the proposed estimators and derive their asymptotic properties in the following one.
In section 5 we extend the procedures to multi step ones. To facilitate the exposition
of our results we employ throughout all sections two examples, concerning the MA(1)
and GARCH(1, 1) processes. In the first case almost all needed formulae are known
analytically, while in the second one they are numerically approximated. In section
6 we present an additional example, concerning fractional Gaussian processes, and
Monte Carlo experiments. Conclusions and questions for further research are gathered
in section 7. In the appendix A we collect our proofs and in appendix B we present
some useful tools concerning our derivations.

2 General Framework
In this section, we describe a quite general assumption framework suitable for indirect
inference and establish some initial notation. Given a metric space (X, dX) the symbol
Oε (x) will denote the ε-ball around the point x and Oε (x) its closure. For a matrix
W , ‖W‖ will denote a submultiplicative matrix norm,5 such as the Frobenius one (i.e.
‖W‖ =

√
trW ′W ). The relevant metric space of r-dimensional square real matrices is

denoted by M (R, r). ‖x‖W denotes the norm
√
x′Wx with respect to the conformal

positive definite matrix W .

Assumption A.1 Let the following hold:

1. Θ denotes a compact subset of the p-dimensional Euclidean space. Given a
measurable space (Ω,F), the statistical model at hand is defined by a cor-
respondence par : Θ ⇒ P the set of probability measures on F such that
par (θ) ∩ par (θ′) 6= ∅ iff θ = θ′. Let Pθ denote any member of par (θ).

2. The limit binding function (lbf) b : Θ → B, for B a compact subset of Rq,
b (Θ) ⊆ IntB.6 Moreover it is continuous, injective and, for a natural number
s∗ specified in the sequel, it is s∗ + 1 times continuously differentiable when

5Notice that due to the fact that finite dimensional matrix spaces are identified with finite dimen-
sional Euclidean spaces, the norm equivalence theorem applies.

6Notice here that the restriction on the image of the lbf is essentially only technical. It allows for
the avoidance of Egdeworth expansions when the parameter is on the boundary and it can be easily
satisfied due to the fact that in most cases given the statistical model the auxiliary parameter space,
i.e. B can be chosen arbitrarily.
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restricted to Int Θ.7 Also, there exists a function ςn : Ω×B → R that is jointly
measurable and ςn (ω, β) is (lower semi-) continuous on b (Θ) for Pθ−almost all
ω, for any θ.

3. LetWn : Ω×Θ→M (R, q) be jointly measurable and Pθ-almost surely positive
definite, for every θ ∈ Θ. Also, let θ+

n denote a random element on Ω with values
in Θ. When p = q suppose without loss of generality that Wn is the identity.

For an appropriate sequence of measurable spaces (Ωn,Fn)∞n=1, we usually have
that Ω = ×nΩn, i.e. the Cartesian product of the Ω′ns, F =

⊗
nFn, i.e. the σ-

field of the product sets, and that any P ∗ ∈ par (Θ) is the unique extension on F ,
of a sequence of probability measures (P ∗n)∞n=1-with P

∗
n defined on

⊗n
i=1Fi- that is

Kolmogorov consistent. Given the Kolmogorov consistency, the existence of P ∗ is
guaranteed when Ωn is a Hausdorff topological space, Fn is the relevant Borel algebra,
and P ∗n is tight for any n (see corollary 15.28 of Aliprantis and Border [2]). Usually
Ωn is homeomorphic to Rm for some m in N and Fn is the Borel algebra with respect
to the Euclidean topology.
Notice that assumption A.1.1 considers a family of probability measures that are

partially described by a finite dimensional parameter. Hence it allows for finite dimen-
sional inference in semi-parametric models. For assumption A.1.2 continuity of the
lbf would follow from Pθ

(
supb(Θ) |ςn (ω, β)− ς (θ, β)| > ε

)
→ 0,∀ε > 0 for some ς :

Θ×b (Θ)→ R that is jointly continuous and ς (θ, b (θ)) < ς (θ, β) ∀β ∈ b (Θ)−{b (θ)}
and ∀θ ∈ Θ. The differentiability assumptions could follow from analogous assump-
tions for ς (θ, β) and the implicit function theorem. Finally A.1.3 implies the possibility
of stochastic weighting. In this framework θ+

n is essentially an initial estimator and it
can be any of the IIE considered below. In the following we suppress the dependence
of the aforementioned binding functions on Ω where unnecessary.

Definitions of Already Known IIEs We can now recall the definitions of the auxiliary
and the already established IIEs, entitled here as GMR1 and GMR2. These were
initially formalized by Gourieroux et al. [34].

Definition D.1 The auxiliary estimator βn is defined by

βn = arg min
β∈B

ςn (β)

The GMR1 estimator is defined by

GMR1 = arg min
θ∈Θ
‖βn − b (θ)‖Wn(θ+n )

7Due to the obvious separability Θ and B are separable, suprema of real random elements over
these spaces aremeasurable. Obviously the lbf is bounded something that is also true for its derivatives
on Oε (θ) for any θ ∈ Int Θ and appropriate ε.
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Finally, let bn (θ) = Eθβn, then the GMR2 estimator is defined by

GMR2 = arg min
θ∈Θ
‖βn − bn (θ)‖Wn(θ+n )

By assumption A.1 and the discussion that followed the above estimators are well
defined. In most cases b and bn are analytically intractable hence are usually numerically
approximated. Moreover the optimization procedure is also approximated numerically.
Thereby, their computation can be associated with nested numerical optimizations
introducing large computational costs especially in the case of GMR2.
To facilitate the exposition of our results we present two simple examples.

MA(1) Example Consider the invertible MA(1) process

yt = ut + θut−1, t = ...,−1, 0, 1, ..., |θ| < 1, ut
iidv D(0, σ2). (1)

In the language of assumption A.1 par is the set of MA(1) processes on Θ which is
a non-empty compact subset of (−1, 1). Let ςn (ω, β) = 1

n

∑n
i=1 (yi − βyi−1)2, and

thereby ς (θ, β) =
(
1 + β2

) (
1 + θ2

)
− 2βθ, and B = [−c, c], c ≤ 1

2
. ςn is essentially

the quasi likelihood function associated to the stationary AR(1) model and βn is the

QMLE for β. The lbf is θ
1+θ2

and thereby the GMR1 estimator is equal to 1−
√

1−4β2n
2βn

when βn ∈ (−c, c), equal to −1 when βn ≤ −c and equal to 1 when βn ≥ c (see
Gourieroux et al. [34], and Demos and Kyriakopoulou [20]). To evaluate the GMR2
estimator the Eθβn is needed. However, it is analytically intractable and it is usually
approximated by Monte Carlo integration (see e.g. Gourieroux et al. [34] or Arvanitis
and Demos [8]).

GARCH(1, 1) Example Consider the second order stationary GARCH (1, 1) model
(Bollerslev [12])

yt = u
1/2
t zt, ut = θ1 + θ2y

2
t−1 + θ3ut−1, t = ...,−1, 0, 1, ..., (2)

θ1, θ2 > 0, θ3 ≥ 0, θ2 + θ3 < 1 zt
iidv N(0, 1).

Θ is a non-empty compact subset of R3 with elements that satisfy the above inequalities
and par is the set of GARCH (1, 1) processes on Θ. Let ςn (ω, β) be the conditional
likelihood function and βn =

(
β1,n, β2,n, β3,n

)′
represent the MLE of θ = (θ1, θ2, θ3)′

where B is a compact superset of Θ that obeys assumption A.1.2. ς (θ, β) is the
expectation of the likelihood evaluated at β, w.r.t. the process defined by θ. It is well
known that βn is consistent and asymptotically normal (see e.g. Lee and Hansen [42]
or Lumsdaine [47]) and thereby the lbf is the identity (more precisely the inclusion).
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However, it is also known that in small samples it can be severely biased (see e.g.
Linton [46] or Lumsdaine [48]). Now treating βn as the auxiliary estimator we have
that due to the form of the lbf, GMR1 = βn at least with probability converging to
1. Again for the evaluation of the GMR2 estimator the needed Eθβn is analytically
intractable and is approximated via Monte Carlo integration. Now the Monte Carlo
integration involves the extra numerical procedure of the approximate maximization
of the likelihood function for each Monte Carlo sample. Further the derivation of the
GMR2 estimator necessarily involves an analogous optimization (maximization of the
likelihood). Consequently, the GMR2 estimator optimization nests the optimization
for each Monte Carlo sample. It is in such cases that the evaluation of the GMR2
estimator involves nested optimizations. Notice that for the MA(1) example nested
optimizations are avoided as there is an explicit solution to the auxiliary optimization.

Let us now turn our attention to the assumptions concerning the proposed IIEs.

Assumptions Specific to the Proposed IIEs The following assumptions enable the defi-
nition and the derivation of properties of a new class of IIEs. We need some further no-
tation. For s∗, s∗, s ∈ N with s∗, s∗ ≥ s, let a∗ = s∗−1

2
, a∗ = s∗−1

2
and a = s−1

2
. For the

Edgeworth measure of order s∗ with density
∑s∗

i=1

πi−1(z,θ)

n
i−1
2

ϕVθ (z), with π0 (z, θ) = 1

where ϕVθ denotes the density of N (0, Vθ) for Vθ is a positive definite q × q matrix
(see for example Magdalinos [50] eq. 3.7-8, p. 348). The distinction among the
three orders is employed so that the setup is not only as general as possible, but also
facilitates the derivation of recursive estimators defined in section 5. In general, s∗

will denote the order of the Edgeworth expansion of the auxiliary estimator, s∗ will be
employed for the definition of the newly established estimator, whereas s will refer to
the order of the moment approximations. Let ki (z, θ) = zπi−1 (z, θ) for i = 1, . . . , s∗,
and with I

Vθ
(ki (z, θ)) =

∫
Rq ki (z, θ)ϕVθ (z) dz. Dr denotes the r-derivative operator

and Dr (f (x0)) (xr) the rth-linear function defined by the evaluation of Drf at x0

evaluated at (x, ..., x)︸ ︷︷ ︸
r times

.8 The first assumption essentially builds the binding function

upon which the definitions of IIEs that follow will be based.

Assumption A.2 There exist ξi : Θ→ Rq for which∥∥∥∥Eθβn − b (θ)−
∑s∗

i=1

ξi (θ)

n
i
2

∥∥∥∥ = o
(
n−

s
2

)
(3)

for any θ ∈ Θ with ξ1 = 0q.

8On multilinear functions see e.g. Northcot [55].
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The above assumption holds when
√
n (βn − b (θ)) admits an Edgeworth expansion

of order s∗ > s due to lemma AL.2 in appendix B, with ξi (θ) = I
Vθ

(ki (z, θ)) for all
θ ∈ Θ. For a discussion on the assumptions needed for a valid Edgeworth expansion
to exist please see appendix B. Due to assumption A.1.2, b (θ) lies in the interior of B
hence, ξ1 = 0q. Alternatively, in some instances, expressions of the ξ

′
is can be found in

Bao and Ullah [10] Rilstone et al. [57] and Ullah [69]. Finally the o
(
n−

s
2

)
rate of the

remainder and the analogous discrepancy with s∗ enables the possibility that equation
(3) is not valid beyond s and it is included due to the fact that the properties of the
estimators (to be defined) up to order s would be identical whether the ξi (θ) terms
are included or not for i > s. For all practical purposes one can consider that s∗ = s.
In cases where (some of) the ξ′is are analytically unknown, i.e. if the structure of

statistical model involves nuisance parameters, analytically unknown moments etc., we
assume the existence of another probability space that enables the possibility of sto-
chastic approximations via numerical methods like Monte Carlo simulations, bootstrap
etc. Consequently, the next assumption, enables the stochastic approximations of the
ξi (θ)

′ s in equation (3).

Assumption A.3 For some δ > 0 small enough:

1. For any θ ∈ Θ and a probability space (Ω′,F ′, P ′θ) and each i = 2, . . . , s∗, there
exist ζ in : Ω× Ω′ × Θ→ Rq, that is jointly measurable, Qθ-almost everywhere
continuous on Θ, where Qθ = Pθ × P ′θ. If ξi = 0q then ζ in = 0q.

2. Qθ

(
supθ′∈Θ

∥∥ζ in (ω, ω′, θ′)
∥∥ > o

(
n
i−1
2
−δ
))

= o
(
n−a

∗)
, for all i = 2, . . . , s∗.

3. ζ in is s
∗+ 1 continuously differentiable on Int Θ, Qθ-almost everywhere, and for

any θ′ ∈ Int Θ there exists an ε > 0 (independent of θ) such that

Qθ

(
supθ′′∈Oε(θ′)

∥∥Djζ in (ω, ω′, θ′′)
∥∥ > o

(
n
i−1
2
−δ
))

= o
(
n−a

∗)
, for all i = 2, . . . , s∗,

j = 1, . . . , s∗ + 1.

ω′ can be thought of as a simulated random element, which along with the "ob-
served" sample ω constitutes a generalized sample that can be employed to approximate
the ξ′is. The space Ω′ can also depend on some index that indicates the number of
Monte Carlo and/or bootstrap samples which is suppressed. This setup is general
enough to allow for cases in which ζ in is evaluated on initial estimators of θ, and/or
on estimators of nuisance parameters. Similarly it allows for cases in which the ξ′is
depend on analytically intractable moments and/or moments that do not belong in
the structure of the statistical model at hand. These are generally functions of θ and
are approximated either by analogous sample moments w.r.t. relevant functions of ω′

and θ, possibly composed with measurable functions Ω → Θ. This allows also for
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approximations of ξ′is when (not necessarily all) elements of ζ in that depend on θ are
evaluated at a stochastic point, e.g. at an initial estimator θ+

n .
Assumption A.3.1 establishes essentially the almost everywhere continuity of the

relevant simulators. If ζ in = ξi = I
Vθ

(ki (z, θ)) this could follow from the (of anal-
ogous order) continuous differentiability of the moments appearing in the Edgeworth
polynomials. For a discussion on low order assumptions that would validate this see
Arvanitis and Demos [8] (Discussion on Assumption A.11). A.3.2 and A.3.3 would
follow from Lipschitz conditions with probability 1− o

(
n−a

∗)
on ζ in (ω, ω′, θ) (on Θ),

and Djζ in (ω, ω′, θ) (on Oε (θ0)) and the o
(
n
i−1
2
−δ
)
bound for the analogous Lip-

schitz coeffi cients and ζ in (ω, ω′, θ), Djζ in (ω, ω′, θ) evaluated at some arbitrary point.
In the case that ζ in (ω, ω′, θ) = 1

n

∑
ζ i (yj, θ) for ζ i and yj appropriate measurable

functions that can be defined on some open superset of Θ, then a condition of the
form

Eθ

∥∥∥∥sup
θ′
Ds∗+1ζ i (y1, θ

′)− Eθ sup
θ′
Ds∗+1ζ i (y1, θ

′)

∥∥∥∥p < +∞

for p > 2a∗ along with stationarity and mixing conditions would validate A.3.2 and
A.3.3 with o

(
n
i−1
2
−δ
)
replaced by constants. This can be achieved by employing

results such as the Yokoyama moment inequality (see Andrews [4], proof of lemma 3).
Either the GMR1 and GMR2 estimators or the ones to be defined depend on sto-

chastic norms based on weighting matrices. In principle continuous updating versions
of those estimators could also be defined. We avoid such definitions since in such cases
results as corollary 1 below would generally cease to be valid. Our next assumption
concerns the asymptotic behavior of the weighting matrix.

Assumption A.4 Suppose that there exists a sequence of random elements xn : Ω→
Rm, such that Wn (θ) = 1

n

∑
W (xi (ω) , θ) for W : Rm × Θ → M (R, q) integrable

with respect to Pθ for any θ ∈ Int Θ, such that

a) Pθ (‖Wn (θ′)− EθW (θ′)‖ > ε) = o
(
n−a

∗)
, ∀ε > 0

W (θ′) is Lipschitz on Oε (θ) with coeffi cient κW ∗ integrable w.r.t. Pθ and
Pθ
(

1
n

∑
κW (xi) > M

)
= o

(
n−a

∗)
for any θ ∈ Int Θ.

b) If q > p, Wn is s∗-continuously differentiable Pθ-almost surely on Int Θ and for any
θ′ ∈ Int Θ

Pθ

(
sup

θ′′∈Oε(θ′)

∥∥Ds∗Wn (θ′′)
∥∥ > M

)
= o

(
n−a

∗)
The first part of assumption A.4.a can be justified by conditions on the asymptotic

behavior of Eθ
(
‖Wn (θ′)− EθW (θ′)‖q

)
. The second part can be justified by

Eθ sup
θ′∈Oε(θ)

‖DW (xi (ω) , θ′)‖ < +∞
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Part b) can be justified analogously. Obviously when W (x, θ) is independent of x and
θ the above is trivially satisfied.
The next assumption makes evident the sense of the approximation of ξi from ζ in .

For θ ∈ Int Θ let qn (θ) be the vector containing the elements of ζ in (ω, ω′, θ)−ξi (θ) for
all i. Let f (x, θ) denote the vector that contains stacked all the distinct components
of W (x, θ) as well as their derivatives up to the order s∗−1. If f (x0, θ)−Eθf (x0, θ)
contains zero elements then these are discarded. Let

m∗n (θ) = βn − b (θ)

when f (x0, θ)− Eθf (x0, θ) is zero or p = q,

m∗n (θ) =

(
βn − b (θ)

1
n

∑
f (xi)− Eθ 1

n

∑
f (xi)

)
when f (x0, θ) is independent of θ, and

m∗n (θ) =

 βn − b (θ)
θ+
n − θ

1
n

∑
f (xi, θ)− Eθ 1

n

∑
f (xi, θ)


in any other case.

Assumption A.5 For θ ∈ Int Θ:

1. the distribution of
√
nm∗n (θ) under Qθ admits an Edgeworth expansion of order

s∗.

2. Qθ (‖qn (θ)‖ > o (1)) = o
(
n−a

∗)
for some o (1) real sequence.

The first part can be established by the verification of conditions such as those
appearing in theorem 7.1. Due to Lemma 2 of Magdalinos [50] the second part can
also be established if

√
nqn (θ) under Qθ admit Edgeworth expansions of order s∗.

Notice that in this case the expansions involved need not hold jointly.
The following lemmas are useful and immediate (proofs are presented in appendix

A).

Lemma 2.1 Assumptions A.1, A.4, and A.5.1 imply that for any θ ∈ Int Θ

Pθ
(∥∥Wn

(
θ+
n

)
− EθW (θ)

∥∥ > δ
)

= o
(
n−a

∗)
, ∀δ > 0

Lemma 2.2 Assumptions A.1, A.4, and A.5.1 imply that for any θ ∈ Int Θ the dis-
tribution of

√
n (GMR1−θ) under Pθ admits an Edgeworth expansion of order s∗.

11



Given the definition of the vector f and since in any of the following examples
p = q we can assume that Wn is the identity without loss of generality (see assump-
tion A.1.3). Hence in those cases assumption A.4 follows trivially and m∗n is βn−b (θ).
In the first example ζ in = ξi = I

Vθ
(ki (z, θ)) and thereby assumption A.3.2 and the

second part of 3 follow trivially given the relevant smoothness. Analogously assumption
A.5.2 follows also trivially. Hence, the rest of the assumption framework lies on the
validity of Edgeworth expansions for the distribution of

√
n (βn − b (θ)) as well as on

the smoothness properties of the coeffi cients of the Edgeworth densities as functions of
θ. For these a general procedure is described in the Appendix B. Validity would follow
in the context of theorem 7.1 along with the validation of the conditions of Gotze and
Hipp [32] (Assumptions 1-4) for the derivatives of ςn. For details see Demos and Kyr-
iakopoulou [20]. Smoothness follows from the smoothness of the moments appearing
as coeffi cients in the Edgeworth densities due to the smoothness of the process itself,
as well as due to dominated convergence. The results are established without any
further parameter restrictions but by employing restrictions on the distribution of u0

(see below).
The second example is essentially more complex due to the fact that the ζ in are

stochastic approximations of the relevant ξi. Assumptions A.2 and A.5.1 follow from
the validation and the derivation of the formal Edgeworth expansions for the distrib-
ution of

√
n (βn − b (θ)). This is established in Corradi and Iglesias [17], Linton [46]

and Iglesias and Linton [38] again by a procedure similar to the one described in the
context of theorem 7.1 along with the validation of the conditions of Gotze and Hipp
[32] (Assumptions 1-4) for the derivatives of ςn. For further details see the following
discussion concerning each of the employed examples. Again the results are estab-
lished without any further restrictions on the parameters while given the assumption
of conditional normality (see above) no further restrictions are needed for the behavior
of z0.

MA(1) Example Cont. From the results of Arvanitis and Demos [8] and Demos and
Kyriakopoulou [20] we have that if E |u0|14 <∞ and if D (0, σ2) has a smooth density,
then the βn estimator admits a 5th order valid Edgeworth expansion, uniformly over Θ.
Further, by lemma AL.2 in appendix B we have that assumption A.2 applies for s∗ = 4
and the ξi (θ) are known functions of θ only (see Demos and Kyriakopoulou [20] for
their expressions). Consequently, assumption A.5 applies, with m∗n (θ) = βn − θ

1+θ2

and s∗ = 4, validating the 4rd order expansion of the GMR1 estimator, by lemma 2.2.

GARCH(1, 1) Example Cont. From Corradi and Iglesias [17] we have that, under
conditional normality, the Edgeworth expansion of the MLE, βn, is valid for any order
s∗ when Θ and B are defined as previously. This naturally implies also assumption
A.5.1. Employing the formulae for the Edgeworth expansion, given in Linton [46] and
Iglesias and Linton [38], we have that assumption A.2 is verified by E (βn − θ) =

12



− 1
n

(λ0 + λ2) + o (n−1), where λ0 and λ2 depends on the moments of the, up to
3rd order, likelihood derivatives, which in turn they depend on the derivatives of the
conditional variance process in (2), up to 2nd order. These are not analytically tractable.
For example, λ0 is a smooth function of u−1

t (ut;1, ut;2, ut;3)′, where ut;i = ∂ut
∂θi
, and of

the elements of a matrix of the form
{
Eθ
(
u−2
t ut;iut;j

)}
i,j=1,...,3

. These expectations
are approximated by Monte Carlo integration in the obvious way. The validity of
assumption A.3 follows from the smoothness of λ0 and λ2, the compactness of Θ,
the conditional normality and the fact that ut (θ) has a uniform strictly positive lower
bound, i.e. ut (θ) ≥ θ1

1−(θ2+θ3)
∀t. Now let l2t,s (θ) = vec

{(
u−2
t,sut,s;iut,s;j

)}
i,j=1,...,3

where s = 1, ..., S denotes the relevant path of a resampling procedure. In the same
way as in lemma A.1 of Corradi and Iglesias [17], it is possible to prove that the vector

Sn (θ) =
(

1√
n

∑n
t=1 (l2t (θ)− El2t (θ))

)
s=1,...,S

has a valid Edgeworth expansion of

order s∗ under Qθ without any further parameter restrictions and due to smoothness
something analogous holds for 1

S

∑S
s=1

(
1√
n

∑n
t=1

(
l2t,s (θ)− El2t,s (θ)

))
for finite S.

Smoothness of λ0, λ2 imply the applicability of theorem 7.1 and thereby establishes
that

√
nqn (θ) admits an analogous Edgeworth expansion of order s∗. Hence A.5.2

follows.

We are now ready to define our estimators.

3 Definition of the GMR2 (a∗) Estimators
In what follows we suppress the dependence of the approximating functions ζ in on the
generalized sample space for notational convenience and denote:
ζn (θ, a) =

(
ζ2n (θ) , . . . , ζsn (θ)

)
and bn (θ, ζn (θ, a∗)) = b (θ) +

∑s∗
i=2

1
ni/2

ζ in (θ).

Definition D.2 Given Assumptions A.3 and A.4, the GMR2 (a∗) estimator is defined
by

θn (a∗) = arg min
θ∈Θ
‖βn − bn (θ, ζn (θ, a∗))‖Wn(θ+n )

θn (a∗) exists due to assumptions A.1 and A.3.1. Its feasibility depends on i)
the analytical knowledge of b, and ii) the numerical approximation of the remaining
mean approximation. Due to the fact that for a large class of models the form of
the analogous formal Edgeworth approximations is known, up to their dependence of
analytically unknown yet simulable moments, i) is the hardest part to establish. When
βn is θ−consistent then b is the identity or the inclusion. For more general cases please
see the discussions at the second and the semifinal paragraphs of section 5.1. Given
this, the GMR2 (a∗) estimator can surpass the nested optimization burden associated
with the GMR2 estimator. Finally it is easy to deduce, from assumptions A.2 and A.3,
that the GMR1 estimator can be identified as our GMR2 (0).

13



Remark R.1 Suppose that βn = θn (0), and b (θ) = θ, ζ∗in = ζ in (θn (0)) and consider
the GMR2 (a∗), defined by

θ∗n (a∗) = θn (0)−
s∗∑
i=2

1

ni/2
ζ∗in

Qθ-almost everywhere, the computation of which is of minimal numerical burden.
θ∗n (a∗) is also denoted by GMR2∗ (a∗). θ

∗
n (a∗) admits another interesting characteri-

zation. It is the first term of a sequence defined by θ(i)
n = θn (0)−

∑s∗
i=2

1
ni/2

ζ in

(
θ(i−1)
n

)
,

for i = 0, 1, 2, . . ., and θ(0)
n = θn (0). It is easy to prove that under assumptions A.3

and A.5 for any θ ∈ Int Θ and δ > 0

Pθ

(
sup

θ′∈Oε(θ)

∥∥∥∥∥
s∗∑
i=2

1

ni/2
Dζ in (θ)

∥∥∥∥∥ sup
θ′∈Oε(θ)

∥∥∥∥∥
s∗∑
i=1

1

ni/2
ζ in (θ)

∥∥∥∥∥ > o
(
n−δ
))

= o
(
n−a

∗)
.

Hence θ∗n (a∗) is in fact the first term of a "Newton-Raphson" sequence that need not
converge to θn (a∗) as i→∞. It is widely employed in the literature of bias correction
especially in the case where a∗ = 1

2
(see e.g. Bao and Ullah [10] and [11], Cox and

Hinkley [18], Linton [46], MacKinnon and Smith [49], Newey and Smith [53] etc.).
Notice that it is possible that for some n, θ∗n (a∗) /∈ Θ or it will be in the boundary of
Θ with positive Qθ probability, as it will be the case in some of the examples considered
later. Finally, our framework enables the possibility that intermediate cases can be also
characterized as GMR2 (a) estimators, i.e. cases ζ∗in depend on θ for some i.

MA(1) Example Cont. From Demos and Kyriakopoulou [20] we have that under the
assumptions described above

E
[√
n (GMR1−θ)

]
=

1√
n
θ

1 + 5θ2 + 2θ4 + θ6 − θ8(
1− θ2

)3 + o
(
n−1
)

for any θ ∈ (−1, 1). Notice that the 1
n
term is zero. Treating the GMR1 (θn (0)

in our terminology, see remark R.1) estimator as the auxiliary one we can define the
GMR2 (1) as:

θn (1) = GMR2 (1) = arg min
θ∈Θ

∥∥∥∥∥θn (0)− θ − 1

n
θ

1 + 5θ2 + 2θ4 + θ6 − θ8(
1− θ2

)3

∥∥∥∥∥ .
Notice that in this case the binding function is the identity (or more precisely the
inclusion from Θ to (−1, 1)), i.e. b (θ) = θ. Further, notice that, what is commonly
known as the bias corrector is given by θn (0)− 1

n
θn (0) 1+5θ2n(0)+2θ4n(0)+θ6n(0)−θ8n(0)

(1−θ2n(0))
3 (see
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e.g. Bao and Ullah [10] or Demos and Kyriakopoulou [20]). We refer to this estimator
as θ∗n (1) (see remark R.1) and it is defined as

θ∗n (1) = arg min
θ∈Θ

∥∥∥∥∥θn (0)− θ − 1

n
θn (0)

1 + 5θ2
n (0) + 2θ4

n (0) + θ6
n (0)− θ8

n (0)(
1− θ2

n (0)
)3

∥∥∥∥∥ .
GARCH(1, 1) Example Cont. Given the previous considerations the GMR2

(
1
2

)
es-

timator is defined as

θn

(
1

2

)
= GMR2

(
1

2

)
= arg min

θ∈Θ

∥∥∥∥βn − θ +
λ0 (θ) + λ2 (θ)

n

∥∥∥∥ .
The commonly employed bias corrector (see e.g. Bao and Ullah [10] Linton [46]),
θ∗n
(

1
2

)
(see remark R.1), is defined as

θ∗n

(
1

2

)
= arg min

θ∈Θ

∥∥∥∥βn − θ +
λ0 (βn) + λ2 (βn)

n

∥∥∥∥ .
Notice that numerically approximated terms, λ0 and λ2, are evaluated at βn, as op-
posed to the θn

(
1
2

)
where they are functions of the minimization parameters.

When the binding function is the identity (or the inclusion) function, then the
GMR2 (a∗) estimator lies in the class of estimators considered by MacKinnon and
Smith [49] where the bias function is approximated as our assumptions A.2-A.4 indi-
cate. The form of the objective functions from which they emerge and the derivation
of their higher order asymptotic properties imply that they constitute a subclass of the
MacKinnon-Smith estimators that perform second order bias correction while retaining
the analogous order approximate mean squared error (see section 4.3). Moreover they
facilitate the definition of multistep estimators that approximate the bias function with
increasing accuracy and thereby can perform approximate bias correction of any order
(see section 5). We establish these properties in the sequel.

4 Higher Order Asymptotic Theory
In this section we derive high order asymptotic properties of the estimators. The results
on consistency, valid Edgeworth and moment expansions are established in this order.

4.1 Consistency
In this section, it is initially proven that the GMR2 (a∗) under Qθ is contained in
an arbitrary neighborhood of θ ∈ Int Θ with probability 1 − o

(
n−a

∗)
. Given this,
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it is shown that the particular estimator has a very convenient characterization as a
near minimizer of the GMR2 criterion. Analogous relations are established between
GMR2 (a∗) and GMR2 (a′∗), for potentially different a∗, a

′
∗ including the case of the

GMR1. For notational simplicity we denote EθW (θ) with W (θ).

Lemma 4.1 Under assumptions A.1, A.2, A.3.1, A.4 and A.5.1 for any θ ∈ Int Θ,
ε > 0

Qθ

(
sup
θ′∈Θ

∣∣∣‖βn − bn (θ′, ζn (θ′, a∗))‖Wn(θ+n ) − ‖b (θ)− b (θ′)‖W (θ′)

∣∣∣ > ε

)
= o

(
n−a

∗)
and therefore

Qθ (‖θn (a∗)− θ‖ > ε) = o
(
n−a

∗)
From lemma 4.1 we obtain the following results concerning interesting characteri-

zations of the estimator under examination. First, we consider the characterization of
the new estimators in respect to the GMR2 one.

Lemma 4.2 Under assumptions A.1, A.2, A.3.1, A.4 and if supθ∈Θ ‖Eθβn − b (θ)‖ =
o (1) then for any θ ∈ Int Θ∥∥βn − Eθn(a∗)βn

∥∥
Wn(θ+n ) ≤ ‖βn − EGMR2βn‖Wn(θ+n ) + ηn

with Qθ (ηn > ε) = o
(
n−a

∗)
, for any ε > 0 and ηn is Qθ-almost surely non negative,

and where Eθn(a∗)βn = Eθβn evaluated at θn (a∗), i.e. Eθn(a∗)βn = Eθβn|θ=θn(a∗)
,

and EGMR2βn = Eθβn|θ=GMR2.

The condition supθ∈Θ ‖Eθβn − b (θ)‖ = o (1) would follow from the uniform (pseudo)
consistency of the auxiliary estimator given the compactness of B. Given assump-
tion A.1.2, if the lbf is a bijection supθ∈Θ Pθ

(
supβ∈B ‖ςn (β)− ς(θ, β)‖ > δ

)
= o (1)

∀δ > 0 would be suffi cient for this. The examined estimator is essentially an ηn-
GMR2 estimator, i.e. an approximate minimizer of the GMR2 criterion defined by∥∥βn − Eηn−GMR2βn

∥∥
Wn(θ+n ) ≤ infθ∈Θ ‖βn − Eθβn‖Wn(θ+n ) + ηn. Unfortunately, we

cannot be more informative on the minimum rate of convergence to zero of any real
sequence that bounds ηn with probability 1− o

(
n−a

∗)
, due to the lack of information

on the analogous rate of uniform convergence of bn (θ) to b (θ). Obviously, the GMR1
estimator is an approximate GMR2.
The previous reasoning can also establish analogous relations between GMR2 (a∗)

and GMR2 (a′∗) estimators, which are defined by different ζ in , and a∗ and a
′
∗ are not

necessarily the same. This would allow us to provide another interesting interpretation
of the GMR2∗ (a∗) estimator, apart from the one provided in remark R.1.
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Lemma 4.3 Suppose that assumptions A.1, A.2, A.3.1, A.4 hold for both a∗, a′∗ ζ in
and ζ ′in defined analogously, then for any θ ∈ Int Θ, there exists a real sequence

γn = o
(
n−(δ+ 1

2)
)
such that

‖βn − bn (θn (a′∗) , ζn (θn (a′∗) , a∗))‖Wn(θ+n )

≤ ‖βn − bn (θn (a∗) , ζn (θn (a∗) , a∗))‖Wn(θ+n ) + ηn

with Qθ (ηn > γn) = o
(
n−a

∗)
, where δ might depend on θ.

Therefore any GMR2 (a′∗) is an approximate GMR2 (a∗) estimator in this sense.
Obviously this relation holds between a given GMR2 (a∗) and the θ

∗
n (a∗) or its variants

discussed in R.1. The following lemma deals with a more special case where a∗ > a′∗
and, as opposed to the previous lemma, the ζ in defining the two estimators coincide
up to i = 2a′∗.

Lemma 4.4 Suppose that assumptions A.1, A.2, A.3, A.4 hold for both a∗ and a′∗.
When a∗ > a′∗, ζ in coincide for any i up to 2a′∗ and in assumption A.3.2 the o

(
n
i−1
2
−δ
)

sequences are replaced by a constant, then for any θ ∈ Int Θ, there exists a real
sequence γn = o

(
n−ρ−

1
2

)
such that

‖βn − bn (θn (a′∗) , ζn (θn (a′∗) , a∗))‖Wn(θ+n )

≤ ‖βn − bn (θn (a∗) , ζn (θn (a∗) , a∗))‖Wn(θ+n ) + ηn

with Qθ (ηn > γn) = o
(
n−a

∗)
, where ρ =

{
1
2

+ ε if a∗ = 1
2

a′∗ if a∗ >
1
2

with 0 < ε < 1
2
and ε

might depend on θ.

Obviously, the GMR1 estimator is an approximate GMR2 (a∗), for any a∗.

4.2 Validity of Edgeworth Approximation
In this subsection, we are concerned with the higher order approximation of the distri-
bution of GMR2 (a∗) for a∗ > 0.9 We essentially rely on the previous results, the local
differentiability of the criterion, from which it emerges, and lemma AL.1 presented in
appendix B.

Lemma 4.5 Under assumptions A.1, A.2, A.3, A.4 and A.5.1 for any θ ∈ Int Θ,
there exists an {η′′n}n, with Qθ (‖η′′n‖ > γ′n) = o

(
n−a

∗)
, and γ′n = o (n−ε) for some

ε > 0 that could depend on θ, and
√
n (θn (a∗)− θn (0)) = η′′n with Qθ-probability

1− o
(
n−a

∗)
.

9For the case a∗ = 0, i.e the GMR1 case, see Arvanitis and Demos [8],
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The validity of the order s∗ Edgeworth expansion of the distribution of
√
n (θn (a∗)− θ)

under Qθ can now be established by assumption A.5, lemma 2.2 and corollary AC.1
presented in appendix B.

Lemma 4.6 Under assumptions A.1, A.4, A.2, A.3 and A.5 for any θ ∈ Int Θ i) the
distribution of

√
n (θn (a∗)− θ) under Qθ has an Edgeworth expansion of order s∗,

and ii) the distribution of
√
n (θn (a∗)− θ) as described in the first part of the proof

of lemma AL.4 in appendix B is a valid order s∗ Edgeworth expansion.

The valid Edgeworth expansions are generally not unique. However the previous
lemma and the triangle inequality, force the distance between the evaluations on the
same Borel set of any two such Edgeworth measures to be o

(
n−a

∗)
, uniformly over

the Borel sets on Rp.

4.3 Valid Moment Approximations
Lemma 4.6 in the light of lemmas AL.2 and AL.4 under the correct relation between a∗

and a, provides us with an approximation of the sequence of moments (of any order)
of the defined estimator. The next lemma clarifies this relation.

Lemma 4.7 Under assumptions A.1, A.2, A.3, A.4, A.5 and if a∗ ≥ a + m
2
, then for

any θ ∈ Int Θ and K an m-linear real function∥∥∥∥∥ Eθ
(
K (
√
n (θn (a∗)− θ))m

)
−
∫
Rq K ((gn (z))m)

(
1 +

∑s

i=1

1

n
i
2
πi (z, θ)

)
ϕVθ (z) dz

∥∥∥∥∥ = o
(
n−a
)

where gn as in the proof of lemma 4.6 and
(

1 +
∑s

i=1

1

n
i
2
πi (z, θ)

)
is the density of

the Edgeworth approximation of order s of
√
nm∗n (θ).

The function gn is essentially the Lagrange inversion-truncated up to the sth order-
of the polynomial approximations of the first order conditions that the estimator asymp-
totically satisfies. We essentially derive the gn function and integrate its composition
with K w.r.t. the Edgeworth distribution in assumption A.5 in order to derive the mo-
ment approximations at hand. The generality of A.5 implies that these are expressed
as functions of the analogous approximations for the

√
nm∗n (θ) random vector. This

is in turn suffi cient for the approximate bias-MSE characterizations that we pursue.
In the following we explicitly provide this type of approximation for the mean and

the mean squared error for the GMR2 (a∗) for any a∗ when a = 1
2
. We suppress the

dependence on θ and z where possible for notational convenience. We denote by bj
the jth element of b, Wj,j′ the (j, j′) element of W , and C = ∂b′

∂θ
W ∂b

∂θ′ . Let pri,j (x)

denotes the transformation of an rth dimensional vector, say x = (x1, x2, ..., xr)
′, to
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a vector containing only the elements of x from the ith to the jth coordinate, i.e.
pri,j (x) = (xi, xi+1, ..., xj)

′, where naturally 1 ≤ i ≤ j ≤ r. z denotes a variable
with values in the Euclidean space of dimension equal to the dimension of the random
vector m∗n (θ) in assumption A.5, kiβ (z, θ) = πi−1 (z, θ) pr1,q (z), for any i = 1, . . . , s,
k1θ+

(z, θ) = prq+1,p+q (z) if θ+
n − θ appears in the vector m∗n (θ), otherwise it is 0q.

Analogously, kiw (z, θ) is the symmetric q × q matrix, defined as follows: for j′ ≥ j,
(kiw (z, θ))j,j′ = zq where q is the position of (Wn (θ)− EθW (θ))j,j′ if the latter
appears in m∗n (θ) otherwise it is zero.

4.4 Valid 2nd order Bias approximation for the GMR2 (a∗)

We are ready to provide the results for the second order bias approximation for the
GMR2 (a∗). Notice that due to its form, the results in Newey and Smith [53] imply
that the bias will depend on the relation between p and q, the non linearities of the
relevant estimating vectors and the stochastic weighting.
We obtain the following lemma.10

Lemma 4.8 Under assumptions A.1, A.2, A.3, A.4, A.5, and if a∗ ≥ 1, then for any
θ ∈ Int Θ ∥∥∥∥Eθ√n (θn (a∗)− θ)−

ςa∗ (θ)√
n

∥∥∥∥ = o
(
n−

1
2

)
where for a∗ = 0 ς0 (θ) equals

C−1∂b
′

∂θ
W (θ) IϕV ∗

(
k2β

)
−1

2
C−1∂b

′

∂θ
W (θ) IϕV

([(
C−1∂b

′

∂θ
W (θ) k1β

)′
∂bj
∂θ∂θ′

C−1∂b
′

∂θ
W (θ) k1β

]
j=1,...,q

)

+C−1IϕV




[(
C−1 ∂b′

∂θ
W (θ) k1β

)′ ∂2b′

∂θ∂θj

]
j=1,...,p

W (θ)

+∂b′

∂θ

{
k1w +

[
∂

∂θ/
W (θ)j,j′ k1θ+

]
j,j′=1,...,q

}

{
Idq −

∂b

∂θ′
C−1∂b

′

∂θ
W (θ)

}
k1β

 ,

whereas for a∗ > 0

ςa∗ (θ) = ς0 (θ)− C−1∂b
′

∂θ
W (θ) IϕV ∗

(
k2β

)
.

10Even if the aforementioned moment approximations are not valid (for example in cases where
a∗ = 1

2 ), the relevant moments of the Edgeworth measures could be employed for comparisons
between the estimators in the spirit of Magdalinos [50] (pp. 347-48).
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Notice that, as GMR1 = GMR2 (0) (at least with probability converging fast
enough to 1), the approximate bias of the GMR2 (0) estimator is the same as the
bias of the GMR1 one presented in Arvanitis and Demos [8]. Furthermore, under the
assumptions employed in both papers and when the asymptotic weighting matrices and
the assumed Edgeworth measures coincide, we have that the second order bias of the
GMR2 (a∗) estimator, for a∗ > 0, is the same to the one of the GMR2 estimator (see
Lemma 3.2-3 and Corollary 2 in Arvanitis and Demos [8]). This is a direct consequence
of the fact that the assumption framework employed there implies that the analogous
truncated Lagrange inversion for the GMR2 coincides with the gn function employed
here (see lemma 4.7). This also implies the concurrence between the second order
Edgeworth approximations, hence the second order equivalence between the GMR2
and the GMR2 (a∗) estimator, for a∗ > 0. We can now trivially obtain the following
corollary which establishes conditions implying that GMR2 (a∗) estimator, for a∗ > 0
is second order unbiased.

Corollary 1 When W is independent of x and θ and b (θ) is affi ne then for any
θ ∈ Int Θ

ςa∗ (θ) =

{
C−1 ∂b′

∂θ
WIV

(
k2β

)
if a∗ = 0

0p if a∗ > 0

The framework of non stochastic weighting and of affi nity of the lbf is the most
general known for this kind of results to hold. For a discussion on conditions establishing
the linearity of b see section 5.

MA(1), GARCH(1, 1) Examples Cont. From the above corollary, and for theMA (1)

example, it is obvious Eθθn (1) = Eθθ
∗
n (1) = θ + o

(
n−

3
2

)
. Furthermore, for the

GARCH (1, 1) case, we have that Eθθn
(

1
2

)
= Eθθ

∗
n

(
1
2

)
= θ + o (n−1).

4.5 MSE 2nd order Approximations of the GMR2 (a∗)

Given the results of the previous subsection an arising question concerns the comparison
between the second order MSE approximations of the GMR2 (a∗) for different a∗.11

We obtain the following lemmas.

Lemma 4.9 If W (x, θ) is independent of x and θ, b is affi ne, assumptions A.1, A.2,
A.3, A.4 and A.5 hold and a∗ ≥ 3

2
then, for any θ ∈ Int Θ∥∥∥∥Eθ (n (θn (a∗)− θ) (θn (a∗)− θ)′

)
−H1 (θ)− H2 (θ)√

n

∥∥∥∥ = o
(
n−1/2

)
11It is a matter of trivial calculation to show that the implied second order approximation of the

variance coincides with the analogous approximation of the MSE.
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where

H1 (θ) = C−1∂b
′

∂θ
WV (θ)W

∂b

∂θ′
C−1

H2 (θ) = C−1∂b
′

∂θ
WIV

(
k2βk

′
1β

)
W

∂b

∂θ′
C−1

for all a∗.

Notice that it is a matter of a trivial calculation to show that the implied second
order approximation of the variance coincides with the analogous approximation of the
MSE. Hence this along with corollary 4.8, when a∗ > 0, the GMR2 (a∗) estimators
have zero second order asymptotic bias while possessing the same second order as-
ymptotic variance with the GMR1 estimator. In this respect under the premises of the
aforementioned results, the GMR2 (a∗) estimators are considered second order equiv-
alent to each other for positive a∗’s, as well as superior to the GMR1 estimator w.r.t.
second order bias-MSE comparisons. The discussion in the previous section implies
that the same approximations hold also for the GMR2 estimator when the asymptotic
weighting matrices and the assumed Edgeworth measures coincide (see Arvanitis and
Demos [8]-Lemma 3.6).

MA(1) Example Cont. Recall that θn (1) is the GMR2 (1) with auxiliary estimator
the GMR1 = θn (0) one. Now from Demos and Kyriakopoulou [20] we have that
IV
(
k2GMR1k

′
1GMR1

)
= 0, hence by the above lemma

E
[√
n (θn (1)− θ)

]2
= E

[√
n (θn (0)− θ)

]2
=

1 + θ2 + 4θ4 + θ6 + θ8(
1− θ2

)2 + o
(
n−

1
2

)
which is the asymptotic variance of θn (0) for any θ ∈ Int Θ (see Fuller [26]).

GARCH(1, 1) Example Cont. Applying once more the lemma above we have that
the θn

(
1
2

)
has the same asymptotic variance as the GMR1 one, up to o

(
n−

1
2

)
, which

is equal to the one of βn, the MLE. Hence,

E

∥∥∥∥√n(θn(1

2

)
− θ
)∥∥∥∥2

= E

∥∥∥∥√n(θ∗n(1

2

)
− θ
)∥∥∥∥2

= E
∥∥√n (βn − θ)

∥∥2
+ o

(
n−

1
2

)
for any θ ∈ Int Θ.

Due to the structure of the mean approximations the approximate MSE of the
unbiased GMR2 (a∗) presented in this paper, even when these are derived via of Monte
Carlo and/or Bootstrap sampling techniques, does not depend on the cardinality of
these samples, due to assumption A.5.2 This is not obviously the case with other
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simulation based bias correctors whence the corresponding MSEs may be inflated by
a factor depending on this number (see MacKinnon and Smith [49]). In these cases,
and under suitable conditions, the latter perform the analogous correction even with
minimal number of simulated samples at the expense of large MSE. This can be
reduced when this number is augmented at the expense of a large numerical cost.
This trade off is not obviously faced by the GMR2 (a∗) estimators.

5 Recursive Estimators
The previous results imply that the second order asymptotic properties of theGMR2 (a∗)
depend, among other factors, on the local behavior of the lbf. Due to its injectivity as
prescribed by assumption A.1.2, it is easy to see that B can always be chosen so that
b (θ) is of the form

(
θ′, 0′q−p

)′
.12 This along with non stochastic weighting and corollary

1 imply that there always exists an auxiliary parametrization such that the GMR2 (a∗)
estimators for a∗ > 0 are second order unbiased. Usually, this reparameterization is
analytically intractable.
Notice though, that there exists at least one indirect estimation procedure that

can be employed in order to approximate this "canonical" parameterization. Given the
GMR1, let βn =

(
GMR1′, 0′q−p

)′
. Given the validity of our assumption framework,

lemma 4.8 implies the validation of assumption A.2 for βn. For a compact Θ′ ⊂ Int Θ
apply the GMR2 (a∗) estimator on βn Then the resulting indirect estimator is derived
from a three-step procedure, in the last step of which the binding function is obviously(
θ′, 0′q−p

)′
. Obviously, the embedding of the auxiliary estimator in any step after the

first to Rq is irrelevant and therefore will be dropped. An extension of this three step
procedure to an arbitrary number of steps, where the current step auxiliary estimator is
the indirect estimator of the previous step, can provide an unbiased indirect estimator
of arbitrary order. This extension is the object of this section.
In order to define recursive GMR2 (a∗) estimators we need an assumption that

would make possible the stochastic approximation of the Edgeworth mean of the IIE
employed as an auxiliary one at each step of the procedure.

Assumption A.6 For any θ ∈ Θ and a probability space (Ω′,F ′, P ′θ) and each j =
1, . . . , κ ∈ N∗ there exist ζjn : Ω × Ω′ × Θ(j) → Rq, for Θ(j) a compact subset of
Int Θ(j−1), that is jointly measurable, Qθ-almost everywhere continuous on Θ(j) where
Qθ = Pθ × P ′θ that satisfy A.3 and A.5.2 in which ξj now denotes the jth element of
the moment approximation of θ(j−1)

n that is defined below. The order of derivatives for
ζjn appearing in A.3 need not be greater than 2.

12Given the full rank condition of the jacobian of b at the true θ, theorem 10.2 of Spivak [67] (p.
44) implies a local version of this result.
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This assumption enables the following definition.

Definition D.3 Let assumptions A.2, A.5 .1 and A.6 hold for a = a∗ = κ−1
2
, and

a∗ > κ
2
. For Θ(1) = Θ and θ(1)

n any consistent estimator, the recursive (κ− 1) −
GMR2

(
κ−1

2

)
estimator (denoted by θ(κ)

n ) is defined by

for 1 < j ≤ κ, θ(j)
n = arg min

θ∈Θ(j)

∥∥∥∥θ(j−1)
n − θ − 1

nj/2
ζjn (θ)

∥∥∥∥ .
Remark R.2 (Discussion on Assumption D.3 and Definition D.3) The restric-
tions on the sequence of Θ(j) are needed so that assumption A.1 is satisfied (see
also footnote 6). If θ(1)

n is an indirect estimator, assumption A.6 is easily satisfied
when assumptions A.2, A.3 and A.5 are satisfied for the auxiliary estimator βn upon
which θ(1)

n is defined. This is due to the fact that the coeffi cients appearing in the
Edgeworth means, in any step of the recursion defined above, are smooth (multilinear)
transformations of the coeffi cients appearing in the previous step. This follows from
that these expansions are derived via Lagrange inversions of approximations of the first
order conditions that the estimators asymptotically satisfy with suffi ciently high prob-
ability in each step. This also means that the principle of analogy immediately implies
"natural" approximations (ζjn) of the intractable parts of the Edgeworth means at any
given step of the recursion given the availability of analogous approximations for the
moment expansion of βn. Hence the diffi culty in employing the procedure above rests
in the analytical derivation of those Lagrange inversions as functions of the coeffi cients
in the moment expansion of βn. The following lemma essentially implies that as j
converges to κ given the provision of assumption A.3.1 the terms appearing in those
inversions become fewer. Finally, the above definition also clarifies the distinction be-
tween s∗ and s. This is due to the fact that due to Lemma 4.7 the validity of an order
s∗ Edgeworth expansion for the auxiliary estimator βn can in principle facilitate the
derivation of expansions of order s of θ(j)

n , for any j ≤ κ and any s ≤ κ ≤ s∗−1 in order
for the results on the bias properties of the following lemma to hold, or s ≤ κ ≤ s∗−2
in order for the totality of the results of the following lemma to hold. In this respect κ
and thereby a is determined by s∗, i.e. the largest order of a valid Edgeworth expansion
available for βn. Hence κ is the largest order for which an analytically known mean
approximation of βn is available and it less than or equal to the largest order of a valid
Edgeworth expansion available for βn minus 2.

Lemma 5.1 For any θ ∈ Int Θ(κ)
∥∥∥Eθ (√n(θ(κ)

n (a)− θ
))∥∥∥ = o

(
n−

κ−1
2

)
hence it

is unbiased of order κ and has the same approximate MSE with the θ(κ−1)
n up to the

same order.
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Notice first that this lemma partially incorporates the results of corollary 1 and
lemma 4.9 since those are specific instances for κ = 2 and b = id. The lemma says that
θ(κ)
n (a) has null asymptotic bias of order κ yet has the same κth order asymptoticMSE
with the θ(κ−1)

n (a), and thereby the same κth order asymptotic variance again due to
the form of the asymptotic bias and the fact that both estimators are asymptotically
unbiased up to the κ − 1 order. This however does not imply that the κth order
asymptoticMSE of θ(κ)

n (a) coincides with the one of θ(1)
n . In any case given the validity

of a moment approximation of large enough order for θ(1)
n this recursive procedure would

provide with an asymptotically unbiased estimator of the same order, with (at least)
second order asymptotic variance that equals the one of the estimator upon which bias
correction is performed.
Second, Arvanitis and Demos [8] define another recursive IIE based on the GMR2

estimator, with similar properties in terms of bias and MSE to the ones of θ(κ)
n . How-

ever, for κ ≥ 2 their estimator involves, at least, κ − 1 nested optimizations, casting
doubt on the applicability of their estimator for κ ≥ 3. On the other hand θ(κ)

n involves
κ sequential optimizations, avoiding all together the nested-optimization problem.
Third, the definition of recursive estimators and lemma 5.1 essentially imply that the

dependence of the moment approximation in equation (3) on the (possibly analytically
intractable) lbf is not as restrictive as it appears to be. In principle given the validity of
an Edgeworth approximation (of order greater than three) for βn depending on possibly
analytically intractable, yet simulable, elements, the 1 − GMR2

(
1
2

)
could be defined

w.r.t. to a version of GMR1 based on a feasible (possibly numerical) approximation of
b. Under our assumption framework this would be 2nd order unbiased while retaining
the second order MSE of the GMR1.
Finally, the above justify our methodological choice of obtaining moment approxi-

mations via the validation of Edgeworth expansions. Even though this is not the only
available approach (see for example the approach in Kristensen and Salanie [41]), our
methodology enables the result of lemma 5.1 due to the fact that theorem 7.1 does
not require the definition of the estimator at hand to rely on a criterion that is of the
form of an arithmetic mean.13 Let us now turn our attention to a further example
along with some Monte Carlo experiments.

6 Further Example and Monte Carlo Experiments
In this section we employ Monte Carlo experiments for our two examples in order to
assess the relevance of our results for finite n and under the influence of numerical
optimization errors. We also present a third example involving the GMR2 (a∗) in the

13Furthermore the Edgeworth approximations per se could also be useful in other steps of the
inferential procedure.
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context of a stationary ARFIMA (0, d, 0) process and engage to an analogous Monte
Carlo study.

Monte Carlo Experiment for the MA(1) Example

For the MA (1) process, we draw random samples of sizes 50, 100, 150, 250, 500, 750,
1000, 1500 and 3000 from a non-central Student’s-t distribution with non-centrality
parameter equal to 1 and 20 degrees of freedom, standardized appropriately so that
they have zero mean and unit variance. For each random sample, we generate the
MA(1) process yt for θ ∈ {−0.4, 0.4}. We evaluate βn and if the estimate is in
the [−0.499999, 0.499999] interval we estimate all estimators, otherwise we throw
away the sample and draw another one.14 For each retained sample we evaluate four
estimators, i.e. the θn (0), which is the GMR1, the commonly biased corrected θ∗n (1)
(also called GMR2∗ (1)), the θn (1) (also called GMR2 (1)), and the GMR2−H, i.e.
the GMR2 estimator employing H Monte Carlo experiments to approximate Eθβn,
where H = {1, 10, 50, 100, 500, 1000, 1500}. We set the number of replications to
100000.
Out of these estimators only the GMR2∗ (1) and GMR2 (1) ones are 2nd order

unbiased. To conserve space, we present the results only for θ = −0.4. The results
for θ = 0.4 are qualitatively the same. In a few cases the commonly bias corrected
estimator, θ∗n (1), turned to be outside the interval [−0.9999, 0.9999] (see remark R.1).
In fact even when n = 250 we noticed 9, out of 100000, where θ∗n (1) ≥ 1. In these
cases we set θ∗n (1) = 0.9999.
In figure 1a we present the absolute biases of theGMR1, GMR2∗ (1) andGMR2 (1)

estimators multiplied by n to focus, in such a way, on the second order bias. The analo-
gous second order term corresponding to −0.4 of the benchmark GMR1 equals 1.252.
Furthermore, the depicted bias of theGMR2 (1) is less than the one of theGMR2∗ (1),
something which more pronounced for n ≤ 500. This is can be attributed to the fact
that in a few cases θ∗n (1) had to be restricted to the value of 0.9999 (see previous
paragraph). The same explanation goes for the behavior of the approximate MSEs,
presented in figure 2a. All estimators reach their common asymptotic variance, which
is 1.796, at least for n > 250. However, for n < 250, the most variable estimator is
the GMR2∗ (1). To verify that the skewness and kurtosis do not affect the 2nd order
biases and MSEs of the three estimators, we repeated the whole exercise drawing from
a standard normal distribution. The results are essentially the same, for more than 250
observations, and are presented in figure 1b and figure 2b.
Returning now to the non-central Student’s-t distribution errors’ case and for

θ = −0.4 we have that βn is outside the [−0.499999, 0.499999] interval in 7377,

14Even though this estimator is not defined for sample space regions of possibly positive probability,
under our assumption framework this seazes to happen with probability tending to one fast enough
and the higher asymptotic order theory described above is valid.
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2195, 725, and 67 cases for 50, 100, 150, and 250 number of observations, respec-
tively. For 500 and more number of observations we have no such cases. Consequently,
including these cases in the Monte Carlo experiment by setting the GMR1 = −0.9999
if βn < −0.499999 and GMR1 = 0.9999 if βn > 0.499999 the estimators’second
order biases and MSEs are not affected (see figures 1c and 2c). However, if the true
parameter is closer to the boundary a much bigger number of observations than 3000
is needed for our asymptotic results to get through, e.g. if θ = −0.9 we need at least
45000 observations. This is potentially due to the fact that the exact distribution of√
n (GMR1 +0.9) for moderate n attributes a large probability to the boundary of the

centered and rescaled parameter space (i.e.
√
n (Θ + 0.9))15, a property that cannot

be captured by the limiting normal distribution or even by the higher order Edgeworth
approximations. It has analogous consequences for the quality of the approximation
of the bias function of the GMR1 by the Edgeworth mean and thereby on the bias
properties of the resulting estimator for the particular n.16 This could be potentially
remedied by the consideration of approximations based on appropriate projections of
the Edgeworth distribution on

√
n (Θ + 0.9). It is also possible that the limiting distri-

butions of the so called "local to non-invertibility" asymptotics (see Section 6 in Demos
and Kyriakopoulou [20] and Arvanitis [7]) could provide with better approximations of
the exact distribution for the aforementioned n. In any case we do not further pursue
this matter but choose to leave it for further research.
The evaluation of the GMR2−H estimators gives us the opportunity to investigate

two important questions. The obvious one, i.e. the effect of approximating the Eθβn
by H Monte Carlo experiments, as well as the time cost associated with the evaluation
of these estimators as compared to the one associated with the GMR2 (1). We inves-
tigate these questions in the sequel. However, a question arises on the choice of the
distribution employed for the H Monte Carlo draws. Three possibilities come immedi-
ately in mind; the true non-central Student’s-t distribution we employ to generate the
y′ts in equation (1), the standard normal distribution, or the empirical distribution con-
structed by bootstrapping the residuals implied by the GMR1 estimator. We explored
all three possibilities and the results are similar, at least for H ≥ 50. For H = 1 and
H = 10 the biases andMSEs of the Student’s-t and normal estimators are further away
from their theoretical values as compared to the bootstrap ones. Consequently, in the
sequel, and to conserve space, we present only the GMR2−H estimators emerging
from bootstrap results.
In figure 3 we present the absolute biases, multiplied by n, of the GMR2−H ,

for H = 1, 10 and 1500, estimators, and, for comparison the GMR1. Notice first
the erratic behavior of the biases of the GMR2−1 and GMR2−10 estimators, as
compared to those of the GMR1 and GMR2−1500 ones, something that could be

15Something that is vividly manifested in the Monte Carlo experiment.
16This does not contradict the previous results as those are asymptotic.
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attributed to the small H. For θ = −0.4, the, multiplied by n, second order bias
of the GMR2 estimator equals to 2.094 (see Arvanitis and Demos [8]) and we could
expect that GMR2−H estimator approximates this number for large H. However,
even for the GMR2−1500 estimator, more the n = 1000 observations are needed to
reach this limit. The erratic behavior of the GMR2−H biases, for small H, can be
explained by the MSEs of these estimators, presented in figure 4 in comparison to the
analogous MSE of the GMR1 one. From Gourieroux et al. [34] it is known that the
asymptotic variance of the GMR2−H estimator equals that of GMR1 inflated by a
factor 1/H, something apparent in figure 4, for H = 1 and H = 10. On the other
hand the GMR2−1500 MSE approaches very fast the common asymptotic variance
of all estimators. In short, it seems that H > 10 and n > 250 is needed for the
GMR2−H to be close to its theoretical 2nd order bias and MSE.
Finally, in Table 1 we present the average CPU times per iteration of the numerical

minimization part of the GMR2 (1) and the GMR2−H estimators, for H = 1, 10 and
1500, as representations for the computational costs involved in the analogous numer-
ical derivations. As expected, the numerical optimization concerning the derivation of
the GMR2 (1) is less costly than that of the GMR2−H.17 This relative cost is in-
creasing with n and H, something that is straightforwardly attributed to the fact that
the GMR2−H estimator needs H Monte Carlo drawings of length n. Consequently,
the larger n is the more time the routine needs to produce each sample. It is worth
mentioning that for the MA (1) model the evaluation of the GMR2−H estimators
does not require nested optimizations, as the first step estimator, βn, is analytically
known. We would expect that in more complex cases (the ones that involve numerical
procedures also for the derivation of βn) the relative numerical costs would be even
more profoundly in favor of the estimators presented here.

Monte Carlo Experiment for GARCH(1, 1) Example

For the GARCH (1, 1), we draw random samples of size 150, 250, 400, 550, 750, 900,
1000, 1500, 2000, 3000, 5000 and 10000, plus 250 for initialization, from a standard
normal distribution. We perform 3000 replications. For each random sample, we
generate the GARCH(1, 1) process yt with θ1 = 0.1, θ2 = 0.2 and θ3 = 0.7, and we
find the MLE of θ′is, which is our auxiliary vector estimator βn. As the auxiliary and
true model coincide, the binding function is the identity. Consequently, the GMR1 and
the auxiliary estimators, βn, coincide at least asymptotically. We further consider the
feasibly bias corrected estimator, suggested in Linton [46] and Iglesias and Linton [38],
which is our θ∗n

(
1
2

)
= βn + 1

n
(λ0 (βn) + λ2 (βn)), also named GMR2∗

(
1
2

)
. The third

estimator we employ is the θn
(

1
2

)
, also named GMR2

(
1
2

)
. To evaluate the analytically

17All experiments have been performed with an Intel i7 processor computer. For all optimizations
we employed the E04JBF routine of the NAG Foundation Library Release 1 and for the boostrap in
the evaluation of the GMR2−H we employ the G05DYF routine of the same library.
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unknown λ0 and λ2, needed for the valuation of θ
∗
n

(
1
2

)
and θn

(
1
2

)
, we employ 150

samples of 400 random numbers coming from a standard normal distribution (see
Linton [38] for details).
As in the previous example, in a few cases the GMR2∗ (1) turned out to be outside

the admissible region, i.e. θ∗n,2
(

1
2

)
could be non-positive or θ∗n,2

(
1
2

)
+ θ∗n,3

(
1
2

)
could

be greater than 1. In these cases we adjust the estimators accordingly, i.e. we set
θ∗n,2

(
1
2

)
to a small positive number etc.

In figure 5a we present the norm of the biases of the three estimators multiplied by
n, i.e. n×

∣∣∣b̂ias
∣∣∣. For all n the θn (1

2

)
is less biased than θ∗n

(
1
2

)
, with the exemption

of n = 2500, and both of them have almost half the bias of GMR1 (the MLE).
Furthermore, the approximate MSEs of the estimators are presented in figure 6a. It
seems that 1500 observations are enough for the estimators to reach their common
asymptotic variance. The same, more or less, results we get for a second set of
parameter values, i.e. for θ1 = 0.1, θ2 = 0.05 and θ3 = 0.85 (see figure 5b and figure
6b). However, near non-stationarity, i.e. when θ2 +θ3 / 1, we are faced with the same
behavior as in the MA(1) near non-invertibility case.
For example, when θ2 + θ3 = 0.2 + 0.75 = 0.95 and for n = 5000 the bias of the

θn
(

1
2

)
is only 10% lower than the one of GMR1. Again the issue seems to be the high

probability attributed by the exact distribution of
√
n (GMR1−θ) on the boundary

of the parameter space for this n. This in this case not only affects the quality of
the Edgeworth mean approximation to the true bias function, but also the quality of
the stochastic approximation to the Edgeworth mean. The latter complication, that
was not present in the MA (1) case, could imply even "larger" approximating errors
to the true bias function, further undermining the properties of the resulting θn

(
1
2

)
for the particular n. This is in accordance with Lumsdaine [48] from whom we know
that the finite-sample distributions of θn,2 and θn,3 are skewed, when the parameters
are constrained as above. As previously we suspect that this phenomenon could be
partially alleviated by the consideration of appropriate projections of the Edgeworth
approximations to the centered and rescaled parameter space and the appropriate
redefinition of the θn

(
1
2

)
. As those projections are currently unavailable, in the near

IGARCH(1, 1) case a large value of n is needed to avoid the finite-sample skewness and
a large number of random draws are needed to approximate them. These two facts
make the evaluation of θn

(
1
2

)
a formidable task, especially in a simulation exercise

where a large number of Monte Carlo repetitions is also required. Nevertheless, for
large n, say n ≥ 10000, the bias of the GMR1 (the MLE) estimator is small and
consequently, the extra effort for the evaluation of θ∗n

(
1
2

)
and/or θn

(
1
2

)
, when we

suspect that θ2 + θ3 ' 1, is put on doubt.
Let us now turn our attention to another popular process in economic applications,

this of the fractional Gaussian noise.
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6.1 Example: Stationary Gaussian ARFIMA Process
In this example we demonstrate how the suggested estimators can be applied to a
simple, but popular, model of the ARFIMA class. Let us consider the stationary
fractional Gaussian process, i.e. the ARFIMA (0, d, 0), given by:

(1− L)d yt = ut, t = ...,−1, 0, 1, ..., 0 < d <
1

2
, ut

iidv N(0, 1).

In the language of assumption A.1 par is the set of ARFIMA (0, d, 0) processes on
Θ which is a compact subset of

(
0, 1

2

)
. Let ςn is the likelihood function, and thereby

ς (θ, β) its expectation. The estimator of d, presented in Sowell [66] (see also Doornik
and Ooms [21]), for the time domain is the MLE considered as the auxiliary estimator
in our context. Let us denote it with dn. It maximizes by definition

ςn = −n
2

ln (2π)− 1

2
det (G)− 1

2
y′G−1y

on Θ where G is the variance covariance matrix of y (see e.g. Lieberman and Phillips
[44] for explicit formula of G).
The

√
n-consistency and asymptotic normality of the estimator with asymptotic

variance equal to 6
π2
was established in Dahlhaus [19] (see also Yajima [71]). Thereby

the lbf in this example is also the inclusion. Hence, dn = GMR1 at least with
probability tending to one.

dn has similar asymptotic properties to theWhittle (Fox and Taqqu [25], and Giraitis
and Surgailis [31]) but superior to the semiparametric one (Geweke and Porter-Hudak
[29], and Robinson [58]). However, there is evidence that the bias of dn can be severe
(see Cheung and Diebold [14], Smith, Sowell and Zin [65], Hauser [37], Lieberman
[43], and Doornik and Ooms [21]) and this is our motivation for the consideration of
our proposed estimators defined on dn.
The validity of the Edgeworth expansion for any given order of this estimator is

established in Lieberman, Rousseau and Zucker [45] with analytic formulae for the
coeffi cients of the formal expansion presented in Lieberman and Phillips [44] for s = 2.
Validity is essentially established in a similar manner to theorem 7.1 along with the
validation of the Assumptions 2-4 of Durbin [22] for the derivatives of ςn. Hence, from
the formulae in Lieberman and Phillips [44] we have that

E
[√
n (dn − d)

]
=

1√
nkn

(
C1,n + 3

C3,n

kn

)
+ o

(
n−

1
2

)
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where

kn =
1

2n
tr

(
G−1

·
G

)2

, C1,n = −
tr

((
G−1

·
G

)3

−G−1
·
GG−1

··
G

)

tr

(
G−1

·
G

)2 , and

C3,n =
1

12n
tr

(
2

(
G−1

·
G

)3

− 3G−1
·
GG−1

··
G

)
,

where
·
G and

··
G the first and second derivative of G. Thereby assumption A.2 follows

for s = s∗ = 2.
Due to p = q = 1 we can again assume that Wn is the identity without loss of

generality. Hence assumption A.4 follows trivially and m∗n is dn − d. Also ζ in = ξi =
I
Vθ

(ki (z, θ)) and thereby assumption A.3.2 and the second part of 3 follow trivially
given the relevant smoothness. Hence A.5 follows also trivially from the previous
discussions. Smoothness for the coeffi cients of the Edgeworth densities as functions of
d due to the relevant smoothness of the Gamma function imply finally the validity of
A.3.1 and 3. Hence our assumption framework is satisfied.
Consequently dn

(
1
2

)
, also denoted GMR2

(
1
2

)
, is defined as

dn

(
1

2

)
= GMR2

(
1

2

)
= arg min

d

dn − d+

tr

(
G−1

·
GG−1

··
G

)
[

tr

(
G−1

·
G

)2
]2

 .

Due to the previous corollary 1 and lemma 4.9 apply and therefore dn
(

1
2

)
is 2nd order

unbiased and has the same MSE, up to O
(
n−

1
2

)
, with dn.

Furthermore, let us call d∗n the approximate bias corrected estimator of Lieberman
[43], adapted for this case from Firth [24]. d∗n is given by:

∂l

∂d
+

18ζ (3)

π2
= −1

2
tr

(
G−1

·
G

)
+

1

2
y′G−1

·
GG−1y +

18ζ (3)

π2
= 0

where ζ (.) is the Riemann zeta function and 18ζ(3)
π2
' 2.1923. In fact, if we consider the

score , ∂l
∂d
, as our auxiliary estimator, then its approximate bias is given by 18ζ(3)

π2
. Hence

the Lieberman [43] estimator, d∗n, is our d
∗
n

(
1
2

)
, and it is also denoted by GMR2∗

(
1
2

)
.
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Monte Carlo Experiment

In figure 7a we present the n ×
∣∣∣b̂ias

∣∣∣ for the three estimators, for sample sizes 20,
40, 50, 60, 70, 80, 90, 100 and 120, and d = 0.4.18 All estimators were obtained
by a simple grid search, of length 10−3, on the interval [−0.499, 0.499]. The interval
[−0.499, 0] is included to avoid a pile-up at the origin (see Lieberman and Phillips
[44]). 10,000 replications were performed. It is obvious that dn

(
1
2

)
is less biased than

d∗n
(

1
2

)
which in turn is less so than dn for all examined sample sizes. However, the

approximate MSE of d∗n
(

1
2

)
is smaller as compared to the one of dn

(
1
2

)
, which in turn

is smaller than the one of GMR1 (see figure 8a). The results are consistent with those
for d∗n

(
1
2

)
and dn in Lieberman [43]. Further the same results appear for the rest of

the values of d, i.e. for d = {0.1, 0.2, 0.3}. The only exception is when d = 0.2, where
the bias of d∗n

(
1
2

)
appears to be smaller than the one of dn

(
1
2

)
for 40 ≤ n ≤ 100.

Comparing the Local Whittle estimator, in Shimotsu and Phillips [62], approximate
bias and MSE with those of dn

(
1
2

)
we see that the estimated approximate bias and

MSE of dn
(

1
2

)
is smaller, i.e. the bias of the their estimator is 2.45 and its MSE is

3.10 as compared to 0.31 and 0.47 of dn
(

1
2

)
, respectively (see Table 1 in Shimotsu

and Phillips [62]). Further, from Table 1 in Shimotsu and Phillips [61] we see that, for
d = 0.3, the exact Whittle estimator approximate bias and MSE are 1.00 and 3.05,
respectively. These values are higher than the equivalent ones of dn

(
1
2

)
(see figure 7b

and figure 8b), which are, respectively, 0.22 and 0.60. Finally, from Table 1 in Nielsen
[54] we see that the approximate bias and MSE of the Local Polynomial Whittle
estimator of Andrews and Sun [5], for d = 0.3, are 24.06 and 133.12, respectively,
whereas the equivalent values for the Extended Local Whittle estimator of Abadir,
Distaso and Giraitis [1] are 3.63 and 40.60 and those of the Extended Local Polynomial
Whittle estimator of Nielsen [54] are 32.46 and 194.56. All these values are bigger
than the equivalent one for the dn

(
1
2

)
estimator (see figure 7b and figure 8b).

Hence it seems that dn
(

1
2

)
has smaller bias and MSE as compared to the Whittle-

type estimators. However, these type of estimators have other advantages as compared
to the time domain MLE ones (see the above mentioned articles). Notice that em-
ploying the results in Giraitis and Robinson [30], the same procedure can be applied to
the semiparametric Whittle estimator. Nevertheless, space conservation considerations
prohibits an extensive comparison between the two types of estimators and/or the bias
corrected ones.
18In fact, Monte Carlo exercises where performed for d = {0.1, 0.2, 0.3, 0.4}. We present only the

results of d = 0.4 and 0.3 to conserve space.
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7 Conclusions
In this paper we define a set of Indirect Inference estimators based on moment approx-
imations of the auxiliary estimators and provide results concerning their higher order
asymptotic behavior. Our motivation resides on the following properties that these
estimators possess:
First, computational facility, as they are derived from procedures avoiding the nested

numerical optimization burden. This is due to the fact that any Monte Carlo integra-
tion involved in their definition is with respect to analytically tractable integrands. This
is not the case with the simulated analog of the GMR2 estimator since this involves
analogous integration with respect to analytically intractable arg min functionals. This
numerical facility comes at the fixed cost of the analytical derivation of the approxima-
tion. It is mostly useful in cases where the lbf is (locally) the identity (or the inclusion
function in our framework).
Second, the lbf is (locally) the identity when it has locally full rank via a canonical

reparameterization of the auxiliary model. The analytical intractability of the repara-
meterization can be overcome via the recursive employment of those estimators. The
latter exhibit an even greater computational advantage since they involve sequential
optimizations as opposed to the nested ones associated with the recursive GMR2
estimator.
Third, the GMR1 estimator has a convenient interpretation as an approximate min-

imizer of the criteria from which the considered estimators are derived. This facilitates
enormously the analytical derivation of some of the asymptotic properties. Analogous
results hold between the considered estimators and the GMR2 one, as well as any pair
of these estimators.
Fourth, and more generally, some of their higher order asymptotic properties co-

incide with those of the GMR2 estimator. However it seems that these properties
can be established via assumption frameworks that contain less restrictive require-
ments, for the asymptotic behavior of the random elements involved. For exam-
ple, consider the case where p = q, we have that βn = EGMR2βn and βn =
bn (GMR2 (a∗) , ζn (GMR2 (a∗) , a∗)) with Pθ probability bounded by 1 − o

(
n−a

∗)
independent of θ. When a∗ > 0 and ζ in = ξi for all i, it can be seen by a direct
comparison of the current assumption framework and the one employed in Lemmas
2.5.ii, 3.6 and Corollary 2 of Arvanitis and Demos [8] that the two estimators are
second order equivalent. However, this result is obtained for the GMR2 estimator via
locally uniform Edgeworth approximations for the auxiliary estimator, something that
need not be the case for the GMR2 (a∗) ones. Notice that first, the two assumption
frameworks cannot be "globally" compared due to the fact that the one corresponding
to the GMR2 (a∗) involves also restrictions on the asymptotic properties of several
stochastic approximations not present in the GMR2 case. Second, the assumptions
are only suffi cient.
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Finally, we demonstrate that under our assumption framework and in the special
case of deterministic weighting and affi nity of the binding function, the GMR2 (a∗)
estimator for any a∗ > 0, is second order unbiased. Furthermore, for a given order
of approximation, we provide a procedure that yields recursive Indirect Inference es-
timators that are approximately unbiased of that order. Moreover, the approximate
MSE of the unbiased GMR2 (a∗) presented in this paper, even when these are derived
via the use of Monte Carlo and/or Bootstrap sampling techniques, does not depend
on the cardinality of those samples. At the same time their practical implementation
does not appear as numerically involved as an analogous procedure defining recursive
GMR2 estimators.
Furthermore, the GMR2 (a∗) estimators provide an IIE framework that incorporate

some "classical" bias correction procedures. These can be perceived as extreme cases
in our definitions. They are associated with minimal numerical cost however they can
be outperformed by other GMR2 (a∗) estimators for finite n due to their behavior on
the boundary of the parameter space.
Our methodology can not be applied in cases where θ and/or b (θ) lies on the bound-

ary of the relevant parameter space. In these cases, the definition of the GMR2 (a∗)
estimators as well as the derivation of their asymptotic properties need a different ap-
proach. In this respect Andrews [3] may be useful. We leave these issues for future
research.
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Appendices

A Proofs of Lemmas and Corollaries
Proof of Lemma 2.1. Due to assumption A.5.1 θ+

n lies in Oε (θ) with Pθ-probability
1−o

(
n−a

∗)
. Then a Taylor expansion of order s∗+1 ofWn

(
θ+
n

)
around θ along with

assumptions A.4, A.5.1, implies that for any δ > 0, exist δi > 0, i = 0, . . . , d such
that

Pθ
(∥∥Wn

(
θ+
n

)
−W (θ)

∥∥ > δ
)

≤ Pθ (‖Wn (θ)−W (θ)‖ > δ0) +
∑d

i=1 Pθ
(∥∥θ+

n − θ
∥∥ > δi

)
= o

(
n−a

∗)
Proof of Lemma 2.2. First notice that due to A.5 the estimator lies in Oε (θ)
with Qθ-probability 1 − o

(
n−a

∗)
. Hence it satisfies first order conditions with the

same probability due to A.1.2. A mean value expansion of the first order conditions
around θ along with A.1.2 and A.5.1 implies that Qθ

(√
n ‖θn (0)− θ‖ > C

√
lnn
)

=

o
(
n−a

∗)
, for some C > 0. A Taylor expansion of order d of the first order condi-

tions implies that with Pθ-probability 1 − o
(
n−a

∗) √
n (θn (0)− θ) = L

√
nm∗n (θ) +

1√
n
ρn (
√
nm∗n (θ)) +Rn where L is an p× dim (mn (θ)) matrix of rank p due to A.1,

A.4, ρn is a polynomial function with absolutely bounded coeffi cients due to A.1, and
Qθ (‖Rn‖ > γn) = o

(
n−a

∗)
for some γn = o

(
n−a

∗)
that might depend on θ, due

to Qθ

(√
n ‖θn (0)− θ‖ > C

√
lnn
)

= o
(
n−a

∗)
. Hence from lemma AL.1 the result

would follow if L
√
nm∗n (θ)+ 1√

n
ρn (
√
nm∗n (θ)) has a valid Edgeworth expansion of the

respective order. This is established by lemma 3 of Magdalinos [50] and assumption
A.5.1.
Proof of Lemma 4.1. Notice that due to the triangle inequality and submultiplica-
tivity

Qθ

(
sup
θ′∈Θ

∣∣∣‖βn − bn (θ′, ζn (θ′, a∗))‖Wn(θ+n ) − ‖b (θ)− b (θ′)‖W (θ)

∣∣∣ > ε

)
≤ Qθ

(
sup
θ′∈Θ

‖βn − bn (θ′, ζn (θ′, a∗))‖
∥∥Wn

(
θ+
n

)
−W (θ)

∥∥ > ε

2

)

+Qθ

(
‖βn − b (θ)‖W (θ) >

ε

4

)
+Qθ

sup
θ′∈Θ

∥∥∥∥∥
s∗∑
i=2

1

ni/2
ζ in (θ′)

∥∥∥∥∥
W (θ)

>
ε

4


and that due A.1, A.3.1, A.5.1, and lemma 2.1 all the probabilities in the second part
of this display are o

(
n−a

∗)
for any θ ∈ Int Θ. The result follows by assumption A.1.
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Proof of Lemma 4.2. First notice that for any θ ∈ Int Θ

Qθ

(
sup
θ′∈Θ

‖bn (θ′)− bn (θ′, ζn (θ′, a))‖ > ε

)
≤ Pθ

(
sup
θ′∈Θ

‖bn (θ′)− b (θ′)‖ > ε

2

)
+

s∗∑
i=1

Qθ

(
sup
θ′∈Θ

∥∥ζ in (θ)
∥∥ > o

(
n(i−1)/2−δ))

which due to A.1, A.3.1-2, A.5 and the hypothesis that supθ∈Θ ‖bn (θ)− b (θ)‖ = o (1)
are o

(
n−a

∗)
for any θ ∈ Int Θ. From the definition of the two estimators we obtain

that ∥∥βn − Eθn(a)βn
∥∥
Wn(θ+n ) − ‖βn − EGMR2βn‖Wn(θ+n )

≤ 2 sup
θ′∈Θ

∣∣∣∣∣∣‖βn − Eθ′βn‖Wn(θ+n ) −
∥∥∥∥∥βn − b (θ′) +

s∗∑
i=2

1

ni/2
ζ in (θ′)

∥∥∥∥∥
Wn(θ+n )

∣∣∣∣∣∣ = ηn

due to the fact that for any θ ∈ Int Θ

Qθ (ηn > ε)

≤ 2Qθ

(
sup
θ′∈Θ

‖bn (θ′)− bn (θ′, ζn (θ′, a∗))‖ > ε∗

)
+Qθ

(∥∥Wn

(
θ+
n

)
−W (θ)

∥∥ > K
)

for K > 0 and ε∗ = ε
2

min

(
1√

‖W ∗(θ)‖
, 1√

K

)
and the result follows from the previous

lemma and 2.1.
Proof of Lemma 4.3. Likewise to the previous proof set

ηn = 2 sup
θ∈Θ

∣∣∣∣∣∣∣
∥∥∥∥∥∥βn − b (θ′)−

s′∗∑
i=2

1

ni/2
ζ ′in (θ′)

∥∥∥∥∥∥
Wn(θ+n )

−
∥∥∥∥∥βn − b (θ′) +

s∗∑
i=2

1

ni/2
ζ in (θ′)

∥∥∥∥∥
Wn(θ+n )

∣∣∣∣∣∣∣
Then for any θ ∈ Int Θ

Qθ (ηn > γn)

≤ Qθ

sup
θ′∈Θ

∥∥∥∥∥∥
s′∗∑
i=2

1

ni/2
ζ ′in (θ′)

∥∥∥∥∥∥+ sup
θ′∈Θ

∥∥∥∥∥∥
s′∗∑
i=2

1

ni/2
ζ ′in (θ′)

∥∥∥∥∥∥ > c∗
γn
2


+Qθ

(∥∥Wn

(
θ+
n

)
−W (θ)

∥∥ > K
)

for K > 0 and c∗ = 1
2

min

(
1√

‖W ∗(θ)‖
, 1√

K

)
and the result follows from A.3.1 and

lemma 2.1.
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Proof of Lemma 4.4. Argue as in the previous proof and notice that for any
θ ∈ Int Θ

Qθ

 s∗∑
i=s′∗+1

1

ni/2
sup
θ∈Θ

∥∥ζ i+1n (θ)
∥∥ > c∗

γn
2

 = o
(
n−a

∗)
for γn ≤ 2M

c∗

∑s∗
i=s′∗+1

1
ni/2
.

Proof of Lemma 4.5. Due to lemma 4.1 we have that for any θ ∈ Int Θ, θn (a∗)
and θn (0) are in Oε (θ) with Qθ-probability 1 − o

(
n−a

∗)
. Applying the mean value

theorem on the gradient of Jn (θ) =
∥∥βn − b (θ)−

∑s∗
i=2

1
ni/2

ζ in (θ)
∥∥2

W ∗n(θ+n )
, we get

√
n (θn (0)− θn (a∗)) =

(
D2
nJ
(
θ++
n

))−1√
nDJn (θn (0))

with θ++
n a random element lying in the line segment between θn (a) and θn (0) with

Pθ-probability 1−o
(
n−a

∗)
. It suffi ces to prove that Qθ (

√
n ‖θn (0)− θn (a)‖ > γ′n) =

o
(
n−a

∗)
, for some γ′n = o

(
n−δ
)
whence the choice of η′′n is possible. Due to the norm

submultiplicativity we have that

Qθ

(√
n ‖θn (0)− θn (a)‖ > γ′n

)
≤ Qθ

(∥∥∥(D2Jn
(
θ++
n

))−1
∥∥∥∥∥√nDJn (θn (0))

∥∥ > γ′n

)
+ o

(
n−a

∗)
Now, from the definition of GMR1, the triangle inequality, norm submultiplicativity,
assumptions A.1, A.3 and A.5, lemma 2.1 and the subsequent lemmas 2.2 and 4.1,
and by choosing appropriately C,M > 0 we obtain

Qθ

(∥∥√nDJn (θn (0))
∥∥ > ρn

)
≤ Qθ

(
o
(
n−δ
)
>
ρn
M

)
+ 2Qθ

(
θn (0) ∈ Oε (θ)

)
+Qθ

(∥∥Wn

(
θ+
n

)∥∥ > MW

)
+

s∗∑
i=1

Qθ

(∥∥ζ in (θ)
∥∥ > o

(
n(i−1)/2−δ))+

s∗∑
i=1

Qθ

(∥∥Dζ in (θ)
∥∥ > o

(
n(i−1)/2−δ))

which is o
(
n−a

∗)
for ρn ≤ o

(
n−δ
)
(which might depend on θ). In an analogous manner

we can prove that there exists a positive constantC, such thatQθ

(∥∥∥(D2Jn
(
θ++
n

))−1
∥∥∥ > C

)
=

o
(
n−a

∗)
and therefore we obtain the needed result if we choose γ′n ≤ C∗ρn.

Proof of Lemma 4.64.6. For the i) part notice that he result follows directly from
AC.1 in appendix B due to lemma 4.5. For part ii), first notice that from lemma 4.6 and

Lemma 2 of Magdalinos [50] we have that for any θ ∈ Int Θ, Qθ

(√
n ‖θn (a∗)− θ‖ > C ln1/2 n

)
=

o
(
n−a

∗)
. A Taylor expansion of order s∗ of the first order conditions implies that with
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Qθ-probability 1 − o
(
n−a

∗) √
n (θn (a∗)− θ) = κn (

√
nm∗n (θ)) + Rn where κn is a

polynomial function for which we have that

Qθ

(
κn
(√

nm∗n (θ)
)
∈ A

)
= Qθ

(
gn
(√

nm∗n (θ)
)
∈ A

)
+ o

(
n−a

∗)
and gn as in equation 6, lemma AL.4, due to assumptions A.3, A.5 whileQθ (‖Rn‖ > γn) =
o
(
n−a

∗)
for some γn = o

(
n−a

∗)
due to the previous. Hence the result follows from

the first part of lemma AL.4.
Proof of Lemma 4.7. The result follows from lemmas 4.6, AL.2, AL.4, and the
fact that Θ is compact.
Proof of Lemma 4.8. The proof is based on lemma 4.7 for m = 1. We essentially
compute Kj (gn (z))

(
1 +

∑s

i=1

1

n
i
2
πi (z)

)
for Kj (x) = xj, j = 1, . . . , p for each

of the estimators at hand. Using assumptions A.1, A.3.2-3, A.4, A.5, lemma 4.6
and Lemma 2 of Magdalinos [50] we obtain by a second order Taylor expansion that√
n [βn − bn (θn, ζn (θn, a∗))], if a∗ > 0, is approximated by

√
n (βn − b (θ))− ∂b

∂θ′
√
n (θn − θ)−

1

2
√
n

[√
n (θn − θ)′

∂bj
∂θ∂θ′

√
n (θn − θ)

]
j=1,...,q

−
s∗∑
i=2

1

n
i−1
2

ζ in (θ)−
s∗∑
i=2

1

ni/2
∂ζ in (θ)

∂θ′
√
n (θn − θ) +R1,n (θn, θ) ,

in the sense that Qθ

(
supθ′∈Oε(θ) ‖R1,n (θn, θ

′)‖ > o
(
n−

1
2
−δ
))

= o (n−a∗), for δ > 0.

Analogously the term ∂b′n(θn,ζn(θn,a∗))
∂θ

is approximated by

∂b′

∂θ
+

1√
n

[√
n (θn − θ)′

∂2b′

∂θ∂θj

]
j=1,...,p

+
s∗∑
i=2

1

ni/2
∂
(
ζ ′in (θ)

)
∂θ

+

s∗∑
i=2

1

n
i+1
2

[√
n (θn − θ)′

∂2ζ ′in (θ)

∂θ∂θj

]
j=1,...,p

+R2,n (θn, θ) ,

where again Qθ

(
supθ′′∈Oε(θ) ‖R2,n (θn, θ

′′)‖ > o
(
n−

1
2
−δ′
))

= o (n−a∗), for δ′ > 0.

Finally, Wn

(
θ+
n

)
is approximated by

W (θ) +
1√
n
k1w +

1√
n

[
∂

∂θ′
W (θ)j,j′ k1θ+

]
j,j′=1,...,q

+R3,n (θ) ,

where Pθ
(

supθ′′′∈Oε(θ) ‖R2,n (θ′′′)‖ > o
(
n−

1
2

))
= o (n−a∗). Therefore an asymptotic

polynomial approximations of the first order conditions which the estimator satisfies
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with Pθ probability 1− o (n−a∗), for a∗ > 0, is given by

0 = C−1∂b
′

∂θ
W
√
n (βn − b (θ))− 1√

n
C−1∂b

′

∂θ
Wζ2n (θ) (4)

+
1√
n
C−1


[√

n (θn − θ)′ ∂2b′

∂θ∂θj

]
j=1,...,p

W

+∂b′

∂θ

{
k1w +

[
∂

∂θ/
Wj,j′k1θ+

]
j,j′=1,...,q

}
{√n (βn − b (θ))− ∂b

∂θ′
√
n (θn − θ)

}

− 1

2
√
n
C−1∂b

′

∂θ
W

[√
n (θn − θ)′

∂bj
∂θ∂θ′

√
n (θn − θ)

]
j=1,...,q

+Rn (θn, θ)

where W = W (θ), C = ∂b′

∂θ
W ∂b

∂θ′ and Qθ

(
supθ∗∈Oε(θ) ‖Rn (θn, θ

∗)‖ > o
(
n−

1
2

))
=

o (n−a∗). Denote by gn (z, a) the gn (z) corresponding to GMR2 (a). Obtaining the
Laplace inversion of the expansion in 4 w.r.t.

√
n (θn − θ) and discarding terms we

get that, for a∗ > 0,

gn (z, a∗) = C−1∂b
′

∂θ
W

(
k1β −

ξ2√
n

)

+
1√
n
C−1

 [(
C−1 ∂b′

∂θ
Wk1β

)′ ∂2b′

∂θ∂θj

]
j=1,...,p

W

+∂b′

∂θ
k1w∗ + ∂b′

∂θ

[
∂
∂θ′Wj,j′k1θ∗

]
j,j′=1,...,q

(Idq − ∂b

∂θ′
C−1∂b

′

∂θ
W

)
k1β

− 1

2
√
n
C−1∂b

′

∂θ
W

[(
C−1∂b

′

∂θ
Wk1β

)′
∂bj
∂θ∂θ′

C−1∂b
′

∂θ
Wk1β

]
j=1,...,q

.

The result for a∗ = 0 is obtained analogously to the previous case simply by setting
ζ2n equal to zero wherever this term appears in equation 4, and consequently

gn (z, 0) = gn (z, a∗) +
1√
n
C−1∂b

′

∂θ
Wξ2.

Integrating in each case with respect to
(

1 + π1(z,θ)√
n

)
ϕV (θ) (z),noting that k2β (z, θ) =

zπ1 (z, θ) we obtain the needed results due to lemma AL.2 and to the fact that by
construction

∥∥IϕV (k2β

)
− ξ2

∥∥ = o (1).
Proof of Lemma 4.9. Argue as in the previous proof and note that now Ki,j (x) =
xixj, i, j = 1, . . . , p.
Proof of Lemma 5.1. First notice that the existence of θ(j)

n at any step of the
procedure is ensured by the continuity implied in assumption A.6. Then the assump-
tions stated in the lemma along with the bound of the rate of divergence for ζjn
implied again by A.6 establish that for any j, any θ in Int Θ(j) and any ε > 0,
Qθ

(∥∥∥θ(j)
n − θ

∥∥∥ > ε
)

= o
(
n−a

∗)
due to lemma 4.1. Then a recursive application of
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lemmas 4.6 and 4.7 following from the assumptions in the current lemma and A.6
and the relation between j ≤ κ and s∗, implies that the distribution of

√
n
(
θ(j)
n − θ

)
under Qθ admit a valid Edgeworth expansion of order s∗ and that the ξj in assumption
A.6 are well defined. Notice that in any step of the procedure the binding function is
the inclusion of the current parameter space to the interior of the one in the previous
step. The proof for the moment approximations for the case i = 2 follows easily as a
special case of corollary 1 and lemma 4.9. Using induction if these hold for some i,
then notice that since ξj would be zero for any j less than a first order Taylor expansion
the first order conditions around θ satisfied by θ(i+1)

n with Pθ probability 1− o
(
n−a

∗)
is of the form

0p =
√
n
(
θ(i)
n − θ

)
− ξi+1 (θ)

n
i
2

−
(
ζ i+1n (θ)

n
i
2

− ξi+1 (θ)

n
i
2

)
(5)

+

(
Idp +

Dζ i+1n (θ)

n
i+1
2

)√
n
(
θ(i+1)
n − θ

)
+ un

where Qθ

(
‖un‖ > o

(
n−

i
2

))
= o

(
n−a

∗)
since

‖un‖ ≤ n−
i+1
2 sup

θ′∈Oε(θ)

∥∥∥vecD2ζ
(i)
i+1n

(θ′)
∥∥∥∥∥∥√n(θ(i+1)

n − θ
)∥∥∥

due to A.6. The result follows by as in the previous proof by obtaining the Laplace inver-
sion of 5 w.r.t.

√
n
(
θ(i+1)
n − θ

)
discarding terms of the appropriate order, integrating

what remains and its exterior product with respect to the Edgeworth distribution of
√
n
(
θ(i)
n − θ

)
and noting that due to that due to A.1, A.2, A.5 and lemma AL.2∥∥∥IϕV (ki+1

θ(i

)
− ξi+1

∥∥∥ = o (1).

B General Theorems, Lemmas and Corollaries.
In this appendix we include several results, either directly drawn from the relevant
references or simple extensions and/or corollaries of the latter. These are employed
throughout the main body of the paper. Recall that Mn (θ) =

√
n (βn − b (θ)). Then

Theorem 7.1 Suppose that:
-POLFOC Mn (θ) satisfies 0p×1 =

∑s−1
i=0

1
ni/2

∑i+1
j=0Cijn (θ)

(
Mn (θ)j , Sn (θ)i+1−j

)
+

Rn (θ) with probability 1 − o
(
n−

s−1
2

)
where Cijn : Θ × Rqi+1 → Rp is (i+ 1)-linear

∀θ ∈ Θ, C00n (θ) , C01n (θ) are independent of n and have rank p ∀θ ∈ Θ, Cijn are
equicontinuous on Θ, ∀xi+1,
-LUE Sn (θ) is a sequence of random elements admitting an Edgeworth expansion of
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order s with polynomials (of its density) which are equicontinuous on Θ and a variance
matrix which is continuous on Θ and positive definite,
-UAT P

(
‖Mn (θ)‖ > C ln1/2 n

)
= o

(
n−

s−1
2

)
for some C > 0,

-USR P (‖Rn (θ)‖ > γn) = o
(
n−

s−1
2

)
for some real sequence γn = o

(
n−

s−1
2

)
.

ThenMn (θ) admits an Edgeworth expansion of order s the polynomials of the density
of which are equicontinuous on Θ and the variance matrix is continuous on Θ and
positive definite.

The first two imply the existence of a random vector Sn (θ) for which an analogous
Edgeworth expansion exists. The first is usually derived by asymptotic polynomial
approximations of the f.o.c. (first order conditions) that the estimator asymptotically
satisfies with high probability.
Hence the needed result rests upon the verification of conditions POLFOC, LUE,

UAT and USR in the above theorem. In the case that βn is an MLE or a GMM
estimator Sn is a random vector consisting of the random elements appearing in the
derivatives of the likelihood function or the moment conditions and therefore is of the
form of a normalized sum. Then the establishment of the condition LUE relies on the
properties of these random elements. For example in the context of weakly dependent
time series models the conditions of Gotze and Hipp [32] (Assumptions 1-4) suffi ce
for LUE. For a more general set of suffi cient conditions see also the Assumptions 2-4
of Durbin [22] (Andrews and Lieberman [6] establish these for Sn comprised by the
elements of the derivatives of Whittle likelihood function in the context of Gaussian
ARFIMA processes). In the case where βn is itself an indirect estimator this can be
established by a re-iteration of this procedure.
Condition UAT can be verified via the use of LUE and a mean value expansion

of the f.o.c. Finally condition USR can be verified due to the form of the remainder
in the approximation of POLFOC (which is usually a remainder emerging from the
application of the mean value Theorem) and is bounded in norm by C ‖Sn‖d for d
large enough and C > 0 and LUE.
This procedure obviously fails if

√
n (βn − b (θ)) is not asymptotically normal. This

in turn can happen because b (θ) lies in the boundary of B and thereby POLFOC
cannot hold (notice that b (θ) can be a boundary point even if θ is an interior point).
Finally notice that this procedure might fail to hold (essentially due to failure of LUE)
even in cases where Sn is asymptotically normal and b (θ) in an interior point. Consider
for example the case where the necessary conditions of Theorem 1 (see the final pair
of paragraphs of the proof in page 508) in Corradi and Iglesias [17] fail to hold for the
QMLE in the context of a semi-parametric GARCH (1, 1) model.
Let {ζn} denote a generic sequence of random vectors. In the following πi denote

polynomial real functions on Rq for i in some index set, with O (1) coeffi cients. Finally
ϕV denotes the density function of the q-dimensional Normal distribution with zero
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mean and covariance matrix V . V may also depend on n, hence we suppose that it
converges to a positive definite matrix which we also denote with V .

Lemma AL.1 Suppose that ζn admits a valid Edgeworth expansion of order s =
2a+1. Let {xn} denote a sequence of random vectors and there exists an ε > 0 and a
real sequence {an}, such that an = o (n−ε) and P (‖xn‖ > an) = o (n−a). Then any
ηn, such that P (ζn + xn = ηn) = 1− o (n−a), admits a valid Edgeworth expansion of
the same order.

Proof. We have that

sup
A∈BC

|P (ηn ∈ A)− P (ζn + xn ∈ A)|

≤ sup
A∈BC

|P (ηn ∈ A, ζn + xn = ηn)− P (ζn + xn ∈ A)|

+P (ζn + xn 6= ηn)

the last term being o (n−a). Now,

|P (ζn + xn ∈ A)− P (ζn ∈ A− an)| = o
(
n−a
)

uniformly over BC . Therefore

sup
A∈BC

∣∣∣∣∣P (ζn + xn ∈ A)−
∫
A−an

(
1 +

2a+1∑
i=1

n−
i
2πi (y)

)
ϕV (y) dy

∣∣∣∣∣
≤ sup

A∈BC

∣∣∣∣∣P (ζn ∈ A− an)−
∫
A−an

(
1 +

2a+1∑
i=1

n−
i
2πi (y)

)
ϕV (y) dy

∣∣∣∣∣+ o
(
n−a
)

which is o (n−a) since A− an is convex. Now, for an appropriate C > 0, which exists

due to Lemma 2 of Magdalinos [50], and Hn (C) =
{
x ∈ Rq : ‖x‖ > C ln1/2 n

}
.

∫
A−an

(
1 +

2a+1∑
i=1

n−
i
2πi (y)

)
ϕV (y) dy

=

∫
A∩Hn(C)

(
1 +

2a+1∑
i=1

n−
i
2πi (z − an)

)
ϕV (z − an) dz + o

(
n−a
)

Hence, ifHk (z) denotes the kth order Hermite multivariate polynomial, L (Hk (z) , an, i)
and i-linear function of an with coeffi cients from Hk (z), and

ϕV (z − an) = ϕV (z)

K∑
k=0

1

k!
L (Hk (z) , an, k) + ρn (z)
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where

ρn (z) =
1

(2K + 1)!
(−1)K+1 L (Hk (z − a∗n) , an, K + 1)φ (z − an)

and a∗n lies between an and zero. If a ≤ ε set K = 0, else, choose some natural
K ≥ a

ε
− 1.

Then,(
1 +

2a+1∑
i=1

n−
i
2πi (z − an)

)
ϕV (z − an) = ϕV (z)

(
1 +

2a+1∑
i=1

n−
i
2π∗i (z)

)
+ qn (z)

where the π∗i (z)′ s areO (1) polynomials in z and qn (z) =
(

1 +
∑2a+1

i=1 n−
i
2πi (z − an)

)
ρn (z).

Hence ∫
A∩Hn(C)

(
1 +

2a+1∑
i=1

n−
i
2πi (z − an)

)
ϕV (z − an) dz

=

∫
A∩Hn(C)

ϕV (z)

(
1 +

2a+1∑
i=1

n−
i
2π∗i (z)

)
dz +

∫
A

qn (z) dz

and

sup
A∈BC

∣∣∣∣∫
A∩Hn(C)

qn (z) dz

∣∣∣∣ ≤ ∫
Rq

∣∣∣∣∣
(

1 +
2a+1∑
i=1

n−
i
2πi (z − an)

)
ρn (z)

∣∣∣∣∣ dz ≤ C

na+δ

for some C, δ > 0. Hence, since supA∈BC
∣∣Rn −

∫
A
qn (z) dz

∣∣ = o (n−a), and therefore

sup
A∈BC

∣∣∣∣Rn −
∫
A

qn (z) dz

∣∣∣∣ ≥ ∣∣∣∣ sup
A∈BC

|Rn| − sup
A∈BC

∣∣∣∣∫
A

ϕV (z) qn (z) dz

∣∣∣∣∣∣∣∣ = o
(
n−a
)

and supA∈BC

∣∣∣P (ζn + xn ∈ A)−
∫
A
ϕV (z)

(
1 +

∑2a+1
i=1 n−

i
2π∗i (z)

)
dz
∣∣∣ = o (n−a) due

to the fact that the transformation from πi (z) to π∗i (z) does not depend on A

but only on an and that
∫
Hcn(C)

ϕV (z)
(

1 +
∑2a+1

i=1 n−
i
2π∗i (z)

)
dz = o (n−a), with

Rn = P (ζn + xn ∈ A)−
∫
A
φ (z)

(
1 +

∑2a+1
i=1 n−

i
2π∗i (z)

)
dz.

Corollary AC.1 If a ≤ ε then πi (z) = π∗i (z), ∀i, and therefore the resulting Edge-
worth distribution coincides with the initial.

Now, denote by Pn the measure P ◦ ζ−1
n . Given the previous approximation and

by strengthening the order of the Edgeworth expansion we obtain the following lemma
that is quite useful for the validation of the analogous moment approximations.
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Lemma AL.2 Suppose that K is a m-linear real function on Rp, if the support of
ζn is bounded by O√nρ (0) for some ρ > 0 and ζn admits an Edgeworth expansion of
order 2a+m+ 1 then ∣∣∣∣∫

Rq
K (xm) (dPn − dQn)

∣∣∣∣ = o
(
n−a
)

where Qn denotes the analogous Edgeworth measure of order 2a + 1 and xm =
(x, x, . . . x)︸ ︷︷ ︸

m

.

Proof. See the proof of Lemma 3.1 of Arvanitis and Demos [8].
The following lemmas enable the approximation of the Edgeworth moments by

transformations.

Lemma AL.3 Suppose that ζn admits a valid Edgeworth expansion of order s∗. Then
for any i < j : 1, . . . q, pri,j (ζn) admits an analogous expansion of the same order.

Proof. See Lemma AL.1 of Arvanitis and Demos [9].

Lemma AL.4 Suppose that ζn admits a valid Edgeworth expansion of order s∗. Let
also gn : Rq → Rp (p ≤ q) with

gn (x) = Lx+
∑s∗

i=2

(
n−( i−12 )ξi + o

(
n−( i−12 )

))
+
∑s∗

j=2

1

n
j−1
2

(
Bjn + o

(
n−δ
))
xj

(6)
for large enough n, with rankL = p. If for anyA ∈ B, P (xn ∈ A) = P (gn (ζn) ∈ A)+
o
(
n−a

∗)
, then xn admits an analogous expansion of the same order, i.e. there exist

polynomials π∗i : Rp → R, i = 1, . . . , s∗ such that

P (xn ∈ A) =

∫
A

(
1 +

∑s

i=1

1

n
i
2

π∗i (x)

)
ϕLV L′ (x) dx+ o

(
n−a

∗)
Furthermore, if K is a m-linear real function on Rp∫

Rp
K (xm)

(
1 +

∑s

i=1

1

n
i
2

π∗i (x)

)
ϕLV L′ (x) dx

=

∫
Rq
K ((gn (x))m)

(
1 +

∑s

i=1

1

n
i
2

πi (z)

)
ϕV (z) dz + o

(
n−a

∗)
where B denotes the class of Borel sets on Rp ξi and Bjn are O (1) and xm =
(x, x, . . . x)︸ ︷︷ ︸

m

.
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Proof. We can assume that p = q without loss of generality, for if p < q then we can
consider

g∗n (x) =

(
L 0
0 Id

)
x+

∑s∗
i=2

(
n−( i−12 )

(
ξi + o

(
n−( i−12 )

)
0

))

+
∑s∗

j=2

1

n
j−1
2

(
Bjn + o

(
n−δ
)

0

)
xj

and then apply the previous lemma. Now for A ∈ B we have that

P (xn ∈ A) = P (gn (ζn) ∈ A) + o
(
n−a

∗)
= P

(
ζn ∈ g−1

n (A)
)

+ o
(
n−a

∗)
=

∫
g−1n (A)

(
1 +

∑s∗

i=1

1

n
i
2

πi (x)

)
ϕV (x) dx+ o

(
n−a

∗)
Due to the rank condition on L we have that

g−1
n (y) = L−1y+

∑s∗
i=2

(
n−( i−12 )ξ∗i + o

(
n−( i−12 )

))
+
∑s∗

j=2

1

n
j−1
2

(
B∗jn + o

(
n−δ
))
yj

for any y ∈ Hn (C) =
{
x ∈ Rq : ‖x‖ < C ln1/2 n

}
for C > 4a + 2 from lemma 2

of Magdalinos [50] with ξ∗i and B
∗
jn defined analogously. Moreover due to the same

lemma ∫
g−1n (A)∩Hc

n(C)

(
1 +

∑s∗

i=1

1

n
i
2

πi (x)

)
ϕV (x) dx = o

(
n−a

∗)
hence ∫

g−1n (A)

(
1 +

∑s∗

i=1

1

n
i
2

πi (x)

)
ϕV (x) dx

=

∫
A∩gn(Hn(C))

(
1 +

∑s

i=1

1

n
i
2

πi
(
g−1
n (z)

))
ϕV
(
g−1
n (z)

)
det
(
Dg−1

n (z)
)
dz

Due to the proof of lemma 3.5 of Skovgaard [63] Hn (C∗) ⊆ gn (Hn (C)) for some
C∗ > C, hence this equals∫

A∩Hn(C∗)

(
1 +

∑s

i=1

1

n
i
2

πi
(
g−1
n (z)

))
ϕV
(
g−1
n (z)

)
det
(
Dg−1

n (z)
)
dz

+

∫
A∩(gn(Hn(C))/Hn(C∗))

(
1 +

∑s

i=1

1

n
i
2

πi
(
g−1
n (z)

))
ϕV
(
Dg−1

n (z)
)

det
(
g−1
n (z)

)
dz

the latter is bounded from∫
Hc
n(C∗)

(
1 +

∑s

i=1

1

n
i
2

πi
(
g−1
n (z)

))
ϕV
(
g−1
n (z)

)
det
(
Dg−1

n (z)
)
dz
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which is o
(
n−a

∗)
.Then the needed polynomials are obtained from∫

A∩Hn(C∗)

(
1 +

∑s

i=1

1

n
i
2

πi
(
g−1
n (z)

))
ϕV
(
g−1
n (z)

)
det
(
Dg−1

n (z)
)
dz

as in the proof of the first part of lemma 4.6 of Skovgaard [63] using repeated Taylor
expansions and the fact that det (Dg−1

n (z)) = det−1 (L)+o (1) uniformly on Hn (C∗),
holding terms of the relevant order and estimate the remainders as o

(
n−a

∗)
terms.

The second part follows from analogous considerations to the previous and/or the ones
in the proof of lemma 4.7 of Skovgaard [63].

Figures and Table
The MA (1) Model, θ = −0.4 non-central Student’s-t.

Figure 1a: n×
∣∣∣B̂ias

∣∣∣.
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Figure 2a: n× M̂SE.

The MA (1) Model, θ = −0.4 normal.

Figure 1b: n×
∣∣∣B̂ias

∣∣∣.
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Figure 2b: n× M̂SE.

The MA (1) Model, θ = −0.4 non-central Student’s-t.

Figure 1c: n×
∣∣∣B̂ias

∣∣∣.
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Figure 2c: n× M̂SE.

Figure 3: n×
∣∣∣B̂ias

∣∣∣.
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Figure 4: n× M̂SE.

The GARCH (1, 1) Model, (θ1, θ2, θ3) = (0.1, 0.2, 0.7).

Figure 5a: n×
∣∣∣B̂ias

∣∣∣.
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Figure 6a: n× M̂SE.

The GARCH (1, 1) Model, (θ1, θ2, θ3) = (0.1, 0.05, 0.85).

Figure 5b: n×
∣∣∣B̂ias

∣∣∣.
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Figure 6b: n× M̂SE.

The ARFIMA (0, d, 0) Model, d = 0.4.

Figure 7a: n×
∣∣∣B̂ias

∣∣∣.
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Figure 8a: n× M̂SE.

The ARFIMA (0, d, 0) Model, d = 0.3.

Figure 7b: n×
∣∣∣B̂ias

∣∣∣.
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Figure 8b: n× M̂SE.

The MA (1) Model, θ = −0.4.

Table 1: Average CPU times (in seconds)
No. Obs. GMR2 (1) GMR2−1 GMR2−10 GMR2−1500
50 0.0014 0.0022 0.0014 0.2338
100 0.0023 0.0031 0.0033 0.3893
150 0.0041 0.0050 0.0047 0.8121
250 0.0025 0.0096 0.0066 1.2611
500 0.0010 0.0124 0.0133 2.6108
750 0.0010 0.0180 0.0210 3.0978
1000 0.0014 0.0229 0.0282 5.3569
1500 0.0011 0.0520 0.0410 9.1059
3000 0.0014 0.0654 0.0934 17.070
Note: GMR2 (1) and GMR2−1 times have been multiplied by 10.
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