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Abstract

In this paper we de�ne a set of indirect estimators based on mo-
ment approximations of the auxilary estimators. We provide results
that describe higher order asymptotic properties of these estimators.
The introduction of these is motivated by reasons of analytical and
computational facilitation. We extend this set to a class of multistep
indirect estimators that have potentially useful higher order bias prop-
erties. Furthermore, the widely employed "feasibly biased corrected
estimator" is an one optimazation step approxiamtion of the suggested
one.
KEYWORDS: Indirect Estimator, Asymptotic Approximation, Mo-

ment Approximation, Higher Order Bias Structure, Binding Function,
Local Canonical Representation, Convex Variational Distance.

1 Introduction
Indirect estimators, hereafter abbreviated as IE, are multistep extremum
statistics derived in the premises of a (semi-) parametric statistical model
(sayM) used for the estimation of a particular element of the model, termed
as the true parameter value.1 They were formally introduced by Gourieroux
Monfort and Renault (1993). They are de�ned as (potentially measurable
selections of approximate) minimizers of criteria (inversion criterion) that are
functions of an auxiliary estimator, itself derived as an extremum estimator.
The latter minimizes a criterion function (auxiliary criterion), that re�ects

1This is usually a point in a topological space that is the image of the probability
distribution with which the undelying probability space is endowed, with respect to a
parameterization.
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(part of) the structure of a possibly misspeci�ed auxiliary model (say A).2
The inversion criterion, depends on a function on the set AM (or on the
set AM�
, where (
;F ; P ) is a relevant probability space). This is termed
the binding function. Minimization of the inversion criterion, which usually
has the form of a stochastic norm, essentially inverts the binding function,
thereby obtaining an estimator with values inM.
Given an auxiliary estimator, IE di¤er due to relevant di¤erences in the

inversion criteria that hinge on di¤erences between the binding functions that
each one involves. Among the IE involving the same auxiliary estimator,
the consistent ones depend on sequences of binding functions that converge
appropriately to a common limit binding function that satis�es some iden-
ti�cation condition. In these cases, the auxiliary estimator, also converges
in a similar manner to the value of the limit binding function at the true
parameter value, hence consistency follows from identi�cation. More re�ned
asymptotic properties of the cases considered may be di¤erent across the
particular IE, essentially due to the di¤erences on the involved sequences on
binding functions.
Moreover, it is usually the case that the binding functions are not an-

alytically known, hence are approximated numerically. In some instances
the derivation of particular IE involves nested numerical optimization pro-
cedures that impose a large numerical cost, a fact that potentially creates,
among practitioners, unattractiveness towards them. The same IE under a
more involved assumption framework also have attractive high order asymp-
totic properties,3 that are not exploited due to the aforementioned numerical
burden.
Part of the scope of the present paper, is the introduction of a class of

(potentially multistep) IE, in which cases the binding functions depend on
approximations of moments of the auxiliary estimator. These approxima-
tions when are analytically known essentially reduce the numerical cost of
computation of the estimator. This can also remain the case when the par-
ticular moment approximations are also approximated numerically. Under a
relevant assumption framework, higher order asymptotic properties of these
estimators are potentially similar to the ones mentioned in the previous para-
graph. Hence this class of estimators can surpass the computational burden
without sacri�cing useful properties. It can also be veri�ed, that these prop-
erties partly reside on a particular algebraic structure that the set of these
estimators is "naturally" equipped with.

2A could simply be a reparameterization ofM.
3See e.g. Gourieroux and Monfort (1996), and Gourieroux, Renault and N. Touzi

(2000).
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The analysis of higher order asymptotic properties of the aforementioned
class of IE, along with already established results, provides us with an in-
teresting uni�cation of distinct procedures of (potentially approximate) bias
correction.
First, it is already established by Gourieroux, Renault and Touzi (2000)

that the indirect estimator proposed by Gourieroux et al. (1993), derived
as the solution of �n � E��n = 0, is approximately unbiased, while it is ex-
actly unbiased if E��n is linear w.r.t. �. Analogous properties hold for the
estimator de�ned as �n � E�n�n which can, under relevant conditions, be
approximated by a bootstrap procedure. Gourieroux et al. (2000) show that
the latter coincides with the estimator derived by the sequential Newton-
Raphson approximation of the solution of �n�E��n = 0 when it is restricted
to halt upon the completion of the �rst step. Hence they interpret the boot-
strap estimator as a one step numerical approximation of the indirect one
with equivalent second order properties.
In a direct analogy, when the previous framework is considered, the IE

proposed in this paper are essentially derived as solutions of �n���K (�; a) =
0, where � + K (�; a) is an approximation of E��n in an appropriate sense.
Under relevant conditions, K (�; a) would converge uniformly as a ! 1 to
E��n, hence these IE would converge in the appropriate sense to the one
proposed by Gourieroux et al. (1993). Under the same conditions the former
is also approximately unbiased of the same order. Again, a widely used
estimator in the econometric literature when K (�; a) is available, is �n �
K (�n; a), which is also approximately unbiased. It can be easily seen that
under the same conditions, and as a!1, due to the aforementioned uniform
convergence �n�K (�n; a) would converge to the bootstrap estimator, while
it can also interpreted as a one step numerical approximation of the zero of
�n � � �K (�; a). Hence if the one step Newton-Raphson approximation is
considered as an appropriate self function on the relevant space of estimators
we obtain that the diagram shown below, with the obvious choice of notation,
commutes, while the relevant higher order properties of zero (�n � E��n) are
retained across it.

zero(�n � � �K(�; a))
a!1���! zero(�n � E�(�n))

1�NR
??y ??y1�NR

�n �K(�n; a)
a!1���! �n � E�n(�n)

(1)

Second, under appropriate conditions, E��n can be expressed using an
auxiliary reparameterization that depends on n, as the identity function when
restricted at an open neighborhood of the true parameter value. In this
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case the IE proposed by Gourieroux et al. (1993) is unbiased. However
the (sequence of) auxiliary reparametrization(s) is (are) usually analytically
intractable. The same is true for K (�; a), while it can be shown that when
K (�; a) is locally the identity for any a, when a ! 1 converges to the
aforementioned local canonical representation of E��n. We approximate the
canonical representations of K (�; a) using multistep procedures of indirect
estimation, where the number of steps depend on a. In this respect, although
the arbitrarily close approximation of the unbiased IE remains infeasible, we
are able to construct estimators that are approximately unbiased of any given
order.
Before the discussion of the framework on which the current results are

based upon, in section 2, notice that indirect inference algorithms were ini-
tially used by Smith (1993), were formally introduced by Gourieroux et al.
(1993), complemented by Gallant and Tauchen (1996) and extended by Cal-
zolari, Fiorentini and E. Sentana (2004). Properties similar to those studied
here were more or less algebraically studied in Gourieroux et al. (2000) and
more formally in Arvanitis and Demos (2010). In section 3 we de�ne the
estimators and derive their asymptotic properties in the following one. In
section 5 we extend the procedures to multi step ones, and apply them in
two examples presented in section 6. Conclusions are gathered in section 7
and in the appendix A we collect all proofs. In appendix B we present some
useful tools concerning the derivation of our results and in appendix C we
gather the calculations of the expansions employed in our examples.

2 General Framework
In this paragraph a general assumption framework is described, that facili-
tates the presentation of the already de�ned IE. This assumption framework
can be generalized in particular ways, some of which are locally remarked.
Then, two already de�ned IE are presented along with some of their proper-
ties and relations, that rely upon the particular assumption canvas.
Given two metric spaces, (X; dX) and (Y; dY ) we denote the set of the

Lipschitz continuous functions from the �rst to the second, suppressing its
dependence on the metrics, by Lip (X; Y ). The symbol B" (�) will denote the
"-ball around the point � in a relevant metric space. We denote with Dr, the
rth- order derivative operator on a relevant function space that maps to the
space of the algebraic element containing all the rth-order partial derivatives
of the �rst.
For a matrix W , kWk will denote a submultiplicative matrix norm,4

4Notice that due to the fact that �nite dimensional matrix spaces are identi�ed with
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such as the Frobenius norm (i.e. kWk =
p
trW 0W ). The relevant metric

space of r-dimensional square real matrices is denoted by M (R; r). We let
PD (R; r) �M (R; r) be the cone of positive de�nite real matrices of dimen-
sion r.
When suprema with respect to parameters, of derivatives are discussed

these are obviously considered where the di¤erentiated function is di¤eren-
tiable. Finally for a 2 A +

�
i
2
, i = 0; 1; : : :

	
, s 2 fi+ 1, i = 0; 1; : : :g, and

let d = max (2a+ 2; 3).

Assumption A.1 The following characterize the basic framework:

1. � denotes a compact subset of Rp for some p 2 N, equipped with the
relevant subspace topology. Let �0 2 Int (�).

2. For each n except potentially for a �nite subset of N and for a probabil-
ity space (
;F ; P ), let xn : 
��! 
n, be Fn=F measurable functions
8� 2 �, where (
n;Fn) are measurable spaces, P�;n (A) + P �x�1n (A; �)
for any A 2 Fn.

3. Mn = fP�;n; � 2 �g is topologized by the topology of total variation
w.r.t. which it is homeomorphic to � and consists of the statistical
model at hand.

4. The limit binding function (lbf) b 2 Lip (�;Rq) and corresponds to the
relevant notion discussed previously. Also, we let B = b (�) and sup-
pose that b (�0) = b (�) i¤ � = �0, and for some "1 > 0, the restriction
bjB"1 (�0) : B"1 (�0) ! B is invertible. Moreover, for some "1 � "2 > 0,
the restriction bjB"2 (�0) is a d+ 1�di¤eomorphism.

5. There exists a function cn : 
n � B ! Rl for some l 2 N that is
BRl= (Fn 
 BB)�measurable, and Ecn (xn (!; �) ; �) = 0l�1, i¤ � =
b (�).

6. LetWn (�; �) be BM(R;l)= (BFn 
 B�)�measurable and P�0;n-almost surely
positive de�nite, for every � 2 B" (b (�0)) for some " > 0.

7. LetW �
n (�; �) be BM(R;q)= (BFn 
 B�)�measurable and P�0;n-almost surely

positive de�nite, for every � 2 B"2 (�0).

Remark R.1 We denote with E�1f =
Z
f (xn (!; �1) ; �2) dP (!) for any

appropriately measurable f and any �2 2 �.

�nite dimensional Euclidean spaces, the norm equivalence theorem applies.

5



Remark R.2 Usually 
n is homeomorphic to Rnm for some m in N and Fn
is the Borel algebra with respect to the Euclidean topology.

Remark R.3 Since B and � are compact subsets of �nite dimensional
Euclidean spaces they are totally bounded. Also note that due to the fact
that the spaces � and B are separable, suprema of real random elements
over these spaces are measurable. Obviously the lbf is bounded.

Remark R.4 It is implied that q � p and that rank
�
@b
@�0

�
= p, 8� 2 B"2 (�0).

Also due to the local di¤eomorphism assumption for the lbf, it is moreover
implied that sup� kDrb (�)k < Mr, 8r = 2; : : : ; d+1 for � 2 B"3 (�0), for some
"3 � "2, with Mr > 0. Boundeness of the �rst derivatives follows also from
b (�) being Lipschitz on � and consequently on B"3 (�0).

Remark R.5 The estimating equations cn(xn; �) = 0l�1 can be implied by
some part of the structure of a, potentially, misspeci�ed statistical model.
This in turn is a locally di¤erentiable parametric statistical model de�ned
on the same measurable space, usually termed as auxiliary model, with B as
its parameter space. In this case the lbf is a parametric representation of
a relevant function between the two sets of probability measures. It should
also be noted that the lbf and some of its posited properties, can be lo-
cally retrieved from conditions on E�cn(x; b (�)) that facilitate application of
relevant implicit function theorems. For example, b (�0) is identi�ed as the
unique solution of E�0cn(x; �) = 0l�1, which along with the further local

di¤erentiability assumptions implies that l � q, and rank
�
E�

@cn(b(�))
@�0

�
= q,

8� 2 B"2 (�0).

Remark R.6 In accordance with remark R.2 cn (xn; �) is often of the form
1
n

Pn
i=1 c(xi; �), for xi : 
 � � ! Rm for any i, and c : Rm � B ! Rl. The

same is often true for any of the stochastic matrices considered in assumption
A.1.5,6. For example Wn (x; �) =

1
n

Pn
i=1W (xi; �) for W : Rm � B !

M (R; l) etc.

In the following we suppress the dependence of the aforementioned bind-
ing functions on 
n where unnecessary. We also let �

+
n and �

+
n denote random

elements with values in � and B respectively. We consider the following real
function on Rr �M (R; r)

(x;W )! (x0Wx)
1=2

for a givenW 2M (R; r). This de�nes a pseudo-norm on RR which becomes
a norm if W 2 PD (R; r).
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Definitions and Properties of Already Known IE We can now de�ne the already
known auxiliary, GMR1, and GMR2 estimators. These were initially formal-
ized by Gourieroux et al. (1993).

De�nition D.1 The auxiliary estimator �n is de�ned as

kcn (�n)kWn(�+n ) = inf
�2B

kcn (�)kWn(�+n )

Remark R.7 In view of assumption A.1.3,5,6 and by remark AR.1 (in the
Appendix) the above estimator is well de�ned. Notice that when l = q
and if Wn

�
�+n
�
2 B" (W ) with probability that tends to unity, 8" > 0 for

W 2 PD (R; r), then �n is asymptotically independent of the weighting
matrix, with probability that tends to unity.

De�nition D.2 The GMR1 estimator is de�ned as

k�n � b (GMR1)kW �
n(�+n ) = inf

�2�
k�n � b (�)kW �

n(�+n )

De�nition D.3 Let bn (�) = E��n, then the GMR2 estimator is de�ned as

k�n � bn (GMR2)kW �
n(�+n ) = inf

�2�
k�n � bn (�)kW �

n(�+n )

Remark R.8 The GMR1 and GMR2 estimators are de�ned as q
�
W �
n

�
�+n
�
; b (�) ; �n

�
and q

�
W �
n

�
�+n
�
; bn (�) ; �n

�
respectively where

q (A; k (�) ; c) + argmin
�2�

�J (c; k (�) ; A)

and
J (c; k (�) ; A) + kc� k (�)kA

Their existence is justi�ed by remark AR.1 (in the Appendix) in view of
assumption A.1.3,5,6. The computation of the estimators relies on the ana-
lytical knowledge of b and bn which is in most cases unavailable. Hence the
estimators are usually approximated by the use of Monte Carlo simulations,
which itself involves nested numerical optimizations that is of potentially
large computational cost especially in the case of the second estimator.

When p = q = l, c (x; �n) = h (x)�E�h (x) = h (x)�g (�) and g is linear
then GMR1 = GMR2 by lemma 2.3 of Arvanitis and Demos (2010). For
reasons that will become apparent in the next section, we denote the GMR1
estimator by �n (0) and the GMR2 estimator by �n (1).
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Assumptions Specific to a New Class of IE Let a� = s�1
2
for s � 2 (a+ 1). Let

mn (�) be
�
(�n (xn (�))� b (�))

0 ; (�n (0) (xn (�))� �)0 ;
�
�+n (xn (�))� �

�0�0
. Let

also EDG�;a� denote the Edgeworth measure of order s de�ned on Rq+2p and
BC the collection of measurable convex sets on the same space.

Assumption A.2

sup
A2BC

��P�;n �pnmn (�) 2 A
�
� EDG�;a� (A)

�� =

sup
A2BC

��P �pnmn (xn (�) ; �) 2 A
�
� EDG�;a� (A)

�� = o
�
n�a

��
for any � on a bounded open set, say �0, that contains � hence there exist
ki+1 (z; �), i = 1; : : : ; 2a such thatE��n � b (�)�

2aX
i=1

1

n(i+1)=2
Eki+1 (z; �)

 = o�n�a� 1
2

�
(2)

where z s N (0q; Idq) and Eki+1 (z; �) is d+ 1 di¤erentiable on B"2 (�0).

Remark R.9 We implicitly assume that Ek1 (z; �) = 0q�1 on �. This is
essentially proven in lemma 3.5 of Arvanitis and Demos (2010) and it is
attributed on the structure of the auxiliary estimating equations and the
fact that �0 is in the interior of �. In the case that �0 is a boundary point,
this could seize to be true.

Remark R.10 The relationship between � and �0 implies that the moment
approximation is also valid on the boundary of �.

Remark R.11 Due to assumption A.2 and lemma 2 of Magdalinos (1992)
we have that,

P

 
p
n kmn (�0)k > Cm

r
lnn

n

!
= o

�
n�a

��
, for some Cm > 0

Then it trivially follows that P (kmn (�0)k > ") = o
�
n�a

�� 8" > 0.
Our next assumption concerns the asymptotic behavior of the sequence

of stochastic weighting matrices described in A.1.5,6.

Assumption A.3 W �
n (x; �) is d + 1-di¤erentiable P0n-almost surely 8� 2

B"2 (�0). Moreover, there exists aM (R; l) valued function denoted byW � (�),
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de�ned on � which is positive de�nite and d + 1-continuously di¤erentiable
8� 2 B"2 (�0), such that

P

 
sup

�2B"2 (�0)
kDrW �

n (�)�DrW � (�)k > "
!
= o

�
n�a

��
, 8" > 0, 8r = 0; 1; : : : ; d+1

Remark R.12 If cn (xn; �) is as in remark R.6, each of the aforementioned
convergence is essentially a local ULLN that can be obtained by restrictions
on the dependence of the elements of xn, moment conditions imposed on
the involved derivatives in the spirit of Lemma 3 of Andrews (2002) as well
as conditions that imply uniform asymptotic equicontinuity with probability
1 � o

�
n�a

��
. More general cases could be reduced to the latter along with

further uniformity conditions. In addition lemma AL.1 of Arvanitis and
Demos (2010) along with assumption A.3 and remark R.11 imply that

P (kW �
n (�

�
n)�W � (�0)k > ") = o

�
n�a

��
, 8" > 0

The following assumptions, enable the stochastic approximation of the
moment approximations in (2). This can facilitate the de�nition of the IE
that depend on the latter, in the case where Eki+1 (z; �) are analytically un-
known for some i, due to the structure ofMn that could involve the presence
of nuisance parameters, analytically unknown moments in the framework of
non linear models etc. We suppose the existence of another probability space
that enables the possibility of stochastic approximation via Monte Carlo sim-
ulations.

Assumption A.4 The following characterize the basic framework:

1. There exists a probability space (
0;F 0; P 0), and yn : 
0 ! 
0n, F 0
n=F 0

measurable functions, where (
0n;F 0
n) are measurable spaces.

2. For each i = 1; : : : ; 2a, there exist � i+1n : 
n � 
0n � � ! Rq, that
is BRq= (Fn
F 0

n 
 B�) Q-almost surely continuous on � and Q-almost
surely d+ 1 di¤erentiable on B"2 (�0), where Q = P � P 0.

3. Q
�
sup�2�

� i+1n (xn (�0) ; yn; �) > Mi

�
= o

�
n�a

��
, for Mi > 0, 8i =

1; : : : ; 2a.

4. Q
�
sup�2B"2 (�0)

Dr� i+1n (xn (�0) ; yn; �)
 > M 0

i

�
= o

�
n�a

��
, for Mi >

0, 8i = 1; : : : ; 2a, for r = 1; 2.
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yn can be thought of as a simulated random element, which along with
the "observed" sample xn (�0) constitutes a generalized sample that can be
employed to approximate the relevant expectations. The space 
0n can also
depend on some index that indicates the number of simulated paths which
is suppressed. In our framework we are only interested in the case that
the number of simulated paths remains bounded, since we only consider the
asymptotic theory that emerges as n!1.

Remark R.13 Assumption A.4.3,4 essentially require global and/or local
asymptotic uniform boundeness with probability 1 � o

�
n�a

��
for

�
� i+1n

	
and the �rst two derivatives respectively. These could follow from analogous
considerations to the ones in remark R.12 when applied to the extended ran-
dom element (xn (�0) ; yn). Now, the dependence of � i+1n on xn (�0) is general
enough to allow for cases in which � i+1n is computed on initial estimators of
�0, and/or on estimators of nuisance parameters. Similarly the dependence
on (xn (�0) ; yn) allows for cases in which Eki+1 (z; �) depends on analytically
intractable moments and/or moments that do not belong in the structure of
the statistical model at hand. These are generally functions of � and are ap-
proximated either by analogous sample moments w.r.t. relevant functions of
yn and �, or their value at �0 is approximated by analogous sample moments
of xn (�0). This allows also for approximations of Eki+1 (z; �) when the latter
is partially computed at �0, enabling the derivation of estimators that emerge
from partial optimization.

Remark R.14 In the trivial case where � i+1n = Eki+1 for any i, assump-
tion A.4.3 follows from a relevant almost sure continuity assumption on the
highest order derivative of the criterion function from which the auxiliary
estimator emerges, or from an identical assumption on a criterion func-
tion (J�n (�)) such that P

�
sup�2B jJn (�)� J�n (�)j > �n

�
= o (n�a�1), for

a real sequence �n = o (n�a�1) such that the metric space carried by the
set fJn; J�n : n 2 Ng is compact. Notice that due to the fact that � is com-
pact, sup�2� kEki+1 (z; �)k < Mi , 8i = 1; : : : ; 2a and Eki+1 (z; �) is uni-
formly continuous on �, 8i = 1; : : : ; 2a. Furthermore, assumption A.4.4
attributes the Lipschitzian property to the DrEki+1 (z; �), 8i = 0; : : : ; 2a, for
r = 1; : : : ; d on B"2 (�0). Hence, by lemma 3.3 of Andrews (2002) there exists
a MW > 0 such that P (kW �

n (�
�
n)k > MW ) = o

�
n�a

��
.

We complete our assumption framework by an extension of assumption
A.2 that allows for analogous moment approximations of the estimators to be
de�ned in the next section. Let fn (�) be the vector containing the elements
ofW �

n (�)�W � (�) and their derivatives up to order d+1 for any � 2 B"2 (�0).
Let qn (�) be the vector containing the elements of � i+1n (xn (�) ; yn; �) �
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Eki+1 (z; �) and their derivatives up to order d+ 1 at � for all i = 1; : : : ; 2a,
for any � 2 B"2 (�0). Let also m�

n (�0) be (m
0
n (�0) ; f

0
n (�0) ; q

0
n (�0))

0.

Assumption A.5
p
nm�

n (�0) admits a valid Edgeworth approximation of
order s.

Remark R.15 It is trivial that under assumption A.5

Q
�Dr� i+1n (�0)�D

rEki+1 (z; �0)
 > "� = o �n�a�� , 8" > 0, r = 0; 1; 2

In what follows we suppress the dependence of the approximating func-
tions � i+1n on the generalized sample space for notational convenience.

3 Definition of the GMR2� (a) Estimators
We are now ready to de�ne a new class of IE based on these moment approx-
imations. For notational convenience let �n (�; a) =

�
�2n (�) ; : : : ; �2a+1n (�)

�
and bn (�; �n (�; a)) = b (�) +

P2a
i=1

1
n(i+1)=2

� i+1n (�).

De�nition D.4 The GMR2� (a) estimator is de�ned by

k�n � bn (�n (a) ; �n (�n (a) ; a))kW �
n(�+n ) = inf

�2�
k�n � bn (�; �n (�; a))kW �

n(�+n )

hence GMR2� (a) = q
�
W �
n

�
�+n
�
; bn (�; �n (�; a)) ; �n

�
.

Remark R.16 The existence of GMR2� (a) is facilitated by assumptions
A.4 and A.3, and remark AR.1 in the appendix.

Remark R.17 Due to remark R.9 we identify the GMR1 estimator with
the GMR2� (0) one, and this justi�es the relevant choice of notation.

Remark R.18 Due to the fact that the analytical derivation of bn (�; �n (�; a))
for �nite a is generally easier than the analogous task for bn (�) theGMR2� (a)
estimators can surpass the nested optimization burden associated with the
GMR2 estimator. Of course it increases the analytical burden, but this is a
shank cost.

Remark R.19 In the case that �n = �n (0), and b (�) = �, we consider a
variant of the GMR2� (a), de�ned as
��n (a) = �n (0) �

P2a
i=1

1
n(i+1)=2

� i+1n (�n (0)), almost surely, the computation
of which is of minimal arithmetic burden. In this case ��n (a) admits an-
other interesting characterization. Consider without loss of generality the

11



issue of minimization of
�n (0)� � �P2a

i=1
1

n(i+1)=2
� i+1n (�n (0))

2. Due to
the structure of the problem, the solution could be characterized as a limit
of a Newton recursion scheme, in which the ith-term of the recursion would
be de�ned as �(i)n = �n (0) �

P2a
i=1

1
n(i+1)=2

� i+1n

�
�(i�1)n

�
, for i = 0; 1; 2; : : :,

and �(i�1)n = �n (0). It is obvious that �
�
n (a) = �(1)n , hence it is an one-

computational step approximation of GMR2� (a). ��n (a) is widely used in
the statistical literature in the case where a = 1

2
, and in this case it is called

"feasibly bias correction" of �n (0). We will consider how some of its proper-
ties are related to the analogous ones of GMR2� (a) in subsequent sections.
In this instance we note only the following:

1. it is possible that for some n and some measurable subset of Rm of
positive probability, ��n (a) =2 � or it will be in the boundary of � with
positive Q probability, as it will be the case in some of the examples
considered later.

2. there is a direct analogy between the GMR2� (a) and ��n (a) as its one-
computational step approximation, and the GMR2 and the bootstrap
estimator as its one-computational step approximation.

4 Higher Order Asymptotic Theory
In this section the �rst part of the results are presented. This part concerns
the asymptotic properties of the newly de�ned estimator. Consistency, as-
ymptotic tightness, Edgeworth and moment approximations are established
in that order.

4.1 Consistency
It is proven that the GMR2� (a) is contained in an arbitrary neighborhood of
�0 with probability 1� o

�
n�a

��
. It is also shown, that given consistency, the

particular estimator has a very convenient characterization as a near mini-
mizer of the GMR1 and GMR2 criteria. Analogous relations are established
between GMR2� (a) and GMR2� (a0), for any a, a0 in A.

Lemma 4.1 Under assumptions A.4, A.3 and A.2 8" > 0,

Q

�
sup
�

��J ��n; bn (�; �n (�; a)) ;W �
n

�
�+n
��
� J (b (�0) ; b (�) ;W � (�0))

�� > "� = o �n�a��
and therefore

P (k�n (a)� �0k > ") = o
�
n�a

��
12



Remark R.20 In the light of lemma 4.1 it is evident that for example, ��n
could be de�ned as ��n (a) for some choice of the weighting matrix sequence
(e.g. Wn =Idq�q).

The GMR2 estimator �n is de�ned by

J
�
�n; E�n (�n) ;W

�
n

�
�+n
��
= inf

�
J
�
�n; E� (�n) ;W

�
n

�
�+n
��

From lemma 4.1 we obtain the following results. These concern possible
characterizations of the estimator under examination. We employ �rst of the
following proposition.

Proposition 4.2 If fbng is equi-Lipschitz on �, then

Q

�
sup
�2�

kbn (�)� bn (�; �n (�; a))k > "
�
= o

�
n�a
�
;8" > 0

Remark R.21 The assumption of bn being equi-Lipschitz on�, follows from
assumption A.1 (see Arvanitis and Demos 2010, lemma 3.3).

Corollary 4.3 Under the assumptions of lemma 4.1 and proposition 4.2 we
have that

J
�
�n; E�n(a) (�n) ;W

�
n

�
�+n
��
� J

�
�n; E�n (�n) ;W

�
n

�
�+n
��
+ �n

with P (�n > ") = o
�
n�a

��
, a� = s�1

2
, 8" > 0 and �n is almost surely non

negative.

Remark R.22 The examined estimator is essentially an �n-GMR2 estima-
tor (approximate minimizer of the GMR2 criterion). The �n (1) estimator
(if it exists) is almost surely equal to the GMR2 estimator for every n greater
than some n� 2 N. In the same respect, and in the light of paragraph 1.5
of Gourieroux et al. (2000), when �n is a consistent estimator of �0, i.e. the
binding function is, at least locally, the identity, we obtain that the ��n (1)
(if it exists) is almost surely equal to the bootstrap estimator for every n
greater than some n� 2 N. Hence, we obtain an analogy in which the GMR2
estimator can be perceived as a limiting GMR2 � estimator, and the bootstrap
estimator, which is an one computational step approximation of the former
is a limit of the one step computational approximation of the latter (see also
remark R.19.2).

Remark R.23 We cannot be more informative on the minimum rate of
convergence to zero of any real sequence that bounds �n with probability

13



1 � o
�
n�a

��
, due to the lack of information with respect to the analogous

rate of uniform convergence of bn (�) to b (�). However, ifE��n � b (�)�X1

i=1

1

n
i+1
2

Eki+1 (z; �)

 = o �n�a�
for any a 2 A, uniformly on �, then sup�2� kbn (�)� bn (�; �n (�; a))k =
o (n�a) for � i+1n (�) = Eki+1 (z; �), for any i = 1; : : : ; 2a, and therefore it is
easy to see that P (�n > n) = o

�
n�a

��
for n = o (n�a). It follows that

if a ! 1, hence a� ! 1, P (�n > n) = o (n�a) for n = o (n�a) for all
a and therefore fGMR2gn is asymptotically indistinguishable as a sequence
from fGMR2� (1)gn hence we obtain the characterization of the GMR2
estimator as a GMR2� (1) one, with the obvious abuse of terminology. An
analogous asymptotic relationship can be established between the sequences
of the �rst order approximations of the aforementioned estimators, thereby
identifying ��n (1) with the bootstrap estimator. In this respect we justify
the commutative diagram presented in the introduction.

The previous reasoning can also establish analogous relations between
GMR2� (a) and GMR2� (a0) estimators, for a 6= a0 with a more detailed de-
scription of he structure of the error of the analogous approximation. With-
out loss of generality, let a > a0.

Corollary 4.4 Under the assumptions of 4.1, for both a and a0, there exists
a real sequence n = o

�
n���

1
2

�
such that

J
�
�n; bn (�n (a

0) ; a) ;W �
n

�
�+n
��
� J

�
�n; bn (�n (a) ; a) ;W

�
n

�
�+n
��
+ �0n

with P (�0n > n) = o
�
n�a

��
, where � =

�
1
2
+ " if a = 1

2

a0 if a > 1
2

with 0 < " < 1
2
.

Remark R.24 Again, any GMR2� (a0) is an approximate GMR2� (a) for
any a > a0. This is particularly valid when a0 = 0, sinceGMR1 = GMR2� (0).

4.2 Asymptotic Tightness and Validity of Edgeworth Approximation
In this paragraph, we are concerned with the higher order approximation of
the distribution of GMR2� (a). We essentially rely on the previous results,
the local di¤erentiability of the criterion from which it emerges and lemma
AL.2 presented at the appendix.

Lemma 4.5 Under the assumptions of corollary 4.4, there exists an f�00ngn,
with P (

p
n k�00nk > 0n) = o

�
n�a

��
, and 0n = o (n�") for some " > 0, andp

n (�n (a)� �n (0)) = �00n with probability 1� o
�
n�a

��
.
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The validity of the Edgeworth expansion of
p
n (�n (a)� �0) of order s =

2a� + 1 can now be established by assumption A.2, lemma 4.5 and corollary
AC.1 presented in the appendix. In this case the sequence of distributions of
the aforementioned estimator is also approximated in the o

�
n�a

��
- convex

variational distance by the relevant sequence of distributions of an sequence
of random vectors that are polynomial in a standard normal random vector
and in 1p

n
.

Lemma 4.6 Under the assumptions of lemma 4.5, the GMR2� (a) admits
an Edgeworth expansion of order s = 2a� + 1.

Lemma 4.7 Under the assumptions of corollary 4.6, there exists a C� > 0
such that P

�p
n k�n (a)� �0k > C� ln1=2 n

�
= o

�
n�a

��
.

4.3 Valid First Moment Approximation
Lemma 4.6 in the light of lemma AL.4 along with assumption AL.2 (see ap-
pendix B) and due to the fact that a� > a, provide with an approximation of
the sequence of �rst moments of the de�ned estimator, and therefore with an
analogous approximation of the bias. In order to facilitate the presentation,
we make the following de�nition.

De�nition D.5 Let fxng and fyng denote two sequence of random elements
with values in an normed space. We denote the relation xn s

a
yn when

kE (xn � yn)k = o (n�a).

Remark R.25 Due to the positive de�niteness of the norm and the triangle
inequality s

a
is an equivalence relation on the set of sequences of random

elements whose �rst moments converge to the same limit.

Now, under additional conditions, similar to integrability ones, the se-
quence of �rst moments of

p
n (�n (a)� �0) is again approximated, in the

relevant sense, by the sequence of moments of the aforementioned polyno-
mial sequence. These are summarized in the following lemma.

Lemma 4.8 Under the assumptions of lemma 4.6, there exists a sequence
of polynomial functions of z and 1p

n
, say g

�
z; 1p

n
; �0

�
, such thatE�0 �pn (�n (a)� �0)�� E �g�z; 1pn; �0

�� = o �n�a�
We immediately obtain the following corollary.

15



Corollary 4.9 Under the assumptions of corollary 4.6, the expansion ofp
n (�n (a)� �0) coincides with the formal expansion.

Remark R.26 g
�
z; 1p

n
; �0

�
is computed by the inversion of the Taylor ex-

pansion of the �rst order conditions that de�ne the estimator with respect
to
p
n (�n (a)� �0), the replacement of the terms that admit an Edgeworth

expansion by relevant polynomials of z emerging by the same reasoning, and
by the grouping of terms of the same asymptotic order due to the previous
corollary.

For the particular case of a = 1
2
, we may use the following. The relevant

approximation concerning the auxiliary estimator, in the case where a = 1
2
,

and a� = 1 in view of assumption A.2 is of the form g
�
z; 1p

n
; �
�
= k1 (z; �)+

k2(z;�)p
n
, where as commented aboveEk1 (z; �) = 0q�1 on�, which also provides

the means upon which the de�nition of GMR2�
�
1
2

�
is based. The result can

be partially retrieved from lemma 4.3 of Arvanitis and Demos (2010), where
its validity is also discussed. Similarly, due to the particular assumption we
have that

p
nqn (�0) s

1
2

kq1 (z; �0) +
kq2(z;�0)p

n
, where Ekq1 (z; �0) = 0k�1. Finally

the same is true for ��n, whereas
p
n (��n � �0) s1

2

q�1 (z; �0) +
q�2(z;�0)p

n
, where

Eq�1 (z; �0) = 0p�1.
In view of corollary 4.9, we are able to prove the analogous result for

GMR2�
�
1
2

�
, using a procedure analogous to the one in R.26.

Lemma 4.10 Under the assumptions of corollary 4.9 and for a = 1
2
, then

g
�
z; 1p

n
; �0

�
= q1 (z; �0) +

1p
n
q2 (z; �0) where

q1 = q1 (z; �0) = BW
� (�0) k1

and

q2 = q2 (z; �0) = BW
� (�0)

 
(k2 � Ek2)�

1

2

�
trq1q

0
1

@2bj (�0)

@�@�0

�
j=1;:::;q

!

+

 �
@b0 (�0)

@�
W � (�0)

@b (�0)

@�0

��1 �
@bj (�0)

@�@�0
q1

�
W � (�0)

!
Ak1

+

 
Bw� (z; �0) +B

�
@

@�=
W �
rj (�0) q

�
1

�
r;j=1;:::;q

!
Ak1
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A =

�
Idq � @b(�0)

@�0

�
@b0(�0)
@�

W � (�0)
@b(�0)
@�0

��1
@b0(�0)
@�

W � (�0)

�
,

B =
�
@b0(�0)
@�

W � (�0)
@b(�0)
@�0

��1
@b0(�0)
@�

, and k1 = k1 (z; �0), k2 = k2 (z; �0), and

q�1 = q
�
1 (z; �0) are as in the proceeding paragraph.

Remark R.27 Lemma 4.8 is in accordance with the well known result that
the second order bias of estimators of this sort hinges on a) non linearity
of the estimating equations, b) di¤erence in the relevant dimensions and c)
stochastic weighting (see for example [15]).

Remark R.28 Notice that neither q1 nor q2 depend on k
q
1 or k

q
2. We would

not expect this to hold in higher order expansions concerning �n
�
1
2

�
.

When p = q, then A = 0q�q and BW � (�0) =
�
@b(�0)
@�0

��1
. Consequently,

we trivially get the following corollary.

Corollary 4.11 Under the assumptions of lemma 4.10 and for p = q we
obtain

q1 =

�
@b (�0)

@�0

��1
k1

and

q2 =

�
@b (�0)

@�0

��1 
k2 � Ek2 �

1

2

�
trq1q

0
1

@2bj (�0)

@�@�0

�
j=1;:::;q

!

Furthermore, if @
2bj(�0)

@�@�0 = 0, e.g. b (�) is linear, we trivially get:

Corollary 4.12 If in addition to the provisions of the previous corollary
@2bj(�0)

@�@�0 = 0p�p 8j = 1; : : : ; q, E�0q2 = 0p, hence the estimator is approxi-
mately unbiased of order s = 2.

Remark R.29 As it will become apparent in the next section, the previous
result can easily be extended in the case of the ��n (a) estimator for any a � 1

2
.

That is, if
@2bj(�0)@�@�0

, vanishes 8j , then ��n (a) becomes second order unbiased
at �0.

For the geometric de�nition of the local canonical form, see Arvanitis
and Demos (2010), section 4.2, which is derived by theorem 10.2 of Spivak
(1999) (p. 44). This notion essentially depends on the local isomorphism
property of the binding function and essentially concerns the choice of the
auxiliary coordinates so that the binding function becomes canonical around
�0, hence locally linear. In this case, the GMR2�

�
1
2

�
estimator is locally

17



second order unbiased, as the next corollary demonstrates, if the weighting
matrix is non-stochastic.

Corollary 4.13 If b (�0) is in local canonical form and W �
n (�0) = W � =�

W1;p�p W3;p�q�p
W 0
3 W2;q�p�q�p

�
then

q1 =
�
Idp�p W�1

1;p�pW3;p�q�p
�
k1

and
q2 =

�
Idp�p W�1

1;p�pW3;p�q�p
�
(k2 � Ek2)

Remark R.30 TheGMR2�
�
1
2

�
estimator is (locally) second order unbiased

even in cases where q > p, when there is non stochastic weighting given that
the binding function is in local canonical representation. However, given an
admissible auxiliary statistical model, there always exists an auxiliary parame-
terization such that the previous result is valid, proviso the relevant weighting
structure.

Remark R.31 We now consider the case of the one-computational step ap-
proximation of GMR2�

�
1
2

�
, named ��n

�
1
2

�
and described in remark R.19. It

can be veri�ed using the results of Andrews (2002) that
p
n
�
��n
�
1
2

�
� �0

�
v
1=2

k1+
1p
n
(k2 � Ek2), thereby it is second order equivalent to

p
n
�
GMR2�

�
1
2

�
� �0

�
,

due to transitivity, whilst it is of minimal computational burden. However,
we make the following observations:5

1. Due to remark R.19.1 ��n
�
1
2

�
could be non-de�nable for small n, on

subsets of the sample space of positive probability.

2. They could be non-equivalent with respect to higher order relations,
whereas the analogous expansions could favorGMR2�

�
1
2

�
, with respect

to its higher order bias structure.

3. The same could be true even with respect to the second order relation,
when �0 lies on the boundary of the parameter space, in which case Ek1
could be di¤erent from zero. We suspect that in this case GMR2�

�
1
2

�
would possess a more favorable second order bias structure than its one
step computational approximation. The validation of this statement
is out of the scope of the present paper, as it requires a theory of
higher order approximations of distributions of M-estimators when the
parameter is on the boundary.

5Notice that analogous ascertainments could hold with respect to the issue of the kth

order comparison between ��n (a) and �n (a) for arbitrary a; k.
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5 Recursive Indirect Estimation
In the current section we are concerned with the issue of extending the notion
of indirect estimation in order to allow for procedures that potentially involve
an arbitrary number of auxiliary steps. This will enable the construction of
multistep IE that are approximately unbiased of some prescribed order with-
out explicit reparameterizations. These will provide a procedure of recursive
bias correction of any desired order of an arbitrary estimator of �0 that admits
a valid moment approximation of the same order. The question addressed in
this section can now be stated as follows:

Problem 1 Given the validity of assumptions A.2-A.5 for s � 2 (a+ 1) is
it possible to de�ne an approximately unbiased indirect estimator of order
2a+ 1?

We �rst distinguish between additional and stronger notions of approxi-
mate unbiaseness to the one discussed in the previous section that is obviously
concerning only �0.

De�nition D.6 An estimator admitting a moment expansion such as the
ones considered in the previous sections, will be termed:

1. approximately unbiased of order s = 2a+1 at �0 if the relevant expan-
sion is valid, and

p
n (�n � �0) s

a
g
�
z; 1p

n
; �0

�
, whereE

�
g
�
z; 1p

n
; �0

��
=

o (n�a),

2. locally approximately unbiased of order s = 2a + 1 around �0, if the
relevant expansion is valid, and

p
n (�n � �) s

a
g
�
z; 1p

n
; �
�
, where

E
�
g
�
z; 1p

n
; �
��
= o (n�a) in an neighborhood of �0 and

3. approximately globally unbiased if it is locally unbiased around �0 for
every neighborhood of �0.

We have therefore three notions of approximate unbiaseness that are pre-
sented in the order of increasing strength. We make the following assumption.

Assumption A.6 �n is an estimator of �0, i.e. the binding function is,
at least locally, the identity, that satis�es assumption A.2 for some s� �
2 (a+ 1).
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Notice that this does not pose any loss of generality compared to the
previous sections, since �n could itself be an IE of �0, given an auxiliary
model that does not coincide with the one at hand. In this respect any
concern about the asymptotic behavior of sequences of weighting matrices
becomes asymptotically irrelevant.
In order to economize the presentation, we also make the following de�-

nition.

De�nition D.7 For any a+ � a we denote with Zn (a+; �n) the set of func-
tions of the form �n (�; a

+) =
�
�2n (�0) ; : : : ; �2a++1n (�0)

�
where for each

i = 1; : : : ; 2a+, � i+1n satis�es assumptions A.4 and A.5 given assumption
A.6 for �n, under the convention that if �n is s

th
� -order locally unbiased for

any s� � s, then � i+1n (�) = 0 Q � a:s: for any 1 < i � s� � 1 and any � at
the particular neighborhood of �0, for any �n (�; a

+) 2 Zn (a+; �n).

This convention is motivated by the fact that Zn (0; �n) = f0�g due to re-
mark R.9 and the de�nition of the examined estimators. In the same respect
we denote with GMR� (�n (�; a

+)) either GMR2� (a+) or ��n (a
+) (which is

discussed in remark R.18) w.r.t. �n (�; a
+) 2 Zn (a+; �n).6

De�nition D.8 Given assumption A.6 and a1; a2 � a, let

GMR� (�n (�; a2))~GMR� (�n (�; a1))

denote the indirect estimator emerging as follows:

1. GMR� (�n (�; a1)) is derived using �n (�; a1) 2 Zn (a1; �n), and

2. GMR� (�n (�; a2)) is derived using �n (�; a2) 2 Zn (a2; GMR� (�n (�; a1))).

In this respect theGMR� (�n (�; a2))~GMR� (�n (�; a1)) is an indirect es-
timator emerging in essentially three steps, the �rst one being �n. Obviously
such estimators can be derived by making the number of steps arbitrary, yet
�nite. Hence, in general

~Ki=1GMR� (�n (�; af (i))) + GMR� (�n (�; af (K)))~
�
~K�1i=1 GMR

� (�n (�; af (i)))
�

where in the (K + 1)th step the GMR� (�n (af (K))) is derived using as an
auxiliary the ~K�1i=1 GMR

� (�n (�; af (i))), forK 2 N, and af : f1; 2; : : : ; Kg !
6Considering the notions that follow, it would be more appropriate to de�ne Z (a) as

the set of equivalence classes of approximating functions, with respect to the relation that
renders two such functions equivalent, i.e. i¤ they de�ne the same GMR2� estimator. We
choose to disregard this detail for notational convenience.
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f0; : : : ; ag. Notice that [GMR� (�n (�; a3))~GMR� (�n (�; a2))]~GMR� (�n (�; a1))
is non de�nable, a fact that does not permit the set of estimators emerging
via ~ to be closed under ~, hence prevents this set from obtaining a relevant
algebraic structure.

Remark R.32 It is trivial to see that in the present framework

GMR� (�n (�; a))~GMR1 = GMR1~GMR� (�n (�; a)) = GMR� (�n (�; a))

for any a.

Remark R.33 The de�nition of GMR� (�n (a2)) ~ GMR� (�n (a1)) essen-
tially depends on the validity of assumption A.2 for GMR� (�n (�; a1)). A.2
follows from the results of the previous sections for �n (a1) and �

�
n (a1) along

with the results of Andrews (2002) and remark R.19 for the latter, for
a� > a � a1 and the fact that GMR1~�n = �n due to previous remark and
assumption A.6. The assumptions on the di¤erentiability of the approxima-
tions could follow from analogous assumptions on continuous di¤erentiability
of adequate order of the criterion from which �n emerges. These along with
obvious generalizations of A.4 and A.5 would make Zn (a2; GMR� (�n (�; a1)))
non empty.

Lemma 5.1 Under assumption A.6 and if �n is approximately locally un-
biased of order (2a1 + 1), for a1 � a, then GMR� (�n (�; a2))~ �n is approx-
imately locally unbiased of the same order, 8a2 � a1.

Lemma 5.2 If �n is approximately locally unbiased of order (2a1 + 1), for
a1 � a, then GMR� (�n (�; a2)) ~ �n is approximately locally unbiased of
order 2 (a1 + 1), 8a2 > a1.

Hence a solution to the posed problem emerges from the following algo-
rithm.

Algorithm Suppose that �n is approximately locally unbiased of order (2a1 + 1),
for a1 < a:

� set �(0)n = �n and a
(0) = a1,

� for a(i) = a(i�1)+ 1
2
, i = 1; : : : ; 2 (a� a1), set �(i)n =GMR�

�
�n
�
�; a(i)

��
~

�(i�1)n where �n
�
�; a(i)

�
2 Zn

�
a(i); �(i�1)n

�
. The expansions needed for

the derivation of �(i)n can be obtained from the initial one and calcula-
tions similar to the proof of lemma 5.2, due to which it is approximately
locally unbiased of order

�
2a(i) + 1

�
.
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Then �(2(a�a1))n is approximately locally unbiased of order 2a(2(a�a1))+1 =
2a + 1 as required due to lemma 5.2. Obviously the above construction
generalizes the case where a = 1

2
and a1 = 0, as implied by the results of the

previous section.

Remark R.34 In the case the ��n
�
a(i)
�
is needed for some i, remarks R.19

and R.31 would also hold. Global approximate unbiaseness can be obtained
by strengthening the analogous property for �n.

Remark R.35 Notice that if we are interested in estimators that are ap-
proximately locally unbiased of order (2a+ 1) at �0, then remark R.33 for
�n = �(s�1)n can be reformulated so that m�

n (�) has the desired asymptotic
approximation only at �0.

Remark R.36 The aforementioned recursive procedure can be perceived as
an approximation of the local canonical representation of E� (�n) as a!1,
something which is very important for practical purposes.

Let us now turn our attention to two examples.

6 Examples
In this section we apply the suggested estimators to, approximately, correct
the bias of various estimators in theMA(1) model as well as correct the bias
of the MLEs of the parameters in an ARCH(1) process. As an additional
veri�cation of our theoretical results we perform a small simulation exercise,
for each example. Let us consider the �rst one.

6.1 MA(1)
Assume the invertible MA(1) process

yt = ut + �ut�1; t = :::;�1; 0; 1; :::; j�j < 1; ut
iidv (0; �2):

In this case, the GMR1 estimator of � is given by 1�
p
1�4�2n
2�n

, where �n
is the QMLE of the AR(1) coe¢ cient of an AR(1) auxiliary model (see
Gourieroux et al. 1993, and Demos and Kyriakopoulou 2008). This is also
the �n (0) estimator (see section 2 above). Notice that in this case � is a
compact subset of (�1; 1), b (�) = �

1+�2
, and B is a compact subset of

�
�1
2
; 1
2

�
.
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From the calculations in appendix C we have that

E
�p
n (GMR1� �)

�
=

1p
n
�
1 + 5�2 + 2�4 + �6 � �8�

1� �2
�3 (3)

as in Demos and Kyriakopoulou (2008). As expected the GMR1 is not 2nd

order unbiased as the binding function is not linear.
Now a third step estimator of �, GMR2S, simply solves the equation

�n =
�

1+�2
� 1

n

�
�4 + 2�3 � 2�2 + 2� + 1

�
�2+�+1

(�2+1)
3 . In this case, the binding

function is the identity and consequently GMR2S is 2nd order unbiased (see
appendix C for details). In fact, this is the resulting estimator by applying
the GMR2�

�
1
2

�
on GMR1 (see section 5).

Alternatively, as a second step estimator, one can consider the application
of GMR2�

�
1
2

�
on �n, named GMR2R. As the binding function is not linear,

this estimator is not 2nd order unbiased (see appendix C for calculations),
apart from � = 0, i.e. is locally 2nd order unbiased at 0 by the terminology
of section 5. Hence

E
�p
n (GMR2R� �)

�
=

1p
n

�2 + 4�4 + �6 + �8 + 1�
�2 + 1

� �
�
3� �2

��
1� �2

�3 : (4)

However, applying GMR2�
�
1
2

�
on GMR2R, name it GMR2RS, we have

that, as the binding function is the identity in this case, GMR2RS is 2nd

order unbiased. Finally, estimating � by the GMR2 we have that

E
p
n (GMR2� �) = 1p

n

�
�
3� �2

�
1� �2

�2 + 4�4 + �6 + �8 + 1�
1 + �2

�5 ; (5)

i.e. the GMR2 is not 2nd order unbiased, as expected due to nonlinearities
in the binding function. Comparing equation (4) with (5) it is obvious that
GMR2 is less 2nd order biased than GMR2R for all values of �, apart from
� = 0 in which case both are 2nd order locally unbiased.
In terms of simulations, we draw a random sample of n 2 f50; 100; 150; 250;

500; 750; 1000; 1500; 3000g observations from a non-central Student-t distri-
bution with non-centrality parameter � = 1 and � = 20 degrees of free-
dom, standardized appropriately so that they have zero mean and unit vari-
ance. For each random sample, we generate the MA(1) process yt for � 2
f�0:4; 0:4g. We evaluate �n and if the estimate is in the [�0:499999; 0:499999]
interval we estimate all estimators, otherwise we throw away the sample and
draw another one. For each retained sample we evaluate eight estimators,
i.e. the GMR1, GMR2, GMR2S, GMR2R, GMR2RS, the QMLE of �,
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say QMLE, the second step GMR2�
�
1
2

�
on the QMLE, say QMLES, as

well as the feasibly bias corrected estimator of GMR1, BCGMR1, where
the estimated value of � is employed in equation 3 for bias correction, i.e.

BCGMR1 = ��n (0)�
1

n
��n (0)

1 + 5 [��n (0)]
2 + 2 [��n (0)]

4 + [��n (0)]
6 � [��n (0)]

8�
1� [��n (0)]

2�3 :

Out of these estimators only GMR2S, GMR2RS, QMLES and BCGMR1
are 2nd order unbiased. We set the number of replications to 100000.
For the GMR2 estimator an additional question arises from the presence

of E��n in its objective function (see section 2). In general this expecta-
tion is unknown and consequently is approximated by an average of, say H,
monte carlo replications (see Gourieroux et al. 1993). Of course under the
assumptions in Gourieroux et al. (1993) as H !1 we have that the average
converges to the expected value. Nevertheless, in practice a �nite number
of H is employed. Consequently, it could be of interest to compare the the-
oretical results, i.e. when H = 1, with those in practice, i.e. when H is
�nite. Clearly, the larger H is the better the approximation is and the more
cputime is needed per iteration within the maximization routine. The second
e¤ect is of course undesirable. Furthermore, on this point, one expects the
GMR2S to be faster than the GMR2, however how much faster is an open
question.
Consequently, we employ two values of H, i.e. H = 10 and H = 200,

denoting them by GMR2 (10) and GMR2 (200), respectively. Taking the
average over the 100000 replications, in �gure 1 we present the absolute
value of the biases of the estimators, multiplied by n, i.e. nE jGMR2 (i)� �j,
i = 10; 200, where the true � is �0:4. It is obvious that for H = 10 the bias
of the estimator is far away from the approximate, up to o

�
1
n

�
, absolute bias

which equals to 0:816 for this value of � (see equation 5). Consequently, in
what follows we consider only the GMR2 (200) one.
In �gure 2 we present the absolute biases, multiplied by n, of the biased

estimators. It seems that, apart from the GMR2R and GMR2, 250 obser-
vations are enough for the estimators to reach their asymptotic approximate
bias. For � = �0:4 these are 1:252 and 0:4 for the GMR1 and QMLE,
respectively. For the GMR2R, 500 observations are needed to reach its as-
ymptotic bias (2:094), whereas 3000 are needed for the GMR2.
In �gure 3 the absolute biases, multiplied by n, of the unbiased estimators

are presented. It is obvious that, apart from the BCGMR1 estimator, all
estimators are by all means unbiased for sample size bigger or equal to 250.
The same is true for the BCGMR1 one but for sample size bigger or equal
to 500. It is worth noticing that, as expected, in almost all sample size cases
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the multistep bias corrected estimators (GMR2S and GMR2RS) are less
biased than the feasibly bias corrected GMR1 estimator (BCGMR1).
It is worth noticing that, for n = 250, the average cpu time per iteration

for the GMR2S estimator is 2:47 � 10�4 seconds, whereas the equivalent
time for the GMR2 estimator is 2:88 seconds. Consequently, the suggested
indirect estimator is not only 2nd order unbiased but the procedure is very
fast, as well, at least for this model.7

The results for � = 0:4 are qualitatively the same and are not presented
to conserve space. Let us now turn our attention to the second example.

6.2 ARCH(1)
Consider the second order stationary ARCH (1) model

yt = u
1=2
t zt; ut = �1 + �2y

2
t�1; t = :::;�1; 0; 1; :::;

�1 > 0; �2 2 (0; 1) zt
iidv N(0; 1):

For the above model we have, from Iglesias and Linton (2007), and Iglesias
and Phillips (2005), that

E
�b�1 � �1� = n�1G+ o �n�1� ; E

�b�2 � �2� = n�1G� + o �n�1�
where b�1 and b�2 are the MLEs of �1 and �2, n is the sample size of the
observed process yt, and G and G� are given in the appendix.
We draw a random sample of n 2 f150; 300; 500; 750; 1000; 1500; 2000g

observations, plus 250 for initialization, from a standard normal distribution.
We perform 10000 replications. For each random sample, we generate the
ARCH(1) process yt with �1 = 1:0 and �2 = 0:5, and we �nd the MLEs of
the two parameters, as well as the feasibly bias corrected ones as suggested in
Iglesias and Linton (2007), named IL, and the indirect estimator suggested
here, named AD. As the Hi and H�

i terms, for i = 2; :::; 7, (see appendix
C) involve summations up to the sample size, we truncate them in 10 and
40 and call these estimators IL � 10, IL � 40, and AD � 10 and AD � 40,
for the feasibly corrected estimators and the indirect ones, respectively (see
Iglesias and Linton 2007, and Iglesias and Phillips 2005).
In fact, these terms are evaluated from a long simulation with n = 100000,

where theMLE estimates are employed to generate the ARCH (1) process in
the case of the two IL estimators. For the two AD ones the summation terms
are treated as nuisance parameters, implicitly depending on the estimated

7All simulations have been performed to a computer with Intel i7 processor.
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parameters. Under the distributional assumptions of our experiment, the
validity of the above mentioned procedure, as well as the expansions, are
justi�ed (see Corradi and Iglesias 2008). This experiment elucidates remark
R.13. It is in this case that the Eki+1 are analytically intractable as functions
of �. Hence they are approximated in the manner described above. Notice
that in the spirit of the same remark, a variety of approximations could
also be used, that could additionally involve approximations of some (or
all) of the unknown moments involved in the expansions using the observed
sample (instead of or in addition to the Monte Carlo sampling), as well as
the computation of some of the approximating functions on the QMLE etc.
We did not employ such cases that can be easily adopted in the framework
of assumption A.4 for reasons of presentational convenience.
In few cases the feasibly bias corrected estimator of �2 turns out to be

either greater than 1 or smaller than 0 (see remark R.19). In these cases we
throw away the particular Monte Carlo samples and draw new ones.8

In �gure 4 the absolute biases, multiplied by n, of the estimators of the
constant �1 are presented. It is immediately obvious that both estimators,
IL� 10 and AD� 10, do not correct the bias of the MLE, for n � 750. For
the 40�window estimators both partially only correct the bias of theMLE,
although for n = 2000 the biases of both estimators are close to their MC
errors (around 0:987). For the bias-corrected estimators of �2 (the ARCH
parameter), in �gure 5, it is obvious that all four estimators correct the bias
of the MLE. With the exemption of n = 1500, the 40� window estimators
are less biased than the 10�window ones and close to their MC error (0:894).
Notice also that in almost all sample size cases the AD� 40 estimator is less
biased than the IL� 40 one.

7 Conclusions
In this paper we de�ne a set of indirect estimators based on moment ap-
proximations of the auxiliary estimators and provide results concerning their
higher order asymptotic behavior. Our motivation resides on the following
properties that these estimators posses:

1. Computational facility as they are derived from procedures avoiding
the nested numerical optimization burden that is usually the case with
the simulated analog of the GMR2 estimator. This comes at the �xed

8In fact for n = 150 we observed that in 1.33% and 2.10% of the experiments the
resulting IL�10 and IL�40 estimator was greater than 1 or smaller than 0, respectively.
Of course for larger n these cases are fewer and for n � 750 there is none.
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cost of the analytical derivation of the approximation. This remark
also holds in cases where the analytical form of the approximation is
unknown and is in turn numerically approximated.

2. The GMR1 estimator has a convenient interpretation as an approxi-
mate minimizer of the criteria from which the considered estimators
are derived. This facilitates enormously the analytical derivation of
some of the asymptotic properties. Analogous results hold between
any pair of the estimators studied.

3. More generally, their asymptotic properties are analytically more tractable
than the analogous of the GMR2 estimator. For example, there is no
need of imposing rate of convergence conditions on the derivatives of
the error of approximation, since the result that would be based on
such a condition in the case of the GMR2 estimator, is now based on
local boundeness conditions of the parameter functions of the relevant
polynomials in 1p

n
.

We extend this class of estimators to multistep indirect estimators that in
conjunction with the previously mentioned results identi�es subclasses that
have potentially useful bias structure of any given order.
We demonstrated that the well known "feasibly biased corrected" estima-

tor is an one-computational step approximation of the suggested estimator.
As expected the later performed better, in terms of bias, in two examples. Of
course, one could apply the suggested procedures to more complex models
than the expository ones employed in this paper.
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Appendices

A Proofs of Lemmas, Propositions and Corollaries.
Proof of Lemma 4.1. We have that
Q
�
sup�2�

��J2 ��n; bn (�; �n (�; a)) ;W �
n

�
�+n
��
� J2 (b (�0) ; b (�) ;W � (�0))

�� > "� =
Q

�
sup�2�

��J2 ��n; bn (�; �n (�; a)) ;W �
n

�
�+n
��
� J2 (�n; bn (�; �n (�; a)) ;W � (�0))

��
+sup�2� jJ2 (�n; bn (�; �n (�; a)) ;W � (��0))� J2 (b (�0) ; b (�) ;W � (�0))j > "

�
�

Q
�
sup�2�

��J2 ��n; bn (�; �n (�; a)) ;W �
n

�
�+n
�
�W � (�0)

��� > "
2

�
+

Q
�
sup�2� jJ2 (�n; bn (�; �n (�; a)) ;W � (�0))� J2 (b (�0) ; b (�) ;W � (�0))j > "

2

�
.

Now, due to the triangle inequality, submultiplicativity A.4.3, A.2, R.11 and
R.12 we have for the �rst term of the last sum that it is less than or equal to
Q
�
sup�2�

�n � b (�)�P2a
i=0

1
n(i+1)=2

� i+1n (�)
2 W �

n

�
�+n
�
�W � (�0)

 > "
2

�
�

Q

 
sup�n2B(b(�0);"�1)

sup�2�
�n � b (�)�P2a

i=0
1

n(i+1)=2
� i+1n (�)

W �
n

�
�+n
�
�W � (�0)

1=2 > "
2

!
+

Q (�n =2 B (b (�0) ; "�1)) �

Q

� �
k�nk+ sup� kb (�)k+

P2a
i=0

1
n(i+1)=2

sup�2�
� i+1n (�)�W �

n

�
�+n
�
�W � (�0)

 > "
2

�
+

P (�n =2 B (b (�0) ; "�1)) �

P

�W �
n

�
�+n
�
�W � (�0)

 > "

2
�
c1+c2+

P2a
i=0

Mi

n(i+1)=2

�
�
+

P (�n =2 B (b (�0) ; "�1)) +
P2a

i=0Q
�
sup�2�

� i+1n (�) > Mi

�
= o

�
n�a

��
due

to remark R.11. For the second term we have that due to the continuous
mapping theorem 9� > 0 :
Q
�
sup� jJ2 (�n; bn (�; �n; a) ;W � (�0))� J2 (b (�0) ; b (�) ;W � (�0))j > "

2

�
�

Q (sup� jJ (�n; bn (�; �n; a) ;W � (�0))� J (b (�0) ; b (�) ;W � (�0))j > �) and due
to the triangle inequality, this is less than or equal to
Q
�
sup�

��n � b (�)�P2a
i=0

1
n(i+1)=2

� i+1n (�)
�
� (b (�0)� b (�))


W �(�0)

> �
�
�

Q
�
k�n � b (�0)k+

P2a
i=0

1
n(i+1)=2

sup�2�
� i+1n (�) > ��. The last term is less

than or equal to

Q

�
k�n � b (�0)k > �P2a

i=0
Mi

n(i+1)=2

�
+
P2a

i=0Q
�
sup�2�

� i+1n (�) > Mi

�
which

is obviously o (n�a). The result follows from the continuous mapping theorem
and assumption A.1.3 which implies that J (b (�0) ; b (�) ;W � (�0)) is uniquely
minimized at �0.
Proof of Proposition 4.2. We have thatQ (sup�2� kbn (�)� bn (�; �n (�; a))k > ") �
P
�
sup�2� kbn (�)� b (�)k > "

2

�
+Q

�P2a
i=1

1
ni+1=2

sup�2�
� i+1n (�) > "

2

�
�
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P
�
sup�2� kbn (�)� b (�)k > "

2

�
+Q

�P2a
i=1

Mi

ni+1=2
> "

2

�
+
P2a

i=0Q
�
sup�2�

� i+1n (�) > Mi

�
,

for some " > 0. Now due to assumption A.1.3 and due to the equi-Lipschitz
property of fbng, we have that fbn (�)� b (�)g is also equi-Lipschitz, hence
uniformly equicontinuous, hence sup�2� kbn (�)� b (�)k converges to zero uni-
formly on �, due to the fact that it converges pointwise by assumption A.2
and the Arzella-Ascolli theorem. Hence the �rst two probabilities are exactly
zero for large enough n, hence the result follows from remark R.11.
Proof of Corollary 4.3. From the de�nition of the two estimators we
obtain that
J
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n
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and the result follows with
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Proof of Corollary 4.4. As in the previous proof we have that
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Then we have that
P
�
sup�2�

��J ��n; bn (�; �n (�; a)) ;W �
n

�
�+n
��
� J

�
�n; bn (�; �n (�; a

0)) ;W �
n

�
�+n
���� > n

2

�
�

P
�
sup�2� k(bn (�; �n (�; a))� bn (�; �n (�; a0)))kW �

n(�+n ) >
n
2

�
�

P

 
sup�2� kbn (�; �n (�; a))� bn (�; �n (�; a0))k

W �
n

�
�+n
�
�W � (�0)

1=2
+sup�2� kbn (�; �n; a)� bn (�; �n (�; a0))k kW � (�0)k1=2 > n

2

!
�

2P
�
sup� kbn (�; �n; a)� bn (�; �n; a)k > c�

n
2

�
+P

�W �
n

�
�+n
�
�W � (�0)

 > K�,
for K > 0 and c� = 1

2
min

�
1p

kW �(�0)k
; 1p

K

�

31



Nowwe have that
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Proof of Lemma 4.6. The result follows directly from AC.1 in appendix
B due to lemma 4.5.
Proof of Lemma 4.7. It follows from lemma 4.6 and lemma 2 of Mag-
dalinos (1992).
Proof of Lemma 4.8. Lemma 4.6 assures that the GMR2� (a) estimator
admits an Edgeworth expansion of order s = 2a + 2, if assumption A.2 is
valid for a� = a + 1

2
. The rest follow from lemma AL.4 presented in the

appendix B.
Proof of Corollary 4.9. Lemma AL.1 (in appendix B) is valid since,
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1CCA and the application is justi�ed

by the fact that provision 1 holds due to A.2, and 4.7, 2 follows from A.2,
and A.3 and 3 follows from lemma 5 of [1] and A.2. The result follows from
corollary AC.2 of appendix B.
Proof of Lemma 4.10. Using the procedure described in R.26 and noting
that the derivatives of the estimating equations need not be approximated
as in the case of the GMR2 due to their form and assumptions A.2, A.5.4
and A.4. Holding terms of the relevant order, we thus obtain
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which is the required result.
Proof of Corollary 4.13. Follows from direct substitutions on the results

of lemma 4.10 by noting �rst that @b(�0)
@�0 =

�
Idp�p
0q�p�p

�
,
@b2j (�0)

@�@�0 = 0p�p 8j =
1; : : : ; q, and w� = 0p.
Proof of Lemma 5.1. For a2 = 0 the result follows from remark R.32.
For a2 � 1

2
we have that for large enough n by expanding analogously and

keeping terms up to O (n�2a1) we obtain

0p�1 =
p
n (�n � �0)�

2a2X
i=1

1

n
i
2

� i+1n (�0)� Id�
p
n (�n (a2)� �0)

due to the fact that any partial derivative of any order up to 2a1 of � i+1n
at �0 for any i = 1; : : : ; 2a2 is 0 due to the convention of de�nition D.7, and
therefore we obtain that

p
n (�n (a2)� �0) v

a1

p
n (�n � �0) due to the same

convention. The result follows since an analogous expansion would be valid
for any � at a relevant open neighborhood of �0 due to local approximate
unbiaseness of the assumed order.
Proof of Lemma 5.2. We have that for large enough n in the case where
the �nal computation concerns the �n (a�), by expanding analogously

0p�1 =
p
n (�n � �0)�

2a2X
i=2a1+1

1

n
i
2

� i+1n (�0)

�
 
Id+

2a2X
i=2a1+1

1

n
i+1
2

@� i+1n (�0)

@�0

!
p
n (�n (a2)� �0)

� : : :

due to the fact that any partial derivative of any order up to 2a2 of � i+1n
at �0 for any i = 1; : : : ; 2a1 is 0 due to the convention of de�nition D.7, and
therefore by keeping terms up to O

�
n�a1�

1
2

�
we obtain

p
n (�n (a2)� �0) s

a1+
1
2

p
n (�n � �0)�

1

na1+
1
2

�2a1+2n (�0)

s
a1+

1
2

2a1X
i=0

1

n
i
2

(ki+1 (z; �0)� Eki+1 (z; �0)) +
1

na1+
1
2

(k2a1+2n (z; �0)� Ek2a1+2n (z; �0))

and the result follows since an analogous expansion would be valid for any �
at a relevant open neighborhood of �0 due to local approximate unbiaseness
of the assumed order.
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B Proofs of General Lemmas and Corollaries.
In this appendix we include several results, either directly drawn from the rel-
evant references or simple extensions and/or corollaries of the latter. These
are employed throughout the main body of the paper. In the following we
denote by �n and 'n (the n

th terms of) generic (sequences of) random ele-
ments with values in Euclidean spaces, with Jn (the nth term of a sequence
of) stochastic functions de�ned on the product of the aforementioned spaces
and by J its pointwise stochastic (in the appropriate sense) limit. Recall
also that d = max (2a+ 2; 3). Next lemma concerns the derivation of the
validity of the Edgeworth expansion in any of the examined cases. It es-
sentially determines that the local approximation of

p
n (�n � �0) obtained

by the inversion of a polynomial approximation of the �rst order conditions,
has an error that is not greater that any o (n�a)-real sequence with proba-
bility 1 � o (n�a). This result, along with the provisions of corollary AC.1
that follows, establish that these two sequences have the same Edgeworth
expansions if any one of them has a valid Edgeworth expansion.

Lemma AL.1 If

1. P
�n 1

2 (�n � �0)
 > C ln1=2 n� = o (n�a),

P
�n 1

2 ('n � '0)
 > C� ln1=2 n� = o (n�a) for C;C� > 0,

2. @Jn(�;')
@�

is di¤erentiable of order d in a neighborhood of (�0; '0) and the
d order derivative is Lipschitz in this neighborhood (or in a subset of
it) the Lipschitz coe¢ cient is bounded with probability 1�o (n�a), and
@J2(�0;'0)
@�@�0 is positive de�nite,

3. P
�n 1

2 ('n � '0)� n
1
2� (Rn)

 > !�n� = o (n�a) with �,Rn, and !�n
analogous to the relevant quantities of the present lemma (see below)
that are derived in an analogous manner with a potentially di¤erent
Jn,

then there exists a smooth function �� : Rm ! Rp, that is independent
of n such that

P
�n 1

2 (�n � �0)� n
1
2�� (R�n)

 > !n� = o �n�a�
where R�n is the sequence of random elements with values on Rm, with com-
ponents the distinct components of @Jn(�0;'0)

@�
, andn

Dj1;j2

�
@Jn(�;')

@�

�
j(�=�0;'='0)

o
j1+j2=i
;i=1;::;d�1

, whereDj1;j2

�
@Jn(�;')

@�

�
= Dj2

' �D
j1
�

�
@Jn(�;')

@�

�
,

m = dim (R�n) and !n = o (n
�a) deterministic.

39



Proof. See Arvanitis and Demos (2010), lemma AL.2 or Andrews (2003)
lemma 9.

Lemma AL.2 Suppose that
p
n (�n � �0) admits a valid Edgeworth expan-

sion of order s = 2a+ 1. Let fxng denote a sequence of random vectors and
there exists an " > 0 and a real sequence fang, such that an = o (n�") and
P (
p
n kxnk > an) = o (n�a). Then any �n, such that P (

p
n (�n � �0 + xn) = �n) =

1� o (n�a), admits a valid Edgeworth expansion of the same order.

Proof. We have that supA2BC jP (�n 2 A)� P (
p
n (�n � �0 + xn) 2 A)j �

supA2BC jP (�n 2 A;
p
n (�n � �0 + xn) = �n)� P (

p
n (�n � �0 + xn) 2 A)j+

P (
p
n (�n � �0 + xn) 6= �n) = o (n�a) , the rest follows as in the proof of

lemma AL.3, in Arvanitis and Demos (2010).

Corollary AC.1 If a � " then �i (z) = ��i (z), 8i, and therefore the result-
ing Edgeworth distribution coincides with the initial.

We term the Edgeworth expansion of the random sequence n
1
2�� (R�n) as

the formal Edgeworth expansion of
p
n (�n � �0). Notice that the formal

expansion can be generally de�ned as the formal expansion of any other
random element whose distance from

p
n (�n � �0) is bounded by an o (n�a)-

real sequence with probability 1� o (n�a), in case that Jn is for example non
di¤erentiable.

Corollary AC.2 If
p
n (�n � �0) has a valid Edgeworth expansion and the

provisions of lemma AL.1 hold then this coincides with the formal expansion.

Proof. Trivial consequence of corollary AC.1.
Now, denote by Pn the measure P � (

p
n (�n � �0))�1. The following

lemma provides another asymptotic approximation of fPng obtained from
the validity of an Edgeworth approximation.

Lemma AL.3 Suppose that
p
n (�n � �0) has an Edgeworth distribution of

order s = 2a+1. Then for z s N (0q; Idq), there exists a polynomial function
gn with respect to z and 1p

n
, with values in Rq of order s = 2a+1, such that

if Qn = P � gn (z; �0)�1 then

sup
A2BC

jPn (A)�Qn (A)j = o
�
n�a
�

Proof. Given a sequence of Edgeworth measures of order s = 2a + 1 (say
EDGn (�0; a)), due to the smoothness of the Normal distribution there exists
a function g�n with values in Rq that is polynomial in x and 1p

n
(for x a generic
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variable in the range of
p
n (�n � �0)) and is of order s = 2a + 1, such that

supA2BC j� (g
�
n (A))� EDGn (a) (A)j = o (n�a). If Pn is approximated by the

latter sequence in the same order, then due to the triangle inequality

sup
A2BC

jPn (A)� � (g�n (A))j = o
�
n�a
�

Now, � (g�n (A)) = P (z 2 g�n (A)) = P
��
g
�
z; 1p

n
; �0

�
+ o (n�a)

�
2 A

�
since

g�n is polynomial and is invertible mod
1
na
. Qn = P � g

�
z; 1p

n
; �0

��1
is a

smooth distribution since the Normal distribution is smooth and the fact that
gn is smooth w.r.t. z, therefore by construction P

��
g
�
z; 1p

n
; �0

�
+ o (n�a)

�
2 A

�
= Qn (A)+o (n

�a) and the approximation is uniform with respect to the rel-
evant collection of measurable sets due to the fact that that g�n does not
depend on A. The result follows from the triangle inequality.
Given the previous approximation and by strengthening the order of the

Edgeworth expansion we obtain the following lemma that is quite useful for
the validation of the analogous moment approximations.

Lemma AL.4 If Pn admits an Edgeworth approximation of order s = 2 (a+ 1)
then

na
Z

Rq
x (dPn � dQn)

 = o (1)
Proof. See Arvanitis and Demos (2010), lemma 4.1.

argmin Properties

In the following, let � be a compact metric space, and (
 ;F ; P ) a complete
probability space. Let (K (�) ;H) denote that space of compact subsets of
�, equipped with the Hausdor¤ metric. Let BH denote the corresponding
Borel algebra.

Remark AR.1 Let J be a real function on 
 � �, continuous on � for
almost every ! 2 
 and jointly measurable on the product algebra of 
��.
Then due to the compactness of � and by theorem 3.10 (iii) of Molchanov
(2005) argmin� �J is non empty, measurable and almost surely compact
valued. By theorem 2.13 of Molchanov (2005), argmin� � J has a measurable
selection.
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C Examples’ Expansions
MA(1) calculations

Given the expansion results in [3], and employing the notation of lemma 4.2
in Arvanitis and Demos (2010) we have that

k1 = !z; and k2 = �2�
�4 + 1�
�2 + 1

�3 � 16 a1 + 3a3!2
+
1

6

a1 + 3a3
!2

z2

where

!2 =
�2 + 4�4 + �6 + �8 + 1�

1 + �2
�4 ; a1 =

6�
�
1 + �4

�2�
1 + �2

�5 +

�
1 + �4

�3
+ �3

�
1 + �2

�3�
1 + �2

�6 �23;

a3 = �4
�
�
�2 + 4�4 + �6 + �8 + 1

� �
1 + �4

��
�2 + 1

�7 ;

�3 is the third order cumulant of ut, and z is a standard normal random
variable.
Now from Arvanitis and Demos (2010) we have, for the second step esti-

mator �n (0), that:

q1 =

�
@b0

@�=

��1
k1 =

p
�2 + 4�4 + �6 + �8 + 1

1� �2
z

q2 =

�
@b0

@�=

��1 
k2 �

1

2

�
@b0

@�=

��1
@2b0
@�@�0

q21

!

= �2 �

1� �2
�4 + 1

�2 + 1
+

�
1 + �2

�2
1� �2

a
(1)
1 + 3a

(1)
3

6!2
�
z2 � 1

�
�
�
�
�2 � 3

�
�2 + 1

�2 + 4�4 + �6 + �8 + 1�
1� �2

�3 z2:

Now for �n
�
1
2

�
,applying corollary 4.11 again we get that

q�1 = q1 =

p
�2 + 4�4 + �6 + �8 + 1

1� �2
z;

q�2 =
1

6

�
�2 + 1

�2
1� �2

a1 + 3a3
!2

�
z2 � 1

�
+
�2 + 4�4 + �6 + �8 + 1�

1� �2
�3 �

�
3� �2

��
�2 + 1

� �z2 � 1�
and consequently E

�
��n
�
1
2

�
� �
�
= o (n�1).
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For GMR2R applying corollary 4.11 once more we get:

q��1 =

p
�2 + 4�4 + �6 + �8 + 1

1� �2
z

and

q��2 =
1

6

�
�2 + 1

�2
1� �2

a
(1)
1 + 3a

(1)
3

!2
�
z2 � 1

�
+
�2 + 4�4 + �6 + �8 + 1�

1� �2
�3 �

�
3� �2

��
�2 + 1

� z2:
Taking expectations we get the result in section 6.1.
On the other hand for GMR2RS, we have that

q���1 =

p
�2 + 4�4 + �6 + �8 + 1

1� �2
z;

q���2 =
1

6

�
�2 + 1

�2
1� �2

a
(1)
1 + 3a

(1)
3

!2
�
z2 � 1

�
+
�2 + 4�4 + �6 + �8 + 1�

1� �2
�3 �

�
3� �2

��
�2 + 1

� �z2 � 1�
and

E
p
n

�
����n

�
1

2

�
� �
�
= o

�
n�

1
2

�
:

Finally, for the GMR2 estimator we have that

q1 =

�
�2 + 1

�2
1� �2

!z;

and

q2 =
1

6

�
�2 + 1

�2
1� �2

a
(1)
1 + 3a

(1)
3

!2
�
z2 � 1

�
+
�
�
3� �2

�
1� �2

�2 + 4�4 + �6 + �8 + 1�
1 + �2

�5 z2:

Taking expectations we get the result in section 6.1.

ARCH(1) calculations

For the ARCH(1) model we have that

G = H�1
1

"
E

�
y4t�1
u2t

�2
H2 � E

�
y4t�1
u2t

�
E

�
y2t�1
u2t

�
(H3 + 2H4)

#

+H�1
1

264
�
E
�
y2t�1
u2t

�2
+ E

�
y4t�1
u2t

�
E
�
1
u2t

��
H5

+E
�
y2t�1
u2t

�2
H6 � E

�
1
u2t

�
E
�
y2t�1
u2t

�
H7

375 ;
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and

G� = H�1
1

"
E

�
y2t�1
u2t

�2
H3 + E

�
y4t�1
u2t

�
E

�
1

u2t

�
H4 � E

�
y4t�1
u2t

�
E

�
y2t�1
u2t

�
H2

#

+H�1
1

�
�E

�
y2t�1
u2t

�
E

�
1

u2t

�
(2H5 +H6) + �3E

�
1

u4t

�
H�
7

�
;

where

H1 =

"
E

�
1

u2t

�
E

�
y4t�1
u2t

�
� E

�
y2t�1
u2t

�2#2
; H2 =

nX
i=1

E

�
1

u2tut�i
�

y2t�i
u2tu

2
t�i

�
;

H3 =

nX
i=1

E

�
y2t�i�1
u2tut�i

�
y2t�iy

2
t�i�1

u2tu
2
t�i

�
; H4 =

nX
i=1

E

�
y2t�1
u2tut�i

�
y2t�1y

2
t�i

u2tu
2
t�i

�
;

H5 =
nX
i=1

E

�
y2t�1y

2
t�i�1

u2tut�i
�
y2t�1y

2
t�iy

2
t�i�1

u2tu
2
t�i

�
; H6 =

nX
i=1

E

�
y4t�1
u2tut�i

�
y4t�1y

2
t�i

u2tu
2
t�i

�
and

H7 =
nX
i=1

E

�
y4t�1y

2
t�i�1

u2tut�i
�
y4t�1y

2
t�i�1y

2
t�i

u2tu
2
t�i

�
:

Now taking into account that

ut�i � �1
�3

= y2t�i�1 and yt = u
1=2
t zt

the above formulae can be simpli�ed to

G = (H�
1 )
�1

24 E
�
1 + 6�21

1
u2t
+ �41

1
u4t
� 4�1

�
1
ut
+ �21

1
u3t

��
H2

�E
�
1� 2�1 1ut + �

2
1
1
u2t

�
E
�
1
ut
� �1 1u2t

�
(H�

3 + 2H
�
4 )

35

+(H�
1 )
�1

26664
h
2E
�
1
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�
� 2�1E

�
1
u3t

�
+ �21E

�
1
u4t

�
� �1E

�
1
u2t

�
E
�
1
ut

�i
H�
5

+E
�
1
u2t
� 2�1 1u3t + �

2
1
1
u4t

�
H�
6

+
h
�1E

�
1
u2t

�
� E

�
1
ut

�
+
i
E
�
1
u2t

�
(�1H

�
5 +H

�
7 )

37775

G� = (H�
1 )
�1

26664
�
E
�
1
u2t

�
� 2�1E

�
1
u3t

�
+ �21E

�
1
u4t

��
(�2H

�
3 +H

�
5 )

+�2

�
1� 2�1E

�
1
ut

�
+ �21E

�
1
u2t

��
E
�
1
u2t

�
(H�

4 + �1H2)

��2
�
1� 2�1E

�
1
ut

�
+ �21E

�
1
u2t

��
E
�
1
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�
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37775
+�2 (H
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1 )
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�
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�
E

�
1
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�
� �1E
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and H2 as before.

Figure 1: n jE (GMR2(i)� �)j, i = 10; 200, MA(1) model, � = �0:4
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Figure 2: n
���E �b��� ���� Biased Estimators, MA(1) model, � = �0:4:

Figure 3: n
���E �b��� ���� Unbiased Estimators, MA(1) model, � = �0:4:
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Figure 4: n
���E �b�1�� �1��� ARCH(1) model, �1 = 1:0 and �2 = 0:5:

Figure 5: n
���E �b�2�� �2��� ARCH(1) model, �1 = 1:0 and �2 = 0:5:
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