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INFORMATION TRANSMISSION IN IRRIGATION

TECHNOLOGY ADOPTION AND DIFFUSION:SOCIAL

LEARNING,EXTENSION SERVICES, AND SPATIAL EFFECTS

MARGARITA GENIUS, PHOEBE KOUNDOURI , CÉLINE NAUGES, AND

VANGELIS TZOUVELEKAS

In this article we investigate the role of information transmission in promoting agricultural tech-
nology adoption and diffusion through extension services and social learning. We develop a
theoretical model of technology adoption and diffusion, which we then empirically apply, using
duration analysis, on a micro-dataset of olive-producing farms from Crete, Greece. Our findings
suggest that both extension services and social learning are strong determinants of technology
adoption and diffusion, while the effectiveness of each of the two informational channels is
enhanced by the presence of the other.

Key words: Extension services, irrigation water, olive-farms, social learning, technology adoption
and diffusion.
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Modern irrigation technology is often cited

Q1

Q2

as being central to increasing water use effi-
ciency and reducing the use of scarce inputs,
while also maintaining current levels of farm
production, particularly in semi-arid and
arid agricultural areas. Indeed, the analysis
of adoption and diffusion patterns of mod-
ern irrigation technologies is at the core of
several empirical studies in both developed
and developing countries (Dridi and Khanna
2005; Koundouri, Nauges, and Tzouvelekas
2006, and the references cited therein). These
empirical studies provide clear evidence
that economic factors (e.g., water price, cost
of irrigation equipment, crop prices), farm
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organizational and demographic characteris-
tics (e.g., size of farm operation, educational
level and experience of household mem-
bers), and environmental conditions (e.g.,
soil quality, precipitation), help explain the
adoption and diffusion of modern irrigation
technologies.

Another strand of the literature on agri-
cultural technology diffusion argues that the
abovementioned factors cannot accurately
explain diffusion patterns, as they are condi-
tional on what farmers know about the new
technology at any given point in time (Besley
and Case 1993; Foster and Rosenzweig 1995;
Conley and Udry 2010). In modern agri-
culture, farmers are mainly informed about
the existence and effective use of any new
farming technology through extension per-
sonnel (from either private, under fee, or
public extension agencies), and from their
social interaction with other farmers. We
contribute to this literature by theoretically
modeling and then quantitatively measuring
the impacts of information transmission via
extension agents and social networks (i.e.,
interaction with other farmers), on irrigation
technology adoption and diffusion among a
population of farmers.

Several studies have pinpointed exten-
sion agents as being the primary source of
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information about the existence and merits of
any new farming technology, including irriga-
tion techniques (e.g., Rivera and Alex 2003;
World Bank 2006). The costs of informing
a large heterogeneous population of farm-
ers about a new technology may be high.
Thus, extension agents usually target specific
farmers who are recognized as peers (that
is, farmers with whom a particular farmer
interacts). These peers are then expected to
exert a direct or indirect influence on the
whole population of farmers in their respec-
tive areas (Birkhaeuser, Evenson, and Feder
1991).Q3

Even without the intervention of exten-
sion agents, farmers learn from their social
interactions with other farmers. In Rogers’
(1995) terminology, farmers learn from their
“homophilic neighbors”, that is, individu-
als with whom farmers have close social
ties and share common professional or/and
personal characteristics (education, age,
religious beliefs, farming activities, etc.).
Moreover, farmers may also follow or trust
the opinion of those that they perceive to be
successful in their farming operation, even
though they occasionally share quite different
characteristics.

Measuring the extent of information trans-
mission through extension agents and/or
social interaction and identifying its role in
technology adoption and diffusion is difficult
for two major reasons. First, the set of peers
from whom an individual can learn is diffi-
cult to define (a thorough discussion of the
issues faced when empirically defining and
measuring network attributes can be found
in Maertens and Barrett (2013)). Second, dis-
tinguishing learning from other phenomena
(for example, interdependent preferences and
technologies or related unobserved shocks)
that may give rise to similar observed out-
comes is problematic (Manski 1993). For
a comprehensive overview of articles that
attempt to empirically identify the impact
of social networks on technology adoption
(mostly in developing countries), see Foster
and Rosenzweig (2010).

In this paper we study the diffusion of
modern irrigation technology among a
population of farmers in the presence of
extension agents and social networks. We first
describe the farmers’ technology adoption
decision in a theoretical setting, allowing for
knowledge accumulation (about the new
technology) through three channels: exten-
sion services and social networks (before and

after adoption), and learning-by-doing (after
adoption). We study the decisions of farm-
ers to invest in a new irrigation technology
that would improve irrigation effectiveness
(represented in what follows as a shift in
the production technology). The expected
efficiency gains are uncertain for the farmer
at the time the decision to adopt the new
technology is made, but we assume that this
uncertainty can be reduced through contact
with extension services and other farmers.
After adoption, the farmer can still accumu-
late knowledge by using the technology. At
each time period the farmer decides whether
to adopt the technology by comparing its cost
(which is assumed to decrease over time)
with the expected benefit of adoption, which
itself depends on the information received
from extension services and peers.

This theoretical model allows us to identify
relevant variables to be considered in the
econometric model describing the diffusion
of irrigation technology among a group of
farmers using data from a sample of 265
randomly selected olive-growing farms in
Crete, Greece. In our empirical model, the
definition of social network combines infor-
mation on the characteristics of farmers’
peers (age and educational level) with data
on the physical distances between them.1
We use these data in conjunction with factor
analysis to build factors that best represent
the unobserved variables that are potentially
relevant for quantifying the effect of informa-
tion transmission, both via extension agents
and social learning.2

In the next section we develop the the-
oretical model of adoption and diffusion
of modern irrigation technology. Follow-
ing that, we describe our data and explain
the construction of informational variables.
In the proceeding section we present the
econometric model using duration analy-
sis together with the factor analytic model.
We then present the empirical results for
our sample of olive-growers, and the last
section concludes the paper with some policy
recommendations.

1 An important dimension in the transmission of information
is the spatial distribution of farmers’ reference group. In large
geographical areas with a low density of farmers, information
diffusion, through both extension agents and social learning, may
be less successful in promoting technology adoption than in small
areas with close geographical proximity among farmers.

2 Conley and Udry (2010) and Weber (2012) use the same con-
ceptual approach to overcome identification problems discussed
in Manski (1993).
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Theoretical Model

We develop a model that describes the
farmer’s decision making process regard-
ing new technology adoption. This model is
useful as a background framework for the
simultaneous study of: (a) learning from
extension services before and after adoption;
(b) learning from peers before and after
adoption; and (c) learning-by-doing after
adoption.

We assume that farm’s j technology is
represented by the following continuous
twice-differentiable concave production
function:

(1) yj = f (xv
j , xw

j , Aj)

where yj denotes crop production, xv
j is the

vector of variable inputs (labor, pesticides,
fertilizers, etc.), xw

j represents irrigation
water, and Aj denotes a farm technology
index. Crop production is sensitive to the
quantity of irrigation water used: we assume
that if the quantity of irrigation water applied
is lower than the threshold xw

min, the quality
of the crop will be too low for the farmer to
sell it on the market. The farmer thus faces a
risk of low (or negative) profits in the case of
a water shortage.

Farmers have the option to invest in a
modern, more efficient irrigation tech-
nology (e.g., drip or sprinklers). Using a
modern irrigation technology instead of a
conventional one would allow the farmer to
produce the same level of output (y) using
the same quantity of variable inputs (xv) and
a lower quantity of irrigation water (xw). The
increased irrigation effectiveness of the mod-
ern technology is here described through a
change in the technology index, that is, from
A0 with the conventional technology to A∗
with the modern technology.3 We assume
that the maximum irrigation effectiveness
is reached when the farmer operates the
modern irrigation technology adequately,
which corresponds to A = A∗, while the
maximum irrigation effectiveness cannot

3 The technology index, in the context of irrigation, is best
interpreted as a water-efficiency index, the latter being the ratio
of the amount of water used by the crop (sometimes called
“effective water”) to the total amount of irrigation water used
on the field (sometimes called “applied water” and denoted by
xw

j in model (1)); see Caswell and Zilberman (1986) for related
discussions on irrigation effectiveness.

be reached with the traditional irrigation
technology (A∗ > A0).

The modern technology not only improves
irrigation effectiveness, but also allows the
farmer to hedge against the risk of drought
(and consequently the risk of low profit), in
the sense that using a more efficient irriga-
tion technology reduces the risk of a lack of
irrigation water (i.e., xw < xw

min), which would
be detrimental to the crop. We assume that
the consequences of adopting the new tech-
nology are not fully known by the farmers.
First, farmers using a traditional irrigation
technology may not be able to precisely
quantify the expected water efficiency gains
from switching to a modern irrigation tech-
nology, and second, if a farmer switches to
the modern irrigation technology, it may
require some time before the new tech-
nology is operated at its best (i.e., before
the water-efficiency index A reaches its
maximum A∗).

We presume that the farmer can reduce
this uncertainty through two channels: i)
farmers can build knowledge about the new
technology and the expected benefits of its
adoption before actually adopting it through
interactions with extension services or/and
interactions with other farmers (and particu-
larly with early adopters); and ii) farmers can
improve the performance of the new technol-
ogy after adoption through self-experience
(or learning-by-using).

In our framework the farmer decides
whether or not to adopt by forming expec-
tations about the efficiency of the new
technology. We denote by s each production
period, at the end of which the farmer will
decide whether to adopt the new technology.
Each farmer, j, accumulates information
on the new technology until the end of
period s, and forms expectations about
aggregate discounted future returns for a
set of adoption scenarios; that is, one scenario
for each potential adoption time, τ, where
τ > s. We set the time horizon to a fixed T ,
which implies that s ∈ {0, 1, 2, . . . , T − 1} and
τ ∈ {s + 1, . . . , T}. We also assume that the
required equipment for the new technology
has a finite life expectancy, denoted by Te.
We denote by A∗

j the maximum efficiency
index for farmer j when the new technology
is adopted, and by Aj,s(t, τ) the expected,
at time s, efficiency index for time period t,
under the assumption that the new technol-
ogy is adopted at time τ. The time variable
t takes values in {τ, τ + 1, τ + 2, . . . , T}.
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For every s, it holds that ∂Aj,s/∂t ≥ 0 and
∂Aj,s/∂τ ≥ 0, where the inequality is strict for
t > τ and Aj < A∗.

To summarize, up to period s, the farmer
gathers information about the new technol-
ogy from extension visits and/or by learning
from peers. At the end of s, the farmer uses
this information to form expectations about
future production (and hence profit) for
every t until T . Then, based on these expec-
tations she decides whether to adopt or not
in period s + 1. If she decides not to adopt
in s + 1, she continues to gather information
about the new technology until the end of
s + 1 and, once again, based on this infor-
mation she forms expectations about future
profits with and without adoption. The pro-
cess is repeated until adoption takes place
or until s = T . Finally, farmers who invest
in the modern irrigation technology must
incur some fixed cost (c) of purchasing the
equipment that is known to them at period t.
We assume that this cost decreases over time,
that is, ∂cj,t/∂t < 0.

We denote by p, ww and wv the expected
discounted crop, irrigation water, and vari-
able input prices, respectively, which are
assumed by the farmer to remain constant
over time. Right after period s, if farmer j
does not decide to adopt the new technology
until period t, her expected discounted profit
function for period t will be:

πj
(
p, wv , ww, Aj

)
(2)

= max
xv ,xw

{pf (xv
j , xw

j , Aj)−wvxv
j −wwxw

j }

where πj(p, wv , ww, Aj) is a sublinear (pos-
itively linearly homogeneous and convex)
profit function in p, wv , and ww. This func-
tion is non-decreasing in crop price and
the irrigation technology index, and non-
increasing in variable input and irrigation
water prices. If, on the other hand, farmer j
assumes that she will have already adopted
the new technology during a period τ ≤ t,
then her conditional discounted profit func-
tion (expected profits given the time, τ, of
adopting a new technology) will be given by
(after dropping subscript j for convenience):

πs,τ,t
(
p, wv , ww, As(t, τ)

)
(3)

= max
xv ,xw

{pf (xv
s,τ,t , xw

s,τ,t , As(t, τ))

− wvxv
s,τ,t − wwxw

s,τ,t}.

In this model we make the simplifying
assumption that before actually adopting,
and while forming expectations about the
level of the technology index, the farmer
assumes that this index will remain con-
stant after adoption. In other words, when
forming expectations, the farmer assumes
that the technology index As(t, τ) is equal
to As for all τ + Te ≥ t ≥ τ.4 This does not
imply that the technology index will in fact
remain constant, as learning from others and
learning-by-doing might occur after adoption.

To simplify the notation we denote each
farmer’s discounted expected profit for
period s + 1, given her current knowledge
by: πs,s+1,s+1(p, wv , ww, As(s + 1, s + 1)). Then,
each farmer chooses to adopt the new tech-
nology by maximizing his/her temporally
aggregated discounted profits over τ:

(4) Vs,τ,T :=
τ−1∑

t=s+1

π − cs,τ +
{τ+Te−1}∧T∑

t=τ

πs

+
T∑

t=1+({τ+Te−1}∧T)

π

= (τ − 1 − s)π − cs,τ

+ (({τ + Te − 1} ∧ T) − τ + 1)πs

+ ((T − ({τ + Te − 1} ∧ T)) ∨ 0)π

= [τ − 1 − s

+ (T − ({τ + Te − 1} ∧ T)) ∨ 0]π
+ ({{τ + Te − 1} ∧ T}
− τ + 1)πs − cs,τ

where a ∧ b = min{a, b}, a ∨ b = max{a, b}, cs,τ
is the discounted expected equipment cost at
time s. The latter is a decreasing function of
τ, while Te is the life expectancy of the equip-
ment, and T is large enough to imply that the

4 This assumption is not very strong: the farmer considers
that the technology efficiency index will remain constant after
adoption mainly because she does not have enough information
to predict the evolution of technology efficiency after adop-
tion (which is a complex function of learning from others and
learning-by-doing). The model could be extended to allow for the
farmers anticipating learning-by-doing. However, we believe that
incorporating these effects on expectation formation is unrealistic
and will unnecessarily complicate the model. Specifically, such an
extension would need to incorporate assumptions about farmer-
specific learning curves, which will differ between adopters based
on initial adoption time (late-adopters probably learn faster) and
farmer-specific socio-economic characteristics (such as education
and experience). Such an extension does not alter the learning
processes of our model, neither before nor after adoption, but it
does make the first order conditions less clear.
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contribution of peers’ knowledge in A has
reached (approximately) the highest possible
level. The last sum of the right-hand side is
considered to be zero if τ + Te ≥ T , which
implies that 1 + ({τ + Te} ∧ T) > T . Note that
cj,s,s+1 represents the current equipment cost
just after period s for farmer j.

The trade-off that the farmer faces can
be described as follows. A farmer in year s
considers investing in the modern technol-
ogy. Delaying investment by one year would
entail some benefit because the farmer could
purchase the modern irrigation technology at
a reduced cost (cs,τ > cs,τ+1). However, delay-
ing adoption by one year would also come at
a cost: the farmer will still produce in year t
with the conventional technology (and bear a
higher risk of water shortage). There is thus
a loss in expected profit induced by delaying
adoption of the modern irrigation technology.
Note that while τ + Te − 1 ≤ T ,

(5) [τ − 1 − s

+ (T − ({τ + Te − 1} ∧ T)) ∨ 0]π
+ ({{τ + Te − 1} ∧ T} − τ + 1)πs

= [τ − 1 − s + T − τ − Te + 1]πj

+ [τ + Te − 1 − τ + 1]πs

= [T − (s + Te)]π + Teπs

which does not depend on the date of adop-
tion τ. Therefore, since cs,τ is a decreasing
function of τ, each farmer estimates that the
new technology will be optimally adopted at
least for the period τ∗

1 = T − Te + 1, and:

(6) max
τ+Te≤T

Vs
s,τ,T = Vs

s,τ∗
1,T = Vs

s,T−Te+1,T .

This implies that the new technology will
not be adopted before period T − Te + 1.
Therefore, the initial problem is simplified to:

Q4 (7) max
1≤k≤T−s

Vs
s,s+k,T ,

where s ≥ T − Te. Then, we have:

Vs
s,s+k,t = (k − 1)π + (T − s − k + 1)πs(8)

− cs,s+k,

which implies that the rate of change of
Vs

s,s+k,s+Te
as a function of k is:

�Vs
s,k+1 := Vs

s,s+k+1,T − Vs
s,s+k,T = π(9)

− πs + cs,s+k − cs,s+k+1.

Therefore, any change in �Vs
s,k+1 is a result

only of a change in �cs,k+1 := cs,s+k+1 − cs,s+k.
We now introduce a simplified assumption

on the rate of decrease of the equipment
cost. We assume that at any point in time, s,
farmer j assumes a rate of decrease for the
discounted equipment cost as follows:

(10) cs,s+k = (1 + ase−δc,s(k−1))c∗
s ,

where as, δc,s > 0. Note that cs,s+k is a decreas-
ing value of k, and converges to c∗

s , the
asymptotic discounted equipment cost for
farmer j at time s, as k → ∞. Note also that
setting k = 1, we obtain c∗

s = cs,s+1/(1 + as).
Therefore, (10) becomes:

(11) cs,s+k = (1 + ase−δc,s(k−1)

1 + as
cs,s+1.

Plugging (11) into (8) we obtain:

Vs
s,s+k,T = (k − 1)π + (T − s − k + 1)πs(12)

− (1 + ase−δc,s(k−1))

1 + ascs,s+1
.

We also observe that:

(13)
∂Vs

∂k
= π − πs + asδc,scs,s+1

1 + as
e−δc,s(k−1).

The second order partial derivative in k is:

(14)
∂2Vs

∂k2
= −asδ

2
c,scs,s+1

1 + as
e−δc,s(k−1) < 0.

Therefore, after period s, farmer j decides
to adopt the new technology starting from
period s + 1 only if:

(15)
∂Vs

∂k

∣∣∣∣
k=1

≤ 0 ⇔ πs ≥ π + δc,s
ascs,s+1

1 + as
.

An equivalent expression of condition (10)
uses the fact that as is determined by the
relationship between the asymptotic dis-
counted cost c∗

s and current cost cs,s+1,
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because as = cs,s+1

c∗
s

− 1. Specifically, each
farmer chooses to adopt the new technology
right after period s if:

(16) πs − δc,s
(
cs,s+1 − c∗

s

) ≥ π.

The quantity cs,s+1 − c∗
s approximately rep-

resents the expected excess discounted cost
from choosing between whether to adopt the
new technology at time s + 1, namely, as soon
as possible, and postponing the adoption
for a very long period, namely, for a period
where the rate of decrease of the equipment
cost is practically zero.

In this model the optimal time of adoption
depends on output and input prices (through
the profit functions), the water-efficiency
index, and the cost of installing the technol-
ogy. Heterogeneity in the timing of adoption
is explained by heterogeneity in the technol-
ogy index, which is itself driven by different
paths of knowledge accumulation across
the farming population. In the forthcoming
empirical application we assume that the
water-efficiency index at each time t depends
on farmers’ characteristics (age, experience
in farming, education level), contacts with
extension services, and contact with peers.
The threshold (wmin) that defines the mini-
mum level of irrigation water required for
the crop to be marketable is another source
of heterogeneity: this threshold will depend
on environmental conditions on the farm
such as soil type and aridity index.

Survey Design and Data Description

Our data come from a survey carried out
on the Greek island of Crete during the
2005–06 cropping period as part of the Euro-
pean Union (EU)-funded Research Program
FOODIMA.5 The Agricultural Census pub-
lished by the Greek Statistical Service wasQ5
used to select a random sample of 265 olive-
growers located in the four major districts of
Crete. Farmers were asked to recall the exact
time they had adopted modern irrigation
technologies (i.e., drip or sprinklers), together
with some key variables related to their

5 The FOODIMA project (EU Food Industry Dynamics
and Methodological Advances) was financed within the 6th

Framework Programme under Priority 8.1-B.1.1 for the Sus-
tainable Management of Europe’s Natural Resources. More
information on the FOODIMA project can be found at
www.eng.auth.gr/mattas/foodima.htm.

farming operation on the same year (i.e., pro-
duction patterns, input use, gross revenues,
water use and cost, structural and demo-
graphic characteristics). A pilot survey run
at the beginning of the project showed that
none of the surveyed farmers had adopted
drip irrigation technology before 1994. Thus,
in the final survey interviewers asked recall
data for the years 1994–2004 (2004 being
the last cropping year before the survey was
undertaken). All information was gathered
using questionnaire-based field interviews
undertaken by the extension personnel
from the Regional Agricultural Directorate.
Table 1 displays the descriptive statistics
and definitions of the variables used in the
present study. Of the 265 farms in the sample,
172 (64.9%) had adopted drip irrigation tech-
nology between 1994 and 2004. The variable
of interest in the forthcoming empirical appli-
cation is the length of time between the year
of drip irrigation technology introduction
(1994) and the year of adoption; the mean
adoption time in our sample is 4.68 years (see
the temporal distribution of adoption times
in figure 1).

Variable Definitions

The choice of the independent variables to
be used in the empirical irrigation technology
diffusion model is dictated by the profitabil-
ity condition in (16): apart from installation
cost, heterogeneity in the timing of adop-
tion is explained by heterogeneity in the
technology index. Water-efficiency and farm
profitability at each time t, depend on farm
and household characteristics (farm size, age,
education level) and the two information
variables, contacts with extension services
and contacts with peers (or social learning).
The threshold (wmin) that defines the mini-
mum level of irrigation water required for
the crop to be marketable is another source
of heterogeneity: this threshold is assumed
to depend on farms’ environmental con-
ditions such as soil type and aridity index,
and structural features like tree density on
farm plots. Finally, we include the price of
olive-oil (farm gate price) in the duration
model, as well as the price of irrigation water
since both have a direct impact on a farm’s
profitability.

The installation cost of drip irrigation
technology (Cost) includes the cost of design-
ing the new irrigation infrastructure, the
materials (i.e., pipes, hydrometers, drips),

file:www.eng.auth.gr/mattas/foodima.htm
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Table 1. Definitions and Summary Statistics of the Main Variables

Variable Name All Farms Adopters Non-Adopters

Number of farms 265 172 93
Time to adoption (in years) Tadopt – 4.68 –

Farm Characteristics
Farmer’s age (in years) Age 53.9 49.9 61.3
Farmer’s education (in years of schooling) Educ 6.3 8.1 2.9
Farm size (in stremmas) Fsize 21.8 22.6 20.2
Tree density (in trees per stremma) Dens 13.6 14.7 11.5
Installation cost (in Euros per stremma) Cost 129.3 125.8 135.8
Irrigation water price (in cents per m3) wW 20.6 25.7 11.2
Olive oil price (in Euros per kg) pO 2.80 2.38 3.56
Profit moments:
1st moment M1 1.132 1.422 0.596
2nd moment M2 0.569 0.702 0.323
3rd moment M3 0.582 0.738 0.293
4th moment M4 3.566 4.073 2.629
Aridity index Ard 0.982 1.152 0.668
Altitude (in meters) Alt 341.8 167.6 664.1
Soil type (in % of farm land):
Sandy and limestone Soilsl 56.6 62.8 55.2
Marls and dolomites Soilmd 43.4 37.2 54.8

Information Variables
Stock of adopters Stock 31.3 35.4 23.6
Stock of homophilic adopters HStock 12.6 15.0 8.1
Stock of indicated homophilic adopters RStock 4.6 5.4 3.2
Distance between the farmer and
other adopters Dista 49.4 44.3 58.7
homophilic adopters HDista 17.4 15.2 21.6
indicated homophilic adopters RDista 10.1 8.9 12.5
Number of on farm extension visits:
to the farm Ext 6.4 8.7 2.2
to homophilic farmers HExt 3.3 4.8 0.6
to indicated homophilic farmers RExt 2.0 2.9 0.2
Distance of extension outlets:
from the farm Distx 111.2 87.6 154.9
from homophilic farmers HDistx 52.3 34.9 84.3
from indicated homophilic farmers RDistx 23.6 17.0 35.6

Note: All data refer to the year of adoption. Monetary values have been deflated prior to econometric estimations.

Figure 1. Diffusion of drip irrigation among
Cretan olive farms

and the cost of constructing it in the field
(labor cost). For adopters, the installation
cost corresponds to the cost of installing the

new equipment in the year it was adopted.
For non-adopters, the value of installation
cost refers to the last year of the survey
(2004). The installation cost per stremma
(one stremma equals 0.1 ha) is 129.3 Euros
on average over the whole sample, 125.8
Euros for adopters, and 135.8 Euros for
non-adopters.

We expect more educated farmers to adopt
modern irrigation technologies faster since
the associated payoffs from any innovation
are likely to be greater (Rahm and Huff-
man 1984). The expected impact of age on
the timing of adoption is ambiguous since
age is highly correlated with experience. On
the one hand, farming experience, which
provides increased knowledge about the



911

916

921

926

931

936

941

946

951

956

961

966

971

976

981

986

991

996

1001

1006

1011

1016

1021

1026

1031

1036

8 Amer. J. Agr. Econ.

environment in which decisions are made,
is expected to positively affect the adoption
of modern irrigation technologies. On the
other hand, younger farmers with longer
planning horizons may be more likely to
invest in new irrigation technologies as they
foresee longer future profits arising from effi-
cient water use. In both cases, if farmers are
not faced with significant capital constraints
and take future generations’ welfare into
account, the primary effect of age is likely to
increase the likelihood of adopting irrigation
innovations faster (Huffman and Mercier
1991). According to our survey, farmers in
our sample received 6.3 years of education
(Educ), while the average age of the house-
hold head was 53.9 years (Age). Farmers who
adopted modern irrigation technologies were
younger and more educated in our sample
(49.9 and 8.1 years, respectively) than their
non-adopting counterparts (61.3 and 2.9
years, respectively).

The expected impact of farm size (Fsize)
on adoption time is also ambiguous. Larger
farms may have a greater potential to adopt
modern irrigation technologies because of
the high costs involved in irrigation water.
On the other hand, larger farms may have
less financial pressure to search for alter-
native ways to improve water effectiveness
and hence lower irrigation cost by switching
to a modern irrigation technology (Putler
and Zilberman 1984). Apart from farm size,
tree density (Dens) also affects irrigation
effectiveness and hence, willingness to adopt
modern irrigation techniques (Moriana et al.
2003). Farms with orchards that are char-
acterized by high tree density should have
an incentive to adopt modern irrigation
technologies faster to more effectively use
irrigation water. Farmers who adopted the
modern irrigation technology operate farms
with an average size of 22.6 stremmas, andQ6
an average tree density of 14.7 per stremma,
in the year of adoption. On the other hand,
non-adopting farms are smaller on average
(20.2 stremmas) and have lower tree density
(11.5 trees per stremma).

Adoption of irrigation technology may
also be influenced by some environmental
characteristics that may affect irrigation
effectiveness. We include in the diffusion
model an aridity index (Ard), the altitude
of the farm (Alt), and two soil dummies as
a proxy for soil quality. The aridity index
and the altitude of the farm reflect on-farm
weather conditions, whereas the soil quality

dummies reflect the water holding capacity of
the soil. The aridity index, defined as the ratio
of the average annual temperature over total
annual precipitation, is calculated for the year
of adoption in each adopting farm using data
provided by the network of 36 local meteoro-
logical stations located throughout the island
(Stallings 1968). A higher altitude is more
likely to be associated with lower tempera-
tures and therefore less stressed olive-trees.
Finally, farms were classified according to two
different soil types based on their water hold-
ing capacity: sandy and limestone soils (Soilsl)
exhibit a lower holding capacity than marls
and dolomites soils (Soilmd). The majority of
farms in the sample cultivate olive-trees in
sandy and limestone soils (56.6%).

To control for economic conditions we
include the price of olive oil (pO) and the
price of irrigation water (wW), both as
reported by the farmers. The crop price
highly depends on the quality of olive oil and
thus exhibits a significant variation across
olive growers. The average olive oil price
was 2.80 Euros per kilogram for the whole
sample, and varied between 2.38–3.56 Euros
for adopters and non-adopters, respectively
(table 1). Irrigation water is supplied by
regional water authorities under different
price schemes that reflect the local cost of
extraction. Therefore, the price of irrigation
water also exhibits significant variation, with
the average ranging between 25.7–11.2 Euro
cents per m3 for adopters and non-adopters,
respectively. Both prices were converted
to constant prices using the producer price
index published by the Greek Ministry of
Agriculture. Q7

Additionally, since our analysis refers
to a semi-arid area of the Mediterranean
basin, farmers face some uncertainty in
terms of water availability. As a consequence
they may face production risk in the sense
that expected production and profit lev-
els may become random, as they are both
functions of exogenous climatic conditions.
Hence, risk-averse olive growers might con-
sider adopting drip irrigation technology to
hedge against risk during periods of water
shortage or high water prices. To capture
the impact of this uncertainty on farmers’
adoption decisions we follow Koundouri,
Nauges, and Tzouvelekas (2006), and utilize
moments of the profit distribution as deter-
minants of adoption. Using recall data on
olive oil revenues, variable inputs (labor,
fertilizers, irrigation water, pesticides), and
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fixed (land) input categories provided by
farmers from the year of adoption, we esti-
mated the following linear profit function
(corresponding standard errors appear in
parentheses):

πi = 2.341
(0.423)

+ 0.657
(0.104)

pOi − 0.321
(0.098)

wLi(17)

− 0.107
(0.054)

wFi − 0.076
(0.032)

wWi

− 0.034
(0.021)

wPi + 0.431
(0.125)

xAi + ui

where i denotes farmers, pO is the farm
gate price of olive oil, wj is the price of
the jth variable input (i.e., labor, fertilizers,
irrigation water, and pesticides), xA is the
acreage under olive tree cultivation, and u
is a usual iid error term.6 The residuals were
used to estimate the kth central moments
(k = 1, . . . , 4) of farm profit conditional on
variable and fixed input use (Koundouri,
Nauges, and Tzouvelekas 2006). Descriptive
statistics of the calculated first four moments
(M1, M2, M3, M4) of the profit distribution are
shown in table 1.

The Measurement of Information
Transmission

Each farmer provided information about
the number of extension visits on his farm
prior to the year of adoption, together with
some key characteristics (age and educational
level) of his peers (or reference group), that
is, farmers with whom he exchanges infor-
mation about his farming operation. We use
these data together with data on farm loca-
tion to assess the impact of the two channels
of information transmission identified in our
theoretical model: extension services and
contacts with other farmers.

Farmers receive information from exten-
sion services directly (through visits by
extension agents), and indirectly through
their contacts with other farmers targeted
by extension agents. The second channel,
identified as social learning in our model,
corresponds to information received from
farmers who have already acquired expe-
rience with the new technology. We argue
that the strength of these two communica-
tion channels depends on the geographic

6 We also tried to fit a linear quadratic or a more flexible
translog specification, but unfortunately econometric estimates
were not satisfactory.

distance between the farmers and extension
agencies, and between the farmers and their
influential peers.

We thus identify four unobserved (or
latent) variables that are potentially relevant
for quantifying the effect of information
provision on the diffusion of drip irrigation
technologies: the total number of adopters in
the respondent’s reference group; the average
distance of the respondent’s farm to his ref-
erence group; overall exposure to extension
services (direct and indirect), and; the aver-
age distance of the farmer’s reference group
(including himself) to extension agencies. The
first two latent variables are used to capture
social learning, whereas the last two variables
represent the effect of extension provision.
We use observable indicators in a factor ana-
lytic model to proxy these four (unobserved)
latent variables.

For the first variable (total number of
adopters in the respondent’s reference
group), we consider the following three
observable indicators: i) the stock of adopters
in the sample from the year the farmer
adopted the modern irrigation technology
(Stock); ii) the stock of homophilic adopters
(HStock); iii) the stock of homophilic
adopters as identified by the farmer himself
(RStock). Following Rogers (1995) we define
homophilic farmers as farmers belonging to
the same age group and having similar edu-
cation levels. Age groups cover six years: for
example, if a farmer is 38 years old, farmers
aged 35 to 41 will be considered homophilic.
For education levels we considered a 2-year
range. The (RStock) is computed as the stock
of adopters among those farmers who have
the same age and education level as the ones
identified by the farmer as belonging to his
reference group.

Data on the location of the farms are
then used to calculate the following road
distances (in kilometers) to proxy the sec-
ond latent variable (the distance of the
farmer to adopters in his reference group): i)
the average distance to adopters (Dista);
ii) the average distance to homophilic
adopters (HDista); iii) the average distance
to homophilic adopters as identified by the
farmer himself (RDista).

As for the overall exposure to extension
services (third latent variable), we consider
the following three observable indicators:
i) the total number of on-farm extension
visits prior to the year of adoption (Ext); ii)
the number of on-farm extension visits to



1171

1176

1181

1186

1191

1196

1201

1206

1211

1216

1221

1226

1231

1236

1241

1246

1251

1256

1261

1266

1271

1276

1281

1286

1291

1296

10 Amer. J. Agr. Econ.

homophilic farmers (HExt); iii) the number
of on-farm extension visits to homophilic
adopters as identified by the farmer himself
(RExt).

Finally, spatial differences in information
provision by extension agencies (fourth latent
variable) have been proxied by the following
three road distance indicators: i) the distance
of the respondent to the nearest extension
agency (Distx); ii) the average distance of
homophilic farmers to the nearest extension
agency (HDistx); iii) the average distance
of homophilic adopters, as identified by the
farmer himself, to the nearest extension
agency (RDistx). Table 1 presents the descrip-
tive statistics for these twelve observable
indicators.

Econometric Model

Following Karshenas and Stoneman (1993)
and Abdulai and Huffman (2005), we model
the optimal time of drip irrigation technology
adoption using duration analysis.7 A dura-
tion model of irrigation technology adoption
and diffusion is based on formulating the
problem in terms of the conditional probabil-
ity of adoption at a particular period, given
that adoption had not occurred before, and
given the specific characteristics of individual
farmers and the environment in which they
operate. Under the assumption that duration
follows a Weibull distribution,8 the hazard
function is written as follows:

(18) h(t, zit , α, β) = αtα−1(λit)
α

where α is the shape parameter. The above
parametric specification implies that the haz-
ard rate either increases monotonically with
time if α > 1, falls monotonically with time
if α < 1, or is constant if α = 1. The hazard
function h(t) describes the rate at which indi-
viduals will adopt the technology in period
t, conditional on not having adopted prior
to t, which in the present study represents
the empirical counterpart of the optimality
condition in (16). We specify λit = exp(−zitβ),
where the vector zit includes variables that
determine farmers’ optimal choice, and β

7 For more details about duration models, see Greene (2003,
pp. 791–797).

8 Karshenas and Stoneman (1993) suggested that the choice
of a baseline hazard structure seems to make little difference as
far as parameter estimates and inferences are concerned.

are the corresponding unknown param-
eters. Some of these variables only vary
across farmers (e.g., soil quality and altitude),
whereas other vary across farms and time
(e.g., cost of acquiring the new technology).
Under the Weibull distribution, the mean
expected adoption time is calculated as:

(19) E(t) =
(

1
λit

)
�

(
1 + 1

α

)

where �(r) = ∫∞
0 xr−1 exp(−x)dx is the

Gamma function. Accordingly, the marginal
effects of the kth continuous explanatory
variable on the hazard rate and on the mean
expected adoption time are calculated as
follows:

h′
zk

(t, zit , αβ) = −h(t, zit , αβ)
∂(zitβ)

∂zk
α(20)

and E′
zk

(t) = ∂(zitβ)

∂zk
E(t).

Among other variables, the vector zit
includes the four latent variables discussed in
the previous section. We use factor analysis
to proxy these four variables using the twelve
observable indicators described above. Drop-
ping subscripts for convenience, we denote
the latent components by ξ and the vector
of the twelve observable indicators by x. The
relationship between observed and latent
variables is given by:

(21) x = μ + �ξ + v

where v is a (12 × 1) random vector with zero
mean and variance-covariance matrix given
by � = diag(ψ2

1 . . . ψ2
12), ξ is a (4 × 1) random

vector, also with a zero mean and variance-
covariance matrix I, � is a (12 × 4) matrix
of constants, and μ is a vector of constants
corresponding to the mean of x.

The factor analytic model represented by
equation (21) is estimated using a principal
components method with varimax rotation.
The estimated factor loadings are presented
in table 2.9 Factor 1 will be labeled as “Stock
of adopters in the reference group” (ξ1)
since the main variables contributing to this
factor are the ones related to the stock of
adopters. The heaviest loadings for factor
2 come from the variables related to the

9 For more details about factor analysis, the reader is referred
to Krzanowski (2000).
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Table 2. Factor Analytic Model: Estimation Results

Distance
Stock of Distance Exposure to from

Adopters between Extension Extension
Variable (ξ1) Adopters (ξ2) (ξ3) Outlets (ξ4)

Stock 0.8188 −0.0873 0.2280 −0.2955
HStock 0.7729 −0.2465 0.3509 −0.2454
RStock 0.6801 −0.2574 0.6080 −0.1772
Dista −0.2850 0.7143 −0.3478 0.2061
HDista −0.1290 0.9022 −0.2288 0.2234
RDista −0.0858 0.9270 −0.1767 0.1758
Ext 0.2762 −0.2554 0.8562 −0.2160
HExt 0.2311 −0.2324 0.8818 −0.2537
RExt 0.2359 −0.2489 0.8667 −0.2343
Distx −0.1854 0.2420 −0.3565 0.7465
HDistx −0.2519 0.1683 −0.2311 0.8847
RDistx −0.2032 0.2051 −0.1216 0.8687

Note: For variable definitions, see table 1.

average distance to adopters, so factor 2
can be interpreted as the “Average distance
to the stock of adopters in the reference
group” (ξ2). Variables related to the number
of extension visits are the main contributors
to factor 3, and the corresponding factor is
thus labeled “Exposure to extension” (ξ3).
Finally, the variables related to the average
distance to extension services display the
heaviest loadings for factor 4, thus allow-
ing us to conclude that factor 4 represents
the “Average distance to extension” (ξ4).
Note that because all pair-wise correla-
tions between the 12 observed indicators
are significant at the 0.01 level (results not
presented but available upon request), all
indicators are used to predict each of the four
latent variables. Under the assumption of
multivariate normality of xi and ξi, one can
easily obtain estimates of the factors scores
ξmi, m = 1, . . . , 4, for the ith respondent based
on estimating E(ξmi|xis), with s denoting the
twelve observable variables.

Estimated factor scores are used in the
duration model, together with the other
independent explanatory variables (farm
and farmers’ characteristics). To explore the
potential substitutability or complementarity
between the two communication channels
(extension services and social learning), we
also include the interaction term ξ̂1ξ̂3 in our
empirical model. The final specification for λit
is given by:

λit = exp(−β0 − β1Ageit − β2Age2
it(22)

− β3Educit − β4Educ2
it − β5Costit

− β6Fsizeit − β7Densit − β8wWit

− β9pOit − β10Ardit − β11Alti

− β12Soilsl,i −
4∑

k=1

δkMkit

4∑
m=1

ζmξ̂mit

− ζ5ξ̂1it ξ̂3it).

We estimate a proportional hazard model
in which some of the regressors (the four
latent variables) are predicted in a first-
stage model. Several procedures have been
proposed in the literature for estimating
proportional hazard models with missing
covariates (e.g., Kalbfleisch and Pren-
tice 2002). Using regression calibration,

E
[
exp

(
− ∑

j βjzo
j − ∑

k δkMk − ∑
m ζmξm

− ζ5ξ1ξ3

)]
can be approximated by:

exp

⎛
⎝−

∑
j

βjzo
j −

∑
k

δkMk

−
∑

m

ζmE
[
ξm|zo

j , Mk, xs

]

− ζ5E
[
ξ1ξ3|zo

j , Mk, xs

] ⎞
⎠

with zo
j denoting the observed explanatory

variables in λit , Mk denoting the four profit
moments, ξm denoting the latent variables,
and xs denoting the twelve observed indi-
cators used in the factor analysis. Hence,
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Table 3. Maximum Likelihood Parameter Estimates of the Hazard Function

Model A.1 Model A.2

Variable Parameter Estimate t-ratio Estimate t-ratio

Constant β0 1.5617 1.8077 1.4303 1.5633
Farmer’s age β1 −0.0168 −2.4766 −0.0106 −1.3404
Farmer’s age-squared β2 0.0001 2.1568 0.0001 1.1931
Farmer’s education β3 0.0182 1.1456 0.0347 2.2150
Farmer’s education-squared β4 −0.0010 −1.5354 −0.0021 −3.0807
Installation cost β5 0.0089 1.0786 0.0099 1.1629
Farm size β6 −0.0048 −0.3848 −0.0117 −0.8617
Tree density β7 −0.0127 −3.7991 −0.0109 −2.9231
Water price β8 −0.0164 −10.892 −0.0205 −13.694
Crop price β9 0.0596 1.8796 0.0658 1.8465
Aridity index β10 −0.0389 −1.1718 −0.0412 −1.3601
Farm altitude β11 0.0006 3.3071 0.0005 2.9544
Sandy and limestone soils β12 −0.0002 −0.0075 0.0265 0.7475
1st profit moment δ1 −0.0943 −2.5987 −0.1132 −2.7071
2nd profit moment δ2 −0.1752 −2.4884 −0.1611 −1.8807
3rd profit moment δ3 0.0292 0.9414 0.0770 1.6685
4th profit moment δ4 −0.0024 −0.3167 −0.0125 −1.0554
Stock of adopters ζ1 −0.0509 −1.9745 – –
Distance between adopters ζ2 0.0299 1.6498 – –
Exposure to extension ζ3 −0.0531 −2.7988 – –
Distance from extension outlets ζ4 −0.0238 −1.6691 – –
(Adopters)X(Extension) ζ5 −0.0554 −3.5119 – –
Scale parameter α 9.1085 15.075 8.0932 16.420
Log-Likelihood 107.709 86.834
Akaike Information Criterion −0.639 −0.520
Bayesian Information Criterion −0.329 −0.276
Mean Adoption Time 5.76 5.74

estimates of E[ξm|zo
j , Mk, xs] can be used

in the hazard rate when ξ is not available
(Carroll, Rupert, and Stefanski 1995). By
further assuming that, conditional on the
twelve indicators, the four latent variables are
uncorrelated with the observed explanatory
variables, that is, E[ξm|zo

j , Mk, xs] = E[ξm|xs],
the estimated factor scores can be used in the
hazard function.

Empirical Results

The maximum likelihood parameter esti-
mates of the hazard function, along with
their corresponding t-statistics, are shown in
table 3. Consistent standard errors for these
parameters were obtained using the station-
ary bootstrapping technique of Politis and
Romano (1994). The dependent variable in
the diffusion model is the natural logarithm
of the length of time (Tadopt , measured in
years) from first availability of the drip irri-
gation technology (1994) to when the farmer

adopted it (up to 2004). In this framework
a negative coefficient implies a negative
marginal effect on duration before adoption,
that is, faster adoption.

To examine the robustness of our results
we also estimated the hazard function,
excluding the four latent variables (model
A.2). Parameter estimates of the reduced
model, together with their corresponding
t-ratios, are also presented in table 3. All key
explanatory variables in both models are
found to be statistically significant. The signs
of the estimated parameters are remarkably
stable between models; nevertheless, the
reduced model underestimates the effects of
age and tree density on mean adoption time,
while it overestimates the effect of educa-
tion, crop price, and mean profit. Moreover,
both the Akaike and the Bayesian informa-
tion criteria indicate that the full model is
more adequate for explaining variability in
farmers’ adoption times. Predicted mean
adoption times are not statistically differ-
ent: 5.76 in the full model, and 5.74 in the
reduced model.
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The shape parameter of the Weibull haz-
ard function is statistically significant and
well above unity in both models. Accord-
ing to Karshenas and Stoneman (1993), this
implies the existence of what they call epi-
demic effects. In summary, these effects relate
to endogenous learning being a process of
self-propagating information about the new
technology that grows with the spread of a
technology. Karshenas and Stoneman (1993)
identify three potential sources for these
effects: (a) the pressure of social emulation
and competition, which is not highly relevant
for farming business; (b) the learning process
and its transmission through human contact,
which our model captures explicitly via the
latent information variables absent from
Karshenas and Stoneman’s (1993) empirical
model; and (c) the reductions in uncertainty
resulting from extensive use of the new tech-
nology. The latter seems to be more relevant
in our empirical study and could capture, in
a broader sense, learning-by-doing effects as
implied by our theoretical model.

Using the parameter estimates from
table 3, we calculated the marginal effects
of the explanatory variables on the hazard
rate and average expected time to adoption
of drip irrigation technology using (20) (see
table 4). Our results indicate that exposure to
extension services has a strong positive and
very significant effect on the hazard rate and
that it considerably reduces adoption time
(marginal effect estimated at -0.306 years).
Surprisingly, the distance from extension out-
lets has a negative marginal effect on mean
adoption time, implying that the further the
farm is from the extension outlet, the shorter
is the time before adoption. However, this
counterintuitive result can be explained by
extension agents primarily targeting farmers
in remote areas (since these farmers are less
likely to visit extension outlets).

Information transmission not only takes
place through extension services but also
between farmers themselves: a larger stock
of adopters in the farmer’s reference group
induces faster adoption (−0.293 years),
while a greater distance between adopters
increases time before adoption (0.172 years).
The impact of social learning is compara-
ble to the impact of information provision
by extension personnel (mean marginal
effects on adoption times are −0.293 and
−0.306 for the stock of adopters and expo-
sure to extension services, respectively).
However, unlike with exposure to extension,

geographical proximity is an important factor
influencing information transmission among
the farmers.

Finally, the interaction term between the
two channels of information transmission
is found to be statistically significant and
negative (see table 3). This result indicates
that extension services and intra-farm com-
munication channels are complementary for
information provision to olive growers. This
finding might be explained by the nature
of the transmitted information. Irrigation
technologies, like many other farming inno-
vations, are not fully embodied in a set of
artefacts like manuals or blueprints (Evenson
and Westphal 1995), and the performance
of any irrigation technology is sensitive to
local conditions (environmental, cultural,
demographic, etc). Therefore, passing on
information cannot be done using rules of
thumb mainly utilized by extension person-
nel, but instead also requires strong social
networks between olive-growers already
engaged in learning-by-doing. The comple-
mentarity between the two communication
channels used to enhance irrigation technol-
ogy diffusion among olive-growers in Crete
indicates the need of redesigning the exten-
sion provision strategy towards internalizing
the structure and effects of farmers’ social
networks.

Our results also indicate that human cap-
ital variables (age and education) have a
significant impact on individual farmers’
adoption behavior. First, we find that the
time prior to adopting drip irrigation tech-
nologies decreases with age up to 60 years,
and then follows an increasing trend, which
is an indication that both planning horizon
and farming experience have a combined
effect on the adoption of modern irriga-
tion technologies. The marginal effect of a
farmer’s age on adoption time is −0.010 years
(see table 4). On the other hand, time until
adoption increases with education whenever
one’s education level is less than nine years
(elementary schooling). For those farmers
who have more than nine years of educa-
tion, higher educational levels lead to faster
adoption rates, implying that only highly-
educated farmers are more likely to benefit
from modern technologies.

Risk attitudes are also found to be impor-
tant determinants of the adoption behavior
of Cretan olive-growers. The first two empir-
ical moments of the profit distribution (i.e.,
expected profit and profit variance) are
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Table 4. Marginal Effects on the Hazard Rate and Mean Adoption Time

Model A.1 Model A.2

Variable Hazard Rate Adoption Time Hazard Rate Adoption Time

Farmer’s age 0.015 −0.010 0.007 −0.006
Farmer’s education −0.047 0.031 −0.058 0.047
Installation cost −0.079 0.051 −0.070 0.057
Farm size 0.043 −0.028 0.082 −0.067
Tree density 0.112 −0.073 0.077 −0.063
Water price 0.145 −0.095 0.145 −0.118
Crop price −0.525 0.343 −0.464 0.378
Aridity index 0.343 −0.224 0.291 −0.237
Altitude −0.005 0.003 −0.004 0.003
Sandy-limestone soils 0.002 −0.001 −0.190 0.152
1st profit moment 0.831 −0.543 0.798 −0.650
2nd profit moment 1.544 −1.009 1.136 −0.925
3rd profit moment −0.258 0.168 −0.543 0.442
4th profit moment 0.021 −0.014 0.088 −0.072
Stock of adopters 0.449 −0.293 – –
Distance between adopters −0.264 0.172 – –
Extension services 0.468 −0.306 – –
Distance from extension outlets 0.210 −0.137 – –

Note: Marginal effects are computed at the mean of explanatory variables. For dummy variables, they are computed as the difference between the
quantity of interest when the dummy takes the value of 1, and when it takes a zero value.

highly significant, whereas the third and
fourth moments approximating skewness
and kurtosis of profit distribution are not
statistically significant (see table 3). These
results indicate that a higher expected
profit and a higher variance of profit induce
faster adoption rates. These findings con-
firm that olive growers in Crete are risk
averse and adversely affected by a high
variability in returns. Adopting modern irri-
gation technology allows these farmers to
reduce production risk in periods of water
shortage, which confirms earlier findings
by Koundouri, Nauges, and Tzouvelekas
(2006). The role that risk preferences play
in the adoption decision is quite important:
the marginal effect of the profit variance
on mean adoption time is −1.009 years.
Finally, the insignificance of the third and
fourth moments of the profit distribution
indicate that farmers do not take downside
yield uncertainty into account when deciding
whether to adopt new irrigation technology.
In other words, irrigation technology does not
seem to affect exposure to downside risk.10

10 This empirical finding is specific to our study on olive-
growers. Other studies in the agricultural sector found evidence
of down-side risk aversion, for example, Antle (1987) and Garrido
and Zilberman (2008).

We also find evidence that adverse weather
conditions, as proxied by a farm’s low eleva-
tion and aridity index, induce faster irrigation
technology adoption, although the magnitude
of the effect is small. This may indicate that
farmers who can exert better control over
the quantity of water used for production
purposes see the innovative irrigation tech-
nology as insurance against adverse (drier)
weather conditions. Neither soil type nor
farm size have an impact on the timing of
adoption (see table 3). However, our results
show that olive farms with high tree densities
adopt the new, efficient irrigation technology
faster than farms engaged in more extensive
olive tree cultivation. The marginal effect of
tree density on mean adoption time is −0.073
years.

The price of olive oil and the price of irri-
gation water have an important impact on
adoption rates. An increase of one Euro cent
in the water price has a very significant effect
on both the hazard and the mean adoption
time by speeding up the diffusion rates of
new irrigation technology (0.145 and −0.95,
respectively). On the other hand, a higher
crop price delays adoption rates (marginal
effect is 0.343 years), because farmers have
reduced incentives to change irrigation prac-
tices as a means of increasing the farm’s
expected returns. Finally, installation costs do
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not affect diffusion of the new technology:
the corresponding parameter estimate is pos-
itive but not statistically significant (though
the t-statistic is greater than one).

Conclusions and Policy Implications

In this article we developed a theoretical
model to empirically identify the importance
of knowledge accumulation through both
extension services and social learning in the
adoption of modern irrigation technologies
among olive growers. Our theoretical and
empirical models, together with the devel-
oped econometric approach, are general
enough to have global relevance and applica-
bility. Indeed, our approach can be applied in
various agricultural settings and can produce
results that inform one’s basic understanding
of the ways in which learning processes (both
through extension services and social learn-
ing) impact farmers’ choices. Our approach
allows us to identify these learning pro-
cesses, the variables that influence them, and
their respective effects on farmers’ adoption
decisions.

Our empirical results suggest how these
processes, now identified for the case-study
under consideration, can be better integrated
into relevant policy making. To sum up, both
extension services and intra-farm commu-
nication channels are found to be strong
determinants of technology adoption and
diffusion, while the effectiveness of each
type of information channel is enhanced by
the presence of the other. This means that
the provision of extension services will be
more effective than intra-farm communica-
tion for speeding up the adoption process in
areas where there is already a critical mass
of adopters. Moreover, the spatial dispersion
of extension outlets could also be designed
away from market centers in a way that
allows, for example, minimization of the aver-
age distance between outlets and peer farms
in remote areas. At the same time, the nature
of extension provision should be redesigned
to take into account its complementarity with
farmers’ social networks.

Water and crop prices also affect technol-
ogy adoption and diffusion. Hence, efficient
pricing of agricultural inputs and outputs
should become an explicit target of any
reformed agricultural policy. In addition
to a farmer’s characteristics (education,
age), climate variables (aridity, altitude) are

found to be important drivers of a farmer’s
technology adoption decisions and result-
ing technology diffusion, and as such both
should be incorporated into relevant policies.
For instance, in the case of education our
results show that there is a threshold level of
education after which additional schooling
enhances faster adoption, but the opposite
happens before this threshold. This could be
due to the fact that as farmers become more
educated but still remain below the threshold
level, they have access to more information
than they are unable to process, and thus
extension services could assist them in this
task.

At the same time, our results highlight the
importance of accommodating the correct
understanding of risk preferences when eval-
uating policy formation in the agricultural
sector. That is, when policy makers consider
policy options that affect input and technol-
ogy choices, they should consider the level of
farmers’ risk-aversion to correctly predict the
technology adoption and diffusion effects, as
well as the magnitude and direction of input
responses (Groom et al. 2008). Indeed, accu-
rately predicting these effects and farmers’
responses will also help accurately predict
the magnitude of policy-induced welfare
changes, as well as the efficient provision of
agricultural insurance policies.

Greece is among the biggest beneficiaries
of the Common Agricultural Policy (CAP)
and it continues to defend a large CAP
budget and a strong first pillar. In Greece,
CAP reforms—especially the transition to
decoupled farm payments, instability in world
agricultural commodity prices, and contra-
dictory agricultural policy signals are the
major causes of changing farming practices.
Technology diffusion efforts are strongly
influenced by a piecemeal policy framework
and institutional rigidities. These need to
change if Greek agriculture is to adopt a
sustainable path, especially in light of the
current financial and economic crisis. On
November 18, 2010, the European Commis-
sion published a paper on the future of the
CAP.11 The reforms contained in the paper
aim at making the European agricultural sec-
tor more dynamic, competitive, and effective
in responding to the Europe 2020 vision of
stimulating sustainable growth, smart growth,

11 See http://ec.europa.eu/agriculture/cap-post-2013/communi
cation/com2010-672_en.pdf.

http://ec.europa.eu/agriculture/cap-post-2013/communication/com2010-672{protect LY1	extunderscore }en.pdf
http://ec.europa.eu/agriculture/cap-post-2013/communication/com2010-672{protect LY1	extunderscore }en.pdf
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and inclusive growth. Our results can provide
fruitful input to this reform.Q8
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