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ABSTRACT 

Competitive use of transboundary waters across different countries and among different 

sectors can be approached as a stochastic multistage dynamic game. In this paper we 

use this approach to develop and apply a novel framework for optimal management of 

limited transboundary water resources and evaluation of different international 

strategies, under hydrological uncertainty. The Omo-Turkana River Basin in Africa is 

used as a case study application, since it faces the above challenges within the water-

food-energy nexus framework. The basic mathematical model consists of the water 

balance (availability and demand for the different sectors), the costs of water extraction, 

and the social benefits from water resources. The non-cooperative and cooperative 

(Stackelberg “leader–follower”) cases are solved and compared based on the future 

water availability. The empirical application of the model calls for sector-specific 

production function estimations, for which we employ nonparametric treatment of the 

production functions, while we extend it to allow for technical inefficiency in 

production and autocorrelated Total Factor Productivity, providing thus a more realistic 

model. For this purpose, Bayesian analysis is performed using a Sequential Monte 

Carlo/Particle-Filtering approach. The cooperative solution is the optimal pathway not 

only for both riparian countries, but for the sustainable water use of the basin too, as in 

future uncertainty conditions it maintains the maximum welfare option. The detail and 

sophistication of both the mathematical and econometric models are key elements for 

this novel approach, supporting robust policy recommendations towards sustainable 

management of transboundary resources. 

 

Keywords: Transboundary water management; cooperation games; stochasticity; 

endogenous adaptation; production functions technical inefficiency; demand curve. 

 

1. INTRODUCTION 



According to the theories of Integrated Water Resources Management and Economics, 

transboundary river basins should be treated as a single unit to maintain the physical 

integrity of the system and achieve globally optimum management solutions (Qaddumi, 

2008). Both theories have gone beyond the traditional approach of monitoring and 

measuring the spatiotemporal allocation of resources, costs, and benefits, and seek the 

optimal way to control and manage systems in a way that maximizes the users’ welfare 

under environmental constraints (Gupta et al., 2016). The problem of covering 

competitive and increasing needs with limited (and often deteriorating) resources 

becomes more serious and complicated when considering the broad impacts of 

transboundary water decisions on the context of Water-Energy-Food (WEF) nexus. 

Subsequently, integrated and detailed modelling is increasingly used in the decision-

making process, especially in cases where holistic approaches and cooperative 

management cannot be taken for granted (Uitto and Duda, 2003).  

Game theory has been used to describe the actions of the countries-players (Frisvold 

and Caswell, 2000; Dinar and Hogarth, 2015). Kucukmehmetoglu (2012) analysed the 

problem of scarce water resources allocation combining game theory and Pareto 

frontier, using also linear programming to maximize net economic benefits. Zeng et al. 

(2019) proposed a hybrid game theory and mathematical programming model for 

solving transboundary water conflicts, by the optimal water allocation, considering 

water quality and quantity and the associated benefits and costs. Menga (2016) 

highlights the interplay between domestic and foreign policy for transboundary waters 

through the example of the two-level game theory of Putnam (1988). Hu et al. (2017) 

used the case of hydropower and water supplies within the water-energy nexus using 

stochastic competitive and cooperative (Nash–Cournot model) analysis. The authors 

suggested that future studies need to include uncertainty in hydrological processes. 

Indeed, external factors (hydrological flows, climate change, human interventions, etc.) 

create an inherent uncertainty in such models, so its consideration for long-term 

planning is required (Wine, 2018). The stochastic and uncertain characteristics of water 

flow in transboundary waters led Degefu et al. (2017) to apply a stochastic game 

theoretic extension of the bankruptcy concept to transboundary water management, 

under water scarce and uncertain conditions. A similar analysis was performed by 

Janjua and Hassan (2020), who introduced the ‘weighted bankruptcy’ approach which 

favors agents with ‘high agricultural productivity’. Bhaduri et al. (2011) investigated 

the uncertainty in a transboundary water sharing problem and evaluated the scope and 

sustainability for a potential cooperative agreement between countries. Jiang et al. 

(2019) constructed a stochastic differential game to analyze transboundary pollution 

control options, supporting ecological compensation agreements. They compared the 

non-cooperative and Stackelberg cooperative game pollution results and examined the 

most efficient long-term incentives. Basheer et al. (2019) used a data-scarce African 

basin under hydrologic uncertainty to address hydropower generation and irrigation 

issues. These applications however refer to allocation (resource or pollution) and do not 

include any economic extensions, while they focus on the one or two main sectors-

drivers of water demand. Integrated hydro-economic models have been highlighted as 

the most promising policymaking tools for addressing the aforementioned issues 

(Booker et al., 2012; Alamanos et al., 2020; Wang et al., 2020). Their use in uncertain 

transboundary management problems (e.g. Jeuland, 2010) has been very limited (Tayia, 

2019). 

The lack of integrated approaches that consider hydrological and economic aspects, 

from the actual (game theory) perspective of transboundary water management, under 



uncertainty was the initiative for this study. Hydro-economic models’ potential to 

simulate in an integrated and expandable way multistage stochastic and dynamic 

processes under uncertainty fits well into the concept of transboundary water 

management-game. The present study exploits this potential by developing a novel 

framework combining hydrological (precipitation, runoff, outflows from the upstream 

country, and water stock, stochastically) and economic components (social benefits, 

marginal and total costs), considering the five sectors-drivers of water demand and 

economy (mining, energy, tourism, residential, and agriculture), as well as their water 

demand curves through production functions and productivity.  

The estimation of the above relations has been one of the most challenging econometric 

processes: Biases, inconsistencies, and correlation among the regressors (explanatory 

variables, e.g. capital or labor, with the error term) often cause endogeneity problems. 

Traditional approaches (Olley and Pakes, 1996; Levinsohn and Petrin, 2003) lack of 

instruments to control for the endogenous inputs and suffer from collinearity problems 

(Ackerberg et al., 2015; Gandhi et al., 2017). Endogeneity problems are still a challenge 

for stochastic frontier models in efficiency analysis, too (Shee and Stefanou, 2014). It 

usually biases the commonly used tools (e.g. DEA) and Monte Carlo techniques are 

recently suggested to control the effects of endogeneity in efficiency analysis and 

estimates (von Cramon-Taubadel and Saldias, 2014; Santín and Sicilia, 2017). We 

present a new estimation method of sector-level productivity as an extension of the 

model proposed by Gandhi et al. (2017), to tackle the existing limitations, introducing 

technical inefficiency in production, and allowing for autocorrelation of Total Factor 

Productivity (TFP). 

The whole framework is tested under a non-cooperative and a cooperative (Stackelberg 

leader–follower) game, considering the agreements (e.g. food or energy trade-offs) 

between the upstream and downstream countries, providing thus a direct link to WEF 

nexus. The aim is to provide an integrated methodology for managing sustainably 

transboundary waters under uncertainty. The transboundary Omo-Turkana River Basin 

in Africa is used as an example to showcase the framework, while highlighting the 

significance and impacts of proper management of scarce resources to the economic 

and WEF issues of the area under baseline and future scenarios. The novelties of the 

proposed approach are highlighted in each step as presented in the following sections, 

but briefly are: i) its integrated character (to our knowledge, no study has combined all 

the above components in a single framework), ii) the proposed way for the stochastic 

description of the hydrological components, iii) the connection of the follower’s 

reaction to the leader’s strategy, together with the (quantitatively tractable) 

optimization of their objective functions over all possible strategies of the stochastic 

game, iv) the multistage and dynamic consideration of all sectors, v) the realistic 

production function estimations, controlling-allowing for endogeneity, technical 

inefficiency and autocorrelated TFP. 

 

2. STUDY AREA 

The Omo-Turkana (Omo River and Lake Turkana) basin in Eastern Africa is an area of 

130,860 km2 across Ethiopia and Kenya, and small encroachments into Uganda and 

South Sudan (95% of the basin is in Ethiopian and Kenya). The water-land uses of the 

broader area are agriculture (main use, including livestock), energy production, mining, 

residential, and touristic. Lake Turkana receives its inflows from Omo River, which 

defines its levels and water quality. Turkana concentrates over 70% of Kenya’s 



population, relying on food aid, flood retreat farming along Omo River, cattle-grazing, 

and fishing (Kaijage and Nyagah, 2010; Reta, 2016; Oakland Institute, 2014; Anaya 

2010). A five-plant hydroelectric dam cascade is being constructed in Ethiopia (three 

of them- GIBE I, GIBE II, GIBE III, are already operating in Omo River) to fulfill 

energy demand and electricity export ambitions (Regi, 2011; Ficquet, 2015). 

The case is controversial as there are studies highlighting the engineering achievement 

of the dams’ construction, or criticising it from the ecological point of view (Ambelu 

et al., 2013). Hydrological studies argue that the impact on the water level of Lake 

Turkana is negligible (Yesuf, 2013), or dependent on the rainfall and the lake’s initial 

level (Velpuri and Senay, 2012), while there are reported phenomena of extreme hunger 

in the Omo Valley, attributing it to the GIBE III reservoir which holds back the Omo 

River’s annual floods, preventing retreat agriculture for local pastoralists, (Avery, 

2013; Survival International, 2013) and around Lake Turkana where people (and ethnic 

groups) are already fighting over dwindling resources (Avery, 2012; Carr, 2012;2017). 

In any case, there are transboundary tensions and territorial conflicts/border disputes 

around the Lake Turkana border, in contrast with the Ethiopian agricultural and rural-

factories development (Kamski, 2016; Sugar Corporation, 2019). Kenya sees the dam 

construction as growing poverty because of increased water scarcity; Ethiopia is 

concerned by land erosion, water access, increased poverty, change in livelihood, while 

points out the positive impact of regulating floods to provide a more constant water 

availability throughout the downstream (DAFNE 2019). The broader area was in the 

spotlight this year because of the food crisis caused from a historic locust swarm 

invasion1. 

 

 
1 Locust swarm: UN warns of food crisis in Ethiopia, Kenya, Uganda, Tanzania and Somalia. (2020, 

February 14). Retrieved November 22, 2020, from https://www.bbc.com/news/world-africa-51501832 



Figure 1: Study area (Gebresenbet, 2015). 

 

The dams’ construction allows Ethiopia to export electricity to Kenya, Sudan, and 

Djibouti. This agreement exists only in a form of Memorandum of Understanding 

(MoU), that only Kenya’s Electricity Company has signed in 2006 (Eastern Electricity 

Highway Project – construction of a 1,000km power line from Ethiopia to Kenya), 

while other trade-offs refer to food production (irrigation and fishing) and tourism 

(DAFNE, 2019). In particular, the downstream country offers a discounted price for 

food exports to the upstream country, in exchange for greater transboundary water flow 

(and hydropower) that results in a higher water reserve accumulation and sequentially 

in a higher production of food (Fig.2). The environmental and social impact assessment 

report was approved in 2012, although it has been criticised as it was conducted after 

any objection could be made (Abbink, 2012). Following a World Bank loan of US$684 

million (World Bank, 2012), construction began in June 20162. While the 2016 

agreement is not yet publicly available, it is reported that the agreement will allow 

Ethiopia to supply Kenya with 400 megawatts of hydropower at less than 1 US 

cent/kwh3. However, the hydropower source (or sources) that will supply this 

transmission line is not officially stated, although the World Bank modified an official 

project report specifying that power would be sourced “from Ethiopia’s GIBE 

hydropower scheme”, changing the reference to the dam in its next report instead to 

“Ethiopia’s power grid” (AthiWater, 2018).  

 

3. CONCEPTUAL FRAMEWORK: HYDRO-ECONOMIC MODEL 

The situation described is a typical example of transboundary water management 

problem, where the links to the WEF nexus are expressed as agreements and social 

welfare for both the Upstream (h=U) and Downstream (h=D) countries. Hydrological, 

economic, WEF, uncertainty factors and leader-follower games can describe the 

general form of the problem (Fig.2). 

 
2 Kenya-Ethiopia Electricity Highway. (2020, November 18). Retrieved November 22, 2020, from 

https://www.power-technology.com/projects/kenya-ethiopia-electricity-highway/ 
3 Ethiopia, Kenya to enhance cooperation on energy sector. (n.d.). Retrieved November 22, 2020, from 

http://www.china.org.cn/world/Off_the_Wire/2016-06/24/content_38742095.htm 



 

Figure 2: Conceptual flowchart with the factors considered and their brief description. 

The proposed framework enables the quantitative estimation of the influence of 

stochastic water resources on transboundary water allocation over multiple (all the five) 

sectors of the economy, following a multistage dynamic cooperative game (Stackelberg 

“leader–follower”) framework.  

Deconstructing the flowchart, the proposed approach is based on the following pillars: 

Water resources: 

Hydrological cycle’s components such as water availability, losses, and runoff, that are 

necessary for integrated modelling often face many data limitations and their accurate 

simulation is accompanied with many uncertainties. Hydrological modelling itself is 

not always enough for their complete and integrated simulation (Van Emmerik et al., 

2014). Thus, in this framework these components are expressed stochastically, by 

geometric Brownian motion functions, which have been proved to simulate flows better 

than other deterministic models (Lefebvre, 2002), and its proportional changes describe 

the most natural continuous random movements. Given the different hydrological-

social-future regional climate conditions that may affect the flows in the upstream and 

downstream countries, we provide the option (and develop the framework accordingly) 

to use Brownian motions with different characteristics in terms of variance between the 

upstream and the downstream country. Additionally, this allows to determine how the 

water abstraction of the riparian countries will change in the long run, considering the 

greater variability of water availability caused by climate change or other uncertainties. 

Another benefit of this approach is the ability to model the water allocation between 

the upstream and the downstream country, with and without any cooperation in water 

sharing, taking into account how uncertainty in water supply affects the water 

abstraction rates of the countries, and explore the underlying conditions that may 



influence allocation decisions. The upstream country has the upper riparian right to 

unilaterally divert water while the freshwater availability of the downstream one 

partially depends on the water usage in the upstream country. 

Following Bhaduri et al. (2011), we consider at first a complete filtered probability 

space (Ω, J, Jt, P) for the stochastic water flow. Then the annual renewable water 

resource (mainly precipitation) due to the river basin, Wt, evolves through time 

according to the Geometric Brownian motion: 

𝑑𝑊𝑡 = 𝜎
𝑊𝑊𝑡𝑑𝑧𝑡

𝑊 , t ≥ 0 (1) 

Where 𝜎𝑊 is the volatility of water flow in the upstream country, 𝑧𝑡
𝑊 is a standard 

Wiener process (standard Brownian Motion), and Wt the total freshwater utilization 

(see also next paragraph). 

In Fig.2, the term losses refer to the natural outflows and evaporation/ evapotransiration 

(ET), here denoted by Ot which can be formulated by another Geometric Brownian 

motion: 

 𝑑𝑂𝑡 = 𝜎𝑂𝑂𝑡𝑑𝑧𝑡
𝑂, t ≥ 0 (2) 

Where 𝜎𝑂 is the volatility of the losses and 𝑧𝑡
𝑂 a standard Wiener process. 

The water availability in D depends on the total water consumption in U and runoff (to 

the Lake), denoted by R, which is expressed by a third Geometric Brownian motion as: 

𝑑𝑅𝑡 = 𝜎𝑅𝑅𝑡𝑑𝑧𝑡
𝑅, t ≥ 0 (3) 

Where 𝜎𝑅 is the runoff volatility and 𝑧𝑡
𝑅 the standard Wiener process (𝑧𝑡

𝑊 , 𝑧𝑡
𝑂 , 𝑧𝑡

𝑅 are 

independent Wiener processes). 

 

Water Demand: 

As mentioned above, the framework provides the option to use all the involved sectors-

water consumers i (here i=5), and their water use in a way that highlights the scarce 

character of the input resource, unlike with previous studies (as in Eq.4, for the 

upstream country h=U): 

𝑑𝑊𝑗𝑡
𝑈 = [𝑊𝑡 − ∑ 𝑤𝑖𝑡

𝑈5
𝑖=𝑗 ] 𝑑𝑡,     𝑇𝑗−1

𝑈 ≤ 𝑡 <  𝑇𝑗
𝑈,     𝑗 = 1,2, . . . ,5  (4) 

Where 𝑊𝑖
ℎ is the total freshwater utilization (see Eq.1) by country U, 𝑤𝑖𝑡

𝑈 is the water 

utilization per sector i in U, for a specific time: 𝑇𝑖
ℎ is the end of use (exit) time4 of the 

i-th sector of U (T0=0 and T5=∞). So, Equation (4) expresses the water stock (available 

resources) change in the upstream country, 𝑊𝑗𝑡
𝑈, for the j-th exit stage. 

The stock of water (water storage D = water balance, as in Fig.2) in country D (i.e. in 

the lake), where agricultural products and fisheries are produced, is denoted by S and 

is actually based on the general water balance equation: ΔS=Available – Use + Runoff 

– Losses. Thus, Equation (5) is a function of the stochastic water resources and the 

control (water use) variables 𝑤𝑖
ℎ=(𝑤1

ℎ, 𝑤2
ℎ,…, 𝑤5

ℎ) per country h = U, D. For the (j,k)-

th exit stage of U and D, respectively, it follows the dynamics: 

 
4 when an economic sector exits the market as its water demand reaches zero. 



𝑑𝑆𝑗𝑘𝑡 = {𝑊𝑡 −∑ 𝑤𝑖𝑡
𝑈5

𝑖=𝑗 − ∑ 𝑤𝑙𝑡
𝐷5

𝑙=𝑘 + 𝑅𝑡 − 𝑂𝑡}𝑑𝑡,   𝑇𝑗−1
𝑈 ≤ 𝑡 <  𝑇𝑗

𝑈  (5) 

with  𝑇𝑘−1
𝐷 ≤ 𝑡 <  𝑇𝑘

𝐷,   𝑗, 𝑘 = 1,2, . . . ,5  and S(0)=S0 (initial condition). 

So, the inverse demand function takes into account the water utilization 𝑤𝑖
ℎof the j-th 

exit stage, and the price of water 𝑝𝑗𝑡
ℎ  which is the same for the different sectors i:  

𝑝𝑗𝑡
ℎ =

𝑎𝑖
ℎ

𝑏𝑖
ℎ −

1

𝑏𝑖
ℎ ⋅ 𝑤𝑖𝑡

ℎ ,    𝑇𝑗−1
ℎ ≤ 𝑡 <  𝑇𝑗

ℎ,    𝑖 = 𝑗, . . . ,5,    𝑗 = 1,2, . . . ,5  (6) 

Where 𝑎𝑖
ℎ ∈ ℝ, 𝑏𝑖

ℎ > 0 are constant sector-specific parameters that define their water 

demand.  

The sector-specific inverse demand curves are ordered so that 𝑎1
ℎ/𝑏1

ℎ < 𝑎2
ℎ/𝑏2

ℎ < ⋯ <
𝑎5
ℎ/𝑏5

ℎ, which implies that water demand for each of the five sectors reaches zero 

sequentially over time as the price of water increases over time, leading to the 

endogenously defined exit times 𝑇𝑗
ℎ, giving thus piecewise linear demand functions. 

 

Costs: 

Water abstraction from rivers may be taken directly from the flowing waters in the 

channel (surface water abstraction) or can be achieved through inter-basin flow transfer 

schemes. Thus, we may assume that the marginal extraction cost (MC) for the j-th exit 

stage of the upstream country is a decreasing function of the available water WU of the 

form: 

𝑀𝐶𝑈(𝑊𝑗
𝑈) = 𝑘2

𝑈 − 𝑘1
𝑈𝑊𝑗

𝑈,    𝑗 = 1,2, . . . ,5  (7) 

Where 𝑘1
𝑈 ,  𝑘2

𝑈 > 0 given constants which define the cost magnitudes. 

As water becomes increasingly scarce in the economy, the government will exploit 

water through appropriating and purchasing a greater share of aggregate economic 

output, in terms of dams, pumping stations, supply infrastructure, etc. (Barbier, 2004). 

Given the high cost of building infrastructure and expanding supplies, this will lead to 

a higher marginal cost of water. Then the Total Cost (TC) function of water 

withdrawing 𝑤𝑖
𝑈 from the river per sector i=j, …,5, for the j-th exit stage of the upstream 

country is given by an increasing function of the water extraction variable: 

𝑇𝐶𝑈(𝑊𝑗
𝑈 , 𝑤𝑖

𝑈) = (𝑘2
𝑈 − 𝑘1

𝑈𝑊𝑗
𝑈)𝑤𝑖

𝑈,     𝑖 = 𝑗, . . . ,5,     𝑗 = 1,2, . . . ,5  (8) 

On the other hand, D country extracts water from its available stock, thus for the (j,k)-

th exit stage the MC of the downstream country is a decreasing function of the available 

water stock 𝑆𝑗𝑘(Eq.9). Similarly, the TC function of water withdrawing 𝑤𝑙
𝐷from the 

water stock per sector l = k, …, 5 for the (j,k)-th exit stage is given by Eq. (10). 

𝑀𝐶𝐷(𝑆𝑗𝑘) = 𝑘2
𝐷 − 𝑘1

𝐷𝑆𝑗𝑘,     𝑗, 𝑘 = 1,2, . . . ,5  (9) 

𝑇𝐶𝐷(𝑆𝑗𝑘, 𝑤𝑙
𝐷) = (𝑘2

𝐷 − 𝑘1
𝐷𝑆𝑗𝑘)𝑤𝑙

𝐷 ,     𝑙 = 𝑘, . . . ,5,    𝑘 = 1,2, . . . ,5  (10) 

where 𝑘1
𝐷 ,  𝑘2

𝐷 > 0 given constants.  

 

Social Benefits: 



The last component of Figure’s 2 flowchart refers to the Benefits. Since consumers are 

deriving benefits from water, the inverse demand curve (Eq. 6) is the marginal social 

benefit curve. Hence, consider further the benefit of water consumption 𝑤𝑖
ℎ per sector 

i of country h, namely social benefit (SB), as: 

𝑆𝐵𝑖
ℎ(𝑤𝑖

ℎ) = ∫ (
𝑎𝑖
ℎ

𝑏𝑖
ℎ −

1

𝑏𝑖
ℎ ⋅ 𝑤𝑖

ℎ) 𝑑𝑤𝑖
ℎ𝑤𝑖

ℎ

0
=

𝑎𝑖
ℎ

𝑏𝑖
ℎ𝑤𝑖

ℎ −
1

2𝑏𝑖
ℎ ⋅ (𝑤𝑖

ℎ)2  (11) 

It is obvious that the benefit function is strictly concave for all possible values of 𝑤𝑖
ℎ. 

As mentioned, D country’s benefits occurring from storing water, while U country 

receives an additional benefit in the cooperation case, from their agreement, as the net 

consumer surplus or economic benefit from food (agricultural product and fisheries) 

production. This can be described by a linear function of water stock Sjk per (j,k)-th exit 

stage: 

𝐹 (𝑆𝑗𝑘) = 𝜂1
 𝑆𝑗𝑘

 + 𝜂2
  ,      𝑗, 𝑘 = 1,2, . . . ,5 ,     𝜂1

 > 0,  𝜂2 
 ∈ 𝑅 (constants) (12) 

This relation’s form describes these benefits, and allow us to use the coefficient η1 to 

represent the intensity of the contribution that the water storage of the lake has to the 

corresponding food benefits enjoyed by the upstream country. 

 

Game: 

Figure 2 also shows the two game-cases we define, using an inter-sectoral Stackelberg 

leader (U)-follower (D) game. Bhaduri et al. (2011) used a stochastic differential 

Stackelberg game to produce qualitative results on the optimal transboundary water 

allocation between an upstream and a downstream area. The leader (U) applies its 

strategy first, a priori knowing that the follower (D) observes its actions and posteriori 

moves accordingly. In contrast to Bhaduri et al. (2011), who had to restrict the U’s 

strategy space to quadratic functions of the state variable in order to obtain a sub-

optimal qualitative solution of the problem, we maximize the leader’s objective 

function, using the D’s reaction strategy, over all possible strategies to provide an 

optimal solution of our stochastic game problem that is also quantitatively tractable. 

Assuming that both countries use Markovian perfect strategies, since all model 

coefficients are deterministic functions of time, a subgame perfect equilibrium and an 

equilibrium set of decisions dependent on previous actions are defined. These strategies 

are decision rules that dictate the optimal action, conditional on the current values of 

the state variables (e.g. water resources of U, water stock of D), that summarize the 

latest available information of the dynamic system. The following sections analyse the 

two cases of the game. 

 

4. NON-COOPERATIVE CASE 

In the case of a non-cooperative framework, where there is no agreement between the 

two countries regarding either water or food sharing, the benefit maximization and the 

impact on water balance is presented for each country (hydro-economic model). 

Upstream: The upstream country chooses the economically potential rate of water 

utilization that maximizes its own net benefit (NB) per j-th exit stage: 

𝑁𝐵𝑗
𝑈 = ∑ 𝑆𝐵𝑖

𝑈(𝑤𝑖
𝑈)5

𝑖=𝑗 −∑ 𝑇𝐶𝑈(𝑊𝑗
𝑈, 𝑤𝑖

𝑈)5
𝑖=𝑗 ,     𝑗 = 1,2, . . . ,5  (13) 



Thus, U country’s maximization problem is based on its net social benefit (𝐽𝑗
𝑈) of the j-

th exit stage (j=1,2,…,5), and is formulated as follows: 

𝐽𝑈 = max
𝑤𝑈

∑ 𝐽𝑗
𝑈5

𝑗=1 = max
𝑤𝑈

∑ 𝐸 {∫ 𝑒−𝑟𝑡𝑁𝐵𝑗
𝑈𝑑𝑡

𝑇𝑗
𝑈

𝑇𝑗−1
𝑈 }5

𝑗=1   = 

= max
𝑤𝑈

∑ 𝐸 {∫ 𝑒−𝑟𝑡 ∑ [𝑆𝐵𝑖
𝑈(𝑤𝑖𝑡

𝑈) − 𝑇𝐶𝑈(𝑊𝑗𝑡
𝑈 , 𝑤𝑖𝑡

𝑈)]5
𝑖=𝑗 𝑑𝑡

𝑇𝑗
𝑈

𝑇𝑗−1
𝑈 }5

𝑗=1   =   

 = max
𝑤𝑈

∑ 𝐸 {∫ 𝑒−𝑟𝑡 ∑ [
𝑎𝑖
𝑈

𝑏𝑖
𝑈𝑤𝑖𝑡

𝑈 −
1

2𝑏𝑖
𝑈 ⋅ (𝑤𝑖𝑡

𝑈)2 + 𝑐𝑖
𝑈 − (𝑘2

𝑈 − 𝑘1
𝑈𝑊𝑗𝑡

𝑈)𝑤𝑖𝑡
𝑈]5

𝑖=𝑗 𝑑𝑡
𝑇𝑗
𝑈

𝑇𝑗−1
𝑈 }5

𝑗=1    

(14) 

Which subjects to the renewable water (precipitation) in U (Eq. 1), and the water stock 

change in U (Eq. 4). An explicit solution of this stochastic control problem via a 

decoupling method for forward-backward stochastic differential equations (FBSDEs) 

is analytically derived in Appendix A.  

 

Downstream: On the other hand, the water consumption/production of D depends on 

the inflow from U, and the runoff generated within the country’s share of the water 

stock in D (Fig.2). Based on the given water availability, D maximizes its NB per exit 

stage (j,k) as: 

NBjk
D = ∑ SBl

D(wjl
D)5

l=k −∑ TCD(Sjk, wjl
D)5

l=k   (15) 

Thus, putting together Eq.(11), and Eq.(10) in the above relation, the maximization 

problem of the net social benefit (𝐽𝑗
𝐷) of the j-th exit stage (j=1,2,…,5), is: 

JD = max
w 
D
∑  5
k=1 ∑ Jjk

D5
j=1 = max

w 
D
∑  5
k=1 ∑ E {∫ e−rtNBjk

Ddt
{Tj−1
U ≤t< Tj

U} ∩ {Tk−1
D ≤t< Tk

D}
}5

j=1    

= max
w 
D
∑  5
k=1 ∑ E{∫ e−rt [

∑ SBl
D(wlt

D)5
l=k

−∑ 𝑇𝐶D(Sjkt, wlt
D)5

l=k

] dt
{Tj−1
U ≤t< Tj

U} ∩ {Tk−1
D ≤t< Tk

D}
}5

j=1  = 

max
w 
D
∑ 

5

k=1

∑E

{
 
 

 
 

∫ e−rt

[
 
 
 
 
 
∑(

al
D

bl
Dwjlt

D −
1

2bl
D ⋅ (wjlt

D )2)

5

l=k

−(k2
D − k1

DSjkt)∑wjlt
D

5

l=k ]
 
 
 
 
 

dt
{Tj−1

U ≤t< Tj
U} ∩ {Tk−1

D ≤t< Tk
D}

}
 
 

 
 

5

j=1

 

(16) 

where 𝐽𝑗𝑘
𝐷  represents the downstream country’s net social benefit of the (j,k)-th exit 

stage, j, k=1,2,…,5, and 𝑤𝑗𝑙𝑡
𝐷 =(𝑤1𝑙𝑡

𝐷 , 𝑤2𝑙𝑡
𝐷 ,…, 𝑤5𝑙𝑡

𝐷 ) is the sectorial water extraction 

vector for D. This relation subjects to the river basin annual renewable water resource 

Eq.(1), outflow Eq.(2), runoff Eq.(3), the upstream area water resources Eq.(4), and the 

stock of water (state variable) in the downstream area Eq.(5). The analytical solution of 

this stochastic optimization problem can be found in Appendix A. 

 

5. COOPERATIVE CASE 

In this case the agreements described earlier apply, so the formed Stackelberg game 

determines the inter-sector optimal water allocation between U and D countries. First, 

we find the solution to the follower’s (D) problem of maximizing a payoff function, 

and then, using D’s reaction strategy, we maximize the U’s objective function. 



Downstream: Receiving now hydropower benefits, denoted by a variable hydro, from 

U at a discount rate and given its announced intersectoral water abstraction policy 

𝑤𝑗𝑘𝑡
𝑈 =(𝑤1𝑘𝑡

𝑈 , 𝑤2𝑘𝑡
𝑈 ,…, 𝑤5𝑘𝑡

𝑈 ) per (j,k)-th exit stage, the follower D is faced with an 

optimal water management problem as in the non-cooperative case, i.e., maximise 

Eq.(16) augmented by hydro subject to the state Eq.(2)-(6). For every j, k = 1, 2, …, 5, 

the (j,k)-th exit stage Hamiltonian of the system is also given by Eq.(A.14), whose 

necessary optimality conditions Eq.(A15,A16) result in the optimal water allocation 

path of Eq.(A17) and in the same FBSDEs system which will constitute a state system 

for the upstream country, too.  

 

Upstream: U receives now food benefits from D as in Eq.(12), and its NB function 

(Fig.2) is given by: 

NBjk
U = ∑ SBi

U(wit
U)5

i=j + F 
 (Sjk) − ∑ TC 

U(Wj
U, wi

U)5
i=j ,      j, k = 1,2, . . . ,5  (17) 

Therefore, U, anticipating the D’s optimal response as analysed in the previous case, 

chooses the optimal water abstraction vector process 𝑤 
𝑈 = (𝑤1

𝑈, 𝑤2
𝑈, . . . , 𝑤5

𝑈) under 

cooperation by solving the maximization problem: 

𝐽𝑈 = 𝑚𝑎𝑥
𝑤 
𝑈
∑ 

5

𝑗=1

∑𝐽𝑗𝑘
𝑈

5

𝑘=1

= 𝑚𝑎𝑥
𝑤 
𝑈
∑ 

5

𝑗=1

∑𝐸 {∫ 𝑒−𝑟𝑡𝑁𝐵𝑗𝑘
𝑈𝑑𝑡

{𝑇𝑗−1
𝑈 ≤𝑡≤ 𝑇𝑗

𝑈} ∩ {𝑇𝑘−1
𝐷 ≤𝑡≤ 𝑇𝑘

𝐷}

}

5

𝑘=1

= 𝑚𝑎𝑥
𝑤 
𝑈
∑ 

5

𝑗=1

∑𝐸

{
 
 

 
 

∫ 𝑒−𝑟𝑡

[
 
 
 
 
 
∑𝑆𝐵𝑖

𝑈(𝑤𝑖𝑘𝑡
𝑈)

5

𝑖=𝑗

+ 𝐹𝑗𝑘
 (𝑆𝑗𝑘𝑡)

−∑𝑇𝐶 
𝑈(𝑊𝑗𝑡

𝑈, 𝑤𝑖𝑘𝑡
𝑈 )

5

𝑖=𝑗 ]
 
 
 
 
 

𝑑𝑡
 

{𝑇𝑗−1
𝑈 ≤𝑡≤ 𝑇𝑗

𝑈} ∩ {𝑇𝑘−1
𝐷 ≤𝑡≤ 𝑇𝑘

𝐷}

}
 
 

 
 

 

5

𝑘=1

 = 

= 𝑚𝑎𝑥
𝑤 
𝑈
∑ 

5

𝑗=1

∑𝐸

{
 
 

 
 

∫ 𝑒−𝑟𝑡

[
 
 
 
 
 
∑(

𝑎𝑖
𝑈

𝑏𝑖
𝑈 𝑤𝑖𝑡

𝑈 −
1

2𝑏𝑖
𝑈 ⋅ (𝑤𝑖𝑡

𝑈)2)

5

𝑖=𝑗

+𝜂1
 𝑆𝑗𝑘𝑡

 , +𝜂2
 − (𝑘2

𝑈 − 𝑘1
𝑈𝑊𝑗𝑡

𝑈)∑𝑤𝑖𝑡
𝑈

5

𝑖=𝑗 ]
 
 
 
 
 

𝑑𝑡
 

{𝑇𝑗−1
𝑈 ≤𝑡≤ 𝑇𝑗

𝑈} ∩ {𝑇𝑘−1
𝐷 ≤𝑡≤ 𝑇𝑘

𝐷}

}
 
 

 
 

5

𝑘=1

 

(18) 

subject to the state equation subject to the river basin annual renewable water resource 

Eq(1), the upstream country water demand Eq.(4), the runoff Eq.(2), the outflow Eq.(3), 

and the Hamiltonian FBSDEs state system of the downstream country, Eq.(A18). In 

Appendix 2 one can find an explicit solution of this stochastic maximization problem. 

 

6. ECONOMETRIC MODEL: PRODUCTION FUNCTIONS THROUGH 

STOCHASTIC FRONTIER ESTIMATION AND WATER DEMAND 

CURVES 

The hydro-economic model shows how all parts of the economy – in our case the 

sectors (agriculture, residential, mining industry, energy production, tourism) are based 

on water use directly or indirectly, so are the benefits of U and D. Water is an input (as 

well as labour, capital, natural capital, etc.) for the production process, hence the inverse 

demand curves we imposed in section 3, as a way to express the input price-quantity 

relation. The marginal contribution of water in consumption and production of each 

sector, can be obtained if in Eq.(6), we collapse all variables, except of 𝑤𝑖, to their 



means (ceteris paribus). Then we will have a relation of the form 𝑝𝑖 = 𝑓𝑖
′ (𝑤𝑖), where 

𝑓𝑖
 expresses the maximum Willingness-To-Pay (WTP) by sector i for each unit of water, 

in a price 𝑝𝑖. The integration of this curve will result the SB of each sector5.  

We propose a stochastic frontier model and a typical quadratic production function, the 

form of which remains unknown (Brems, 1968). Copulas are used to estimate non-

parametrically the dependence between the endogenous regressors and the composed 

error terms directly, and thus the marginal product function of our hydro-economic 

model without biases. Bayesian analysis is performed using a Sequential Monte Carlo/ 

Particle-Filtering approach for the computations (Tsionas, 2017; Tsionas and 

Mamatzakis, 2018; Tsionas and Mallick, 2019, see Appendix B). 

Consider the following stochastic frontier model for the production function(s):    

𝑦𝑖𝑡 = 𝜑(𝑥𝑖𝑡 , 𝑧𝑖𝑡; 𝛽) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 , 𝑖 = 1,… , 𝑛, 𝑡 = 1, . . . , 𝑇  (19) 

where 𝑦𝑖𝑡 is the output of sector 𝑖 in time 𝑡, 𝜑() is an unknown functional form, 𝑧𝑖𝑡 is 

a 𝑝 × 1 vector of exogenous inputs, 𝑥𝑖𝑡 is a 𝑝 × 1 vector of endogenous inputs, 𝛽 is a 

𝑑 × 1 vectors of unknown parameters, 𝑣𝑖𝑡 is a symmetric random error, 𝑢𝑖𝑡 is the one-

sided random disturbance representing technical inefficiency6. We assume that 𝑧𝑖𝑡 is 

uncorrelated with 𝑣𝑖𝑡 and 𝑢𝑖𝑡 but 𝑥𝑖𝑡 is allowed to be correlated with 𝑣𝑖𝑡 and possibly 

with 𝑢𝑖𝑡. This, of course, generates an endogeneity problem. We also assume that 𝑢𝑖𝑡 
and 𝑣𝑖𝑡 are independent and leave the form of 𝑢𝑖𝑡 unrestricted. The model can be easily 

extended to the case of exogenous (environmental) variables are included in the 

distribution of technical inefficiency (e.g. Battese and Coelli,1995; Caudill et al., 1995). 

To address the endogeneity problem, we propose a copula function approach to 

determine the joint distribution of the endogenous regressors and the composed errors 

that effectively capture the dependency among them. 

We first assume that 𝑣𝑖𝑡 ∼ 7𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎𝑣
2)  and 𝑢𝑖𝑡 ∼ 𝑖. 𝑖. 𝑑. |𝑁(0, 𝜎𝑢

2)|. Then the 

density of 𝜀𝑖𝑡 = 𝑣𝑖𝑡 − 𝑢𝑖𝑡 = 𝑦𝑖𝑡 − 𝜑(𝑥𝑖𝑡, 𝑧𝑖𝑡; 𝛽)  is given by: 

𝑔(𝜀𝑖𝑡) = ∫ 𝑓𝑣(𝜀𝑖𝑡 + 𝑢𝑖𝑡)𝑓𝑢(𝑢𝑖𝑡)𝑑𝑢𝑖𝑡
∞

0
=

2

𝜎
𝜑 (

𝜀𝑖𝑡

𝜎
)𝛷 (−

𝜆𝜀𝑖𝑡

𝜎
)  (20) 

where 𝜎2 = 𝜎𝑣
2 + 𝜎𝑢

2 , 𝜆 = 𝜎𝑢/𝜎𝑣 , 𝜑(⋅) and 𝛷(⋅) are the Probability Density Function 

(PDF) and cumulative distribution function of a standard normal random variable, 

respectively. To avoid the non-negativity restrictions we make use of the following 

transformation: �̄� = 𝑙𝑜𝑔( 𝜆) and �̄�2 = 𝑙𝑜𝑔( 𝜎2). Let 𝜃 = (𝛽′, �̄�, �̄�2)′ then the 

conditional PDF of 𝑦 given 𝑥 and 𝑧  is: 

𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡 , 𝑧𝑖𝑡) =
2

�̄�
𝜑 (

𝑦𝑖𝑡−𝜑(𝑥𝑖𝑡,𝑧𝑖𝑡;𝛽)

�̄�
)𝛷 (−

�̄�

�̄�𝑣
(𝑦 − 𝜑(𝑥𝑖𝑡 , 𝑧𝑖𝑡; 𝛽)))  (21) 

and conditional log-likelihood is then given by: 

𝑙𝑜𝑔 𝐿 (𝜃) = ∑ ∑ 𝑙𝑜𝑔 𝑓 (𝑦𝑖𝑡; 𝜃|𝑥, 𝑧)
𝑇
𝑡=0

𝑛
𝑖=1   (22) 

From the estimated production function for each of the two countries (considering 

regional differences in productivity) we can easily obtain their corresponding marginal 

product function, which is connected with the water use (𝑤𝑖
ℎ) input variable via Eq.(23) 

 
5 As analysed in section 3, the inverse demand curve (Eq. 6) is the marginal SB curve. 
6 The production function used to express the “maximum” output that can be obtained from any fixed 

and specific set of inputs and describes how inputs are transformed into output. As in reality, cases of 

reducing outputs by inefficient management (getting less output from its input than the maximum), are 

considered, by the concept of technically inefficiency (Shephard, 1970; Saari, 2006; 2011), as an one-

sided random disturbance. 
7 Independent and Identically Distributed (probability distribution). 



(see first paragraph of this section). Consequently, the derived demand curve for water 

of the producer is represented at equation (24): 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝛼 + 𝛽 ⋅ 𝑤𝑖
ℎ  (23) 

𝑤𝑖
ℎ = 𝑎 + 𝑏 ⋅ 𝑝𝑟𝑖𝑐𝑒  (24) 

where α,β are water demand parameters (coefficients) of each sector and b water 

demand price elasticity, estimated as: 

𝑝𝑟𝑖𝑐𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =
𝑑(𝑤𝑖𝑡

ℎ )

𝑑(𝑝𝑟𝑖𝑐𝑒)
⋅
𝑝𝑟𝑖𝑐𝑒

𝑤𝑖𝑡
ℎ   (25) 

 

6.1.Copula approach:  

As mentioned, copulas will determine the joint distribution of the endogenous 

regressors and the composed errors that capture their dependencies (Nelsen, 2006).  In 

this sub-section we scrutinise this concept, taking the function 𝜑() as given, while in 

sub-section 6.2 we elaborate on the dynamic latent productivity.  

To this end, let 𝐹(𝑥1, … , 𝑥𝑝, 𝜀) be the joint distribution of (𝑥1, … , 𝑥𝑝) and 𝜀𝑖. Since the 

information contained in the correlation between (𝑥1, … , 𝑥𝑝) and 𝜀𝑖 is also contained in 

its joint distribution, and if this is known to belong to a class of parametric density, then 

consistent estimates of the model parameters can be obtained by simply maximizing 

the log-likelihood function derived from 𝐹(𝑥1, … , 𝑥𝑝, 𝜀). Thus, there is no need for 

resorting to instruments nor to consistently estimate the parameters of the model. 

However, in practice 𝐹(𝑥1, … , 𝑥𝑝, 𝜀) is typically unknown. Following Park and Gupta 

(2012) and suggesting a copula to determine this joint density, we can capture the 

dependence in the joint distribution of the endogenous regressors and the composed 

errors. More precisely, suppose the joint distribution of (𝑥1, … , 𝑥𝑝, 𝜀) with joint 

density𝑓(𝑥1, … , 𝑥𝑝, 𝜀), and let 𝑓𝑗(𝑥𝑗), 𝐹𝑗(𝑥𝑗), for 𝑗 = 1, … , 𝑝, 𝑔(𝜀) and 𝐺(𝜀)  denote the 

marginal density and Cumulative Distribution Function (CDF) of 𝑥𝑗 and 𝜀, respectively. 

Also, 𝐶 denotes the “copula function” defined for (𝜉1, … , 𝜉𝑝+1) ∈ [0,1]
𝑝+1 by: 

𝐶(𝜉1, … , 𝜉𝑝+1) = 𝑃(𝐹1(𝑥1) ≤ 𝜉1, … , 𝐹𝑝(𝑥𝑝) ≤ 𝜉𝑝, 𝐺(𝜀) ≤ 𝜉𝑝+1)  (26) 

so that the copula function is itself a CDF.  

Moreover, since 𝐹𝑗(𝑥𝑗) and 𝐺(⋅) are marginal distribution functions, each component 

𝑈𝑗 = 𝐹𝑗(𝑥𝑗) and 𝑈𝜀 = 𝐺(𝜀) has a uniform marginal distribution (Li and Racine, 2007)8. 

Let 𝑐(𝜉1, … , 𝜉𝑝) denote the PDF associated with 𝐶(𝜉1, … , 𝜉𝑝), then by Sklar’s theorem 

(Sklar,1959), we have: 

𝑓(𝑥1, … , 𝑥𝑝, 𝜀) = 𝑐(𝐹1(𝑥1), … , 𝐹𝑝(𝑥𝑝), 𝐺(𝜀))𝑔(𝜀)∏ 𝑓𝑗(𝑥𝑗)
𝑝
𝑗=1   (27) 

Thus, Eq.(21) shows that the copula function completely characterizes the dependence 

structure of (𝑥1, … , 𝑥𝑝, 𝜀), and 𝑐(𝜉1, … , 𝜉𝑝) = 1 if and only if (𝑥1, … , 𝑥𝑝, 𝜀) are 

independent of each other. To obtain the joint density, we need to specify the copula 

function; here the Gaussian copula is used9: 

 
8 Many producers use their own strategies to maximize profits. The individualistic behaviour of each can 

be described by modelling the marginals. Copulas can model marginals and multivariate probabilities. 
9 Other copula functions such as Frank, Placket, Clayton, and Farlie-Gumbel-Morgenstern can also be 

used, but here we used the Gaussian as the most generally robust and wellness of performance (Song, 

2000; Danaher and Smith, 2011). 



Let 𝛷𝛴,𝑝+1 denote a (𝑝 + 1)-dimensional CDF with zero mean and correlation matrix 

𝛴. Then the (𝑝 + 1) -dimensional CDF with correlation matrix 𝛴 is given by: 

𝐶(𝑤; 𝛴) = 𝛷𝛴,𝑝+1(𝛷
−1(𝑈1),… , 𝛷

−1(𝑈𝑝),𝛷
−1(𝑈𝜀)), 

where 𝑤 = (𝑈1, … , 𝑈𝑝, 𝑈𝜀) = (𝐹1(𝑥1),… , 𝐹𝑝(𝑥𝑝), 𝐺(𝜀)) 
(28) 

The copula density is:  

𝑐(𝑤; 𝛴) = (𝑑𝑒𝑡( 𝛴))−1/2 × 𝑒𝑥𝑝 {−
1

2
(𝛷−1(𝑈1), … , 𝛷

−1(𝑈𝑝), 𝛷
−1(𝑈𝜀))

′
(𝛴−1 −

𝐼𝑝+1)(𝛷
−1(𝑈1), … , 𝛷

−1(𝑈𝑝), 𝛷
−1(𝑈𝜀))}  

(29) 

And the log-likelihood function is:  

𝑙𝑜𝑔 𝐿 (𝜃, 𝛴) = ∑ ∑ {𝑙𝑛 𝑐 (𝐹1(𝑥1,𝑖𝑡), … , 𝐹𝑝(𝑥𝑝,𝑖𝑡), 𝐺(𝜀𝑖𝑡; 𝜃); 𝛴) +
𝑇
𝑡=1

𝑛
𝑖=1

∑ 𝑙𝑛 𝑓𝑗 (𝑥𝑗,𝑖𝑡)
𝑝
𝑗=1 + 𝑙𝑛 𝑔 (𝜀𝑖𝑡; 𝜃)}  

(30) 

where 𝜃 = (𝛽′, �̄�, �̄�2)′ and the form of 𝑐(. ) is given in Eq.(22). Notice that the first 

term in the summation of Eq.(30) is derived from the copula density and reflects the 

dependence between endogenous variables and composed errors. In addition, since the 

marginal density 𝑓𝑗(𝑥𝑗) does not contain any parameters of interest, the second term in 

the summation of Eq.(30) can be dropped from the log-likelihood function. Finally, it 

is clear that if there is no endogeneity problem, Eq.(30) collapses to the log-likelihood 

function of the standard stochastic frontier models.  

By maximizing the log-likelihood function, consistent estimates of (𝜃, 𝛴) can be 

obtained, and this can be done as we described by the algorithm below: 

A. Estimation of 𝐹𝑗(𝑥𝑗), 𝑗 = 1,… , 𝑝; and 𝐺(𝜀 ; 𝜃) 

Since 𝐹𝑗(𝑥𝑗𝑖) are unknown and we have an observed sample of 𝑥𝑗𝑖 , 𝑗 = 1, … , 𝑝; 𝑖 =

1, … , 𝑛; in the first step, we can estimate 𝐹𝑗(𝑥𝑗𝑖) by  

�̃�𝑛𝑗 =
1

𝑛𝑇+1
∑ 1(𝑥𝑗,𝑖𝑡 ≤ 𝑥0𝑗),        𝑗 = 1,… , 𝑝𝑛
𝑖=1   (31) 

where 1(. ) is an indicator function. Note that we used the rescaling factor 1/(𝑛𝑇 + 1) 
rather than 1/𝑛𝑇 to avoid difficulties arising from the potential unboundedness of the 

𝑙𝑛 𝑐 (𝐹1(𝑥1,𝑖𝑡),… , 𝐹𝑝(𝑥𝑝,𝑖𝑡), 𝐺(𝜀𝑖𝑡; 𝜃); 𝛴) as some of the 𝐹𝑗(𝑥𝑗) tend to one. To estimate 

𝐺(𝜀𝑖𝑡; 𝜃), note that its density 𝑔(𝜀𝑖𝑡 ; 𝜃) is given in Eq.(20) and by definition, 

𝐺(𝜀𝑖𝑡; 𝜃) = ∫ 𝑔(𝑠; 𝜃)𝑑𝑠
𝜀𝑖𝑡
−∞

, thus 𝐺(𝜀 ; 𝜃) can be estimated using numerical integration, 

and let denotes the estimator of 𝐺(𝜀 ; 𝜃). 

B. Maximization of the log-likelihood function 

Maximization of the log-likelihood function of Eq.(30) where 𝐹𝑗(𝑥𝑗) and 𝐺(𝜀𝑖𝑡 ; 𝜃) are 

replaced by their estimates �̃�𝑗(𝑥𝑗) and �̃� (𝜀𝑗; 𝜃), respectively: 

(𝜃, �̂�) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃∈𝛩,𝛴

∑ {𝑙𝑛 𝑐 (�̃�1(𝑥1𝑖),… , �̃�𝑝(𝑥𝑝𝑖), �̃�(𝜀𝑖; 𝜃); 𝛴) + 𝑙𝑛 𝑔 (𝜀𝑖; 𝜃)}
𝑛
𝑖=1   

(32) 

C. Estimating Technical Inefficiency 

Once the parameters have been estimated, the ultimate goal is to predict the technical 

inefficiency values (term 𝑢𝑖). This can be calculated based on Jondrow et al. (1982): 



�̂�𝑖𝑡 = �̂�(𝑢𝑖𝑡|𝜀𝑖𝑡) =
�̂��̂�

1+�̂�2
[
𝜑(

�̂��̂�𝑖𝑡
�̂�
)

1−𝛷(
�̂��̂�𝑖𝑡
�̂�
)
−
�̂��̂�𝑖𝑡

�̂�
]   (33) 

where 𝜀�̂�𝑡 = 𝑦𝑖𝑡 − 𝜑(𝑥𝑖𝑡, 𝑧𝑖𝑡; �̂�)  and �̂�, �̂� and �̂�2 are the parameter estimates obtained 

from the approach discussed above. 

 

6.2.Local likelihood estimation:  

The functional form 𝜑(𝑥𝑖𝑡, 𝑧𝑖𝑡; 𝛽) was left unspecified so far. By all means, any 

parametric form can be used, but here we focus on non-parametric estimation by the 

local likelihood method. We use the simpler notation 𝜑(𝑥𝑖𝑡; 𝛽) as the extension to the 

case of exogenous covariates is straightforward. Since we have a multivariate covariate, 

we use the method of local linear estimation. This means that all parameters of the 

model become functions of 𝑥, and they are denoted by 𝜃(𝑥). We denote the conditional 

density of 𝑦 given 𝑥 by 𝑝(𝑦|𝑥) = 𝑔(𝑦; 𝜃(𝑥)),  where 𝜃(𝑥) ∈ ℝ𝑘 is unknown and we 

define 𝑞(𝑦; 𝜃(𝑥)) = 𝑙𝑜𝑔 𝑔 (𝑦; 𝜃(𝑥)). For example, a standard frontier would take the 

form: 

𝑦𝑖𝑡 = 𝑚(𝑥𝑖𝑡) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡,  

where 𝑣𝑖𝑡|𝑥𝑖𝑡~𝑁(0, 𝜎𝑣
2(𝑥𝑖𝑡)), 𝑢𝑖𝑡|𝑥𝑖𝑡~𝑁(0, 𝜎𝑢

2(𝑥𝑖𝑡)). Then: 
(34) 

𝜃(𝑥) = [𝑚(𝑥), 𝜎𝑣
2(𝑥), 𝜎𝑢

2(𝑥)]′  (35) 

Our fundamental departure from the standard model is the introduction of productive 

performance or technical efficiency: 

𝑦𝑖𝑡 = 𝑚(𝑥𝑖𝑡, 𝑧𝑖𝑡) + 𝑣𝑖𝑡 + 𝜔𝑖𝑡 − 𝑢𝑖𝑡  (36) 

where the productivity process is: 

𝜔𝑖𝑡|𝑥𝑖𝑡, 𝜔𝑖,𝑡−1~𝑁 (𝑟(𝜔𝑖,𝑡−1, 𝑥𝑖𝑡 , 𝑧𝑖𝑡), 𝜎𝜔
2(𝜔𝑖,𝑡−1, 𝑥𝑖𝑡, 𝑧𝑖𝑡))  (37) 

In this specification, 𝑟(𝜔𝑖,𝑡−1, 𝑥𝑖𝑡 , 𝑧𝑖𝑡) is a non-parametric productivity mean process, 

and 𝜎𝜔
2(𝜔𝑖,𝑡−1, 𝑥𝑖𝑡, 𝑧𝑖𝑡) is the variance. For ease in notation, we omit explicit 

dependence on z and we continue to denote 𝜃(𝑥) ∈ ℝ𝑘 with 

𝜃(𝑥) = [𝑚(𝑥), 𝑟(𝜔−1, 𝑥), 𝜎𝑣
2(𝑥), 𝜎𝑢

2(𝑥), 𝜎𝜔
2(𝜔−1, 𝑥)]

′  (38) 

where 𝜔−1 denotes the lagged value of productivity. As productivity is latent special 

problems are introduced into the analysis. 

There is a multivariate kernel which satisfies: 

∫𝐾(𝑢)𝑑𝑢 = 1,   ∫ 𝑢𝑢′𝐾(𝑢)𝑑𝑢 = 𝜇2𝛪𝑑  (39) 

To fix notation, we start with the analysis of the simpler model in Eq.(36). The 

conditional local linear log-likelihood is given by10: 

𝑙𝑜𝑔 𝐿 (𝜃𝜊 , 𝛩1) = ∑ ∑ 𝑞(𝑇
𝑡=1

𝑛
𝑖=1 𝑦𝑖𝑡, 𝜃𝜊 + 𝛩1(𝑥𝑖𝑡 − 𝑥))𝐾𝐻(𝑥𝑖𝑡 − 𝑥)   (40) 

where 𝜃𝑜 , 𝛩1 is a vector (𝑘 × 1) and matrix (𝑘 × 𝑑) respectively, 𝐻 is a bandwidth 

matrix which is symmetric, positive definite and 𝐾𝐻(𝑢) = |𝐻|−1𝐾(𝐻−1𝑢). We choose 

a multivariate product kernel so that 𝐾(𝑢) = ∏ 𝐾𝑗
𝑑
𝑗=1 (𝑢𝑗) in which case 

∫𝑢𝑢′𝐾(𝑢)𝑑𝑢 = (∫𝑢1
2𝐾1(𝑢1)𝑑𝑢1) 𝐼𝑑. 

 
10 We include zit in the kernel functions because, in this instance, they represent important environmental 

variables that help in modeling heterogeneity. For ease in notation we redefine x=[x’, z’]’. 



The local linear estimator is 𝜃(𝑥) = 𝜃𝑜(𝑥)  where 𝜃𝑜(𝑥)  and �̂�1(𝑥) maximize the log-

likelihood 𝐿(𝜃𝑜 , 𝛩1)  with respect to 𝜃𝑜 , 𝛩1. Computational details can be found in 

(Kumbhakar et al., 2007-Sections 3.1, 3.2) as also followed in this paper. 

For the model with latent productivity 𝜔𝑖𝑡 as in Eq.(37) the likelihood function is  

𝐿(𝜃𝑜, 𝛩1) = ∫ {∏ ∏ 𝑔(𝑦𝑖𝑡 , 𝜔𝑖𝑡, 𝜃𝑜 +𝛩1
𝑇
𝑡=1

𝑛
𝑖=1 (𝛬𝑖𝑡 − 𝛬)) ⋅ 𝐾𝐻(𝛬𝑖𝑡 − 𝛬)}𝑑𝜔ℝ𝑛𝑇

  (41) 

where 𝛬𝑖𝑡 = [𝑥𝑖𝑡
′ , 𝜔𝑖,𝑡−1]

′
 , 𝛬 = [𝑥 ′, 𝜔−1]

′, and  

𝑔(𝑦, 𝜔; 𝜃(𝛬)) =
2

𝜎(𝑥)
𝜑 (

𝑦𝑖𝑡−𝜑(𝑥𝑖𝑡;𝛽(𝑥))−𝜔𝑖𝑡

𝜎(𝑥)
)𝛷 (−

𝜆(𝑥)

𝜎𝑣(𝑥)
(𝑦 − 𝜑(𝑥𝑖𝑡; 𝛽(𝑥))) −

𝜔𝑖𝑡) ⋅
1

𝜎𝜔(𝑥,𝜔−1)
𝜑 (

𝜔𝑖𝑡−𝑟(𝑥𝑖𝑡,𝜔𝑖,𝑡−1;𝛾(𝑥,𝜔−1))

𝜎𝜔(𝑥,𝜔−1)
)  

(42) 

Moreover, 𝛾(𝑥, 𝜔−1) denotes the localized parameters in the r() function of Eq.(37). 

For ease in notation, we define 𝜃(𝑥, 𝜔−1) = [𝛽(𝑥)
′, 𝛾(𝑥, 𝜔−1)

′]′ ∈ ℝ𝑘. In Eq.(41) 

there is an 𝑛𝑇-dimensional integral which cannot be evaluated analytically, which is 

obvious from the definition of Eq.(42). The computation relies in two steps:  

Step 1: Integrate out {𝜔𝑖𝑡} from Eq.(41) using a Sequential Monte Carlo (SMC) 

algorithm (Pitt and Shephard, 1999). 

Step 2: Maximize the resulting expression using numerical optimization techniques. 

For reasons of computational convenience and without sacrificing generality we 

assume: 

𝜔𝑖𝑡 = 𝜌𝜔𝑖,𝑡−1 + 𝜉𝑖𝑡, {𝜉𝑖𝑡}~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎𝜉
2)  (43) 

We will still need the SMC algorithm in step 1 (Appendix B), for which we used 106 

particles per likelihood evaluation, and a standard conjugate gradients algorithm for 

maximization. Our results were insensitive to using 105 or 107 particles per likelihood 

evaluation. 

 

7. RESULTS AND DISCUSSION 

 

7.1. Production functions and water demand functions 

In this section we present a simple nonparametric estimation of the production function 

per sector in Ethiopia and Kenya. Human input (labour, machinery), land, and 

ecosystem-based inputs need to be accounted in production function estimations, which 

lead to the integrated hydro-economic modelling (the existence of natural capital11 is 

necessary to characterise water resources in each country). For each sector involved 

data on Natural Capital were collected using Environmental Indices (EI) as 

approximations of both quality and quantity, indicatively shown in Table 1, in detail 

described in Appendix C. 

Table 1: Factors (data) used per sector. 

Sector Factors 

Agriculture 
Land use (agricultural area, arable land, permanent crops, total area 

equipped for irrigation), forest 

 
11 Natural Capital is linked with its Ecosystem Services (ES), e.g. provisioning services (water, food), 

regulating services (flood prevention, erosion control), supporting-habitat services (biodiversity), 

cultural-recreational services (tourism). Based on these categories we selected the factors per sector. 



Soil erosion/degradation 

Agricultural production, fishery production, aquaculture production 

Use of pesticides /fertilizers 

Raw materials (biomass) 

Energy 
Energy for renewable resources 

Dam capacity 

Mining Raw materials (construction material, and total fossil fuel) 

Tourism 

International tourism, 

Expenditures 

Number of arrivals 

Terrestrial Conservation Areas 

Residential Water Supply Access to clean water 

*all EIs were converted to same scale and units through normalization (log means)  

 

The results of the nonparametric estimation are presented below (Table 2), following 

the Copula function approach and production frontier analysis, described in the 

previous section. From the estimated production functions we can easily obtain their 

corresponding marginal product function, which is connected with the water use input 

variable, according to Eq.(23) (see also Fig.5). The estimated α,β parameters have the 

expected signs, which define the form of the demand curves. 

Regarding the price elasticity, which is also presented in Table 2, based on Eq.(24)-

(25), as expected, all sectors are exceptionally inelastic to a price change for water use 

(price cannot affect water use). Agriculture seems to be perfectly inelastic to any price 

change, which means that in both countries the demand will remain stable for any price 

change. This implies an extremely strong relationship between the input (wi) and the 

corresponding crop output, since the producer lacks alternatives, actually depends on 

the scarce water resources, which is highly valued. These well-known findings that are 

confirmed by our results, strengthen the validity of the proposed framework. 

 

Table 2: Parameters α, β and price elasticities per sector. 

Empirical results: β parameter for each sector 

 Mining  Energy Tourism   Residential Agriculture 

  Ethiopia -0.0010 -0.0014 -0.0012 -0.0013 -0.0000321 

  Kenya -0.0011 -0.0013 -0.0010 -0.0015 -0.0000319 

Empirical results: α parameter for each sector 

Ethiopia 1.80 1.73 1.48 1.65 1.48 

Kenya 1.54 1.70 1.56 1.77 1.56 

Empirical results: water price elasticity for each sector 

Ethiopia -0.099 -0.131 -0.096 -0.116 -0.003 

Kenya -0.092 -0.120 -0.085 -0.143 -0.003 

 

The respective demand curves (Eq.(24)), provide an ordering of these sectors via their 

demand function intercepts (Fig.3). Sequential “exits from the market” are defined by 

the relative importance of sector-specific demand parameter ratio a, with a=α/β. As wi 

reaches zero sequentially, its price increases revealing producers’ preferences for water 

use. At these prices, in Ethiopia, Tourism sector should exit the market first followed 

by Residential and Energy sectors, while in Kenya, Mining would exit the market first 

trailed by the Tourism sector. Moreover, mining producers in Kenya value higher the 

water than in Ethiopia, and that happens because Kenya relies strongly on groundwater 

for mining production. In both cases, in case of river/lake depletion, agriculture sector 



should be the last one to exit the market, since it is valuing water use more than any 

other sector.  

 

Figure 3: Water demand curves per sector for each country. 

The water price elasticity (Eq.25,b) sampling distributions tend not to vary significantly 

between the two countries (Fig.4). Except of the Ethiopian residential sector’s 

distribution which seems like a normal distribution, the others slightly diverge from the 

normal distribution at their tails, showing disorders during extreme cases. None of these 

means is the mode of the distribution as well, although the chasm between those values 

is not notable. In economic terms, the elasticities for water demand in each sector do 

not deviate remarkably, letting so similar behavioural patterns to be observed in each 

sector across the two countries. 



 

Figure 4: Sampling distributions of water price elasticities by sector for both countries. 

The second parameter of the inverse demand curve is the constant term (α), which is 

responsible for the starting point of the demand curve, revealing the stakeholders’ WTP 

per sector. Figure 5 shows the distributions of constant terms of the inverse demand 

functions and interestingly we can see that in most cases the WTP for water use in 

energy sector is greater than the corresponding one in agriculture and tourism, which 

implies greater profitability in energy sector. Additionally, in terms of WTP, mining 

sector in Ethiopia, which follows a leptokurtic distribution seems to be the most stable 

one. The technical inefficiency parameter 𝑢𝑖𝑡 (Eq.(19),(33)) shows how (in)efficiently 

the water-input is transformed into production output (Fig.5). Mining and Residential 

sectors in Ethiopia follow exactly the same distribution with a positive skew to the right. 

Energy and Tourism in both countries, 𝑢𝑖𝑡 has two district peaks (bimodal distribution), 

which indicates that in these sectors there are two groups of producers: some of them 

achieve to maximize their outputs given their inputs, while some others do not with 

technical inefficiency taking greater values than the former group. However, it is 

noteworthy that Energy sector is more technically efficient compared with Tourism, 

since the lowest peak of Tourism is as great at the biggest one of Energy sector. 



 

Figure 5: Sampling distributions of constant terms (up) and technical inefficiency (down) by sector for 

each country. 

All the above ‘clues’ that can be derived from the two graphs, justify the proposed 

framework in terms of selecting a multi-sectorial approach, and introducing the term of 

technical inefficiency. Those novel elements give a significantly added value compared 

with the more ‘narrowed’ approaches so far. 

 

7.2.Games under uncertainty 

Historical hydrological data of the basin (e.g. precipitation, runoff of the Omo River to 

Lake Turkana, and evaporation/ ET), can be used to estimate their corresponding 

historical volatilities, σ, as in Eq.(1)-(3), and storage of the lake, as in Eq.(5), while 

pumping costs per country can be used to represent water tariffs (detailed data and 

parameters of the solved models can be found in Appendix C, Table C.2). Subsequently, 

the stochastic optimization hydro-economic model, for both game cases can be solved 

with the described decoupling method for linear FBSDEs (section 3). For the sake of 

scale consistency, the optimal water abstraction and the resulting NB are presented via 

the percentage of the water availability inside the river basin over the total water 

availability of each of the two countries. 

Regarding the game, both players have two available strategies: 

• myopic (the country follows short-term water exploitation, without considering 

the benefits coming from the natural resource sustainable use, i.e. from the river 

for U and from the lake for D): A myopic strategy amounts to the depletion of 

the resource that is owned as a common property. In the myopic equilibrium, 



the marginal benefit of the water use equals current marginal extraction cost, 

ignoring the water scarcity rents (conventional user costs) that represent 

instantaneous benefit of foregoing water extraction currently as a means of 

reducing future extraction costs. Analytically, the NB function is maximized 

without taking into account the constraint imposed by the resource (state) 

equation.   

• non-myopic (consider natural resource and long-term plan – preservation 

benefits). In a non-myopic strategy, the marginal benefit of the water use equals 

current marginal extraction cost plus marginal user cost (as defined above). 

Analytically, the NB function is maximized subject to the constraint imposed 

by the resource (state) equation. 

 

Non-cooperative case: 

The optimal scenario would be a Non-myopic–Non-myopic combination, where the 

lake runs out of water after 33 years, while the worst-case scenario in environmental 

terms is realised when both countries follow a myopic strategy, where the Lake 

Depletion Time (LDT) is 15 years, accompanied by lack of trust, institutions bridging 

the limited disposable information, or a limited technical support (Table 3). 

Table 3: non-cooperative case for myopic and non-myopic combinations. 

Downstream 

(Kenya)- D 
Upstream (Ethiopia)- U 

 Myopic Non-Myopic 

Myopic 

𝑁𝐵𝑢 = $1.5191 ⋅ 10
9 

𝑁𝐵𝐷 = $2.8429 ⋅ 10
7 

𝐿𝐷𝑇 = 15.49 years 

𝑁𝐵𝑢 =   $1.4635 ⋅ 109 
𝑁𝐵𝐷 =   $5.747 ⋅ 10

7 
𝐿𝐷𝑇 = 23.62 years  

Non-Myopic 

𝑁𝐵𝑢 =  $1.5188 ⋅ 10
9 

𝑁𝐵𝐷 =  $1.5141 ⋅ 107 
𝐿𝐷𝑇 = 22.85 years 

𝑁𝐵𝑢 =   $1.4637 ⋅ 109 
𝑁𝐵𝐷 =   $2.2543 ⋅ 107 
𝐿𝐷𝑇 = 33.35 years  

 

Although Kenya on average seems to gain more at the myopic case, the total losses of 

that strategy surpass the gains, as for fifteen more years it could have an average net 

benefit equal to $2.2543･107, while from the myopic perspective it is zero. So, if Kenya 

(D) controls its water use over time (non-myopic), it can increase its total benefits from 

$743,919,000 to $1,321,810,000 no matter what Ethiopia decides, while in the myopic 

equilibrium it gains only $342,435,000. At the same time, Ethiopia (U) has every time 

higher NBs in the non-myopic strategy. However, Ethiopia’s negative externalities to 

Kenya in the event of both following the myopic strategy can be seen at the LDT (in 

half of the time compared to the non-myopic strategies). 

NB values represent the average value of the economy as long as there is water. 

Ethiopia’s benefit curves are the average of a 200-year period, where there is no sector 

exit, while Kenya’s benefit curves are the average of 15- to 33-year period, until the 

point, where first all sectors leave, and the lake depletes. Hence, in myopic-myopic 

combination, the 16th year in Kenya is characterized by zero SB and costs, while all the 

demand for goods and services is met by imports. 

The water use of all sectors in both countries (Fig.6) is characterised by increased rates 

and faster depletion in the myopic-myopic case, compared to the non-myopic–non-

myopic one. Kenya’s water use becomes zero at the LDT (15.5 years for the myopic-



myopic and 33.4 years for the non-myopic–non-myopic case). Ethiopia’s time horizon 

is 200 years, to indicate the lack of limitations on water reserves of Omo River. 

 

Figure 6: Total water use for the two extreme strategy-combinations. 

 

Cooperative case: 

In this case that the players benefit from their goods’ exchange, NBs are higher for 

both12. So, the most crucial concept is relative efficiency. After a three-case numerical 

exploration of η1 coefficient of Eq.(12), for a number of periods, it seems that the lake 

does not deplete under the cooperative case. This very promising outcome is important 

for both countries, because since they trade, there is interest in the sustainable 

development of the neighbours. Table 4 presents the indicative results of the solutions 

in terms of maximized NBs and lake depletion times. 

Table 4: Cooperative case: a numerical simulation of different n values to optimize NB. 

Cooperative Case: 

Optimal 

(𝜂1 = 𝟎. 𝟕) 

Cooperative Case: 

Optimal 

(𝜂1 = 𝟎. 𝟖) 

Cooperative Case: 

Optimal 

(𝜂1 = 𝟎. 𝟗) 
𝑁𝐵𝑢 =  $24.075 ⋅ 10

9 
𝑁𝐵𝐷 =  $3.8182 ⋅ 107 
𝐿𝐷𝑇 = Never 

𝑁𝐵𝑢 =  $30.992 ⋅ 10
9 

𝑁𝐵𝐷 =  $4.0333 ⋅ 107 
𝐿𝐷𝑇 = Never 

𝑁𝐵𝑢 =  $39.74 ⋅ 10
9 

𝑁𝐵𝐷 =  $4.0388 ⋅ 107 
𝐿𝐷𝑇 = Never 

 

Apparently, for all possible outcomes given the preferences of Ethiopia, NB are 

outstandingly greater than the non-cooperative case (Fig.7 – indicatively for the least 

possible rate of η1), not to mention the sustainability of the lake (LDT=never). Thus, 

indisputably the cooperative is the best strategy, and the more beneficial for both 

players as η1 increases.  

 
12 As Ricardo showed 200 years ago, even if e.g. Ethiopia, can produce all goods and services cheaply 

than Kenya, they can still trade under conditions where both get benefited. 



 

Figure 7: Total water use in for the best non-cooperative case versus the cooperative case (for the 

lower η1). 

 

In this graph, Ethiopia realises the upcoming benefits coming from giving up a 

considerable amount of water in exchange of food supply produced by the downstream 

country. In response (reaction), Kenya significantly increases its water use over the 

years, to increase production. Moreover, the total water use of both countries in the 

cooperative case is less compared to the non-cooperative (Kenya’s peak in the 20th year 

is seven times less than Ethiopia’s maximum use).  

 

Uncertainty effects: 

As analysed, the impact of altering the volatility of the hydrological variables, will 

affect both water stocks and NBs. The comparative results for the non-cooperative and 

cooperative cases, are presented in Table 4, for the maximum observed historical 

changes. 

Table 4: Hydrological variability impacts on NBs and LDT. 

Hydrological changes 
Non-Cooperative 

Case 

Cooperative Case 

(𝜂𝟏 = 𝟎. 𝟕) 
Comments 

Increase of outflow 

volatility 

𝜎𝑂 = 0.3 

𝑁𝐵𝑢 =  $1.639 ⋅ 10
9 

𝑁𝐵𝑑 =  $2.6384 ⋅ 10
7 

𝐿𝐷𝑇 =  33.27 

𝑁𝐵𝑢 =  $24.269 ⋅ 10
9 

𝑁𝐵𝑑 =  $3.8216 ⋅ 10
7 

𝐿𝐷𝑇 = Never 

Significantly impacts Kenya’s water stock (the levels 

of the lake vary, increasing the chances of 

droughts/floods). Its NBs in the cooperative case are 

slightly higher compared to the non-cooperative. The 

most significant change is on Ethiopia’s NBs. 

Increase of 

precipitation volatility 

𝜎𝑊 = 0.3 

𝑁𝐵𝑢 =  $1.7031 ⋅ 10
9 

𝑁𝐵𝑑 =  $1.3903 ⋅ 10
7 

𝐿𝐷𝑇 = 18.94 

𝑁𝐵𝑢 =  $4.4280 ⋅ 10
9 

𝑁𝐵𝑑 =  $2.8968 ⋅ 10
7 

𝐿𝐷𝑇 = 99.57 

Different impact for U,D: Ethiopia gains more when 

it does not trade (more water = more consumption, 

less water = consumes as it needs, limiting runoff to 

Kenya). Kenya depends on the trades, so it adjusts its 

water use. 

Decrease of runoff 

variability 

𝜎𝑅 = 0.1 

𝑁𝐵𝑢 =  $1.6390 ⋅ 10
9 

𝑁𝐵𝑑 =  $2.5545 ⋅ 10
7 

𝐿𝐷𝑇 = 31.60 

𝑁𝐵𝑢 =  $ 24.091 ⋅ 10
9 

𝑁𝐵𝑑 =  $ 3.4510 ⋅ 10
7 

𝐿𝐷𝑇 = Never 

Here a decrease in the runoff to the lake is considered 

(by 0.331 compared to the BAU) imposing a 

sharpened water scarcity in the future. The results are 

similar to the first (outflow) uncertainty case, 

regarding Ethiopia, while Kenya adjusts its water use,  

but it can be sustained only under cooperation.  

*the three types of hydrological uncertainty are presented as independent cases to show which one affects more the NBs 

and the water stocks (sensitivity), however combinations can be also explored. 

 



 

 

Figure 8: σΟ variability’s effects on Kenya’s water use (first row), σW variability’s effects on 

Ethiopia’s water use (second row), σR variability’s effects on Kenya’s water use (third row): 

Comparison of non-cooperative non-myopic–non-myopic (left column), and cooperative case (right 

column). 

 

In the non-cooperative case (Fig.8a,b), Kenya tries to adjust its water consumption due 

to the increased outflow volatility (so to save water). In the cooperative case, no country 

changes its behaviour, as there is no risk of drought due to mutual assistance. Ethiopia’s 

water consumption (Fig.8c,d) tends to zero, indicating the short-term planning. In 

cooperation, the behaviour is almost the same, allowing the trades, and NBs are also 

higher compared to the non-cooperative case. That difference would be enough to 



motivate both countries to keep on trading even under extremes. Although runoff 

decreased (Fig.8e,f), NBs and water consumption do not change significantly. Under 

cooperation, even with uncertain runoff, Ethiopia and Kenya can continue to use almost 

the same water quantity, unlike to the non-cooperative case, where Kenya slightly 

reduces its water use, to gain $2,002,000 more, but the lake depletes earlier than the 

BAU scenario.  

In the studied basin, the life-dependance between water resources and survival (not just 

economy) is well described in the demand curves. This mandates a rational and 

sustainable water resources management that will lead to globally-optimum results. 

Under any conditions, cooperation seems to be a win-win sustainable strategy, for both 

countries, environment, and economy. The results are in agreement with previous 

studies, e.g. Dinar (2009) argues that under increased water supply variability, 

cooperation should be preferred to address the risks, and this is now proved. An 

international agreement would strengthen this strategy, because at the time any trade-

offs depend on governmental decisions. Hydrological uncertainties put into risk most 

cooperative decisions: Dinar et al. (2010) found a bell-shaped relationship between 

water supply variations and cooperation agreements; Ansink and Ruijs (2008) also 

demonstrate that a decrease in average river flows reduces the stability of an agreement, 

while an increase in variance may have both positive and negative effects.  

 

CONCLUSIONS 

In this work, a framework for scarce transboundary water resources management was 

presented. Game theory, hydro-economics, and econometrics were combined to explore 

the optimal strategies in environmental and economic terms, while the whole system 

was tested under hydrological uncertainty. 

The conceptual framework is quite simple, while the analytical solution is provided, to 

make possible its replication. It is based on the principles of water balance, marginal 

and total costs, net and social benefits, while a novel element was the stochastic 

consideration of its hydrological components. The stochastic Stackelberg differential 

game approach was successful and enabled the evaluation of numerous potential 

strategies. The econometric model’s contribution is also deemed essential for planning, 

as it provided production functions for all sectors for both countries, which was 

expressed as their social benefits, and the derived water demand curves. A novel 

mathematical approach was demonstrated to address the endogeneity issues of the 

production functions’ inputs, combining different tools, in order to provide a realistic 

representation of the problem. As said in the previous section, the findings that can be 

derived from the results of the technical inefficiency in water use, and the participation 

of all the five sectors of the economy, could not be obtained with any previous 

approach. The management insights that a policymaker can consider from the results 

are very important both in the short- and long-term planning. The conceptual hydro-

economic model, with the game cases under uncertainty that we presented, completes 

the integrated character of the proposed framework. The novel character of this 

contribution is based on its detailed hydro-economic and sophisticated mathematical 

modelling, which identifies easily the most solid and “win-win” management strategies, 

supporting thus the sustainable decision-making and planning.  

We chose not to present thoroughly the data collection and preparation (the techniques 

are well-known – for that reason, we provide Appendix C) because the aim of this work 



is to demonstrate the proposed framework, rather than a case-study application. 

However, some specific conclusions are worth-mentioned. The analysis proved the 

vital role of water resources to any continuation and development of the economic 

activities. It is well known that as the price of a good rises, buyers will choose to buy 

less of it, and as its price falls, they buy more: as water price increases over time due to 

water scarcity, the demand for all economic sectors reaches zero sequentially. The way 

this finding was proved (showing also the ordering of the sectors who will reach zero) 

is a novel element, and combined with the examined game strategies, it is proved that 

under any circumstances, cooperation is the overall optimal strategy. Under cooperation 

scenario, the upstream country realises the upcoming benefits coming from giving up a 

considerable amount of water to the downstream country, in exchange of their produced 

food supply, over time. The reaction of the downstream country is the increment of its 

water use to increase production. So over time, it turns out to be more profitable for 

both countries the case where the downstream one uses more water than the upstream, 

which currently seems utopic. A swift in selfish and opportunistic mindsets is required, 

so both countries can secure a future water availability, sustainable access to the input 

resource-driver of their economic growth, and exploit the mutual benefits of 

cooperation and collaboration. 
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APPENDIX A.  

NON-COOPERATIVE CASE 

Upstream: The Hamiltonian for the j-exit stage is: 

𝐻𝑗
𝑈(𝑊𝑗𝑡

𝑈, 𝑤𝑗𝑡
𝑈 , … , 𝑤5𝑡

𝑈 , 𝜆𝑗𝑡
𝑈) = ∑ [
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𝑈

𝑏𝑖
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𝑈 −
1

2𝑏𝑖
𝑈 ⋅ (𝑤𝑖𝑡

𝑈)2 − (𝑘2
𝑈 − 𝑘1
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𝑈] + 5
𝑖=𝑗 𝜆𝑗𝑡

𝑈 [𝑊𝑗𝑡
𝑈 −

∑ 𝑤𝑖𝑡
𝑈5

𝑖=𝑗  ] ,    𝑗 = 1,2, . . . ,5 
(A1) 

where 𝜆𝑗𝑡
𝑈  is the j-exit stage adjoint variable that represents water scarcity rents for U 

country. The necessary conditions for the optimality are given as follows: 

𝜕𝐻𝑗
𝑈

𝜕𝑤𝑖𝑡
𝑈 = 
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𝑑𝜆𝑗𝑡
𝑈 = [−

𝜕𝐻𝑗
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The first optimality condition gives: 

 𝑤𝑖𝑡
𝑈 = 𝑎𝑖
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𝑈 − 𝑘1
𝑈𝑊𝑗𝑡

𝑈) − 𝑏𝑖
𝑈𝜆𝑗𝑡

𝑈  ,            𝑖 = 𝑗, . . . ,5 (A4) 

Then substituting to the state equation (Eq.4), we have: 
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while substituting to the adjoint Eq.(A3) we have 
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𝑈)2(∑ 𝑏𝑖
𝑈5

𝑖=𝑗 )𝑊𝑗𝑡
𝑈 + [𝑘1

𝑈(∑ 𝑏𝑖
𝑈5

𝑖=𝑗 ) + 𝑟]𝜆𝑗𝑡
𝑈 − 𝑘1

𝑈∑ 𝑎𝑖
𝑈 +5

𝑖=𝑗

𝑘1
𝑈𝑘2

𝑈∑ 𝑏𝑖
𝑈5

𝑖=𝑗 }𝑑𝑡  
(A6) 

Setting 𝐴𝑗
𝑈 ≜ ∑ 𝑎𝑖

𝑈5
𝑖=𝑗 and 𝐵𝑗

𝑈 ≜ ∑ 𝑏𝑖
𝑈5

𝑖=𝑗 we obtain the forward-backward stochastic 

differential equations system (FBSDEs): 

𝑑𝑊𝑗𝑡
𝑈 = [−𝑘1

𝑈𝐵𝑗
𝑈𝑊𝑗𝑡

𝑈 + 𝐵𝑗
𝑈𝜆𝑗𝑡

𝑈 +𝑊𝑡 − 𝐴𝑗
𝑈 + 𝑘2

𝑈𝐵𝑗
𝑈]𝑑𝑡,  

 𝑑𝜆𝑗𝑡
𝑈 = [−(𝑘1

𝑈)2𝐵𝑗
𝑈𝑊𝑗𝑡

𝑈 + (𝑘1
𝑈𝐵𝑗

𝑈 + 𝑟)𝜆𝑗𝑡
𝑈 − 𝑘1

𝑈𝐴𝑗
𝑈 + 𝑘1

𝑈𝑘2
𝑈𝐵𝑗

𝑈]𝑑𝑡, 

 𝑊00
𝑈 = 𝑤0,   𝑙𝑖𝑚

𝑡→∞
𝜆𝑗𝑡
𝑈 = 0,   𝑗 = 1,2, . . . ,5 

(A7) 

To solve the above system of FBSDEs we impose a solution of the form: 

𝜆𝑗𝑡
𝑈 = 𝑁𝑗𝑡

𝑈𝑊𝑗𝑡
𝑈 +𝑀𝑗𝑡

𝑈,  𝑖 = 𝑗, . . . ,5  (A8) 

where U

jtN  and U

jtM are stochastic processes to be determined. Taking differentials, we 

have: 

𝑑𝜆𝑗𝑡
𝑈 = 𝑊𝑗𝑡

𝑈𝑑𝑁𝑗𝑡
𝑈 +𝑁𝑗𝑡

𝑈𝑑𝑊𝑗𝑡
𝑈 + 𝑑𝑀𝑗𝑡

𝑈 = 𝑊𝑗𝑡
𝑈𝑑𝑁𝑗𝑡

𝑈 + 𝑑𝑀𝑗𝑡
𝑈 + {[𝐵𝑗

𝑈(𝑁𝑗𝑡
𝑈)

2
−

 𝑘1
𝑈𝐵𝑗

𝑈𝑁𝑗𝑡
𝑈]𝑊𝑗𝑡

𝑈 + 𝐵𝑗
𝑈𝑁𝑗𝑡

𝑈𝑀𝑗𝑡
𝑈

 

 
+ [𝑊𝑡−𝐴𝑗

𝑈 + 𝑘2
𝑈𝐵𝑗

𝑈]𝑁𝑗𝑡
𝑈} 𝑑𝑡  

(A9) 

while from the backward equation of the system (Eq.A7) we have: 

𝑑𝜆𝑗𝑡
𝑈 = {[(𝑘1

𝑈𝐵𝑗
𝑈 + 𝑟)𝑁𝑗𝑡

𝑈 − (𝑘1
𝑈)2𝐵𝑗

𝑈]𝑊𝑗𝑡
𝑈 + (𝑘1

𝑈𝐵𝑗
𝑈 + 𝑟)𝑀𝑗𝑡

𝑈 − 𝑘1
𝑈𝐴𝑗

𝑈 +

𝑘1
𝑈𝑘2

𝑈𝐵𝑗
𝑈}𝑑𝑡        (A10) 

Sufficient conditions for the last two relationships to be equivalent are: 

𝑑𝑁𝑗𝑡
𝑈 = [−𝐵𝑗

𝑈(𝑁𝑗
𝑈)

2
+ (2𝑘1

𝑈𝐵𝑗
𝑈 + 𝑟)𝑁𝑗𝑡

𝑈 − (𝑘1
𝑈)2𝐵𝑗

𝑈] 𝑑𝑡,  

𝑙𝑖𝑚
𝑡→∞

𝑁𝑗𝑡
𝑈 = 0  

(A11) 

which is a Backward Riccatti Equation (BRE) that can be solved numerically for 𝑁𝑗𝑡
𝑈, 

And 

𝑑𝑀𝑗𝑡
𝑈 = [(−𝐵𝑗

𝑈𝑁𝑗
𝑈 + 𝑘1

𝑈𝐵𝑗
𝑈 + 𝑟)𝑀𝑗𝑡

𝑈 − (𝑊𝑡 − 𝐴𝑗
𝑈 + 𝑘2

𝑈𝐵𝑗
𝑈)𝑁𝑗

𝑈 − 𝑘1
𝑈𝐴𝑗

𝑈 +

𝑘1
𝑈𝑘2

𝑈𝐵𝑗
𝑈]𝑑𝑡  

𝑙𝑖𝑚
𝑡→∞

𝑀𝑗𝑡
𝑈 = 0 , j=1,2,…,5 

(A12) 

Substituting the linear solution form of Eq.(A8) to the forward equation of the FBSDEs 

system: 



dWjt
U = [(−k1

U + Njt
U)Bjt

UWjt
U + Bj

UMj
U +Wt − Aj

U + k2
UBj

U]dt,  

W00
U = w0  

(A13) 

Which is a forward linear SDE that can be solved for Wjt
U. Then the backward adjoint 

variable 𝜆jt
U follows from Eq.(A8) and the optimal water use wjt

U follows from the 

optimality condition (Eq.A4). 

 

Downstream: The maximization function, as described in the main text (water balance 

concept) and also shown in Fig.2, it subjects to water balance of U, the runoff in D, 

water stock of D (state equation), and the water use of D. For the (j,k)-th exit-stage, we 

have the Hamiltonian:  

𝐻𝑗𝑘
𝐷 (𝑆𝑗𝑘 , 𝑤𝑗𝑘𝑡

𝐷 , . . . , 𝑤𝑗5𝑡
𝐷 , 𝜆𝑗𝑘𝑡

𝐷 ) ≜ ∑ [
𝑎𝑙
𝐷

𝑏𝑙
𝐷𝑤𝑗𝑙𝑡

𝐷 −
1

2𝑏𝑙
𝐷 ⋅ (𝑤𝑗𝑙𝑡

𝐷 )2]5
𝑙=𝑘 − (𝑘2

𝐷 −

𝑘1
𝐷𝑆𝑗𝑘𝑡)∑ 𝑤𝑗𝑙𝑡

𝐷5
𝑙=𝑘 +λ𝑗𝑘𝑡

𝐷 [𝑊𝑡 − ∑ 𝑤𝑖𝑡
𝑈5

𝑖=𝑗 − ∑ 𝑤𝑗𝑙𝑡
𝐷5

𝑙=𝑘 + 𝑅𝑡 − 𝑂𝑡],      𝑗, 𝑘 = 1,2, . . . ,5  
(A14) 

where 𝜆𝑗𝑘𝑡
𝐷  is the (j,k)-th exit stage adjoint variable that represents water scarcity rents 

for D. The necessary conditions for optimality are given as follows: 

 
∂Hjk

D

∂wjlt
D =

al
D

bl
D −

1

bl
D ⋅ wjlt

D − (k2
D − k1

DSjkt) − λjkt
D = 0,   l = k, . . . ,5, 𝑗, 𝑘 = 1,2, . . ,5  (A15) 

dλjkt
D = [−

∂Hjk
D

∂Sjkt
+ rλjkt

D ] dt ⇔  d𝜆jkt
D = [−k1

D∑ wjlt
D5

l=k + rλjkt
D ]dt  (A16) 

From the first condition we have that: 

𝑤𝑗𝑘𝑡
𝐷 = 𝑎𝑙

𝐷 − 𝑏𝑙
𝐷(𝑘2

𝐷 − 𝑘1
𝐷𝑆𝑗𝑘𝑡) − 𝑏𝑙

𝐷𝜆𝑗𝑘𝑡
𝐷 ,  𝑙 = 𝑘, . . . ,5, and  j, k = 1,2, …5  (A17) 

Setting again 𝐴𝑗
𝑈 ≜ ∑ 𝑎𝑖

𝑈5
𝑖=𝑗 and 𝐵𝑗

𝑈 ≜ ∑ 𝑏𝑖
𝑈5

𝑖=𝑗 , the water storage state Eq.(5), and the 

adjoint equation Eq(A16) are reformulated as: 

𝑑𝑆𝑗𝑘𝑡 = [−𝑘1
𝐷𝐵𝑘

𝐷𝑆𝑗𝑘𝑡 + 𝐵𝑘
𝐷𝜆𝑗𝑘𝑡

𝐷 +𝑊𝑡 − ∑ 𝑤𝑖𝑡
𝑈 + 𝑅𝑡 − 𝑂𝑡

5
𝑖=𝑗 − 𝐴𝑘

𝐷 + 𝑘2
𝐷𝐵𝑘

𝐷]𝑑𝑡  

𝑑𝜆𝑗𝑘𝑡
𝐷 = {−(𝑘1

𝐷)2𝐵𝑘
𝐷𝑆𝑗𝑘𝑡 + (𝑘1

𝐷𝐵𝑘
𝐷 + 𝑟)𝜆𝑗𝑘𝑡

𝐷 − 𝑘1
𝐷𝐴𝑘

𝐷 + 𝑘1
𝐷𝑘2

𝐷𝐵𝑘
𝐷}𝑑𝑡  

𝑆000 = 𝑠0,   𝑙𝑖𝑚
𝑡→∞

𝜆𝑗𝑘𝑡
𝐷 = 0,     𝑗, 𝑘 = 1,2, . . . ,5  

(A18) 

To solve the above system of FBDEs we impose a solution of the form: 

 𝜆𝑗𝑘𝑡
𝐷 = 𝑁𝑗𝑘𝑡

𝐷 𝑆𝑗𝑘𝑡 +𝑀𝑗𝑘𝑡
𝐷  (A19) 

where 𝑁𝑗𝑘𝑡
𝐷  and 𝑀𝑗𝑘𝑡

𝐷  are stochastic processes to be determined. Taking differentials in 

Eq.(A19), we have: 

𝑑𝜆𝑗𝑘𝑡
𝐷 = 𝑆𝑗𝑘𝑡𝑑𝑁𝑗𝑘𝑡

𝐷 +𝑁𝑗𝑘𝑡
𝐷 𝑑𝑆𝑗𝑘𝑡 + 𝑑𝑀𝑗𝑘𝑡

𝐷  = 𝑆𝑗𝑘𝑡𝑑𝑁𝑗𝑘𝑡
𝐷 + 𝑑𝑀𝑗𝑘𝑡

𝐷 + {[𝐵𝑘
𝐷(𝑁𝑗𝑘𝑡

𝐷 )
2
−

𝑘1
𝐷𝐵𝑘

𝐷𝑁𝑗𝑘𝑡
𝐷 ]𝑆𝑗𝑘𝑡 + 𝐵𝑘

𝐷𝑁𝑗𝑘𝑡
𝐷 𝑀𝑗𝑘𝑡

𝐷 + [𝑊𝑡 − ∑ 𝑤𝑖𝑡
𝑈 + 𝑅𝑡 − 𝑂𝑡

5
𝑖=𝑗 − 𝐴𝑘

𝐷 +

𝑘2
𝐷𝐵𝑘

𝐷]𝑁𝑗𝑘𝑡
𝐷 } 𝑑𝑡 

(A20) 

while from the backward equation of the system (Eq.A18) we have: 



𝑑𝜆𝑗𝑘𝑡
𝐷 = {[(𝑘1

𝐷𝐵𝑘
𝐷 + 𝑟)𝑁𝑗𝑘𝑡

𝐷 − (𝑘1
𝐷)2𝐵𝑘

𝐷]𝑆𝑗𝑘𝑡 + [𝑘1
𝐷𝐵𝑘

𝐷 + 𝑟]𝑀𝑗𝑘𝑡
𝐷 − 𝑘1

𝐷𝐴𝑘
𝐷 +

𝑘1
𝐷𝑘2

𝐷𝐵𝑘
𝐷}𝑑𝑡  

(A21) 

A sufficient condition for the latter to be equal is given by 

𝑑𝑁𝑗𝑘𝑡
𝐷 = [−𝐵𝑘

𝐷(𝑁𝑗𝑘𝑡
𝐷 )

2
+ (2𝑘1

𝐷𝐵𝑘
𝐷 + 𝑟)𝑁𝑗𝑘𝑡

𝐷 − (𝑘1
𝐷)2𝐵𝑘

𝐷] 𝑑𝑡,       𝑙𝑖𝑚
𝑡→∞

𝑁𝑗𝑘𝑡
𝐷 = 0  (A22) 

which is a BRE that can be solved numerically for 𝑁𝑗𝑘𝑡
𝐷 . Also: 

𝑑𝑀𝑗𝑘𝑡
𝐷 =

[
(−𝐵𝑘

𝐷𝑁𝑗𝑘𝑡
𝐷 + 𝑘1

𝐷𝐵𝑘
𝐷 + 𝑟)𝑀𝑗𝑘𝑡

𝐷 − (𝑊𝑡 −∑ 𝑤𝑖𝑡
𝑈 + 𝑅𝑡 − 𝑂𝑡

5
𝑖=𝑗 − 𝐴𝑘

𝐷 + 𝑘2
𝐷𝐵𝑘

𝐷)𝑁𝑗𝑘𝑡
𝐷

                                     − 𝑘1
𝐷𝐴𝑘

𝐷 + 𝑘1
𝐷𝑘2

𝐷𝐵𝑘
𝐷

] 𝑑𝑡  

𝑙𝑖𝑚
𝑡→∞

𝑀𝑗𝑘𝑡
𝐷 = 0  

(A23) 

which given the above solution is a backward linear first-order SDE that can be solved 

for 𝑀𝑗𝑘𝑡
𝐷 . Substituting the linear solution form of Eq.(A19) to the forward equation of 

the FBSDEs system (Eq.A18), we get: 

dSjkt = [(−k1
D + Njkt

D )Sjkt + Bk
DMjkt

D +Wt − ∑ wit
U + Rt − Ot

5
i=j − Ak

D +

k2
DBk

D]dt  

S000 = s0 ,  j,k=1,2,…,5 

(A24) 

which is a forward linear SDE that can be solved numerically for Sjkt. Thus, the 

backward adjoint variable 𝜆𝑗𝑘𝑡
𝐷  follows from the linear transformation of Eq.(A19) and 

the optimal water use 𝑤𝑗𝑙𝑡
𝐷  follows from the optimality condition Eq.(A17). 

 

COOPERATIVE CASE 

Upstream: For the (j,k)-th exit stage we have the augmented Hamiltonian: 

𝐻𝑗𝑘
𝑈 (𝑊𝑗𝑡

𝑈, 𝑆𝑗𝑘𝑡 , 𝜆𝑗𝑘𝑡
𝐷 , 𝑤𝑗𝑘𝑡

𝑈 , . . . , 𝑤5𝑘𝑡
𝑈 , 𝜇𝑗𝜅𝑡 , 𝜈𝑗𝜅𝑡 , 𝜉𝑗𝜅𝑡) ≜ ∑ [

𝑎𝑖
𝑈

𝑏𝑖
𝑈𝑤𝑖𝑡

𝑈 −
1

2𝑏𝑖
𝑈 ⋅ (𝑤𝑖𝑡

𝑈)2 − (𝑘2
𝑈 −5

𝑖=𝑗

𝑘1
𝑈𝑊𝑗𝑡

𝑈)𝑤𝑖𝑡
𝑈] + η1

 𝑆𝑗𝑘𝑡
 + 𝜂2

 + 𝜇𝑗𝑘𝑡[𝑊𝑡 − ∑ 𝑤𝑖𝑡
𝑈5

𝑖=𝑗 ] + ν𝑗𝑘𝑡[𝑊𝑡 − ∑ 𝑤𝑖𝑘𝑡
𝑈5

𝑖=𝑗 + 𝑅𝑡 − 𝑂𝑡 −

𝐴𝑘
𝐷 + 𝐵𝑘

𝐷(𝑘2
𝐷 − 𝑘1

𝐷𝑆𝑗𝑘𝑡) + 𝐵𝑘
𝐷𝜆𝑗𝑘𝑡

𝐷 ] +ξ𝑗𝑘𝑡{−𝑘1
𝐷[𝐴𝑘

𝐷 − 𝐵𝑘
𝐷(𝑘2

𝐷 − 𝑘1
𝐷𝑆𝑗𝑘𝑡)] + (𝑟 +

𝑘1
𝐷𝐵𝑘

𝐷)𝜆𝑗𝑘𝑡
𝐷 }    

(A25) 

where (𝜇𝑗𝜅 , 𝜈𝑗𝜅 , 𝜉𝑗𝜅) is the vector of the associated adjoint variables. 

The necessary conditions for optimality for the maximization problem of U are given 

below: 

 
𝜕𝐻𝑗𝑘

𝑈

𝜕𝑤𝑖𝑘𝑡
𝑈 =

𝑎𝑖
𝑈

𝑏𝑖
𝑈 −

1

𝑏𝑖
𝑈 ⋅ 𝑤𝑖𝑘𝑡

𝑈 − (𝑘2
𝑈 − 𝑘1

𝑈𝑊𝑗𝑡
𝑈) − 𝜇𝑗𝑘𝑡 − 𝜈𝑗𝑘𝑡 = 0,     𝑖 = 𝑗, . . . ,5, j, k =

1,2,… 5  

(A26) 

𝑑𝜇𝑗𝑘𝑡 = [−
𝜕𝐻𝑗𝜅

𝑈

𝜕𝑊𝑗𝑡
𝑈 + 𝑟𝜇𝑗𝑘𝑡] 𝑑𝑡     ⇔      𝑑μ

𝑗𝑘𝑡
= [−𝑘1

𝑈∑ 𝑤𝑖𝑡
𝑈5

𝑖=𝑗 + 𝑟𝜇𝑗𝑘𝑡]𝑑𝑡   (A27) 

𝑑𝜈𝑗𝑘𝑡 = [−
𝜕𝐻𝑗𝜅

𝑈

𝜕𝑆𝑗𝑘𝑡
+ 𝑟𝜈𝑗𝑘𝑡] 𝑑𝑡  ⇔      (A28) 



𝑑𝜈𝑗𝑘𝑡 = {−𝜂1
 + 𝑘1

𝐷𝐵𝑘
𝐷𝜈𝑗𝑘𝑡 + (𝑘1

𝐷)2𝐵𝑘
𝐷𝜉𝑗𝑘𝑡 + 𝑟𝜈𝑗𝑘𝑡}𝑑𝑡  

𝑑𝜉𝑗𝑘𝑡 = [−
𝜕𝐻𝑗𝜅

𝑈

𝜕𝜆𝑗𝑡
𝐷 + 𝑟𝜉𝑗𝑘𝑡] 𝑑𝑡    ⇔ 𝑑ξ

𝑗𝑘𝑡
= [−𝐵𝑘

𝐷𝜈𝑗𝑘𝑡 − 𝑘1
𝐷𝐵𝑘

𝐷𝜉𝑗𝑘𝑡]𝑑𝑡,  

𝜉000 = 0  

(A29) 

From the first optimality condition (Eq.A26) we have: 

 𝑤𝑖𝑘𝑡
𝑈 = 𝑎𝑖

𝑈 − 𝑏𝑖
𝑈(𝑘2

𝑈 − 𝑘1
𝑈𝑊𝑗𝑡

𝑈) − 𝑏𝑖
𝑈𝜇𝑗𝑘𝑡 − 𝑏𝑖

𝑈𝜈𝑗𝑘𝑡,  𝑖 = 𝑗, . . . ,5, j, k = 1,2,… ,5  (A30) 

It can be easily seen that the adjoint variables of both Eq.(A28) and Eq.(A29) satisfy 

the system of FBSDEs: 

𝑑𝜉𝑗𝑘𝑡 = −[𝑘1
𝐷𝐵𝑘

𝐷𝜉𝑗𝑘𝑡 + 𝐵𝑘
𝐷𝑣𝑗𝑘𝑡]𝑑𝑡,  

 dνjkt = {(k1
D)

2
𝐵𝑘
𝐷ξjkt + (r + k1

D𝐵𝑘
𝐷)νjkt − η1

 }dt,  

𝜉000 = 0 ,    𝑙𝑖𝑚
𝑡→∞

𝑣𝑗𝑘𝑡
 = 0,    j,k=1,2,….,5 

(A31) 

In order to solve this FBSDEs system we are looking for solutions (𝜉𝑗𝑘𝑡, ν𝑗𝑘𝑡) that 

satisfy the linear transformation: 

𝑣𝑖𝑘𝑡
 = 𝑁𝑗𝑘𝑡

 𝜉𝑗𝑘𝑡 +𝑀𝑗𝑘𝑡,   j, k = 1,2, … ,5  (A32) 

Where 𝑁𝑗𝑘𝑡
  and 𝑀𝑗𝑘𝑡 are stochastic processes to be determined. Taking differentials in 

Eq.(A32) we get: 

𝑑𝑣𝑖𝑘𝑡
 = 𝑁𝑗𝑘𝑡

 𝜉𝑗𝑘𝑡 + 𝜉𝑗𝑘𝑡𝑑𝑁𝑗𝑘𝑡
 + 𝑑𝑀𝑗𝑘𝑡 = 𝜉𝑗𝑘𝑡𝑑𝑁𝑗𝑘𝑡

 + 𝑑𝑀𝑗𝑘𝑡 −

[(𝐵𝑘
𝐷𝑁𝑗𝑘𝑡

2 +𝑘1
𝐷𝐵𝑘

𝐷𝑁𝑗𝑘𝑡
 )𝜉𝑗𝑘𝑡+𝐵𝑘

𝐷𝑁𝑗𝑘𝑡
 𝑀𝑗𝑘𝑡]𝑑𝑡  

(A33) 

While the backward equation of Eq.(A31) may be written as 

𝑑𝑣𝑖𝑘𝑡
 = {[(r + k1

D𝐵𝑘
𝐷)Njkt + (𝑘1

𝐷) 
2𝐵𝑘

𝐷]𝜉𝑗𝑘𝑡 + (r + k1
D𝐵𝑘

𝐷)Mjkt − η1
 }𝑑𝑡  (A34) 

Sufficient conditions for the latter to be equivalent are provided by  

𝑑𝑁𝑗𝑘𝑡
 = [𝐵𝑘

𝐷 𝑁𝑗𝑘
2 + (2𝑘1

𝐷𝐵𝑘
𝐷 + 𝑟)𝑁𝑗𝑘𝑡 + (𝑘1

𝐷) 
2𝐵𝑘

𝐷]𝑑𝑡,  

𝑙𝑖𝑚
𝑡→∞

𝑁𝑗𝑘𝑡
 = 0,    j,k=1,2,….,5 

(A35) 

which is a BRE that can be solved numerically for 𝑁𝑗𝑘𝑡
𝐷  and by 

𝑑𝑀𝑗𝑘𝑡 = [(𝐵𝑘
𝐷𝑁𝑗𝑡

𝑈 + 𝑟 + 𝑘1
𝐷𝐵𝑘

𝐷)𝑀𝑗𝑘𝑡 − 𝜂1
 ]𝑑𝑡,   

𝑙𝑖𝑚
𝑡→∞

𝑀𝑗𝑘𝑡
 = 0,    j,k=1,2,….,5  

(A36) 

which given the above solution is a backward linear first-order SDE that can be easily 

solved for 𝑀𝑗𝑘𝑡. 

Substituting the linear solution form of Eq.(A32) to the forward equation of the 

FBSDEs system Eq.(A31)Error! Reference source not found., we obtain: 

𝑑𝜉𝑗𝑘𝑡 = [−𝐵𝑘
𝐷(𝑁𝑗𝑘𝑡 + 𝑘1

𝐷)𝜉𝑗𝑘𝑡 − 𝐵𝑘
𝐷𝑀𝑗𝑘𝑡]𝑑𝑡,  

𝜉000 = 0,     𝑗, 𝑘 = 1,2, . . . ,5  
(A37) 



which is a forward linear SDE that can be solved for 𝜉𝑗𝑘𝑡. Then the backward adjoint 

variable 𝑣𝑗𝑘𝑡 follows from the linear transformation of 

Eq.(A32)Error! Reference source not found.. 

Given the obtained solution (𝜉𝑗𝑘 , 𝜈𝑗𝑘),  𝑗, 𝑘 = 1,2, . . . ,5, of the FBSDEs 

systemError! Reference source not found., as described above, we may put in use 

Eq.(A30) to derive that U’s water resources state Eq.(4) and adjoint variable of 

Eq.(A27) form the subsequent system of FBSDEs: 

𝑑𝑊𝑗𝑡
𝑈 = [−𝑘1

𝑈𝐵𝑗
𝑈𝑊𝑗𝑡

𝑈 + 𝐵𝑗
𝑈𝜇𝑗𝑘𝑡 + 𝐵𝑗

𝑈𝜈𝑗𝑘𝑡 +𝑊𝑡 − 𝐴𝑗
𝑈 + 𝑘2

𝑈𝐵𝑗
𝑈]𝑑𝑡,   

𝑑𝜇𝑗𝑘𝑡 = [−(𝑘1
𝑈)2𝐵𝑗

𝑈𝑊𝑗𝑡
𝑈 + (𝑘1

𝑈𝐵𝑗
𝑈 + 𝑟)𝜇𝑗𝑘𝑡 + 𝑘1

𝑈𝐵𝑗
𝑈𝜈𝑗𝑘𝑡 − 𝑘1

𝑈𝐴𝑗
𝑈 +

𝑘1
𝑈𝑘2

𝑈𝐵𝑗
𝑈]𝑑𝑡,  

𝑊00
𝑈 = 𝑤𝑟0,   𝑙𝑖𝑚

𝑡→∞
𝜇𝑗𝑘𝑡 = 0,   𝑗, 𝑘 = 1,2, . . . ,5  

(A38) 

To find a solution process pair (𝑊𝑗𝑡
𝑈 , 𝜇𝑗𝑘),  𝑗, 𝑘 = 1,2, . . . ,5, for this system of FBSDEs, 

we impose the linear transformation: 

𝜇𝑗𝑘𝑡 = 𝛬𝑗𝑘𝑡𝑊𝑗𝑡
𝑈 + 𝛯𝑗𝑘𝑡 ,     𝑗, 𝑘 = 1,2, . . . ,5  (A39) 

where 𝛬𝑗𝑘 and 𝛯𝑗𝑘𝑡 are stochastic processes to be determined. Taking differentials in 

Eq.(A39) we have that: 

𝑑𝜇𝑗𝑘𝑡 = 𝛬𝑗𝑘𝑡𝑑𝑊𝑗𝑡
𝑈 +𝑊𝑗𝑡

𝑈𝑑𝛬𝑗𝑘𝑡 + 𝑑𝛯𝑗𝑘𝑡 = 𝑊𝑗𝑡
𝑈𝑑𝛬𝑗𝑘𝑡 + 𝑑𝛯𝑗𝑘𝑡  +

{[𝐵𝑗
𝑈𝛬𝑗𝑘𝑡

2 − 𝑘1
𝑈𝐵𝑗

𝑈𝛬𝑗𝑘𝑡]𝑊𝑗𝑡
𝑈 + 𝐵𝑗

𝑈𝛬𝑗𝑘𝑡𝛯𝑗𝑘𝑡 + 𝐵𝑗
𝑈𝜈𝑗𝑘𝑡𝛬𝑗𝑘𝑡 + [𝑊𝑡 − 𝐴𝑗

𝑈 +

𝑘2
𝑈𝐵𝑗

𝑈]𝛬𝑗𝑘𝑡}𝑑𝑡  

(A40) 

while the backward Eq.(A38) may be reformulated as: 

𝑑𝜇𝑗𝑘𝑡 = {[−(𝑘1
𝑈)2𝐵𝑗

𝑈 + (𝑘1
𝑈𝐵𝑗

𝑈 + 𝑟)𝛬𝑗𝑘𝑡]𝑊𝑗𝑡
𝑈 + (𝑘1

𝑈𝐵𝑗
𝑈 + 𝑟)𝛯𝑗𝑘𝑡 +

𝑘1
𝑈𝐵𝑗

𝑈𝜈𝑗𝑘𝑡 − 𝑘1
𝑈𝐴𝑗

𝑈 + 𝑘1
𝑈𝑘2

𝑈𝐵𝑗
𝑈}𝑑𝑡  

(A41) 

Sufficient conditions for the latter to be equivalent are given as follows: 

𝑑𝛬𝑗𝑘𝑡 = [−𝐵𝑗
𝑈𝛬𝑗𝑘𝑡

2 + (2𝑘1
𝑈𝐵𝑗

𝑈 + 𝑟)𝛬𝑗𝑘𝑡 − (𝑘1
𝑈)2𝐵𝑗

𝑈]𝑑𝑡,  

𝑙𝑖𝑚
𝑡→∞

𝛬𝑗𝑘𝑡 = 0,     𝑗, 𝑘 = 1,2, . . . ,5   
(A42) 

which is a BRE that can be solved numerically for 𝛬𝑗𝑘𝑡 ,  𝑗, 𝑘 = 1,2, . . . ,5, and 

 

𝑑𝛯𝑗𝑘𝑡 =

{
[−𝐵𝑗

𝑈𝛬𝑗𝑘𝑡 + (𝑘1
𝑈𝐵𝑗

𝑈 + 𝑟)]𝛯𝑗𝑘𝑡 − 𝐵𝑗
𝑈𝜈𝑗𝑘𝑡𝛬𝑗𝑘𝑡 − [𝑊𝑡 − 𝐴𝑗

𝑈 + 𝑘2
𝑈𝐵𝑗

𝑈]𝛬𝑗𝑘𝑡

+𝑘1
𝑈𝐵𝑗

𝑈𝜈𝑗𝑘𝑡 − 𝑘1
𝑈𝐴𝑗

𝑈 + 𝑘1
𝑈𝑘2

𝑈𝐵𝑗
𝑈 }𝑑𝑡,  

𝑙𝑖𝑚
𝑡→∞

𝛯𝑗𝑘𝑡 = 0,     𝑗, 𝑘 = 1,2, . . . ,5   

(A43) 

which given the above solution is a backward linear first-order SDE that can be easily 

solved for 𝛯𝑗𝑘𝑡 ,  𝑗, 𝑘 = 1,2, . . . ,5. 

Substituting the linear transformation of Eq.(A39) to the forward equation of the 

FBSDEs system Eq.(A38) we deduce that: 

𝑑𝑊𝑗𝑡
𝑈 = {[−𝑘1

𝑈𝐵𝑗
𝑈 + 𝐵𝑗

𝑈𝛬𝑗𝑘𝑡]𝑊𝑗𝑡
𝑈 + 𝐵𝑗

𝑈𝛯𝑗𝑘𝑡 + 𝐵𝑗
𝑈𝜈𝑗𝑘𝑡 +𝑊𝑡 − 𝐴𝑗

𝑈 +

𝑘2
𝑈𝐵𝑗

𝑈}𝑑𝑡,  
(A44) 



𝑊00
𝑈 = 𝑤0

𝑈,     𝑗, 𝑘 = 1,2, . . . ,5  

which is a forward linear SDE that can be solved for 𝑊𝑗𝑡
𝑈 ,  𝑗 = 1,2, . . . ,5. Then the 

backward adjoint variable 𝜇𝑗𝑘𝑡 ,  𝑗, 𝑘 = 1,2, . . . ,5 follows readily from the linear 

transformation of Eq.(A39). 

Given now the solutions (𝜉𝑗𝑘, 𝜈𝑗𝑘), (𝑊𝑗𝑡
𝑈, 𝜇𝑗𝑘𝑡),  𝑗, 𝑘 = 1,2, . . . ,5, of the FBSDEs 

systems Eq.(A31) and Eq.(A38), respectively, together with Eq.(A30) to write 

equivalently the Hamiltonian FBSDEs state system of the downstream country as: 

 𝑑𝑆𝑗𝑘𝑡 =

[
−𝑘1

𝑈𝐵𝑗
𝑈𝑊𝑗𝑡

𝑈 − 𝑘1
𝐷𝐵𝑘

𝐷𝑆𝑗𝑘𝑡 + 𝐵𝑘
𝐷𝜆𝑗𝑘𝑡

𝐷 +𝐵𝑗
𝑈𝜇𝑗𝑘𝑡 + 𝐵𝑗

𝑈𝜈𝑗𝑘𝑡 +𝑊𝑡 − 𝐴𝑗
𝑈 + 𝑘2

𝑈𝐵𝑗
𝑈

+𝑅𝑡 − 𝑂𝑡 − 𝐴𝑘
𝐷 + 𝑘2

𝐷𝐵𝑘
𝐷

] 𝑑𝑡, 

𝑑𝜆𝑗𝑘𝑡
𝐷 = [−(𝑘1

𝐷)2𝐵𝑘
𝐷𝑆𝑗𝑘𝑡 + (𝑟 + 𝑘1

𝐷𝐵𝑘
𝐷)𝜆𝑗𝑘𝑡

𝐷 − 𝑘1
𝐷𝐴𝑘

𝐷 + 𝑘1
𝐷𝑘2

𝐷𝐵𝑘
𝐷 − 𝜂1

 ]𝑑𝑡,  

𝑆000 = 𝑠0,   𝑙𝑖𝑚
𝑡→∞

𝜆𝑗𝑘𝑡
𝐷 = 0,     𝑗, 𝑘 = 1,2, . . . ,5    

(A45) 

Imposing once again a solution (𝑆𝑗𝑘𝑡, 𝜆𝑗𝑘𝑡
𝐷 ),  𝑗, 𝑘 = 1,2, . . . ,5, that satisfies the linear 

transformation: 

𝜆𝑗𝑘𝑡
𝐷 = 𝛱𝑗𝑘𝑡𝑆𝑗𝑘𝑡 + 𝛴𝑗𝑘𝑡,     𝑗, 𝑘 = 1,2, . . . ,5  (A46) 

To determine the stochastic processes 𝛱𝑗𝑘𝑡 and 𝛴𝑗𝑘𝑡, we take differentials in Eq.(A46) 

we have that: 

𝑑𝜆𝑗𝑘𝑡
𝐷 = 𝛱𝑗𝑘𝑡𝑑𝑆𝑗𝑘𝑡 + 𝑆𝑗𝑘𝑡𝑑𝛱𝑗𝑘𝑡 + 𝑑𝛴𝑗𝑘𝑡  

= 𝑆𝑗𝑘𝑡𝑑𝛱𝑗𝑘𝑡 + 𝑑𝛴𝑗𝑘𝑡

+ {
[𝐵𝑘

𝐷𝛱𝑗𝑘𝑡
2 − 𝑘1

𝐷𝐵𝑘
𝐷𝛱𝑗𝑘𝑡]𝑆𝑗𝑘𝑡 + 𝐵𝑘

𝐷𝛱𝑗𝑘𝑡𝛴𝑗𝑘𝑡 − 𝑘1
𝑈𝐵𝑗

𝑈𝑊𝑗
𝑈𝛱𝑗𝑘𝑡

+[𝐵𝑗
𝑈𝜇𝑗𝑘𝑡 + 𝐵𝑗

𝑈𝜈𝑗𝑘𝑡 +𝑊𝑡 − 𝐴𝑗
𝑈 + 𝑘2

𝑈𝐵𝑗
𝑈 + 𝑅𝑡 − 𝑂𝑡 − 𝐴𝑘

𝐷 + 𝑘2
𝐷𝐵𝑘

𝐷]𝛱𝑗𝑘𝑡
} 𝑑𝑡, 

(A47) 

while the backward Eq.(A45) may be written equivalently as: 

𝑑𝜆𝑗𝑘𝑡
𝐷 = {[−(𝑘1

𝐷)2𝐵𝑘
𝐷 + (𝑟 + 𝑘1

𝐷𝐵𝑘
𝐷)𝛱𝑗𝑘𝑡]𝑆𝑗𝑘𝑡 + (𝑟 + 𝑘1

𝐷𝐵𝑘
𝐷)𝛴𝑗𝑘𝑡 −

𝑘1
𝐷𝐴𝑘

𝐷 + 𝑘1
𝐷𝑘2

𝐷𝐵𝑘
𝐷}𝑑𝑡  

(A48) 

Sufficient conditions for the latter to be equivalent are provided by: 

𝑑𝛱𝑗𝑘𝑡 = [−𝐵𝑘
𝐷(𝛱𝑗𝑘

𝑈)
2
+ (2𝑘1

𝐷𝐵𝑘
𝐷 + 𝑟)𝛱𝑗𝑘𝑡

𝑈 − (𝑘1
𝐷)2𝐵𝑘

𝐷] 𝑑𝑡,   

𝑙𝑖𝑚
𝑡→∞

𝛱𝑗𝑘𝑡 = 0,     𝑗, 𝑘 = 1,2, . . . ,5  
(A49) 

which is a BRE that can be solved numerically for 𝛱𝑗𝑘𝑡 , 𝑗, 𝑘 = 1,2, . . . ,5, and by: 

𝑑𝛴𝑗𝑘𝑡 =

{

[−𝐵𝑘
𝐷𝛱𝑗𝑘𝑡 + (𝑘1

𝐷𝐵𝑘
𝐷 + 𝑟)]𝛴𝑗𝑘𝑡

−[−𝑘1
𝑈𝐵𝑗

𝑈𝑊𝑗
𝑈 + 𝐵𝑗

𝑈𝜇𝑗𝑘𝑡 + 𝐵𝑗
𝑈𝜈𝑗𝑘𝑡 +𝑊𝑡 − 𝐴𝑗

𝑈 + 𝑘2
𝑈𝐵𝑗

𝑈 + 𝑅𝑡 − 𝑂𝑡 − 𝐴𝑘
𝐷 + 𝑘2

𝐷𝐵𝑘
𝐷]𝛱𝑗𝑘𝑡

−𝑘1
𝐷𝐴𝑘

𝐷 + 𝑘1
𝐷𝑘2

𝐷𝐵𝑘
𝐷

}𝑑𝑡, 

𝑙𝑖𝑚
𝑡→∞

𝛴𝑗𝑘𝑡 = 0,      𝑗, 𝑘 = 1,2, . . . ,5  

(A50) 

 which given the above solution is a backward linear first-order SDE that can be easily 

solved for 𝛴𝑗𝑘𝑡, 𝑗, 𝑘 = 1,2, . . . ,5.  

Substituting the linear transformation Eq.(A46) to the forward equation of the FBSDEs 

system Eq.(A45)Error! Reference source not found., we obtain: 



𝑑𝑆𝑗𝑘𝑡 =

{
𝐵𝑘
𝐷[𝛱𝑗𝑘𝑡 − 𝑘1

𝐷]𝑆𝑗𝑘𝑡 + 𝐵𝑘
𝐷𝛴𝑗𝑘𝑡 − 𝑘1

𝑈𝐵𝑗
𝑈𝑊𝑗𝑡

𝑈 + 𝐵𝑗
𝑈𝜇𝑗𝑘𝑡 + 𝐵𝑗

𝑈𝜈𝑗𝑘𝑡

+𝑊𝑡 − 𝐴𝑗
𝑈 + 𝑘2

𝑈𝐵𝑗
𝑈 + 𝑅𝑡 − 𝑂𝑡 − 𝐴𝑘

𝐷 + 𝑘2
𝐷𝐵𝑘

𝐷 }𝑑𝑡,  

𝑆000 = 𝑠0,     𝑗, 𝑘 = 1,2, . . . ,5  

(A51) 

which is a forward linear SDE that can be solved for 𝑆𝑗𝑘𝑡 ,  𝑗, 𝑘 = 1,2, . . . ,5. Then the 

backward adjoint variable 𝜆𝑗𝑘𝑡
𝐷 ,  𝑗, 𝑘 = 1,2, . . . ,5,  follows immediately from the linear 

transformation of Eq.(A46)Error! Reference source not found.. Clearly, the optimal 

water abstraction policies 𝑤𝑗𝑘𝑡
𝑈 , 𝑤𝑗𝑘𝑡

𝐷 ,  𝑗, 𝑘 = 1,2, . . . ,5,  of U and D follow from 

Eq.(A30) and Eq.(A17)Error! Reference source not found., respectively.  

 

APPENDIX B.  

SEQUENTIAL MONTE CARLO 

The particle filter methodology can be applied to state space models of the general 

form:  

𝑦𝑇 ∼ 𝑝(𝑦𝑡|𝑥𝑡), 𝑠𝑡 ∼ 𝑝(𝑠𝑡|𝑠𝑡−1)  (B1) 

where 𝑠𝑡 is a state variable. For general introductions see Gordon (1997), Gordon et al. 

(1993), Doucet et al., (2001) and Ristic et al. (2004). Given the data 𝑌𝑡 the posterior 

distribution 𝑝(𝑠𝑡|𝑌𝑡) can be approximated by a set of (auxiliary) particles 

{𝑠𝑡
(𝑖)
, 𝑖 = 1, . . . , . 𝑁} with probability weights {𝑤𝑡

(𝑖)
, 𝑖 = 1, . . . , 𝑁} where 

 ∑  𝑁
𝑖=1 𝑤𝑡

(𝑖)
= 1. The predictive density can be approximated by:  

𝑝(𝑠𝑡+1|𝑌𝑡) = ∫ 𝑝(𝑠𝑡+1|𝑠𝑡)𝑝(𝑠𝑡|𝑌𝑡)𝑑𝑠𝑡 ≃ ∑  𝑁
𝑖=1 𝑝(𝑠𝑡+1|𝑠𝑡

(𝑖)
)𝑤𝑡

(𝑖)
  (B2) 

and the final approximation for the filtering density is:  

𝑝(𝑠𝑡+1|𝑌𝑡) ∝ 𝑝(𝑦𝑡+1|𝑠𝑡+1)𝑝(𝑠𝑡+1|𝑌𝑡) ≃ 𝑝(𝑦𝑡+1|𝑠𝑡+1)∑  

𝑁

𝑖=1

𝑝(𝑠𝑡+1|𝑠𝑡
(𝑖)
)𝑤𝑡

(𝑖)
 (B3) 

The basic mechanism of particle filtering rests on propagating {𝑠𝑡
(𝑖)
, 𝑤𝑡

(𝑖)
, 𝑖 = 1,… ,𝑁} 

to the next step, viz. {𝑠𝑡+1
(𝑖)
, 𝑤𝑡+1

(𝑖)
, 𝑖 = 1, … , 𝑁} but this often suffers from the weight 

degeneracy problem. If parameters 𝜃 ∈ 𝛩 ∈ ℜ
𝑘
 are available, as is often the case, we 

follow Liu and West (2001) parameter learning takes place via a mixture of multivariate 

normals:  

𝑝(𝜃|𝑌𝑡) = ∑ 𝑤𝑡
(𝑖) 𝑁

𝑖=1 𝛮(𝜃|𝛼𝜃𝑡
(𝑖) + (1 − 𝑎)𝜃�̅�, 𝑏

2𝑉𝑡)                                    (B4) 

where ( ) ( )

1

N i i

t t ti
w  =

= , and ( ) ( ) ( )

1
( )( )

N i i i

t tt t t ti
V w   =

= − − . The constants 𝑎 and 

𝑏 are related to shrinkage and are determined via a discount factor 𝛿 ∈ (0,1) as 𝑎 =
(1 − 𝑏2)1/2 and 𝑏2 = 1 − [(3𝛿 − 1)/2𝛿]2 (see also Casarin and Marin, 2007).  

Andrieu and Roberts (2009), Flury and Shephard (2011) and Pitt et al. (2012) provide 

the Particle Metropolis-Hastimgs (PMCMC) technique which uses an unbiased 

estimator of the likelihood function ˆ ( )
N

Yp   as 𝑝(𝑌|𝜃) is often not available in 

closed form.  



Given the current state of the parameter 𝜃(𝑗) and the current estimate of the likelihood, 

say ( )ˆ ( )j j

N
L Yp =  , a candidate 𝜃𝑐 is drawn from 𝑞(𝜃𝑐|𝜃(𝑗)) yielding 

ˆ ( )c c

N
L Yp =   . Then, we set 𝜃(𝑗+1) = 𝜃𝑐 with the Metropolis - Hastings probability:  

𝐴 = min {1, 
𝑝(𝜃𝑐)𝐿𝑐

𝑝(𝜃(𝑗)𝐿𝑗
𝑞(𝜃(𝑗)|𝜃𝑐

𝑞(𝜃𝑐|𝜃(𝑗))
}  (B5) 

otherwise we repeat the current draws: {𝜃(𝑗+1), 𝐿𝑗+1} = {𝜃(𝑗), 𝐿𝑗}.  

Hall et al. (2014) propose an auxiliary particle filter which rests upon the idea that 

adaptive particle filtering (Pitt et al., 2012) used within PMCMC requires far fewer 

particles that the standard particle filtering algorithm to approximate 𝑝(𝑌|𝜃). From Pitt 

and Shephard (1999) we know that auxiliary particle filtering can be implemented 

easily once we can evaluate the state transition density 𝑝(𝑠𝑡|𝑠𝑡−1). When this is not 

possible, Hall et al. (2014) present a new approach when, for instance, 𝑠𝑡 = 𝑔(𝑠𝑡−1, 𝑢𝑡) 
for a certain disturbance. In this case we have:  

𝑝(𝑦𝑡|𝑠𝑡−1) = ∫ 𝑝(𝑦𝑡|𝑠𝑡)𝑝(𝑠𝑡|𝑠𝑡−1)𝑑𝑠𝑡  (B6) 

𝑝(𝑢𝑡|𝑠𝑡−1; 𝑦𝑡) = 𝑝(𝑦𝑡|𝑠𝑡−1, 𝑢𝑡)𝑝(𝑢𝑡|𝑠𝑡−1)/𝑝(𝑦𝑡|𝑠𝑡−1)    (B7) 

If one can evaluate 𝑝(𝑦𝑡|𝑠𝑡−1) and simulate from 𝑝(𝑢𝑡|𝑠𝑡−1; 𝑦𝑡) the filter would be 

fully adaptable (Pitt & Shephard, 1999). One can use a Gaussian approximation for the 

first-stage proposal 𝑔(𝑦𝑡|𝑠𝑡−1) by matching the first two moments of𝑝(𝑦𝑡|𝑠𝑡−1). So in 

some way we find that the approximating density𝑝(𝑦𝑡|𝑠𝑡−1) =
𝑁(𝐸(𝑦𝑡|𝑠𝑡−1), 𝑉(𝑦𝑡|𝑠𝑡−1)). In the second stage, we know that𝑝(𝑢𝑡|𝑦𝑡, 𝑠𝑡−1) ∝
𝑝(𝑦𝑡|𝑠𝑡−1, 𝑢𝑡)𝑝(𝑢𝑡) . For 𝑝(𝑢𝑡|𝑦𝑡, 𝑠𝑡−1) we know it is multimodal so suppose it has 𝑀 

modes are ˆ
m
tu , for𝑚 = 1,… ,𝑀. For each mode we can use a Laplace approximation.  

Let 𝑙(𝑢𝑡) = 𝑙𝑜𝑔[𝑝(𝑦𝑡|𝑠𝑡−1, 𝑢𝑡)𝑝(𝑢𝑡)]. From the Laplace approximation we obtain:  

𝑙(𝑢𝑡) = 𝑙(𝑢𝑡
�̂�) +

1

2
(𝑢𝑡 − 𝑢𝑡

�̂�)
′
∇ 2𝑙(𝑢𝑡

�̂�)(𝑢𝑡 − 𝑢𝑡
�̂�)  (B8) 

Then we can construct a mixture approximation:  

 2 1 2 11
1 2

1

( ) (2 ) exp ( ) (ˆ ˆ
M

d m m
t tt t t m m t m t

m

g u x s u uu u  −  −  −

−

=

  =    −  −   (B9) 

where 𝛴𝑚 = −
1

2 ( )ˆ
m
tl u

−

  
 and 𝜆𝑚 ∝ 𝑒𝑥𝑝{𝑙(𝑢𝑡

𝑚)} with ∑  𝑀
𝑚=1 = 1. This is done for 

each particle 𝑠𝑡
𝑖. This is known as the Auxiliary Disturbance Particle Filter (ADPF). An 

alternative is the independent particle filter (IPF) of Lin et al. (2005). The IPF forms a 

proposal for 𝑠𝑡 directly from the measurement density 𝑝(𝑦𝑡|𝑠𝑡) although Hall et al. 

(2014) are quite right in pointing out that the state equation can be very informative. In 

the standard particle filter of Gordon et al. (1993) particles are simulated through the 

state density 𝑝(𝑠𝑡
𝑖|𝑠𝑡−1

𝑖 ) and they are re-sampled with weights determined by the 

measurement density evaluated at the resulting particle, viz. 𝑝(𝑦𝑡|𝑠𝑡
𝑖).  The ADPF is 

simple to construct and rests upon the following steps, for 𝑡 = 0,… , 𝑇 − 1  given 

samples 𝑠𝑡
𝑘 ∼ 𝑝(𝑠𝑡|𝑌1:𝑡)  with mass 𝜋𝑡

𝑘  for 𝑘 = 1,… ,𝑁: 

1. For 𝑘 = 1,… ,𝑁  compute 𝜔𝑡|𝑡+1
𝑘 = 𝑔(𝑦𝑡+1|𝑠𝑡

𝑘)𝜋𝑡
𝑘,   𝜋𝑡|𝑡+1

𝑘 = 𝜔𝑡|𝑡+1
𝑘 /∑  𝑁

𝑖=1 𝜔𝑡|𝑡+1
𝑖   .  

2. For 𝑘 = 1,… ,𝑁 draw 𝑠𝑡
�̃� = ∑  𝑁

𝑖=1 𝜋𝑡|𝑡+1
𝑘 𝛿𝑆𝑡

𝑖 (𝑑𝑠𝑡) 

3. For 𝑘 = 1,… ,𝑁 draw 𝛿𝑆𝑡
𝑖 = g(𝑢𝑡+1| 𝑠𝑡

�̃�, 𝑦𝑡+1 and set 𝑠𝑡+1
𝑘 = ℎ(𝑠𝑡

𝑘; 𝑢𝑡+1
𝑘 )  



4. For 𝑘 = 1,… ,𝑁 compute 1 1 1 1
1 1

1 1 1 11

( ) ( )
         

( ) ( )

k k k
k kt t t t
t t Nk k k i

tt t t t ti

p y s p u

g y s g u ys

+ + + +
+ +

+ + + +=


=  = 

   

ω
ω π

ω

(B10)                                 

It should be mentioned that the estimate of likelihood from ADPF is: 

𝑝(𝑌1:𝑇) = ∏  𝑇
𝑡=1 (∑  𝑁

𝑖=1 𝜔𝑡−1|𝑡
𝑖 )(𝑁−1∑  𝑁

𝑖=1 𝜔𝑡
𝑖)  (B11) 

 

PARTICLE METROPOLIS ADJUSTED LANGEVIN FILTERS 

Nemeth et al. (2014) provide a particle version of a Metropolis Adjusted Langevin 

algorithm (MALA). In Sequential Monte Carlo we are interested in approximating 

𝑝(𝑠𝑡|𝑌1:𝑡, 𝜃). Given that: 

𝑝(𝑠𝑡|𝑌1:𝑡, 𝜃) ∝ 𝑔(𝑦𝑡|𝑥𝑡, 𝜃)∫ 𝑓(𝑠𝑡|𝑠𝑡−1, 𝜃)𝑝(𝑠𝑡−1|𝑦1:𝑡−1, 𝜃)𝑑𝑠𝑡−1  (B12) 

where 𝑝(𝑠𝑡−1|𝑦1:𝑡−1, 𝜃) is the posterior as of time 𝑡 − 1. If at time 𝑡 − 1 we have a set 

of particles {𝑠𝑡−1
𝑖 , 𝑖 = 1,… ,𝑁} and weights {𝑤𝑡−1

𝑖 , 𝑖 = 1,… .𝑁} which form a discrete 

approximation for 𝑝(𝑠𝑡−1|𝑦1:𝑡−1, 𝜃) then we have the approximation:  

�̂�(𝑠𝑡−1|𝑦1:𝑡−1, 𝜃) ∝ ∑  𝑁
𝑖=1 𝑤𝑡−1

𝑖 𝑓(𝑠𝑡|𝑠𝑡−1
𝑖 , 𝜃)  (B13) 

See Cappé at al. (2005) and Andrieu et al. (2010) for reviews. From (B13) Fernhead 

(2007) makes the important observation that the joint probability of sampling particle 

𝑠𝑡−1
𝑖  and state 𝑠𝑡 is:  

𝜔𝑡 =
𝑤𝑡−1
𝑖 𝑔(𝑦𝑡|𝑠𝑡,𝜃)𝑓(𝑠|𝑠𝑡−1

𝑖 ,𝜃)

𝜉𝑡
𝑖𝑞(𝑠𝑡|𝑠𝑡−1

𝑖 ,𝑦𝑡,𝜃)
  (B14) 

where 𝑞(𝑠𝑡|𝑠𝑡−1
𝑖 , 𝑦𝑡, 𝜃) is a density function amenable to simulation and: 

𝜉𝑡
𝑖𝑞(𝑠𝑡|𝑠𝑡−1

𝑖 , 𝑦𝑡, 𝜃) ≃ 𝑐𝑔(𝑦𝑡|𝑠𝑡, 𝜃)𝑓(𝑠𝑡|𝑠𝑡−1
𝑖 , 𝜃)  (B15) 

and 𝑐 is the normalizing constant in (B12).  

In the MALA algorithm of Roberts and Rosenthal (1998)13 we form a proposal:  

𝜃𝑐 = 𝜃(𝑠) + 𝜆𝑧 +
𝜆2

2
𝛻log𝑝(𝜃(𝑠)|𝑌1:𝑇)  (B16) 

where 𝑧 ∼ 𝑁(0, 𝐼) which should result in larger jumps and better mixing properties, 

plus lower autocorrelations for a certain scale parameter 𝜆. Acceptance probabilities 

are: 𝑎(𝜃𝑐|𝜃(𝑠)) = 𝑚𝑖𝑛 {1,
𝑝(𝑌1:𝑇|𝜃

𝑐)𝑞(𝜃(𝑠)|𝜃𝑐)

𝑝(𝑌1:𝑇|𝜃(𝑠))𝑞(𝜃𝑐|𝜃(𝑠))
}  

Using particle filtering it is possible to create an approximation of the score vector using 

Fisher’s identity:  

𝛻 𝑙𝑜𝑔 𝑝 (𝑌1:𝑇|𝜃) = 𝐸[𝛻 𝑙𝑜𝑔 𝑝 (𝑠1:𝑇 , 𝑌1:𝑇|𝜃)|𝑌1:𝑇, 𝜃]  (B17) 

which corresponds to the expectation of:  

𝛻 𝑙𝑜𝑔 𝑝 (𝑠1:𝑇, 𝑌1:𝑇|𝜃) = 𝛻 𝑙𝑜𝑔 𝑝 (|𝑠1:𝑇−1, 𝑌1:𝑇−1|𝜃) + 𝛻 𝑙𝑜𝑔 𝑔 (𝑦𝑇|𝑠𝑇 , 𝜃) +
𝛻 𝑙𝑜𝑔 𝑓 (𝑠𝑇|𝑠|𝑇−1, 𝜃)  

 
13The benefit of MALA over Random-Walk-Metropolis arises when the number of parameters 𝑛 is large. 

This happens because the scaling parameter 𝜆 is 𝑂(𝑛−1/2) for Random-Walk-Metropolis but it is 

𝑂(𝑛−1/6) for MALA, see Roberts et al. (1997) and Roberts and Rosenthal (1998). 



over the path 𝑠1:𝑇. The particle approximation to the score vector results from replacing 

𝑝(𝑠1:𝑇|𝑌1:𝑇 , 𝜃) with a particle approximation �̂�(𝑠1:𝑇|𝑌1:𝑇, 𝜃).  

With particle i-th at time t-1, we can associate a value 𝛼𝑡−1
𝑖 = 𝛻 𝑙𝑜𝑔 𝑝 (𝑠1:𝑡−1

𝑖 , 𝑌1:𝑡−1|𝜃) 
which can be updated recursively. As we sample 𝜅𝑖 in the APF (the index of particle at 

time 𝑡 − 1 that is propagated to produce the 𝑖th particle at time t) we have the update: 

 𝛼𝑡
𝑖 = 𝑎𝑡−1

𝜅𝑖 + 𝛻 𝑙𝑜𝑔 𝑔 (𝑦𝑡|𝑠𝑡
𝑖, 𝜃) + 𝛻 𝑙𝑜𝑔 𝑓 (𝑠𝑡

𝑖|𝑠𝑡−1
𝑖 , 𝜃)  (B18) 

To avoid problems with increasing variance of the score estimate 𝛻 𝑙𝑜𝑔 𝑝 (𝑌1:𝑡|𝜃) we 

can use the approximation:  

𝛼𝑡−1
𝑖 ∼ 𝑁(𝑚𝑡−1

𝑖 , 𝑉𝑡−1)  (B19) 

The mean is obtained by shrinking 𝛼𝑡−1
𝑖  towards the mean of 𝛼𝑡−1 as follows: 

𝑚𝑡−1
𝑖 = 𝛿𝛼𝑡−1

𝑖 + (1 − 𝛿)∑  𝑁
𝑖=1 𝑤𝑡−1

𝑖 𝛼𝑡−1
𝑖   (B20) 

where 𝛿 ∈ (0,1) is a shrinkage parameter. Using Rao-Blackwellization one can avoid 

sampling 𝛼𝑡
𝑖 and instead use the following recursion for the means:  

𝑚𝑡
𝑖 = 𝛿𝑚𝑡−1

𝜅𝑖 + (1 − 𝛿)∑  𝑁
𝑖=1 𝑤𝑡−1

𝑖 𝑚𝑡−1
𝑖 + 𝛻 𝑙𝑜𝑔 𝑔 (𝑦𝑡|𝑠𝑡

𝑖, 𝜃) +

𝛻 𝑙𝑜𝑔 𝑓 (𝑠𝑡
𝑖|𝑠𝑡−1

𝜅𝑖 , 𝜃)    

(B21) 

which yields the final score estimate: 

𝛻 𝑙𝑜𝑔 �̂� (𝑌1:𝑡|𝜃) = ∑  𝑁
𝑖=1 𝑤𝑡

𝑖𝑚𝑡
𝑖   (B22) 

As a rule of thumb Nemeth et al. (2014) suggest taking 𝛿 = 0.95. Furthermore, they 

show the important result that the algorithm should be tuned to the asymptotically 

optimal acceptance rate of 15.47% and the number of particles must be selected so that 

the variance of the estimated log-posterior is about 3. Additionally, if measures are not 

taken to control the error in the variance of the score vector, there is no gain over a 

simple random walk proposal.  

Of course, the marginal likelihood is:  

𝑝(𝑌1:𝑇|𝜃) = 𝑝(𝑦1|𝜃)∏  𝑇
𝑡=2 𝑝(𝑦𝑡|𝑌1:𝑡−1, 𝜃)  (B23) 

where  

𝑝(𝑦𝑡|𝑌1:𝑡−1, 𝜃) = ∫ 𝑔(𝑦𝑡|𝑠𝑡)∫ 𝑓(𝑠𝑡|𝑠𝑡−1, 𝜃)𝑝(𝑠𝑡−1|𝑌1:𝑇−1, 𝜃)𝑑𝑠𝑡−1𝑑𝑠𝑡  (B24) 

provides, in explicit form, the predictive likelihood. 

 

APPENDIX C.  

DATA MENTIONED IN RESULTS SECTION 

The Environmental Indices derived from the factors presented in Section 7, as well as 

the parameters of the hydro-economic model (same section) were obtained from official 

databases. 

The Eora global supply chain database consists of a Multi-Region Input-Output table 

(MRIO) model that provides a time series of high-resolution Input-Output (IO) tables 

with matching environmental and social satellite accounts for 190 countries (35 types 

of EI air pollution, energy use, greenhouse gas emissions, water use, land occupation, 

N and P emissions, etc.). 16 IO tables, each for the period 2000-2015 for Ethiopia and 

Kenya were used. Additional data, as well as pumping costs and hydrological timeseries 



were collected from scientific journals, official reports, governmental websites, and 

other forms of grey literature databases, including: African development bank, 

including African development bank, ILO (International Labor Organization) and the 

World Bank Group: Climate Change Knowledge Portal For Development Practitioners 

and Policy Makers, the United Nations Statistics Division, Food and Agriculture 

Organization of United Nations (FAOSTAT, AQUASTAT), Unesco World Heritage 

list, OpenDataSoft, Environment & Climate Change Data Portal, and offices of national 

statistics. 

Table C.1.: Description of Indices of Ecosystem Services 

ES 

Services 

Indicator Description Units Source 

 GVA (Gross 

Value Added) 

per sector 

Represents the contribution of labor and capital to the 

production process. Gross value added at basic prices is defined 
as output valued at basic prices less intermediate consumption 

valued at purchasers' prices. Although the outputs and inputs are 

valued using different sets of prices, for brevity the value added 
is described by the prices used to value the outputs. From the 

point of view of the producer, purchasers' prices for inputs and 

basic prices for outputs represent the prices actually paid and 
received. Their use leads to a measure of gross value added that 

is particularly relevant for the producer. Net value added is 

defined as the value of output less the values of both 
intermediate consumption and consumption of fixed capital. 

$ Input-OutputTables 

http://www.worldmri
o.com/country 

 Gross Fixed 

Capital 

Formation 

per sector 

Gross fixed capital formation is measured by the total value of a 

producer’s acquisitions, less disposals, of fixed assets during the 
accounting period plus certain additions to the value of non-

produced assets (such as subsoil assets or major improvements 

in the quantity, quality or productivity of land) realized by the 
productive activity of institutional units. 

$ 

 

Input-Output Tables 

http://www.worldmri
o.com/country 

 Employment 

Per sector 

Persons in employment are defined as all those of working age 

who, during a short reference period, were engaged in any 

activity to produce goods or provide services for pay or profit. 
They comprise employed persons "at work", i.e. who worked in 

a job for at least one hour; and employed persons "not at work" 

due to temporary absence from a job, or to working-time 
arrangements (such as shift work, flexitime and compensatory 

leave for overtime). 

Abs. 

Value 

ILO 

(International 

LABOR 
Organization) 

Provis.  

services 

WFN: 

Total Water 

Footprint  

per sector 

Total water use which includes: 

– WFN: Total water footprint - Green 

– WFN: Total water footprint - Blue 

– WFN: Total water footprint - Grey 
 

Mm3/yr Input-Output 
Tables 

http://www.worldmri

o.com 

 Energy Use 

(Total) 

per sector 

Natural Gas, Coal, Petroleum, Nuclear Electricity, 

Hydroelectric Electricity, Geothermal Electricity, Wind 
Electricity, Solar, Tide and Wave Electricity, Biomass and 

Waste Electricity 

TJ Input-Output  

Tables 
http://www.worldmri

o.com/country 

Regul. 

Services 

 

Water  

Quality 

Nitrogen Emissions exportable to water bodies from agriculture 

and household waste water 

Gg Input-Output  

Tables 
http://www.worldmri

o.com/country 

 Fertilizers: 

Total 

Nitrogen and 

Phosphate 

(N and P2O5) 

Proportions of consumption of fertilizers (by nutrient group) per 
unit of agricultural land area are calculated by UNSD using 

available consumption and land use data from FAOSTAT.  

kg/ha Food and  
Agriculture  

Organization of 

United Nations 
(FAOSTAT) 

Provis. 

services  

Agricultural 

Area 

 

Agricultural area, this category is the sum of areas under 

“Arable land”, “Permanent crops” and “Permanent pastures” 

103ha Food and  

Agriculture  
Organization of 

United Nations 

(FAOSTAT) 

Provis. 

services 

Raw  

Materials 

per Sector 

For agriculture total biomass and for mining-quarries total 
construction material and total fossil fuel 

t Input-Output  
Tables 

http://www.worldmri

o.com/country 

Provis. 

services  

Permanent 

Crops 

Permanent crops is the land cultivated with long-term crops 

which do not have to be replanted for several years (such as 

cocoa and coffee); land under trees and shrubs producing 
flowers, such as roses and jasmine; and nurseries (except those 

for forest trees, which should be classified under "forest"). 

103ha Food and  

Agriculture  

Organization of 
United Nations 

(FAOSTAT) 

http://www.worldmrio.com/country
http://www.worldmrio.com/country
http://www.worldmrio.com/country
http://www.worldmrio.com/country


Permanent meadows and pastures are excluded from land under 
permanent crops. 

Provis. 

services  

Arable 

Land 

Arable land is the land under temporary agricultural crops 

(multiple-cropped areas are counted only once), temporary 

meadows for mowing or pasture, land under market and kitchen 
gardens and land temporarily fallow (less than five years). The 

abandoned land resulting from shifting cultivation is not 

included in this category. Data for “Arable land” are not meant 
to indicate the amount of land that is potentially cultivable. 

103ha Food and  

Agriculture  

Organization of 
United Nations 

(FAOSTAT) 

Provis. 

services 

Crop 

Production 

Crop statistics are recorded for 173 products, covering the 

following categories: Crops Primary, Fibre Crops Crop statistics 
are recorded for 173 products, covering the following 

categories: Crops Primary, Fibre Crops Primary, Cereals, 

Coarse Grain, Citrus Fruit, Fruit, Jute & Jute-like Fibres, 
Oilcakes Equivalent, Oil crops Primary, Pulses, Roots and 

Tubers, Treenuts and Vegetables and Melons. Data are 

expressed in terms of area harvested, production quantity, yield 

and seed quantity. The objective is to comprehensively cover 

production of all primary crops for all countries and regions in 

the world. 

t Input-Output  

Tables 
http://www.worldmri

o.com/country 

Regul. 

Services 

 

Forest Forest area is the land spanning more than 0.5 hectares with 
trees higher than 5 metres and a canopy cover of more than 10 

percent, or trees able to reach these thresholds in situ. It does 

not include land that is predominantly under agricultural or 
urban land use. Forest is determined both by the presence of 

trees and the absence of other predominant land uses. The trees 
should be able to reach a minimum height of 5 metres (m) in 

situ. Areas under reforestation that have not yet reached but are 

expected to reach a canopy cover of 10 percent and a tree height 
of 5 m are included, as are temporarily unstocked areas, 

resulting from human intervention or natural causes, which are 

expected to regenerate. Includes: areas with bamboo and palms 
provided that height and canopy cover criteria are met; forest 

roads, firebreaks and other small open areas; forest in national 

parks, nature reserves and other protected areas such as those of 
specific scientific, historical, cultural or spiritual interest; 

windbreaks, shelterbelts and corridors of trees with an area of 

more than 0.5 ha and width of more than 20 m; plantations 
primarily used for forestry or protective purposes, such as: 

rubber-wood plantations and cork, oak stands. Excludes: tree 

stands in agricultural production systems, for example in fruit 
plantations and agroforestry systems. The term also excludes 

trees in urban parks and gardens. 

103ha Food and  
Agriculture  

Organization of 

United Nations 
(FAOSTAT) 

Provis. 

services  

Total Area 

Equipped For 

Irrigation 

Area equipped with irrigation infrastructure to provide water to 

the crops. This includes areas equipped for full and partial 
control irrigation, spate irrigation areas, and equipped wetland 

or inland valley bottoms. 

103ha Food and  

Agriculture  
Organization of 

United Nations 

(FAOSTAT) 

Provis. 

services 

Total 

Fisheries 

Production 

Total fisheries production measures the volume of aquatic 

species caught by a country for all commercial, industrial, 

recreational and subsistence purposes. The harvest from 

mariculture, aquaculture and other kinds of fish farming is also 

included. 

t 

 

Food and  

Agriculture  

Organization of 

United Nations 

(FAOSTAT) 

 Temperature The yearly mean historical rainfall and temperature data can be 
mapped to show the baseline climate and seasonality yearly, 

and for rainfall and temperature. 

°C The World Bank 
Group 

Climate Change 

Knowledge PortalFor 
Development 

Practitioners and 

Policy Makers 

 Rainfall Yearly Mean historical rainfall mm The World Bank 
Group 

Climate Change 

Knowledge PortalFor 
Development 

Practitioners and 

Policy Makers 

Habitat 

services 

Biodiversity 

and 

Habitats 

A “proximity-to-target methodology” is used to assess how 

close each country is to an identified policy target. Country 

scores are determined by how close or far countries are to 
targets. Scores are standardized (i.e., on a scale of 0 to 100) for 

comparability, weighting, and aggregation. 

The Environmental Performance Index (EPI) is constructed 
through the calculation and aggregation of 20 indicators 

reflecting national-level environmental data. These indicators 

% Environment and 

Climate Change Data 

Portal 

http://www.worldmrio.com/country
http://www.worldmrio.com/country


are combined into nine issue categories, each of which fit under 
one of two overarching objectives. The two objectives that 

provide the overarching structure of the EPI are Environmental 

Health and Ecosystem Vitality.  Biodiversity & Habitats 
belongs to the Ecosystem Vitality which measures ecosystem 

protection and resource management. These two objectives are 

further divided into nine issue categories that span high-priority 
environmental policy issues, including air quality, forests, 

fisheries, and climate and energy, among others. The issue 

categories are extensive but not comprehensive. Underlying the 
nine issue categories, 20 indicators are calculated from country-

level data and statistics.  

In this case the Biodiversity and Habitat category includes four 
indicators:  Critical Habitat Protection, Terrestrial Protected 

Areas (National Biome Weight), Terrestrial Protected Areas 

(Global Biome Weight), and Marine Protected Areas. The 
targets are: 100% for Critical Habitat Protection; 17% for 

Terrestrial Protected Areas (National Biome Weights); 17% for 

Terrestrial Protected Areas (Global Biome Weights); 10% for 
Marine Protected Areas. (c.f.  

http://archive.epi.yale.edu/our-methods/biodiversity-and-

habitat) 

Regul. 

Services 

 

Terrestrial 

Protected 

Areas 

 

The definition of a “protected area”, as adopted by the 
International Union for Conservation of Nature (IUCN), is “an 

area of land and/or sea especially dedicated to the protection 
and maintenance of biological diversity, and of natural and 

associated cultural resources, and managed through legal or 

other effective means”. (IUCN 1994. Guidelines for Protected 
Areas Management Categories. IUCN; Gland; Switzerland and 

Cambridge; UK). Protected areas increase with time and are not 

deleted from subsequent years. Only protected areas that are 
“nationally designated” are included in this indicator. The status 

"designated" is attributed to a protected area when the authority 

that corresponds, according to national legislation or common 

practice (e.g. by means of an executive decree), officially 

endorses a document of designation. The designation must be 

for conservation of biodiversity, not single species and not 
fortuitous de facto protection arising because of some other 

activity (e.g. military). Hence, a number of United States 

Marine Managed Areas as well as permanent fisheries closures 
are excluded.  Data are adjusted to account for transboundary 

protected areas (protected areas that transcend international 

boundaries) to ensure that the appropriate area/extent from the 
total area for that site is attributed to the country in which it is 

contained. Similar adjustments have been made where a 

protected area transcends both marine and terrestrial 
environments.  The size of the protected area (its “extent”) is 

the officially documented total area provided by the national 

authority or as listed by the World Database on Protected Areas 
and may be generated from spatial (GIS) boundary data (see 

source for details). Many protected areas can contain 

proportions of both the marine and terrestrial environment, and 
the size of the protected area extent that falls into each 

environment is not always available. The table also includes 

some protected areas for which the year (date of 
establishment/designation) is unavailable.  If no update is 

received for a given year, the total number and size of the 

protected area is assumed to be equal to the previous year’s 
values. 

Km2 World 
Database on 

Protected 
Areas 

(WDPA) website at: 

www.wdpa.org/. 

 Access to 

Electricity  

 

Access to electricity is the percentage of population with access 

to electricity. Electrification data are collected from industry, 
national surveys and international sources. 

% of 

populati
on 

World Bank,  

Sustainable  
Energy for All 

(SE4ALL) database 

 People Using 

Basic  

Drinking 

Water 

Services  

The percentage of people using at least basic water services. 

This indicator encompasses both people using basic water 
services as well as those using safely managed water services. 

Basic drinking water services is defined as drinking water from 

an improved source, provided collection time is not more than 
30 minutes for a round trip. Improved water sources include 

piped water, boreholes or tubewells, protected dug wells, 

protected springs, and packaged or delivered water. 

% of 

populati
on 

World Bank, 

from WHO/UNICEF 
Joint Monitoring 

Programme  

(JMP) for Water 
Supply, Sanitation 

and Hygiene  

(washdata.org ). 

 International 

Tourism, 

Number of 

Arrivals 

International inbound tourists (overnight visitors) are the 

number of tourists who travel to a country other than that in 

which they have their usual residence, but outside their usual 
environment, for a period not exceeding 12 months and whose 

Abs. 

Value 

World Bank,  

World Tourism  

Organization, 
Yearbook of  

http://washdata.org/


main purpose in visiting is other than an activity remunerated 
from within the country visited. When data on number of 

tourists are not available, the number of visitors, which includes 

tourists, same-day visitors, cruise passengers, and crew 
members, is shown instead. Sources and collection methods for 

arrivals differ across countries. In some cases data are from 

border statistics (police, immigration, and the like) and 
supplemented by border surveys. In other cases data are from 

tourism accommodation establishments. For some countries 

number of arrivals is limited to arrivals by air and for others to 
arrivals staying in hotels. Some countries include arrivals of 

nationals residing abroad while others do not. Caution should 

thus be used in comparing arrivals across countries. The data on 
inbound tourists refer to the number of arrivals, not to the 

number of people traveling. Thus a person who makes several 

trips to a country during a given period is counted each time as 
a new arrival. 

Tourism Statistics, 
Compendium of 

Tourism Statistics and 

data files 

Regul. 

Services 

 

Renewable 

Electricity 

Production 

Electricity production refers to gross production, which is the 

sum of the electrical energy production by all the generating 

units/installations concerned (including pumped storage) 
measured at the output terminals of the main generators. 

Renewable electricity production (%) refers to the proportion of 

total electricity produced that comes from a renewable origin. 
Electricity production refers to gross electricity production, 

which is the sum of the electrical energy production by all the 
generating units/installations concerned (including pumped 

storage) measured at the output terminals of the main 

generators. This includes the consumption by station auxiliaries 
and any losses in the transformers that are considered integral 

parts of the station. Renewable electricity production was 

calculated as the sum of electricity produced from hydro, 
geothermal, solar, wind, tide, wave and ocean sources. All 

electricity production from combustible fuels is considered non-

renewable; therefore electricity produced from burning biomass 

or renewable waste is not included as renewable electricity in 

this table. However, this has been observed to be a relatively 

negligible proportion of electricity production in most cases. 

% United Nations 

Statistics Division, 

Energy Statistics 
http://unstats.un.org/u

nsd/energy/yearbook/

default.htm. 

Regul. 

Services 

 

CO2 Public electricity and heat production 
Other Energy Industries 

Manufacturing Industries and Construction 

Domestic aviation 
Road transportation 

Rail transportation 

Inland navigation 
Other transportation 

Residential and other sectors 

Fugitive emissions from solid fuels 
Fugitive emissions from oil and gas 

International aviation 

International navigation 
Production of minerals 

Cement production 
Lime production 

Production of chemicals 

Production of metals 
Production of pulp/paper/food/drink 

Production of halocarbons and SF6 

Refrigeration and Air Conditioning 
Foam Blowing 

Fire Extinguishers 

Aerosols 
F-gas as Solvent 

Semiconductor/Electronics Manufacture 

Electrical Equipment 
Other F-gas use 

Non-energy use of lubricants/waxes (CO2) 

Solvent and other product use: paint 
Solvent and other product use: degrease 

Solvent and other product use: chemicals 

Solvent and other product use: other 
Enteric fermentation 

Manure management 

Rice cultivation 
Direct soil emissions 

Manure in pasture/range/paddock 

Gg Input-Output 
Tables 

http://www.worldmri

o.com/country 

http://unstats.un.org/unsd/energy/
http://unstats.un.org/unsd/energy/


Indirect N2O from agriculture 
Other direct soil emissions 

Savanna burning 

Agricultural waste burning 
Forest fires 

Grassland fires 

Decay of wetlands/peatlands 
Other vegetation fires 

Forest Fires-Post burn decay 

Solid waste disposal on land 
Wastewater handling 

Waste incineration 

Other waste handling 
Fossil fuel fires 

Indirect N2O from non-agricultural NOx 

Indirect N2O from non-agricultural NH3 
Other sources 

Regul. 

Services 

 

NO2 Public electricity and heat production 

Other Energy Industries 

Manufacturing Industries and Construction 
Domestic aviation 

Road transportation 

Rail transportation 
Inland navigation 

Other transportation 
Residential and other sectors 

Fugitive emissions from solid fuels 

Fugitive emissions from oil and gas 
Memo: International aviation 

Memo: International navigation 

Production of minerals 
Cement production 

Lime production 

Production of chemicals 

Production of metals 

Production of pulp/paper/food/drink 

Production of halocarbons and SF6 
Refrigeration and Air Conditioning 

Foam Blowing 

Fire Extinguishers 
Aerosols 

F-gas as Solvent 

Semiconductor/Electronics Manufacture 
Electrical Equipment 

Other F-gas use 

Non-energy use of lubricants/waxes (CO2) 
Solvent and other product use: paint 

Solvent and other product use: degrease 

Solvent and other product use: chemicals 
Solvent and other product use: other 

Enteric fermentation 

Manure management 
Rice cultivation 

Direct soil emissions 

Manure in pasture/range/paddock 
Indirect N2O from agriculture 

Other direct soil emissions 

Savanna burning 
Agricultural waste burning 

Forest fires 

Grassland fires 
Decay of wetlands/peatlands 

Other vegetation fires 

Forest Fires-Post burn decay 
Solid waste disposal on land 

Wastewater handling 

Waste incineration 
Other waste handling 

Fossil fuel fires 

Indirect NO2 from non-agricultural NOx 
Indirect NO2 from non-agricultural NH3 

Other sources 

  

Regul. 

Services 

 

Total Annual 

Freshwater 

Withdrawals 

Annual freshwater withdrawals refer to total water withdrawals, 
not counting evaporation losses from storage basins. 

Withdrawals also include water from desalination plants in 

109m3 Food and 
Agriculture 



countries where they are a significant source. Withdrawals can 
exceed 100 percent of total renewable resources where 

extraction from non-renewable aquifers or desalination plants is 

considerable or where there is significant water reuse. 
Withdrawals for agriculture and industry are total withdrawals 

for irrigation and livestock production and for direct industrial 

use (including withdrawals for cooling thermoelectric plants). 
Withdrawals for domestic uses include drinking water, 

municipal use or supply, and use for public services, 

commercial establishments, and homes. Data are for the most 
recent year available for 1987-2002. 

Organization, 
AQUASTAT data. 

Regul. 

Services 

 

 

Floods 

and 

Droughts 

Number of floods/droughts events. 

 

[-] The Emergency 

Events Database - 

Université 

catholique de 

Louvain (UCL) - 

CRED, D.  

Guha-Sapir, 

www.emdat.be, 

Brussels, Belgium. 
http://emdat.be/emdat

_db/ 

Cultural and 

amenity 

services 

Cultural- 

Natural- 

Mixed  

Heritage Sites 

To be included on the World Heritage List, sites must be of 
outstanding universal value and meet at least one out of ten 

selection criteria. 

These criteria are explained in the Operational Guidelines for 
the Implementation of the World Heritage Convention which, 

besides the text of the Convention, is the main working tool on 

World Heritage. The criteria are regularly revised by the 
Committee to reflect the evolution of the World Heritage 

concept itself. 

Access to an improved water source refers to the percentage of 
the population with reasonable access to an adequate amount of 

water from an improved source, such as a household 

connection, public standpipe, borehole, protected well or spring, 
and rainwater collection. Unimproved sources include vendors, 

tanker trucks, and unprotected wells and springs. Reasonable 

access is defined as the availability of at least 20 liters a person 
a day from a source within one kilometer of the dwelling. 

[-] UNESCO World 
Heritage Centre – 

World 

Heritage List 
 

 

Table C.2.: Parameters of the hydro-economic model. 

Symbol Description Parameter Value 

uB   

Vector of the absolute values of the slope of the water 

demand for i sector in the upstream area.  

[833.33; 31,152.65; 769.23; 714.29; 

1,000] Mm3/$ 

uA  

Vector of the intercepts of the water demand for i sector 

in the upstream area. 

[1,233.33; 46,105.92; 1,269.23; 

1,235.71; 1,800] Mm3/$ 

dB  

Vector of the absolute values of the slope of the water 

demand for i sector in the downstream area.  

[909.09; 1,000; 31,347.96; 769.23; 

666.67] Mm3/$ 

dA  

Vector of the intercepts of the water demand for i sector 

in the downstream area. 

[1,400; 1,560; 48,902.82; 1,307.69; 

1,180] Mm3/$ 

1

Uk
 

Cost of pumping in the upstream area 1Mm3 of water 

per Mm3 of volume of the river 

0.066 $/m3 

2

Uk
 

The intercept of the pumping cost equation for the 

upstream area 

0.33 $/m3 

1

Dk
 

Cost of pumping in the downstream area 1Mm3 of water 

per Mm3 of volume of the lake 

0.61 $/m3 

2

Dk
 

The intercept of the pumping cost equation for the 

downstream area 

2.03 $/m3 

0s
  

Initial storage of the lake 292,500 Mm3 

http://www.emdat.be/
http://whc.unesco.org/en/guidelines/
http://whc.unesco.org/en/guidelines/
http://whc.unesco.org/en/list/
http://whc.unesco.org/en/list/
http://whc.unesco.org/en/list/
http://whc.unesco.org/en/list/


OR
  

Initial runoff rate 16,666.155 Mm3 

0O
  

Initial outflow rate 22,788.644 Mm3 

0w
  

Initial precipitation 6.8308105 Mm3 

0wr
  

Initial renewable water resources  4.43107Mm3 

Rσ   

Volatility of runoff 0.431 

Oσ   

Volatility of outflow 0.025 

Wσ   

Volatility of precipitation 0.089 
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