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Abstract

Recent research developments in common-pool resource models

emphasize the importance of links with ecological systems and the

presence of non-linearities, thresholds and multiple steady states. In a

recent paper Kossioris et al. (2008) develop a methodology for deriving

feedback Nash equilibria for non-linear differential games and apply

this methodology to a common-pool resource model of a lake where

pollution corresponds to benefits and at the same time affects the

ecosystem services. This paper studies the structure of optimal state-

dependent taxes that steer the combined economic-ecological system

towards the trajectory of optimal management, and provides an algo-

rithm for calculating such taxes.
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1 Introduction

Recent developments in the study of common-pool resources embedded in

ecological systems stress the presence of thresholds, multiple steady states

and hysteresis effects, which are empirically observable features in these

ecosystems, as opposed to the traditional approach of simple linear dynam-

ics. Good examples are lakes, grasslands and coral reef systems.1 In these

systems many agents with potentially diverse objectives interact within the

ecosystem and take actions which affect its dynamic behavior and long-run

equilibrium. It follows that in the presence of complex dynamics, the socially

optimal management of these ecosystems which is attained through cooper-

ative behavior, and the characterization of outcomes under non-cooperative

behavior have to be reconsidered. The basic methodology for this must be

able to handle complex dynamics as well as strategic interaction between

users of the resource. In recent papers, Brock and Starrett (2003), Mäler et

al. (2003) and Kossioris et al. (2008) develop methodologies for analyzing

the socially optimal (or cooperative) and the non-cooperative outcomes of

ecosystems characterized by non-linear dynamics. In particular Kossioris et

al. (2008) derived feedback Nash equilibria (FBNE) for non-linear differen-

tial games and applied this methodology to a model for lakes where pollution

affects the ecosystem services. The main result of this analysis was that the

socially optimal management solution and the best non-cooperative solution

differ in terms of steady-state outcomes, paths towards the steady state and

total welfare. The FBNE outcome is inferior to the optimal management out-

come, in the sense that the steady-state accumulation of pollution is higher

and the welfare lower at the FBNE relative to the optimal management.

This result suggests that regulation is required in order to improve upon the

unregulated FBNE outcome. This however raises the methodological issue of

designing regulation of non-linear differential games. This problem has been

analyzed in Mäler et al. (2003) for non-linear differential games with open-

loop information structure, but has not been studied, as far as we know, for

1See for example Scheffer (1997), Carpenter and Cottingham (1997), Crépin (2006),
Crépin and Lindahl (2008).
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non-linear differential games with feedback information structure.

The purpose of this paper is to consider whether optimal regulation in the

form of taxation can be designed for non-linear differential games with feed-

back information structure, which models interactions in economic-ecological

systems of common-pool resources characterized by complex dynamics. We

study optimal taxation in the sense of deriving a tax scheme which depends

on the state of the system (i.e. the stock of pollution) at each point in time

and which has the property of steering the regulated system to the socially

optimal steady state. The structure of this general state-dependent tax rate

is determined in the context of a differential game with non-linear objective,

with state dynamics characterized by convex-concave feedbacks, and with so-

lutions defined in terms of non-linear feedback Nash equilibrium strategies.

We show that the non-linear feedback Nash equilibrium strategies and the

optimal state-dependent tax should jointly satisfy a non-linear differential

equation which is derived from the Hamilton-Jacobi-Bellman (HJB) equa-

tion of the dynamic programming representation of the non-linear differen-

tial game. Furthermore, we calculate, using a specific algorithm, the optimal

state-dependent tax in three different functional forms: a tax scheme with

a fixed rate, a tax scheme with a tax rate proportional to the state of the

system, and a tax scheme which is a quadratic function of the state. We

study this problem in detail for the non-linear state dynamic specification

corresponding to the lake problem. Benchekroun and Long (1998) studied

the optimal taxation of a polluting oligopoly using a state-dependent tax

rate, in the context of a differential game with linear dynamics and concave

objective. Their specific results for the case of feedback Nash equilibria focus

on linear-quadratic problems and linear feedback strategies. In this paper we

study not only a more general problem but also a problem which represents

the non-linear dynamics characterizing common-pool resources.

2 Regulation of Non-Linear Differential Games

We consider the class of non-linear differential games studied by Mäler et

al. (2003) and Kossioris et al. (2008). Consider a situation where n eco-
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nomic agents take actions ai, i = 1, 2, ..., n, at each point in time t, with

which they affect the state of a natural system that is shared by all the

agents. The natural system is characterized by thresholds, hysteresis, and

irreversibilities which could lead to the type of regime shifts which have been

extensively studied in lake ecosystems.2 In the context of the analysis of the

lake ecosystems, these actions would be phosphorus loadings into the lake

due to agricultural activities, while the economic agents are communities

concerned about the eutrophication of the lake that they share. The action

ai generates benefits according to a strictly increasing and concave utility

function U(ai), which is assumed to be the same for all agents. The evo-

lution of the pollutant in the natural system is described by the non-linear

transition equation

ẋ(t) =
n∑
i=1

ai(t)− bx(t) + f(x(t)), x(0) = x0. (1)

In the lake context the state variable x is interpreted as accumulated phos-

phorus in a lake. Besides the standard linear degradation term −bx, non-
linear feedbacks occur that are represented by the function f(x), which is an

increasing non-linear function of the state variable x. Following the standard

literature (e.g. Mäler et al. 2003) the function f(x) is a convex-concave

function with a switching point in between, where f ′(x) is maximal. The

stock of pollutants x causes environmental damage (or equivalently, reduces

the flow of useful services generated by the natural system) according to a

strictly increasing and convex damage function D(x), which is also assumed

to be the same for all agents. It follows that the flow of net benefits accruing

to each agent at each point in time is given by U(ai(t))−D(x(t)). Each agent
chooses a strategy ai in order to maximize the present value of net benefits

over an infinite time horizon, or

max
ai(.)

∫ ∞
0

e−ρt[U(ai(t))−D(x(t))]dt, i = 1, 2, ..., n, (2)

2See, for example, Brock and Starrett (2003), Mäler et al. (2003), Wagener (2003),
Dechert and O’Donnell (2006), Hein (2006), Kossioris et al. (2008).
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subject to (1), where ρ > 0 is a discount rate, common for all agents.

The game aspect is standard: all actions add to the public bad, so that

each agent generates a negative externality for the other agents. Three

types of solutions are regarded as important for this game. A solution

corresponding to the socially optimal management (SOM), where strate-

gies {a1, a2, ..., an} are chosen to maximize the sum of agents’net benefits,

and two non-cooperative solutions which correspond to the open-loop Nash

equilibrium (OLNE) and the feedback Nash equilibrium (FBNE). If SOM is

regarded as the socially desirable solution, deviations of the paths for the

state and the control variables for OLNE or FBNE from the corresponding

paths for SOM call for regulation. Regulation should induce the OLNE or

the FBNE of the regulated agents to converge in some well-defined way to

the SOM solution.

3 Optimal Taxation in Non-Linear Differen-

tial Games

We consider the attainment of the SOM solution by a decentralized scheme

which consists of a state-dependent tax τ (x) on individual phosphorous load-

ings. To characterize this tax we need a description of the three solutions

described above.

The SOM solution requires choosing the set of strategies {a1, a2, ..., an}
in order to maximize the sum of individual net benefits, or

max
{a1(.),...an(.)}

∫ ∞
0

e−ρt[

n∑
i=1

U(ai(t))− nD(x(t))]dt, (3)

subject to (1). The current-value Hamiltonian H for this problem is given

by

H =
n∑
i=1

U(ai)− nD(x) + λ[a− bx+ f(x)], a =
n∑
i=1

ai, (4)

and Pontryagin’s maximum principle yields the necessary conditions. In
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(4), the costate variable λ should be interpreted as the social shadow cost

of accumulated phosphorous. Following Mäler et al. (2003), the Modified

Hamiltonian Dynamic System (MHDS), in the state-control space (x, a), for

the optimal control problem associated with SOM is

ẋ (t) = a− bx (t) + f(x (t)), x(0) = x0, (5)

ȧ(t) = − [ρ+ b− f ′(x(t))] a(t) + a2(t)2cx(t), (6)

where a denotes the total loadings of all the agents together. As it is shown

in Brock and Starrett (2003), under the assumptions made on the U(ai),

D(x) and f(x) functions, this MHDS has an odd number of steady states.

The first and the last steady states are locally stable. The locally stable

steady states have the saddle-point property with a one-dimensional globally

stable manifold, and the locally unstable steady states, with possibly complex

eigenvalues, lie between two locally stable steady states. A local socially-

optimal steady state (OSS) (x∗, a∗) is defined as a solution of the system

a = bx+ f(x), (7)

a =
ρ+ b− f ′(x)

2cx
. (8)

The solution corresponding to the OLNE of this game is obtained in

a straightforward way by applying Pontryagin’s maximum principle to the

individual optimal control problems (2). The MHDS under symmetry in the

state-control space (x, a) is

ẋ(t) = a(t)− bx(t) + f(x(t)), x(0) = x0, (9)

ȧ(t) = − [ρ+ b− f ′(x(t))] a(t) + 1

n
a2(t)2cx(t), (10)

while an open-loop Nash equilibrium steady state (OLNE-SS)
(
xOL, aOL

)
is
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defined as a solution of the system

a = bx+ f(x), (11)

a =
[ρ+ b− f ′(x)]n

2cx
. (12)

OLNE-SSs have the same properties as OSSs. There are an odd number

of steady states, the first and the last steady states are locally stable with

the saddle-point property, and the locally unstable steady states lie between

two locally stable steady states. This similarity between the SOM solution

and the OLNE can easily be verified by comparing (8) and (12), which show

that the OSS is a special case of the OLNE-SS for n = 1.

Comparing the MHDSs and the steady-state conditions for SOM and

OLNE, it is clear that the two solutions differ. Thus regulation is required if

the OLNE is inferior to the SOM solution and the aim is to approach the SOM

solution. As shown by Mäler et al. (2003), the steady-state concentration of

phosphorus is higher at the OLNE-SS relative to the OSS. This calls for a

regulatory scheme which would induce the agents to choose loadings so that

the SOM solution is attained. Mäler et al. (2003) show that in order to

obtain the loading that corresponds to SOM, the tax on loading should be

chosen such that τ(t) = −λ(t)+λOL(t). This implies that the tax bridges the
gap between the social shadow cost of the accumulated phosphorus λ(t) and

the private shadow cost of the accumulated phosphorus λOL(t) at the OLNE,

which causes the steady-state phosphorus levels in the OLNE to exceed the

(unique) steady-state phosphorus level under optimal management. The tax

rate, however, is time-dependent, since it has to equalize cooperative and

non-cooperative loading at every point in time. Mäler et al. (2003) studied

in detail a simpler tax scheme, consisting of a fixed tax rate on loading.

This fixed time-independent tax is called optimal steady-state tax (OSST),

and when set as τ ∗OL = (n− 1) /a∗, the regulated OLNE reaches an OLNE-
SS which is the same as the OSS, provided that the number of agents n is

suffi ciently low.3

3For the parameter constellation used by Mäler et al. (2003), if n > 7 then multiple
steady states occur under regulation. The attainment of the steady state which corre-
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The FBNE for the class of non-linear differential games, described by

(2), with symmetric and stationary feedback Nash equilibrium strategies

ai = h(x), i = 1, 2, ..., n, can be described using Pontryagin’s maximum prin-

ciple and a MHDS representation or by using dynamic programming and the

resulting Hamilton-Jacobi-Bellman equation in the value function V . The

current value Hamiltonian characterizing the FBNE is given by

Hi = U(ai)−D(x) + λFBi [ai + (n− 1)h (x)− bx+ f(x)], (13)(
ai, λ

FB
i

)
the same for all i. (14)

The MHDS in the state-control space (x, a) is

ẋ(t) = a(t)− bx(t) + f(x(t)), x(0) = x0, (15)

ȧ(t) = − [ρ+ b− f ′(x(t))− (n− 1)h′ (x(t))] a(t) + 1

n
a2(t)2cx(t), (16)

while a feedback Nash equilibrium steady state (FBNE-SS)
(
xFB, aFB

)
is

defined as the solution of the system

a = bx+ f(x), (17)

a =
[ρ+ b− f ′(x)− (n− 1)h′ (x)]n

2cx
. (18)

Comparing (16),(18) with (10),(12) suggests that the OLNE is a special

case of the FBNE for h′ (x) = 0. Comparison of the conditions characterizing

SOM with the corresponding FBNE conditions suggests that regulation is

required. The Hamiltonian formulation reveals the deviations between SOM

and FBNE and the need for regulation if the FBNE is ‘worse’than the SOM

solution. The Hamiltonian formulation is, however, not as useful for deter-

mining the optimal tax τ(t) = −λ(t)+λFB(t), as in the case of regulating the
OLNE. This is because it is diffi cult to determine λFB(t) due to the presence

of the unknown feedback Nash equilibrium strategies ai = h(x), which should

sponds to the OSS depends on initial conditions.

8



emerge as part of the solution of the problem. In order to overcome this dif-

ficulty we choose to use the dynamic programming approach for determining

the optimal tax.

3.1 Non-linear feedback strategies and the optimal steady-

state tax

The feedback Nash equilibrium strategies for the unregulated non-linear dif-

ferential game described by (2) have been recently obtained by Kossioris at

al. (2008), using the dynamic programming approach. It is shown in that

paper that for the non-linear differential game described by (2), the steady

state of the best feedback Nash equilibrium is not necessarily close to the

OSS. Moreover, the paper shows that even if these steady states are close,

the value of the corresponding feedback Nash equilibrium is generally much

worse than the value of optimal management. Thus regulation is required

to approach the SOM outcome in some well-defined way. In our case we

require that the regulation is implemented by a state-dependent tax on load-

ings which is designed in a way such that the regulated system attains in the

long run the desired optimal steady state of the SOM solution.

In order to study this type of regulation in the non-linear differential

game, we start with the HJB equation of each agent i for the problem without

regulation. The HJB equation for the unregulated problem is

ρV (x) = max
ai
{U(ai)−D(x) + V ′(x)[ai + (n− 1)h(x)− bx+ f(x)]}. (19)

Regulation is introduced in the form of a time-stationary tax rate per unit

loading ai which depends on the state of the system. The tax rate is defined

as τ (x). Under the state-dependent tax the HJB equation becomes

ρV (x) = max
ai
{U(ai)− τ (x) ai−D(x)+V ′(x)[ai+(n− 1)h(x)− bx+ f(x)]}.

(20)

The optimality condition is

U ′(ai)− τ (x) + V ′(x) = 0. (21)
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In equilibrium ai = h(x), so that

V ′(x) = −U ′(h(x)) + τ (x) , and (22)

V ′′(x) = −U ′′ (h)h′(x)) + τ ′ (x) . (23)

By differentiating (20) with respect to x, using the optimality conditions (22)

and (23) and rearranging terms, a non-linear ordinary differential equation

in h(x), which depends on τ (x) , is obtained:

[(nh(x)− bx+ f(x))U ′′(h(x))− (n− 1) τ (x) + (n− 1)U ′(h(x))]h′(x) =
(24)

(ρ+ b− f ′(x)) [U ′(h(x))− τ (x)] + [(n− 1)h (x)− bx+ f (x)] τ ′ (x)−D′(x).

Using the specifications U (a) = ln a, D (x) = cx2, f(x) = x2

x2+1
, which

have been used in the lake analyses (Mäler et al. 2003, Kossioris et al. 2008)

we obtain:

[−h(x)− (n− 1) τ (x)h2 (x) + bx− x2

x2 + 1
]h′(x) = (25)[(

ρ+ b− 2x

(x2 + 1)2

)
(1− τ (x)h (x))− 2cxh(x)

]
h(x) +[

(n− 1)h (x)− bx+ x2

x2 + 1

]
τ ′ (x)h2 (x) .

Equation (25) is a non-linear differential equation with two unknown func-

tions h (x) and τ (x) . If the tax function was known then (25) could be solved

for h (x) , although (25) does not have an analytic solution.4 Our approach is

to specify a functional form for the state-dependent tax and then to solve for

the unknown equilibrium strategy h (x) . The parameters of the tax function

are chosen such that the steady state of the SOM solution is attained as a

feedback Nash equilibrium steady state of the regulated system.

4It should be noted that the Abel differential equation of the second kind, without
an analytic solution, derived by Kossioris et al. (2008) for the unregulated problem, is a
special case of (25) for τ = 0.
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We consider polynomial tax functions of the general form

τ (x) = β0 + β1x+ β2x
2 + ...+ βpx

p , βj T 0, , j = 0, 1, ..., p. (26)

For example, if βj = 0, j ≥ 1, then τ (x) = β0 and we have the case of a

fixed tax rate. If β0 = 0, βj = 0, j ≥ 2, then τ (x) = β1x and we have the

case of a tax function with a tax rate that is proportional to the current

state. More complex tax structures can be defined in a straightforward way.

Let β =
(
β0, β1, ..., βp

)
be the vector of the parameters of the tax function.

Depending on the specific structure of the tax function some of the elements

of this vector will be zero. Since β is a parameter vector in (25), general

theorems on the solutions of differential equations suggest that the solution

of (25) will depend on this vector. Let h (x,β) be such a solution. For an

initial value x = x0, the values for the feedback Nash equilibria, for each

agent, are given by

Vf (x0, xf ,β) =

∫ ∞
0

e−ρt[lnh(x(t),β)− cx2(t)− τ (x (t))h(x(t),β)]dt, (27)

where xf is a steady state and h(x,β) is the solution of the differential

equation (25), with boundary condition

h(x,β) =
1

n
(bx− x2

x2 + 1
), (28)

and x(t) is the solution of the differential equation

ẋ(t) = nh(x(t),β)− bx(t) + x2(t)

x2(t) + 1
, x(0) = x0. (29)

It will be clear that in general not every steady state xf can be reached from

any initial state x0 for a given τ (x). It will also be clear that in general

not every steady state xf will be stable. If, however, a number of stable

steady states can be reached from some initial state x0 for a given tax τ (x),

it is assumed that the agents will be able to coordinate on the best regulated

feedback Nash equilibrium, in the sense of attaining the maximum value (27),
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if it exists. Thus the regulator sets the tax scheme and the agents, by taking

the scheme as given, coordinate on a non-linear feedback Nash equilibrium

profile h(x,β) which converges to a steady state xf and maximizes the value

(27). This means that in this case the value will be only a function of the

initial state and the tax parameters β:

Vf (x0,β) = max
xf

Vf (x0, xf ,β) (30)

where xf must be stable and reachable from x0, and where it is assumed that

the maximum exists.

Then an optimal steady-state tax function (OSSTF) can be defined as

follows.

Definition 1 (OSSTF) Let x0 be a given initial state and let x∗ be the opti-
mal steady state which corresponds to the SOM solution. The state-dependent

tax function τ ∗ (x) for which the corresponding best regulated feedback Nash

equilibrium h∗ (x,β∗) generates a path that converges starting from x0 to the

FBNE-SS xf , which is equal to x∗, will be the optimal steady-state tax func-

tion. In this sense the specific tax function τ ∗ (x) and the regulated feedback

strategies h∗ (x,β∗) reproduce the OSS of the SOM solution.

The numerical algorithm to determine the best regulated feedback Nash

equilibrium and the OSSTF for the lake problem consists of the following

steps:

Step 1. For each candidate xf and tax parameters β ∈ B = [0,βmax],

the non-linear ordinary differential equation (25) with boundary condition

(28) is solved, with the ode solver ode15s of Matlab, in the intervals [p, xf ]

and [xf , q], where p and q are chosen appropriately, and the h (x,β) profile

is determined.

Step 2. The numerical solution for h(x,β) is used to solve the transition

equation (29) in the interval [0, T ], where T is chosen appropriately.

Step 3. The value (27) is computed, using a Matlab quad function.

Step 4. The value is maximized over the set of admissible xf , according

to (30).
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Step5a. If the tax function corresponds to a fixed tax τ 0 (x) = β0 or to

a tax that is proportional to the current state τ 1 (x) = β1x (i.e. the state-

dependent tax is determined by a single parameter βj, j = 0 or 1), then we

proceed as follows. We construct the relationship xf = φ
(
βj
)
, j = 0 or 1,

that determines the FBNE-SS which can be reached from a given initial state

x0 with the best regulated feedback Nash equilibrium when the tax function

is τ 0 (x) = β0 or τ 1 (x) = β1x. Since we search for a tax function that will

steer the regulated system to the SOM steady state x∗, the parameter of the

OSSTF should satisfy x∗ = φ
(
β∗j
)
, j = 0 or 1. If x∗ is in the domain of φ,

the OSSTF will be τ ∗0 (x) = β∗0 or τ
∗
1 (x) = β∗1x.

Step5b. If the tax function corresponds to the quadratic function τ 2 (x) =

β1x + β2x
2 (i.e. the state-dependent tax is determined by the parameter

vector (β1, β2)), then we proceed as follows. Provided that the set of xf in

step 4 contains x∗, we construct the contour ψ (β1, β2) = x∗ which describes

combinations of the tax-function parameters (β1, β2) that attain the SOM

steady state x∗.We choose from this contour as the parameters of the OSSTF,

the pair (β∗1, β
∗
2) that maximizes the social welfare given by

W (β) =

∫ ∞
0

e−ρt
n∑
i=1

[lnh(x(t),β)− cx2(t)]dt. (31)

The OSSTF will be τ ∗2 (x) = β∗1x+ β∗2x
2.

It is straightforward, although computationally very demanding, to define

the algorithm for tax functions with more than three parameters. If a set of

values for the parameter vector leads to the desired steady state, the regulator

chooses the element of this set that maximizes social welfare.

3.2 Numerical results

In order to be able to compare our results with the earlier results of Mäler

et al. (2003) and Kossioris et al. (2008), the basic parameters are fixed at

the same values as in these studies: b = 0.6, ρ = 0.03, c = 1 and n = 2. For

these parameter values the saddle-point stable optimal steady state for SOM

is x∗ = 0.353, while the socially optimal steady-state phosphorous loading is
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a∗ = 0.101. Thus the open-loop OSST is τ ∗OL = (n− 1) /0.101 which means,
for example, that for n = 2 a regulated OLNE with τ ∗OL = 1/0.101 ' 9.9 will
converge in the long run, along the stable manifold, to the OSS x∗ = 0.353 as

shown in Mäler et al. (2003). In order to study the structure of the optimal

tax function, for the feedback Nash equilibrium, we set the initial state at

x0 = 0.6 which is well above the OSS x∗ = 0.353, so that the OSSTF indeed

has to steer the system towards the OSS. We examine three cases for the

OSSTF, the fixed tax τ 0 (x) = β0, the proportional tax τ 1 (x) = β1x, and

the quadratic tax τ 2 (x) = β1x+ β2x
2.

3.2.1 The fixed tax

In figure 1, the inverse of the xf = φ (β0) relationship described in step 5a of

the algorithm is presented.

[Figure 1]

The relationship has the expected negative slope indicating that the

higher the tax parameter, the lower the FBNE-SS. The cross in figure 1

indicates the OSSTF β0 = 5.9 which attains the desired socially optimal

steady state x∗ = 0.353. Figure 2 presents feedback profiles h (x, β0) for the

data of figure 1. The dashed line corresponds to the regulated profile with

fixed tax τ ∗ = 5.9, and the value for x∗ = 0.353 is indicated by the square.

The solid line corresponds to β0 = 0, which means that this profile corre-

sponds to the unregulated FBNE with steady state xf = 0.3825 (the value of

this profile at the steady state is indicated by the circle). Both the regulated

and the unregulated steady states are stable.

[Figure 2]

Figure 3 shows the time path of the phosphorous stock under the fixed

tax (dashed line) towards x∗ = 0.353, along with the path corresponding to

the unregulated equilibrium (solid line) converging to xf = 0.3825.

[Figure 3]

The regulated social welfare for each player under the fixed tax, as defined

by (31), is SW |β0=5.9 = −108.018644.
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3.2.2 The proportional tax

Following again step 5a of the algorithm, the proportional tax that attains

x∗ = 0.353 as a regulated steady state is β1 = 4.4. The xf = φ (β1) rela-

tionship, the regulated, and unregulated feedback profiles and state paths

are similar to the paths corresponding to the fixed tax (figures 1,2,3 above).

The comparison will follow below in section 3.2.4. The regulated steady

state is stable, while the regulated social welfare for each player under the

proportional tax, as defined by (31), is SW |β1=4.4 = 107.993973.

3.2.3 The quadratic tax

Following step 5b of the algorithm, figure 4 shows the steady-state contours

for different combinations of (β1, β2) . The contour of interest is the one

corresponding to x∗ = 0.353. From the different combinations of (β1, β2) on

this contour the combination (β∗1, β
∗
2) = (0.9, 6) is the one that maximizes

welfare with SW (β∗1, β
∗
2) = −107.893107. This combination can therefore be

considered as the optimal quadratic tax scheme that attains x∗ = 0.353 as

the regulated steady state. The quadratic tax is an improvement in terms of

social welfare relative to the fixed tax and the proportional tax.

[Figure 4]

The regulated feedback profile h (x, β1, β2) and the regulated time path

of the phosphorous stock are similar to those of the fixed tax while again the

regulated FBNE-SS is stable. The comparison will follow below in section

3.2.4.

3.2.4 Summary of numerical results

Our numerical results are summarized in table 1. Table 1 presents social

welfare per individual for the SOM solution, the unregulated feedback Nash

equilibrium and the regulated feedback Nash equilibrium for the fixed, the

proportional and the quadratic tax.

Table 1: Social Welfare
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Socially Optimal Management −107.227 , x∗ = 0.353
Unregulated −108.709334 , xf = 0.3825
Fixed tax −108.018644 , x∗ = 0.353
Proportional tax −107.993973 , x∗ = 0.353
Quadratic tax −107.891307 , x∗ = 0.353

Note that all the three tax schemes, by construction, induce the socially

optimal steady state but they differ in terms of social welfare. The reason

is that the proportional tax moves the trajectory towards the steady state

closer to the socially optimal one than the fixed tax, and the quadratic tax

moves it closer than the proportional tax. The differences are small but it

can be expected that higher-order tax schemes would move the trajectory

further and decrease the gap in social welfare between the SOM solution and

the regulated feedback Nash equilibrium.

Figure 5 puts together the h (x) profiles for the unregulated feedback

Nash equilibrium (solid line) and for the fixed, linear, and quadratic tax

cases (other lines, at the right from top to bottom, respectively).

[Figure 5]

The comparison shows that for states higher than the socially optimal

steady state x∗ = 0.353, loadings decrease as we move from the fixed tax to

the quadratic tax. As is to be expected, unregulated loadings are the highest.

Finally, figure 6 puts together the time paths of the phosphorus stock for the

cases of socially optimal management (lower solid line), unregulated feedback

Nash equilibrium (upper solid line) and regulated feedback Nash equilibria

with fixed, linear and quadratic taxes, respectively.

[Figure 6]

The upper path in figure 6 corresponds to the unregulated feedback equi-

librium and converges to the steady state xf = 0.3825. The next three paths

(close together) correspond, starting from the top, to the fixed, linear, and

quadratic tax cases. All these paths converge to the socially optimal steady

state x∗ = 0.353. The lower path is the one corresponding to socially optimal
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management. We observe that the optimal management path converges very

fast to the socially optimal steady state x∗ = 0.353: convergence is almost

complete for t > 25. The regulated paths also converge to the socially op-

timal steady state, but they converge in large time, that is convergence is

almost complete for t > 2000.5 Thus the regulated paths converge to the

socially optimal steady state much slower relative to the optimal path. The

deviation between the socially optimal path and the regulated paths can be

regarded as a measure of ineffi ciency of the specific regulatory scheme to at-

tain the social optimum. This ineffi ciency is reduced as we move from fixed

to quadratics taxes. It is to be expected that higher order tax schemes will

reduce this ineffi ciency further.

4 Concluding Remarks

This paper considers regulation of common-pool resources characterized by

complex dynamics. This requires solving for the feedback Nash equilibrium

of a non-linear differential game under an appropriate tax scheme. The

Hamilton-Jacobi-Bellman equation for this problem leads to a complicated

ordinary differential equation that has to be solved. A numerical algorithm

is developed for a fixed tax, a proportional tax and a quadratic tax, and the

algorithm is applied to the model of the lake as a metaphor for this type

of models. It is shown that these tax schemes induce convergence to the

socially optimal steady state and that higher-order tax schemes lower the

gap in social welfare between the regulated feedback Nash equilibrium and

the socially optimal outcome. Further study of this problem could address

more complicated tax schemes as well as the impact on the solution from

increasing the number of agents n.
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Figure 1: The inverse of the xf = φ (β0) relationship

Figure 2: Feedback profiles, fixed tax
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Figure 3: Phosphorous stock, fixed tax

Figure 4: Steady-state contours (β1, β2)
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Figure 5: Feedback profiles

Figure 6: Phosphorous stock time paths
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