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1 Introduction

Casual empiricism suggests that expenditures on capital maintenance constitute an inte-

gral part of the capital accumulation process. Broadly, outlays on capital maintenance

cover the “deliberate utilization of all resources that preserve the operative state of capital

goods” (Bitros, 1976) and as pointed out by Feldstein and Foot back in 1971, according

to a survey on planned investment in the US for the period 1949-68, roughly one half of

‘gross’ investment concerned funds aiming at maintaining the operative state of capital

goods (‘replacement and modernization’) as opposed to ‘new’ investment (‘expansion’).

Capital maintenance is, thus, directly related to capital depreciation and, in this vein, a

series of papers have investigated the firm’s problem between the optimal maintenance

level and the maintenance-dependent capital depreciation rate.1

In turn, McGrattan and Schmitz (1999) were the first to provide a detailed picture

on the size of aggregate capital maintenance using evidence from the Canadian survey on

Capital and Repair Expenditures, which is globally the only source of aggregate long-run

data on capital expenditures in newly purchased assets (‘new’ investment) and main-

tenance. According to this survey, total (private and public) maintenance and repair

expenditures in Canada amounted on average to around 6.3% of GDP for the period

1956-93. This number was roughly equal to one third of spending on ‘new’ investments

and, when compared to other so called ‘engines of growth’, was somewhat lower than

education spending (6.8% of GDP), but far above the average spending on R&D (1.4%

of GDP) over the same period, suggesting that maintenance expenditures are ‘too big to

ignore’.

This paper develops and estimates a Dynamic Stochastic General Equilibrium (DSGE)

model, in which capital maintenance affects endogenously the depreciation rate of capital

along with capital utilization. Our model is found to perform well in replicating key

stylized facts and allows us to assess, for the first time, the time profile of endogenous

1See, among others, Schmalensee (1974), Nickell (1978), Schworm (1979) and Parks (1979) for early
contributions in this literature. Also, some empirical studies at the sectoral level have confirmed that
capital deterioration is affected by maintenance expenditures; see Nelson and Caputo (1997) and the
references cited therein for a brief survey of the empirical findings.
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capital depreciation based on a general equilibrium framework. Several studies have

attempted to estimate the depreciation rate, mainly in US manufacturing, using various

econometric approaches within single or multi-equation empirical setups (see Epstein

and Denny, 1980; Hulten and Wykoff, 1981a, 1981b; Nadiri and Prucha, 1996a, 1996b;

Jorgenson, 1996; Huang and Diewert, 2011). The general claim in the literature is that

the depreciation rate has been fairly stable and that a constant depreciation rate may

be a valid approximation for empirical work. In contrast to this evidence, our results

indicate that the implied depreciation rate for equipment capital in Canadian and US

manufacturing has exhibited substantial volatility over the last 50 years with a highly

procyclical pattern.

The new element that drives the time profile of capital depreciation is the behavior of

capital maintenance. In contrast to investment spending, which is typically captured by

fixed non-residential private investment on property, plant and equipment, obtained from

national accounts, or the Penn World Tables, or capital outlays from panel data for two-

digit or plant-level manufacturing firms (often obtained from the US Compustat Industrial

database), capital maintenance is mainly performed by employees. Hence there are no

recorded market transactions, whereas maintenance and repair services purchased by firms

in the market are typically treated as transactions involving intermediate goods. Thus,

although maintenance activities are included in measured real output, their magnitude

cannot be recovered by standard sources, like national accounting systems. Given these

considerations, in this paper we use the ‘Capital and Repair Expenditures’ survey to

obtain series on maintenance and ‘new’ investment of equipment capital in the Canadian

manufacturing sector, which covers a period of 50 years (1956-2005). During this period

total expenditures in ‘new’ investment and maintenance amounted on average to 16.7%

of manufacturing output with an average share of maintenance over total investment

of 36.1%, accounting for 6% of output and 4.9% of the capital stock. Turning to the

cyclical properties of the data, we observe that maintenance expenditures are procyclical,

in accordance with the evidence reported by McGrattan and Schmitz (1999). Figures

(1a) and (1b) plot spending on capital maintenance and the associated maintenance to
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capital ratio (henceforth, MK ratio) versus manufacturing output. Both measures of

maintenance are strongly procyclical.2

In light of this evidence we introduce within an otherwise standard Real Business

Cycle (RBC) setup the assumption that capital outlays comprise, apart from ‘new’ in-

vestment that adds directly to the capital stock, maintenance expenditures that affect

the capital decay rate. We then employ a general specification for the depreciation func-

tion that also embeds the effect of capital utilization on depreciation, as in Burnside and

Eichenbaum (1996), and we use Bayesian techniques to estimate the structural parame-

ters of the model with aggregate data from Canadian manufacturing covering the period

1956-2005. The model is able to generate estimates for capital maintenance expenditures

that mimic reasonably well the cyclical behavior of actual survey-based series for Canada.

Given the success of the model for Canada we also obtain consistent estimates for capital

maintenance in the US over the period 1958-2009, a period for which there has been no

systematic data collection on this type of outlays.3 We then use these estimates to ob-

tain the time profile of the depreciation rate of equipment capital in Canadian and US

manufacturing over the business cycle.

We close the introductory section by noting that so far very few DSGE macroeco-

nomic models have attempted to endogenize maintenance outlays. Early contributions

in this literature can be found in Licandro and Puch (2000) and Collard and Kollintzas

2Descriptive statistics point towards a contemporaneous correlation between maintenance and MK

ratio with output of 0.63 and 0.60, respectively. This correlation seems to be higher in the first part of
the sample: for the period 1956-1983 the corresponding correlation coefficients amount to 0.85 and 0.86.
The cross-correlations, which are available upon request, remain high for lags (-1) to (-3) of output for
both maintenance and MK ratio. A full description of the data sources used in the paper is presented
in the Data Appendix. All series are in logs and have been detrended with the HP filter (λ = 100 for
annual data).

3We note that the US Census Bureau has added in the Annual Survey of Manufacturers entries on
Repair and Maintenance services of buildings and/or machinery for the years 2007, 2008, and 2009. The
definition includes payments on purchased services for all maintenance and repair work on buildings and
equipment. Payments made to other establishments of the same company and for repair and maintenance
of any leased property also are included. Excluded are extensive repairs or reconstruction that was
capitalized, which is considered capital expenditures, costs incurred directly by the establishment in using
its own work force to perform repairs and maintenance work, and repairs and maintenance provided by the
building or machinery owner as part of the rental contract. ‘New’ investments and maintenance account
on average for 8.7% of total (equipment and structures) US manufacturing output, with maintenance
amounting to 20.9% of total investment.
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(2000). However, in both studies maintenance moves countercyclically, which contradicts

the stylized facts depicted in McGrattan and Schmitz (1999). In turn, some papers have

investigated how investment and maintenance respond to technology shocks, a feature

that is crucial for the complementarity/substitutability between these two types of capi-

tal outlays (Boucekkine and Ruiz-Tamarit, 2003; Saglam and Veliov, 2008; Boucekkine et

al., 2009). Boucekkine et al. (2010) examine the short-run responses of investment and

maintenance and find that they move in the same direction following technology shocks,

thus, suggesting that they act complementary to each other. We provide some insights in

this literature by showing that maintenance and output tend to move in the same direc-

tion in response to Total Factor Productivity (TFP) shocks, but in opposite directions in

responses to investment-specific shocks.

The rest of the paper is organized as follows. Section 2 presents the model. Section

3 discusses the results from the Bayesian estimation and presents the model dynamics.

Section 4 presents the estimates for the time profile of capital depreciation in Canada and

the US. Finally, section 5 concludes.

2 The model

In the model economy households maximize a utility function with two arguments (goods

and labor effort) over an infinite life horizon. Households rent effective capital services to

firms and allocate their spending on capital between ‘new’ investment, which adds directly

on the capital stock, and capital maintenance, which affects along with capital utilization

the depreciation rate. In this section we present the main features of the model and its

solution.

2.1 Households

The economy is inhabited by infinitely lived agents that derive utility from consumption,

Ct, and disutility from hours worked, ht, at each period t. The present-value utility of
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the household is given by:

E
∞

∑

t=0

βtηu
t

[

C1−σ
t

1 − σ
− λnη

h
t

h1+θn

t

1 + θn

]

(1)

where σ > 0 is the risk aversion coefficient, θn > 0 determines the supply elasticity of

hours, and λn > 0 is a preference parameter. Parameter β is a subjective discount factor

with 0 < β < 1 and E is the expectation operator. ηu
t and ηh

t represent a preference shock

and a labor supply shock, respectively; both shocks are assumed to follow an AR(1)

process with i.i.d. normal error term: log(ηu
t /η

u) = ρu log(ηu
t−1/η

u)+ ǫut and log(ηh
t /η

h) =

ρh log(ηh
t−1/η

h)+ ǫht . The literature has indicated both labor supply and preference shocks

as key determinants for business cycle fluctuations and for that reason we include them

as possible sources of fluctuations in our analysis.

The representative household owns the capital stock and receives income from renting

the effective capital stock (capital services), UtKt, where Ut is the utilization rate of the

capital stock Kt, to the firm at a rate rt and from working at a wage rate wt. The

household allocates her income stream between consumption Ct, ‘new’ investment It, and

capital maintenance Mt:

Ct + It +Mt ≤ wtht + rtUtKt (2)

The rate at which capital depreciates depends positively on its utilization and nega-

tively on maintenance expenditures. ‘New’ investment, It is related to the capital stock

accumulation by:

ZtIt = Kt+1 −

(

1 − δ

(

Ut,
Mt

Kt

))

Kt + v

(

Kt+1

Kt

)

Kt (3)

where δ (.) is the depreciation function and v(.) is a function of gross investment regulating

capital adjustment costs. The variable Zt represents an investment-specific technology

shock that affects the capital law of motion and can be embodied either in the investment

good (like technology advances) or in the process for producing it, thus affecting the real

price of investment. Greenwood et al. (1997, 2000) have shown that technology shocks

5



involving investment-specific rather than neutral technological change can be a major

source of the business cycle. Fisher (2006) shows that the combined impact of neutral

and investment-specific shocks is important in explaining fluctuations of output and labor

in the US with investment-specific shocks mattering more than TFP shocks. As a result,

including investment-specific shocks in the analysis is crucial for studying the dynamics

of maintenance. We model the investment-specific shock as an AR(1) process with i.i.d.

normal error term: log(Zt/Z) = ρz log(Zt−1/Z) + ǫzt .

Following the standard approach, we adopt a quadratic specification for the capital

adjustment costs function:

v

(

Kt+1

Kt

)

=
b

2

(

Kt+1

Kt

− 1

)2

(4)

where b > 0 is a parameter measuring the degree of capital adjustment costs4.

As in McGrattan and Schmitz (1999), we assume that depreciation is a decreasing

function of maintenance expenditure, so that as maintenance services per unit of the

capital stock increase, the rate at which capital depreciates decreases. Following Green-

wood et al. (1988) and Burnside and Eichenbaum (1996) we also allow depreciation to be

an increasing function of capital utilization. Given these assumptions, the depreciation

function is parameterized as:

δ

(

Ut,
Mt

Kt

)

= ξ
[

ψUφ
t + (1 − ψ) e

−γ
Mt

Kt

]θ

(5)

The parameters φ and γ assess the effect of utilization and maintenance on the rate

of depreciation of capital, respectively. In particular, φ > 0, so that ∂δ
∂U

> 0. In the

next section, we estimate the value of γ with Bayesian techniques. If γ > 0, we have

that ∂δ
∂M

< 0, and ∂2δ
∂M2 > 0. When φ = 0, capital utilization does not affect the rate at

which capital depreciates, while with γ = 0 maintenance expenditures are ineffective in

reducing the capital depreciation rate. Moreover, when the capital stock is not utilized

and maintenance expenditures are very high, there is no depreciation, i.e. δ(0,∞) = 0.

4Note that our results hold when adjustment costs are assumed to depend on investments.
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Notice that the specification adopted in (5) nests the one in McGrattan and Schmitz

(1999) for ψ = 0 and the one in Burnside and Eichenbaum (1996) for ψ = 1. When

the benchmark model without endogenous maintenance is considered, the depreciation

function takes the form δ(Ut) = δUφ
t , in line with Greenwood et al. (1988) and Burnside

and Eichenbaum (1996).

Given the trade-off between the production benefits and the depreciation costs of

capital utilization, the agent will in general not find it optimal to fully utilize the capital

stock. Under our assumptions there is also a trade-off in allocating resources between ‘new’

investment It and capital maintenance Mt, which will be determined by their respective

returns and the effects of the various shocks in the model.5

2.2 Production side and market clearing

Firms use capital services and labor hours to produce a final good, Yt, that can be used

for consumption, investment and maintenance activities. The representative firm then

chooses its factor inputs, hours worked, ht, and capital services, UtKt, to produce a given

level of Yt in order to minimize the production costs:

wtht + rtUtKt (6)

subject to the technological constraint:

Yt = (UtKt)
1−α(Xtht)

α (7)

where the variable Xt represents a neutral labor-augmenting technology (TFP) shock,

with an AR(1) process with i.i.d. normal error term: log(Xt/X) = ρx log(Xt−1/X) + ǫxt .

5As described in Boucekkine and Ruiz-Tamarit (2003) and Boucekkine et al. (2010), the sign of the

cross derivative ∂
2
δ

∂M∂U
is crucial to determine the degree of complementarity or substitutability between

investment series and maintenance. The sign of this derivative is determined by the size of parameter θ:
when θ > 1 (θ < 1) the cross derivative is negative (positive). In the steady state the value of θ depends
on the estimated values of parameters γ, φ and α. When we move to posting our priors we opt for values
that allow θ to be bigger or smaller than one and let the data decide on its magnitude.
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In equilibrium the goods market clears and we have:

Yt = Ct + It +Mt +Gt (8)

where Gt is a public spending shock, whose logarithm follows an AR(1) process with i.i.d.

normal error term: log(Gt/G) = ρg log(Gt−1/G) + ǫgt .

2.3 Model solution

The representative agent chooses a sequence of Ct, ht, Ut, It, and Mt, to maximize (1)

subject to (2) and (3). The first-order conditions of the model are given by the following

equations::

ηh
t λnh

θn

t = αC−σ
t

Yt

ht

(9)

(1 − α)
Yt

Ut

= ξθφψ
[

ψUφ
t + (1 − ψ) e

−γ
Mt

Kt

]θ−1 Kt

Zt

Uφ−1

t (10)

ξθγ(1 − ψ)
[

ψUφ
t + (1 − ψ) e

−γ
Mt

Kt

]θ−1

e
−γ

Mt

Kt = Zt (11)

βEt















ηu
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−σ
t+1









rt+1Ut+1 −
Mt+1

Kt+1

+
1 − δ

(

Ut+1,
Mt+1

Kt+1

)

Zt+1

+

b
2

(

(

Kt+2

Kt+1

)2

− 1

)

Zt+1























= ηu
t

C−σ
t

Zt

[

1 + b

(

Kt+1

Kt

− 1

)]

(12)

Equation (9) gives the first-order condition for hours worked and equation (10) sets

the marginal return of a rise in the capital utilization rate equal to its opportunity cost

measured by the increased capital depreciation rate. Equation (11) is the optimality
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condition with respect to maintenance and sets the marginal benefit of maintenance arising

through the depreciation rate equal to its cost. Finally, equation (12) modifies the usual

optimality condition that equates the marginal productivity with the user cost of capital,

as a marginal increase in the capital stock implies a rise in its required maintenance cost.

Firms set the marginal products of effective capital and hours worked equal to the return

of capital and the wage rate, respectively.

In order to investigate the dynamics of the model, we log-linearize the equilibrium

conditions around the steady state. The detailed steady-state conditions and the log-

linear equations are presented in the Appendix.

3 Estimation and dynamics

3.1 Bayesian estimation

3.1.1 Data and priors

The log-linearized model is estimated with Bayesian techniques. We estimate the mode of

the posterior distribution by maximizing the log posterior function, which combines the

prior information on the parameters with the likelihood of the data, using the numerical

method by Sims (1999).6 The Metropolis-Hastings algorithm is then used to get the

complete posterior distribution with a sample of 250000 draws (dropping the first 20%

draws) and a scale for the jumping distribution of 0.4 (0.5 for the US).

The set of observable variables for Canada comprises five annual series over the period

1956-2005, namely output, utilization, total investment, consumption, and hours worked.

Maintenance expenditures are not included in the set of observable variables, but are,

instead, estimated in order to evaluate the model’s performance. Due to data availability

and in order to maintain consistency among the variables used, all series refer to the

manufacturing sector. Output, total investment and consumption are deflated with the

Industrial Selling Price index and divided by total working population. Hours are adjusted

6See Smets and Wouters (2007).
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for total working population. The discount factor is fixed at 0.98, in line with a steady-

state real interest rate of 2%. The steady-state depreciation rate, which corresponds to

the steady-state ‘new’ investment to capital ratio, is set to 0.0882 and the steady-state

MK ratio is set at 0.0494. Both figures equal the corresponding averages of the series

from the Canadian Survey on Capital and Repair Expenditures.7 The ratio of public

spending on GDP is fixed at 17%. In turn, we use steady-state relationships to determine

the values of parameters θ, ξ and ψ, and estimate the values for φ and γ (see Appendix

A.1 for details). Table 1 displays the fixed parameters and their steady-state values.

The same approach is used to estimate the model for the US. Data on US manufac-

turing output, employment, hours worked, capital expenditures, and capital are obtained

from the NBER-CES Manufacturing Industry Database, provided by Becker and Gray

(2009), which covers the period 1958-2005. The series are extended to 2009 using the

corresponding entries reported in the U.S. Census Annual Survey of Manufacturers. A

series on capital utilization in U.S. manufacturing is compiled using data from the Board

of Governors of the Federal Reserve System. The steady-state depreciation rate, which

equals to steady-state investment to capital ratio, is derived as the average of the series

for manufacturing machinery and equipment over the sample and is set to 0.117.8 The

steady-state MK ratio is obtained by multiplying this value by the average maintenance to

investment ratio for the available US data for total manufacturing, thus obtaining 0.0309

for the machinery and equipment sector. The rest of the parameters are determined as

in the exercise with Canadian data.

All other deep parameters and the processes governing the five structural shocks are

estimated with Bayesian techniques. We assume the same priors for estimating the model

7The figure for the steady-state depreciation rate is in line with the estimate reported by Hwang
(2002/3) on the average depreciation rate for machinery-equipment in Canadian manufacturing (8.2%).

8This figure is in line with estimates of capital depreciation rates in US manufacturing. Epstein and
Denny (1980) account for endogenous utilization and find an average depreciation rate of 12.6% over the
period 1947-1971. Hulten and Wykoff (1981) report a depreciation rate of 13.3% for equipment. Nadiri
and Prucha (1996a) report an average depreciation rate of 5.9% in US manufacturing over the period
1960-1988. Jorgenson (1996) reports an average depreciation rate of 15% for durable equipment in US
manufacturing, whereas similar figures are reported by Fraumeni (1997). Kollintzas and Choi (1985) and
Bischoff and Kokkelenberg (1987) report values of 12.5% of 10.6% respectively.
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for both US and Canadian data. We set most of the priors following existing calibration

exercises and describe positive parameters with normal or Gamma distributions. In par-

ticular, the intertemporal elasticity of substitution, σ, is usually calibrated in the [0.5,6],

with lower values typically estimated form microeconometric data, we allow σ to vary in

the (0,6) interval. The inverse of the Frisch elasticity of labor supply, θn, is estimated to

be low in microeconomic studies and RBC models use much higher values for this elas-

ticity, we let θn vary in the (0,10) interval. The calibrated values of the adjustment cost

parameter, b, vary from values around 3 (Woodford, 2003) to 19 (Casares and McCallum,

2006); we assume here a prior in the (0,10) interval for this parameter. The interval for

the share of labor, α, in the production function is centered about the standard calibrated

value for this parameter and is represented by a normal distribution. The parameter of

the depreciation function γ and parameter φ, which determines the elasticity of depreci-

ation to changes in capital utilization, are described by Gamma distributions. Given the

absence of calibrated values for parameter γ we assume a relatively diffused prior, whereas

existing empirical estimates include low values for parameter φ. Basu and Kimball (1997)

estimate a log-linear production function incorporating variations in both capital utiliza-

tion and effort for a panel of US firms from 21 manufacturing industries for the period

1949–1985 and estimate φ to be approximately unity. They stress, however, that the data

are not very informative about this parameter. The 95% confidence interval of [-0.2, 2]

indicates that the data cannot reject even infinitesimally small values of φ, although the

negative values should be eliminated on purely economic grounds. Burnside and Eichen-

baum (1996) calibrate φ = 1.56, while Neiss and Pappa (2005) calibrate a slightly higher

value for this parameter. We set the mean of φ = 0.9 with a standard deviation of 0.2.

The persistence parameters of the AR(1) processes are Beta distributed and the standard

errors of the innovations are assumed to follow an Inverse-gamma distribution. Prior

shapes, prior means and standard deviations are collected in Table 2.
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3.1.2 Posterior estimates

The left panel of Table 3 shows the estimation results of the model for Canada. The first

column displays results for the standard RBC model and the second panel displays results

for the maintenance model, reporting the posterior mean and 90% credible intervals for

each estimated parameter. The data appear to be very informative.9 Regarding the

shocks considered, all exhibit low persistence with the labor supply shock displaying the

highest persistence and the preference and government spending shocks being the least

persistent. Standard deviations of the shocks are estimated to be low. As for the structural

parameters of the model, the mean of the posterior distribution is typically not far from

the mean of the priors. For example, the posterior mean of the intertemporal elasticity

of substitution equals 3.20. Moreover, all the posterior estimates assume economically

plausible values. The posterior mean for θn equals 2.05, which implies a Frisch elasticity

of 0.49. This number is in the interval (0.01,0.85) of the values estimated in microeconomic

studies for Canada.10 The posterior value for the labor share is somewhat higher than

the initial value but remains within reasonable bounds.

Turning to the parameters of the depreciation function, the posterior value of param-

eter φ is slightly higher than the prior value and the posterior estimate for parameter γ

is positive and above its postulated prior, confirming that as maintenance expenditures

increase the depreciation rate decreases. For these values of γ, φ, and α, the implied

value for parameter θ equals 2.25, whereas the implied values for ψ and ξ are, respec-

tively, 0.52 and 0.19. These estimates imply that when capital is fully utilized and there

are no expenditures in maintenance, the capital stock depreciates at the rate ξ = 19%.

When capital is not utilized and there are no maintenance expenditures, the depreciation

rate equals ξ(1 − ψ)θ = 3.7%, which forms the estimated “natural” rate of depreciation.

When the capital stock is fully utilized and maintenance expenditures are very high the

9Overall, the posterior distributions are normally shaped. We assess the reliability of our estimates
through Monte Carlo Markov Chains univariate and multivariate diagnostics (Brooks and Gelman, 1998).
This analysis proves that the results are sensible, as the moments of the parameters appear to be constant
and converging.

10See Evers et al. (2008) for a summary of such estimates.
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depreciation rate of the capital stock equals ξψθ = 4.4%.

The right panel of Table 3 presents the corresponding estimates for the US, which

differ somehow from their Canadian counterparts. First, the variances of the shocks, with

the exception of the TFP shock, assume much lower values in the US posteriors, whereas

the estimated persistence of the shocks is also different. The preference shock is estimated

to be more persistent in the US relative to Canada and the other shocks less persistent.

The estimated values of σ and θn in the US are substantially lower than their estimated

values for Canada. This implies that both risk aversion and the labor supply elasticity

need to take a higher value in order for the model to match the US data. The estimates

of risk aversion for the US are within reasonable ranges, although the estimates for the

Frisch elasticity imply a labor supply elasticity of 2.9. Given the US estimates for γ

and φ, the implied values for the parameters of the depreciation function are: θ = 2.73,

ψ = 0.58 and ξ = 0.16. Such values imply that the “natural” depreciation rate of US

manufacturing capital equals ξ(1 − ψ)θ = 1.5%, which is lower than the corresponding

Canadian rate.

The estimates of the maintenance model can be compared with estimates of a standard

RBC model without capital maintenance keeping the same set of observables, calibrated

parameters and priors for the two models. The only exception is parameter φ in the

depreciation function, which is inherently different in the two models. When we contrast

the log data densities in the two models for Canada and the US, the differences do not

appear to be substantial. The model with endogenous maintenance for Canada attains

a log data density of 462.7, whereas the value for the standard model is 462.5. The

corresponding figures for the US are 477.0 and 473.8. However, differences in the posterior

estimates for some parameters turn out to be substantial since endogenous maintenance

expenditures provide an additional mechanism for dampening investments.

In particular, the elasticity of depreciation to changes in utilization, φ, needs to be

much higher in the standard RBC model in order to match the data. There is little

knowledge about how utilization affects the depreciation of capital. As it was mentioned

earlier estimates of phi are not very informative and vary in the [0.7,3.2] interval (see, e.g.,
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Basu and Kimball, 1997). Table 3 indicates that the calibration of φ is biased upwards

when one does not consider the positive effects of maintenance in the depreciation of the

capital stock. The absence of endogenous maintenance doubles the estimates of φ in the

standard model. Notice that the presence of endogenous maintenance affects also the

estimation of the relative risk aversion, σ. When risk aversion is lower, the willingness to

intertemporally substitute is higher and consumption smoothing is less important. Given

the absence of endogenous maintenance in the standard RBC model there is no mechanism

apart from capital adjustment costs to smooth investment in equilibrium. For that reason,

the estimates of relative risk aversion are lower in this case. In the standard RBC model

estimated for Canada the lack of an investment smoothing mechanism is also reflected

in the higher estimates for capital adjustment costs, parameter b = 9.02 in comparison

with b = 8.67 in the model with endogenous maintenance. However, in the estimation

of the two models using US data capital adjustment costs are estimated to be lower

in the standard model relative to the endogenous maintenance model contradicting our

intuition for the smoothing role of endogenous maintenance on investment dynamics. Yet,

one has to recall that the estimated labor supply elasticity for the US data is six times

larger than that of its Canadian counterpart. A higher labor supply elasticity implies

that the economy can adjust to shocks using much more the labor margin and less so

the utilization margin that comes at a cost of higher depreciation. As a result, the high

labor supply elasticity dampens utilization movements and induces smaller movements

in maintenance for correcting the detrimental effects of variable capital utilization in the

depreciation rate. As a result, investment dynamics are dampened through less movement

in utilization and there is no need of increasing capital adjustment costs for dampening

the investment responses.

Hence, we can conclude that although models do not differ substantially in their overall

fit, the presence of endogenous maintenance apart from generating more realistic values

for the elasticity of marginal depreciation with respect to the utilization rate, can also

achieve smaller variations in investment for realistic values of the labor supply elasticity

and a lower degree of capital adjustment costs.
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3.2 Model dynamics

To gain some intuition on the workings of the model we present the dynamics of our model

economy by comparing its impulse response functions (IRFs) with those generated by a

standard RBC model with variable utilization calibrated with the obtained parameter

estimates. In general, responses are similar and the presence of endogenous maintenance

induces a relatively higher volatility of utilization and the depreciation rate since it can

undo the detrimental effects of increased utilization in the depreciation function.

The first row of Figure 2 plots the estimated IRFs of the variables of interest to a one-

standard-deviation shock to TFP. The productivity shock raises the marginal product

of the production factors and, as a result, capital utilization, investment and capital

increase in response to the shock generating a surge in output and consumption. Given

the increase in utilization, the depreciation rate increases. Maintenance also increases to

balance the detrimental effects of the surge in capital utilization on depreciation. Overall,

the higher volatility of utilization in the maintenance model implies a higher volatility of

depreciation, which is not counterbalanced by the rise in maintenance and translates also

in higher volatility of capital.

The investment-specific shock affects the production of investment goods. The second

row of Figure 2 presents IRFs of the two models in response to shocks in the price of

investment. The fall in the price of investment does surge investment in the impact

period, increasing capital and, due to complementarities in production, hours and capital

utilization. In the model with maintenance, the fall in the price of investment increases

also the relative price of maintenance. Agents find it optimal to decrease maintenance

expenditures on impact, which further increases the depreciation rate. Notice that the

response of maintenance to investment-specific shocks is crucial to identify this type of

shocks in the short run. After an investment-specific shock maintenance expenditures are

reduced on impact while output increases, while for the rest of the disturbances considered

the two variables always comove.11

The third row of Figure 2 plots the IRFs to a negative labor supply shock. The shock

11This implication is general and does not depend on the exact parametrization of the model.
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reduces hours on impact and, due to factor complementarity in the production function,

it also reduces capital utilization and investment. The fall in capital utilization reduces

maintenance expenditures and the induced movements in utilization and maintenance

reduce the depreciation rate in equilibrium.

The next row of Figure 2 shows that a positive preference shock crowds out investment

and, as a result, reduces hours, capital, and capital utilization. Consequently output also

falls in equilibrium. The fall in utilization decreases capital depreciation and the need

for capital maintenance and maintenance falls also in equilibrium. In comparison to the

standard RBC model, we notice again that the presence of maintenance indusces more

sizeable utilization and depreciation responses.

Finally, the last row of Figure 2 presents the IRFs to a government spending shock.

The increase in government spending crowds out investment, but, due to the induced

negative wealth effect, it increases labor supply and capital utilization in equilibrium. The

rise in capital utilization raises the depreciation of capital and maintenance expenditures

increase as well.12

4 The time profile of capital depreciation

Given the importance of capital depreciation in empirical exercises and applications, in

this section we apply our approach to analyze the inferred time profile of variable cap-

ital depreciation in Canadian and US manufacturing by endogenizing maintenance ex-

penditures. Although several studies have attempted to estimate the depreciation rate

(especially in US manufacturing) using various econometric approaches within single or

multi-equation setups (see Epstein and Denny, 1980; Hulten and Wykoff, 1981a, 1981b;

Nadiri and Prucha, 1996a, 1996b; Jorgenson, 1996; Huang and Diewert, 2011), there is

no study that has provided estimates for depreciation series that are generated within a

general equilibrium framework. An exception that uses time-varying depreciation within

a general equilibrium setup is the study by Chen et al. (2006) who calibrate the Japanese

12A similar picture (available upon request) emerges from the impulse responses obtained for the US
model.
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economy in order to investigate the driving forces of the saving rate. The time profile of

their reported (exogenous) depreciation rates indicates that they were exceptionally high

in the 50s and 60s, but declined substantially over the following decades. Also, Liu at al.

(2011) and Furlanetto and Seneca (2013) show that a reduced form depreciation shock is

extremely important in fitting the business cycle.13

4.1 Canada

To perform the exercise, as a first step we assess the fit of our model by comparing model

estimates for capital maintenance and the actual series from the Canadian Survey. Since

we did not include actual series for maintenance in the estimation of our model this ex-

ercise should serve as an additional test of our specification. The Bayesian estimation

uses the Kalman filter to obtain a state-space representation of the dynamic system and,

through a recursive procedure, to derive the log-likelihood, conditional on the set of ob-

servables. The same recursive algorithm enables to sequentially update a linear projection

for the system and as a by-product to generate smoothed estimates for the endogenous

variables. Figure 3 displays the estimated trend deviations of the series for maintenance

to capital ratio versus the actual trend deviations of the series from the Canadian Survey

on Capital and Repair Expenditures. The model fits fairly well the pattern for the MK

ratio for most of the period covered with most of the peaks captured well by the estimated

series, which are less volatile in general. The contemporaneous correlation between the

actual and the estimated series amounts to 0.50. In line with their data counterpart, the

estimated series are highly procyclical with the contemporaneous correlation of actual

output and estimated maintenance equal to 0.66. Moreover, the cross-correlations remain

high for lags (-1) to (-3) and for lead (+1) of output, similarly to the actual series.14 To

further assess the fit of our model we also calculate the ratio of maintenance to ‘new’

investment series for Canada, which are two key variables in our setup. The estimated

13Liu et al. (2011) view the depreciation shock as a shock to the quality of capital, in our framework
the shock to depreciation could be a shock originating from changes in the effectiveness of maintenance
to restore the value of the existing capital shock.

14Detailed cross-correlograms are available upon request.
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series are depicted in Figure 4. Again, our estimates track well the actual series: the

correlation between actual and simulated series is 0.72.15

Using our theoretical framework we provide an estimate of the time profile of the

depreciation rate of equipment capital in the Canadian manufacturing sector over the

period 1956-2005 (centered at 8.82%), which is depicted in Figure 5 along with actual

output trend deviations. Table 4 contains the detailed figures for the depreciation rates

of machinery-equipment capital in Canadian manufacturing. The depreciation rate of

equipment capital is found to have a standard deviation of 1.2% and ranges between 5.4%

and 11.3% over the period with a strongly procyclical profile: the correlation coefficient

with output trend deviations amounts to 0.56. The correlation is higher (0.71) in the

1956-83 period of the sample, when output and MK ratio exhibit a high correlation,

and drops substantially (0.36) in the 1984-2005 period. This picture indicates that the

long-run depreciation rate of equipment capital in Canadian manufacturing has exhibited

substantial swings reflecting periods of fast and slow growth in the manufacturing sector

and the associated pattern of capital maintenance.16

4.2 US

Given the success of the model in replicating the main features of the actual series of

capital maintenance in Canadian manufacturing, we use our approach to estimate series

for capital maintenance in the US manufacturing sector, where there has been no system-

atic collection of data on capital maintenance until 2007. Our estimates thus provide an

assessment of the behavior of capital maintenance in the US over the last 50 years using

the average value of years 2007-9 as a proxy of the steady-state maintenance to ‘new’

15An implication derived from Figures 3 and 4 is that the endogenously determined capital stock in our
model is too volatile and does not replicate the second moment of the official capital stock series. This is
due to the fact that endogenous maintenance dampens the responses of investment and does not operate
directly through the accumulation of capital. Instead, our model performs much better in estimating the
second moment of investment series.

16We note that a straightforward extension would be to generate alternative capital stock series that
can be contrasted with official capital stock estimates. However, the comparison would be internally
inconsistent as the official capital stock series are created under a different set of assumptions than those
maintained here.
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investment ratio. Figure 6 plots the estimated series for maintenance to capital ratio and

output (in trend deviations) and Table 5 contains the estimated series of maintenance

expenditures for machinery-equipment capital in US manufacturing for the period 1958-

2009 expressed in current thousands USDs.17 As in the case of Canada, maintenance is

found to be highly procyclical with a correlation coefficient of 0.85 with significant pos-

itive correlations also for the first lag and the first lead of output. The main picks and

troughs of the business cycle are well captured by our measure of maintenance. A similar

picture emerges for the maintenance to ‘new’ investment ratio (Figure 7), which is also

procyclical with a correlation coefficient of 0.51.

We use our estimated series for capital maintenance in US manufacturing to obtain

an assessment of the magnitude and time profile of the depreciation rate in machinery-

equipment capital over the period 1958-2009 in the context of our DSGE model. Figure

8 plots the estimated depreciation rate and the output trend deviations for US manu-

facturing capital over the period 1958-2009 and Table 5 contains the detailed figures for

the depreciation rates of machinery-equipment capital in US manufacturing. The picture

indicates that, as in the case of Canada, the depreciation rate in US manufacturing has

been quite volatile and procyclical. In particular, the estimates indicate that the esti-

mated range of the depreciation rate of equipment capital in US manufacturing varies

between 9.3% to 13.7% over the period 1958-2009. The correlation with output trend is

positive and amounts to 56% over the sample considered, a figure that is very close to the

corresponding one for Canada.

These results shed some further light in the variability of capital depreciation, as

few studies have focused on its behavior over time. Epstein and Denny (1980) report

that the average depreciation rate in total US manufacturing over the period 1947-1971

ranged between 10.8% and 14.5%. Kollintzas and Choi (1985) report a similar range

of 10.7%-14.1% over the same time period, whereas Bischoff and Kokkelenberg report

a range of 9.6-11.8% over a period extended to 1978. In all these studies the general

17The series are obtained by multiplying the estimated maintenance to investment ratio by the esti-
mated series of investments in levels.
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claim is that the depreication rate has been fairly stable over time, whereas Nadiri and

Prucha (1996a) report that the constant depreciation rate assumption cannot be rejected

for the US electrical machinery industry. Our evidence, based on machinery-equipment

capital, generates a wider spread for capital depreciation, which is not unreasonable given

the 50–year time span of our study. Importantly, our implied depreciation rate follows

a highly procyclical pattern, a feature that has only been indirectly captured by Epstein

and Denny (1980) for some cycles.

5 Conclusions

This paper formulated and estimated a DSGE business-cycle model in which the depreci-

ation rate is endogenously determined by expenditures on capital maintenance, a feature

that has been left unexplored in existing DSGE models. An important feature of our

approach, apart from its general-equilibrium character, is that we were able to derive the

cyclical movements of capital depreciation, in the absence of time-series data on capital

maintenance that are largely unavailable. Our evidence on the time profile of the capital

depreciation rate, which has been found to be procyclical and quite volatile, is contrasted

to the standard assumption of constant capital depreciation, adopted routinely in most

studies of macroeconomic fluctuations, and can provide significant insights in their sources

and propagation mechanisms.

Our evidence may provide important potential insights for the tax treatment of capital

assets and their depreciation. Given the procyclicality of depreciation, the state of the

economy should be taken into account in the formation of the tax code and the calculation

of variables affecting the values of assets, like interest rates. Nevertheless we emphasize

that our implied estimates are in no way intended to provide definitive estimates of de-

preciation or their cyclical pattern. There is a great deal of room for further research,

particularly in the areas of using more disaggregated data for the assessment of depreci-

ation rates related to sectoral capital stocks within the context of a general equilibrium

approach. Our findings should, thus, be viewed as an example of what can be achieved
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with a DSGE approach that accounts for capital maintenance. In this vein, the model

can also be used to estimate unmeasured capital expenditures, like spending on capital

maintenance, in other countries, as they form an important part of economic activity in

order to estimate cross-country depreciation rates stemming from a general-equilibrium

setup.
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Table 1: Calibrated parameters and steady-state values

parameter description steady-state value

β discount factor 0.98

I/K investment to capital ratio 0.0882 (Canada), 0.1170 (US)

M/K maintenance to capital ratio 0.0494 (Canada), 0.0309 (US)

δ depreciation I/K

M/I maintenance to investment ratio M
K

/ I
K

r∗ net real interest rate (1/β) − 1 + I/K + M/K

Y/K output to capital ratio r∗/(1 − α)

Y/I output to investment ratio Y
K

/ I
K

G/Y public spending to output ratio 0.17

G/K public spending to capital ratio G/Y ∗ Y/K

C/K consumption to capital ratio Y/K − I/K − M/K − G/K

C/I consumption to investment ratio C
K

/ I
K

M/Y maintenance to output ratio M
K

/ Y
K

Z investment specific technology 1

X TFP 1
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Table 2: Prior distribution of structural parameters and shock processes

parameter prior prior mean prior std deviation lower bound upper bound

γ Normal 10 10
φ Gamma 0.9 0.2
b Normal 0 4 0 10
σ Normal 2 3 0.01 6
θn Normal 1.25 2 0.01 10
α Normal 0.7 0.05 0.01 1
ρx Beta 0.5 0.2 0.01 0.99
ρz Beta 0.5 0.2 0.01 0.99
ρu Beta 0.5 0.2 0.01 0.99
ρh Beta 0.5 0.2 0.01 0.99
ρg Beta 0.5 0.2 0.01 0.99
σx Inv-gamma 0.1 Inf 0.01 3
σz Inv-gamma 0.1 Inf 0.01 3
σu Inv-gamma 0.1 Inf 0.01 3
σh Inv-gamma 0.1 Inf 0.01 3
σg Inv-gamma 0.1 Inf 0.01 3
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Table 3: Posterior distributions of structural parameters and shock processes of the models for Canada and US

country Canada US

model standard model maintenance model standard model maintenance model

parameter post. mean conf. interval post. mean conf. interval post. mean conf. interval post. mean conf. interval

γ 19.19 8.37 ; 29.79 8.79 3.92 ; 13.99
φ 2.21 1.64 ; 2.75 1.08 0.76 ; 1.40 1.71 1.40 ; 2.02 0.82 0.66 ; 0.97
b 9.02 7.83 ; 10.00 8.67 7.16 ; 10.00 6.64 4.71 ; 8.55 7.13 5.30 ; 9.08
σ 2.70 1.59 ; 3.80 3.20 1.82 ; 4.54 1.42 1.12 ; 1.71 1.54 1.21 ; 1.87
θn 2.11 0.76 ; 3.44 2.05 0.71 ; 3.40 0.33 0.06 ; 0.57 0.34 0.05 ; 0.60
α 0.70 0.63 ; 0.78 0.75 0.68 ; 0.82 0.78 0.71 ; 0.85 0.78 0.71 ; 0.85
ρx 0.54 0.34 ; 0.74 0.53 0.33 ; 0.73 0.47 0.26 ; 0.69 0.45 0.25 ; 0.65
ρz 0.50 0.30 ; 0.73 0.54 0.29 ; 0.77 0.38 0.17 ; 0.58 0.39 0.19 ; 0.58
ρu 0.47 0.29 ; 0.65 0.46 0.28 ; 0.65 0.55 0.38 ; 0.72 0.56 0.39 ; 0.73
ρh 0.72 0.58 ; 0.86 0.72 0.58 ; 0.85 0.55 0.34 ; 0.75 0.57 0.37 ; 0.78
ρg 0.48 0.31 ; 0.66 0.50 0.32 ; 0.67 0.36 0.18 ; 0.54 0.37 0.18 ; 0.55
σx 0.030 0.024 ; 0.035 0.029 0.024 ; 0.034 0.040 0.033 ; 0.046 0.040 0.033 ; 0.046
σz 0.056 0.038 ; 0.073 0.062 0.047 ; 0.077 0.036 0.026 ; 0.046 0.047 0.034 ; 0.060
σu 0.104 0.081 ; 0.127 0.146 0.113 ; 0.180 0.087 0.064 ; 0.109 0.090 0.067 ; 0.112
σh 0.091 0.045 ; 0.136 0.096 0.049 ; 0.144 0.033 0.024 ; 0.042 0.035 0.025 ; 0.046
σg 0.215 0.178 ; 0.249 0.214 0.178 ; 0.248 0.193 0.162 ; 0.223 0.183 0.151 ; 0.214
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Table 4: Estimated depreciation rate of equipment capital in Canadian manufacturing
(1956-2005)

year depreciation rate year depreciation rate
1956 0.0778 1981 0.0932
1957 0.0897 1982 0.0540
1958 0.0983 1983 0.0641
1959 0.0888 1984 0.0936
1960 0.0912 1985 0.1077
1961 0.0920 1986 0.0979
1962 0.0774 1987 0.1003
1963 0.0811 1988 0.0957
1964 0.0933 1989 0.0896
1965 0.1044 1990 0.0797
1966 0.1005 1991 0.0667
1967 0.0837 1992 0.0759
1968 0.0866 1993 0.0887
1969 0.0951 1994 0.1002
1970 0.0698 1995 0.0980
1971 0.0746 1996 0.0918
1972 0.0854 1997 0.0922
1973 0.1075 1998 0.0933
1974 0.1034 1999 0.0954
1975 0.0728 2000 0.0955
1976 0.0850 2001 0.0803
1977 0.0921 2002 0.0839
1978 0.1063 2003 0.0785
1979 0.1132 2004 0.0894
1980 0.0903 2005 0.0928
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Table 5: Estimated capital maintenance (in current million USD) and depreciation rates
of equipment capital in US manufacturing (1958-2009)

year maintenance depreciation rate year maintenance depreciation rate
1958 1881 0.1069 1984 14827 0.1255
1959 2079 0.1273 1985 15471 0.1178
1960 2135 0.1180 1986 17091 0.1140
1961 2227 0.1042 1987 21272 0.1162
1962 2397 0.1151 1988 22052 0.1263
1963 2612 0.1181 1989 21781 0.1242
1964 3046 0.1201 1990 19838 0.1219
1965 3313 0.1324 1991 19399 0.1108
1966 3718 0.1369 1992 22924 0.1107
1967 4230 0.1201 1993 22746 0.1148
1968 4780 0.1197 1994 23365 0.1215
1969 5044 0.1205 1995 26890 0.1242
1970 5193 0.0989 1996 25331 0.1250
1971 5651 0.0952 1997 33013 0.1223
1972 6288 0.1141 1998 38225 0.1140
1973 6364 0.1369 1999 39266 0.1117
1974 6789 0.1305 2000 31624 0.1200
1975 7143 0.0948 2001 27804 0.1037
1976 8937 0.1087 2002 31292 0.0988
1977 10551 0.1236 2003 27813 0.1080
1978 12080 0.1318 2004 28195 0.1188
1979 13642 0.1332 2005 30620 0.1281
1980 12178 0.1221 2006 32010 0.1315
1981 12848 0.1184 2007 34609 0.1352
1982 13157 0.0966 2008 25504 0.1331
1983 13357 0.1061 2009 29950 0.0929
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Figure 1: Maintenance, capital and output: Canada, 1956-2005.
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Figure 2: Impulse responses of variables to all shocks (in rows).
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Figure 3: Estimated MK ratio: Canada, 1956-2005.
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Figure 4: Actual and estimated maintenance to ’new’ investment ratio: Canada, 1956-
2005.
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Figure 5: Output (trend deviations) and estimated depreciation rate (equipment capital):
Canadian manufacturing, 1956-2005.
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Figure 6: Estimated capital maintenance and output (trend deviations) in US manufac-
turing
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Figure 7: Estimated maintenance to ‘new’ investment ratio and output (trend deviations)
in US manufacturing
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Figure 8: Output (trend deviations) and depreciation rate: US manufacturing capital
(equipment and structures)
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A Technical Appendix

A.1 Steady state and determination of θ, φ and γ

Using (11) and (10) we get that in the steady state it must hold:

ψφUφ = (1 − α)γ(1 − ψ)
Y

K
e−γ M

K

From the capital law of motion it also holds:

I

K
= ξ

[

ψUφ + (1 − ψ) e−γ M

K

]θ

Equation (12) implies that:

1

β
=

[

r∗U + (1 −
I

K
) −

M

K

]

Moreover, (10) can be rewritten as:

ξθφψ
[

ψUφ + (1 − ψ) e−γ M

K

]θ−1

Uφ−1 = r∗

Using the above equations, and imposing U = 1 in the steady state, we can derive the

following conditions for the values of θ, ψ and ξ:

θ =
r∗γ + φ

φγ I
K

ψ =
r∗γe−γ M

K

r∗γe−γ M

K + φ

ξ =

(

I

K

)1−θ (

r∗

θψφ

)θ

36



A.2 Log-linear conditions

The log-linear first-order conditions are given by the following set of equations (hatted

variables denote log-deviations from steady-state values):

θnĥt + η̂h
t = −σĈt + Ŷt − ĥt

[

γ
M

K
+
θ − 1

θ

M

I

]

(K̂t − M̂t) +
θ − 1

θ
(1 − α)

Y

I
Ût − Ẑt = 0

(θ − 1)

θ

M

I
(K̂t − M̂t) +

[

φ+
θ − 1

θ
(1 − α)

Y

I

]

Ût − Ẑt − Ŷt + K̂t = 0

−σĈt − Ẑt − bK̂t + η̂u
t = −σĈt+1 + βbK̂t+2 + β(1 − α)

Y

K
Ŷt+1

−β(1 − α)
Y

K
Ût+1 − β(1 − δ)Ẑt+1 −

[

b(1 + β) + β(1 − α)
Y

K

]

K̂t+1 + η̂u
t+1

I

K
Ît +

I

K
Ẑt = K̂t+1 −

[

(1 − δ) −
M

K

]

K̂t + (1 − α)
Y

K
Ût −

M

K
M̂t

Ŷt = (1 − α)(K̂t + Ût) + α(X̂t + ĥt)

Ŷt =
C

Y
Ĉt +

I

Y
Ît +

M

Y
M̂t +

G

Y
Ĝt
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The above seven equations describe the path of the seven endogenous variables of the

model: output Ŷt, utilization Ût, capital K̂t, hours ĥt, consumption Ĉt, investment Ît, and

maintenance M̂t.

B Data Appendix

B.1 Canada

The first part of the Data Appendix describes briefly first the dataset from the Canadian

survey on ‘Capital and Repair Expenditures’. Private firms, households and government

organizations in Canada were asked in an annual survey over the period 1956-1993 about

their capital and repair expenditures on equipment and structures. The survey (conducted

after 1993 in an updated form) is a census with a cross-sectional design and a sample size

of 27,000 units; the target population is all Canadian businesses and governments from

all the provinces and territories in Canada and the response rate is roughly 85%. Prior to

the selection of a random sample, establishments are classified into homogeneous groups

(i.e. groups with the same NAICS codes, same province/territory etc).

Capital expenditures are gross expenditures on fixed assets, which are assumed to

cover spending devoted to ‘new’ investment, in accordance to the broad definition given

earlier. These include expenditures on (i) fixed assets (such as new buildings, engineering,

machinery, and equipment) which normally have a life of more than 1 year, (ii) modifica-

tions, additions, major renovations, and additions to work in progress (iii) capital costs

such as feasibility studies and general (architectural, legal, installation and engineering)

fees, (iv) capitalized interest charges on loans with which capital projects are financed, (v)

work by own labor force. On the other hand, repair expenditures cover spending devoted

to ‘maintenance’ cost, again in accordance to the broad definition given earlier. These ex-

penditures cover (i) maintenance and repair of nonresidential buildings, other structures,

and on vehicles and other machinery, (ii) building maintenance (janitorial services, snow

removal, sanding), (iii) equipment maintenance (such as oil changes and lubrication of

vehicles and machinery), (iv) repair work by own and outside labor force machinery and
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equipment.

The following variables from the Canadian Survey on Capital and Repair Expenditures

of Canada Statistics were used for capital and repair expenditures. Backward values for

the manufacturing sector up to 1956 were obtained by using the growth rates for capital

expenditures (the growth rates for 1992 and 1993 are common for the two surveys) and

then by extrapolating the series for repair expenditures through their share in total capital

and repair expenditures over 1956 to 1993.

• Capital expenditures in manufacturing, machinery and equipment: variable v754442

[D878253], 1994 to 2005, and variable v62547 [D842202], 1956 to 1993.

• Repair expenditures in manufacturing, machinery and equipment variable v754445

[D878256], 1994 to 2005, and variable v62550 [D843232], 1956 to 1993.

The rest of the Canadian variables used in the paper and their sources are as follows.

• Manufacturing capital stock in machinery and equipment : manufacturing sector

end-year capital stock, variable v1071437 [D819523], 1955 to 2007 (Canada Statis-

tics, Table 031-0002, current prices).

• Manufacturing output : Gross value added in manufacturing (source: OECD, Gross

Domestic Product: B1GD), available from 1981 onwards. Backward values were ex-

trapolated by using the industrial production index (source: International Financial

Statistics, variable: 15666..CZF...) and the industrial selling price index (source:

International Financial Statistics, variable: 15663...ZF...).

• Manufacturing employment : index 2000=100 (source: International Financial Statis-

tics, variable 15667EY.ZF...).

• Hours worked : Annual average number of hours worked for all jobs; Non-durable

manufacturing, index 1992=100 (source: Canada Statistics). The number of hours

worked in all jobs is the annual average for all jobs times the annual average hours

worked in all jobs. According to the retained definition, hours worked means the
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total number of hours that a person spends working, whether paid or not. In

general, this includes regular and overtime hours, breaks, travel time, training in

the workplace and time lost in brief work stoppages where workers remain at their

posts. Time lost due to strikes, lockouts, annual vacation, public holidays, sick

leave, maternity leave or leave for personal needs are not included in total hours

worked.

• Consumption: Annual nominal consumption in million Canadian dollars (source:

Penn World Tables). It is obtained by multiplying consumption share of GDP per

capita (variable: cc) times GDP per capita (variable: cgdp) and total population

(variable: POP).

• Capital utilization: Industrial (total non-farm goods producing industries) capacity

utilization rate (source: Canada Statistics, variables v142812, Table 028-0001, per-

cent), averaged from quarterly data available from 1962 onwards. Backward values

were extrapolated by fitting a linear regression on total fixed non-residential capital

stock for all industries (source: Canada Statistics, variable: D99027311000) divided

by Canada Gross National Product (source: International Financial Statistics, vari-

able 15699A.CZF).

• Industrial selling price index : Industrial selling price index (source: International

Financial Statistics, variable: 15663...ZF...)

• Population: Population 15-64 (source: OECD, ALFS Summary Tables).

Maintenance, total investment, capital stock, consumption and output were deflated

with the industrial selling price index and divided by total working population 15-64.

Hours per worker were obtained by multiplying manufacturing employment and hours

worked and dividing by total working population 15-64, as in Smets and Wouters (2007).

B.2 United States

The following variables for U.S. manufacturing data (NAICS classification) were used.
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• Manufacturing output : Total value added in million US dollars from Becker and

Gray (2009), variable vadd, period 1958-2005. The series was extrapolated for years

2006-9 using the growth rate of value added from the U.S. Census Annual Survey

of Manufacturers (Table: Statistics for Industry Groups and Industries). The item

is derived by subtracting the cost of materials, supplies, containers, fuel, purchased

electricity, and contract work from the value of shipments (products manufactured

plus receipts for services rendered), adjusted by the addition of value added by

merchandizing operations plus the net change in finished goods and work-in-process

between the beginning and end of year inventories.

• Hours worked : Production worker hours in millions from Becker and Gray (2009),

variable prodh, period 1958-2005. The series was extrapolated for periods 2006-9

using the growth rate of production workers hours from the U.S. Census Annual

Survey of Manufacturers (Table: Statistics for Industry Groups and Industries).

The item covers all hours worked or paid for at the manufacturing plant, including

actual overtime hours (not straight-time equivalent hours). It excludes hours paid

for vacations, holidays, or sick leave when the employee is not at the establishment.

• Capital expenditures: Total capital expenditures in million US dollars from Becker

and Gray (2009), variable invest, period 1958-2005. The series was extrapolated

for years 2006-9 using the growth rate of total capital expenditures from the U.S.

Census Annual Survey of Manufacturers (Table: Statistics for Industry Groups and

Industries). The item represents the total new and used capital expenditures re-

ported by establishments in operation and any known plants under construction.

These data include expenditures for permanent additions and major alterations to

manufacturing and mining establishments, new and used machinery and equipment

used for replacement and additions to plant capacity, including work done by con-

tract, as well as by the establishment’s own workforce. Capital expenditures for

machinery-equipment and buildings & other structures were obtained by using the

average shares of these expenditures over the period 2002-2009, reported in the U.S.
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Census Annual Survey of Manufacturers (Table: Statistics for Industry Groups and

Industries).

• Capital stocks : Real capital stocks (total, equipment, structures) in million US

dollars from Becker and Gray (2009), variables cap, equip, plant, period 1958-2005.

The series were converted in current U.S. dollars using the investment deflator from

Becker and Gray (2009), variable piinv and extrapolated for years 2006-9 assuming

a constant capital-output ratio and constant shares for equipment and structures.

• Capital utilization: Capacity utilization in manufacturing for years 1958-2009 was

obtained using the historical series from the Board of Governors of the Federal

Reserve System (Table G.17).

• Consumption: Annual nominal consumption in million US dollars (source: Penn

World Tables). It is obtained by multiplying consumption share of GDP per capita

(variable: cc) times GDP per capita (variable: cgdp) and total population (variable:

POP).

• Population: Population 15-64 (source: OECD, ALFS Summary Tables).

• Producer Price Index : Producer Price Index: All Commodities (source: U.S. De-

partment of Labor, Bureau of Labor Statistics).

Capital expenditures, capital stock, consumption and output were deflated with the Pro-

ducer Price Index and divided by total working population 15-64. Hours per worker were

obtained by dividing Hours worked by total working population 15-64, as in Smets and

Wouters (2007).
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