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Abstract

Renewable resource modelling is usually characterized by different

time scales where some state variables such as biomass may evolve

relatively faster than other state variables such as carrying capacity.

Ignoring this time scale separation means that a slowly changing vari-

able is treated as constant over time. Management rules that ignore

time scale separation do not account for a time scale externality and

this may induce ineffi ciencies in resource management. In the cur-

rent work, we study multispecies resource management under time

scale separation by adopting the framework of singular perturbation

reduction methods. By extending recent work by Vardas and Xepa-

padeas (2015) to interacting populations, we study regulation with

full internalization of the time scale externality. We further study reg-

ulation and noncooperative outcomes when the time scale separation

is ignored, and identify deviations in harvesting and biomass paths
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among these cases. Deviations indicate the ineffi ciencies associated

with ignoring time scale separation.

Keywords: interacting populations, resource harvesting, fast slow

dynamics, singular perturbation, regulation, open loop Nash equilib-

rium.

JEL Classification: D81, Q20

1 Introduction

The interaction of fast and slow processes and the separation of time scales

is an integral part of ecosystem analysis (Gunderson and Pritchard, 2002;

Walker et al., 2012; Levin et al., 2013). Time scale separation is taken into

account in ecosystem modeling by including state variables evolving in slow

and fast time scales, and appears in models of antagonistic species coevolu-

tion in which population (or biomass) dynamics interact with mutation (or

trait) dynamics leading to the so-called Red Queen cycles. Modeling eco-

nomic/ecological systems as fast/slow systems has also been associated with

issues like biological resource management, water management and pest con-

trol (e.g. Milik et al., 1996; Brock and Xepapadeas, 2004; Grimsrud and

Huffaker, 2006; Huffaker and Hotchkiss, 2006; Crepin et al., 2011).

In terms of the mathematical approach, dynamical systems evolving in a

fast/slow time framework can be analyzed using singular perturbation meth-

ods (e.g., Wasow, 1965; Fenichel, 1979; Berglund and Gentz, 2003). In envi-

ronmental and resource economics there have been a few attempts to study

ecosystems in separate time scales. In particular Huffaker and Hotchkiss

(2006) apply singular equations of motion to accommodate the disparate time

scale and analyze the economic dynamics of reservoir sedimentation manage-

ment using the hydrosuction-dredging sediment-removal system. Grimsrud

and Huffaker (2006) apply singular perturbation methods in a bio-economic

model to investigate the optimal management of pest resistance to pesticide

crops and Rinaldi and Scheffer (2000) use a range of examples from natural

and terrestrial ecosystems to study the effects of slow and fast variables to

ecosystems. Crepin (2007) presents a general framework to handle systems
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with fast and slow variables, and illustrates the approach by using a model of

coral reefs subject to fishing pressure. Crepin et al. (2011) explore how non-

convexities and slow-fast dynamics affect coupled human-nature systems,

while Milik et al., (1996), considering a simple model of demographic, eco-

nomic and environmental interactions, illustrate the use of geometric singular

perturbation theory in environmental economics.

When time scale separation exists with state variables evolving in different

time scales, ignoring this separation and treating everything in the same time

scale - the fast one - introduces an externality: the time scale externality.

This is because when agents consider a slowly varying state variable (e.g.,

carrying capacity) as fixed, they ignore the impact of their actions on this

state variable as well as on other interacting variables. However, the agents’

actions affect, this state variable as well as the agents’utility or profits slowly,

without been internalized. This is a source of externality which we will call

time scale externality. It should be noticed that even if the agents’actions

generate a well defined externality - such as emissions - which is regulated by

conventional policy instruments (e.g., emissions taxes or tradable emission

permits) but time-scale separation is ignored, then regulation is ineffi cient

because it does not internalize all the external effects.

In the present paper we contribute to the discussion of optimal resource

management under time scale separation by analyzing externalities emerg-

ing because of time-scale separation and potential ineffi ciencies of regulation

related to harvesting rules, in the context of interacting populations. This

extends earlier results of Vardas and Xepapadeas (2015) to a multispecies

renewable resource harvesting model. In particular we study, by applying

the singular perturbation reduction methods (Fenichel, 1979), optimal reg-

ulation when emissions cause environmental damages and at the same time

cause a slowly varying carrying capacity of the interacting populations. We

compare optimal regulation that accounts for time scale separation to: (i)

regulation emerging under conventional modeling where the carrying capac-

ity is regarded as fixed, and (ii) noncooperative outcomes associated with

open loop Nash equilibrium where competing agents treat carrying capacity

as fixed. By identifying deviations between optimal regulation and the other
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two cases, we obtain insights of the implications of ignoring the time scale

externality. Furthermore we point out that ignoring time scale separation

leads to time inconsistencies.

2 Optimal regulation when emissions cause a

slowly varying carrying capacity

We consider the case of two renewable resources growing according to:

dx1 =

[
ρ1x1

(
1− x1

K1(S)
− a12

x2

K1(S)

)
− h1

]
dt = f1(x1, x2)dt (1)

dx2 =

[
ρ2x2

(
1− x2

K2(S)
− a21

x1

K2(S)

)
− h2

]
dt = f2(x1, x2)dt,

x1(0) = x10, x2(0) = x20,

where xi, i = 1, 2 are the biomasses of resources and Ki refers to carrying

capacity which can be either constant or a function of some other state

variable such as the stock of pollution S that affects the carrying capacity,

that isKi(S). In (1) ρm, m = 1, 2 denote the intrinsic growth rates of the two

biomasses and hm =
∑J

j=1 hmj denotes total harvesting of the two resources

undertaken by a finite number of agents. We assume that harvesting can

be expressed in terms of a generalized production function as a function of

biomass and effort, or

hmj = qmx
α
mE

β
mj , α > 0, 0 < β < 1.

Em = (Em1, ..., EmJ) ,m = 1, 2, , j = 1, ..J

E = (E1,E2)T ,

where qm is the catchability coeffi cient for the mth biomass and Emj is the

fishing effort of the jth agent, in harvesting the two biomasses. Finally with

a12, a21 we denote the interaction coeffi cients between the two populations.

When both of them are positive, then there is competition between the two

resources. When one is positive and the other is negative we are in a prey-
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predator context.

The model can extended to M interacting populations with biomasses

xm, m = 1, 2, ..,M . Denoting the interaction coeffi cients between the µth, νth

populations with aµν and the intrinsic growth rates m = 1, .., µ, ν, ...M with

ρm, population dynamics (1) can be written in the general case as:

dx = (Ξ−H)dt (2)

dx =

 dx1

..

dxM

 , H =

 h1

...

hM

 , hm =

J∑
j=1

hmj,m = 1, ..,M

Ξ =

 ξ1

..ξm..

ξM

 , ξm = ρmxm

(
1−

M∑
µ=1

amµ
xµ

Km(S)

)
,

amm = 1,
M∑

µ=1,m 6=µ

amµ < 1.

At this point we introduce a link between emissions and the evolution of

carrying capacity following Vardas and Xepapadeas (2015) by assuming that

the non-fishing sector of the economy generates emissions through produc-

tion processes. Emissions are generated by a finite number of homogeneous

agents i = 1, ..I, and generate benefits according to a strictly concave benefit

function

Bi (si) , B
′
i ≥ 0, B′′i < 0,

with aggregate emissions defined by

s =

I∑
i=1

si.

Emissions accumulate into the ambient environment to form a stock, accord-

ing to:

S ′ = ϕs− lS, ϕ > 0, l > 0, S (0) = S0 > 0, S (t) ≥ 0.

Overall carrying capacityKo, as well as individual carrying capacities, depend
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on the emissions’stock. We assume that the stock of emissions affects the

carrying capacity according to:

Ko (t) = ω (S (t)) = A− θS (t) , θ > 0, Ko (t) ≥ 0 (3)

K ′o = −εS ′ = −ε (ϕs− lS) (4)

Assuming that ε is small, we consider a situation where the evolution of the

pollutant’s stock in the ambient environment induces a slow evolution of the

carrying capacity K. In this case we have time-scale separation between

the fast resource and pollution dynamics, and the slow dynamics of carrying

capacity. If ε = 0, then carrying capacity is fixed and does not respond

to changes in pollution stock. If ε is small but is ignored, that is we take

ε → 0, the carrying capacity is treated as fixed, while in reality it is slowly

changing in response to changes in the pollution stock. This is the source of

the time-scale externality.

Using (3) to solve for S and replacing in (4), we obtain

K ′o = −ε
(
ϕs− l

(
A−Ko

θ

))
.

Defining γ so that l = γθ we obtain

K ′o = ε

(
γ (A−K0)− ϕ

I∑
i=1

si

)
.

In this case the dynamical system can written in slow time as:

εx
′
(τ) = Ξ−H (5)

K ′o (τ) = γ (A−Ko (τ))− ϕ
I∑
i=1

si (τ) , γ =
l

θ
> 0, (6)

Ko (0) = A− εS (0) = K0 > 0,
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or in fast time as:

x
′
(t) = Ξ−H (7)

K ′o (t) = ε

(
γ (A−Ko (t))− ϕ

I∑
i=1

si (t)

)
.

2.1 The problem of the regulator

Given the dynamics (5)-(6) we can define the regulator’s problem, in slow

time,1 as the problem of choosing harvesting effort and emission paths to

maximize discounted aggregate benefits from harvesting and emissions net

of environmental damages associated with the ambient pollutant stock, or

max
E,s

∫ ∞
0

e−δτπdτ (8)

εx
′
(τ) = Ξ−H

K ′o (τ) = γ (A−Ko (τ))− ϕ
I∑
i=1

si (τ) , γ =
l

ε
> 0,

π =
J∑
j=1

πj (x,Ej) +
I∑
i=1

Bi (si)−D
(

I∑
i=1

si

)

πj (x,Ej) =
M∑
m=1

πm (x,Emj)

πm (x,Emj) = pmqmx
α
mE

β
mj − wmEmj,

where τ = t/ε, with ε being a small positive parameter. Then, denoting

by λ =
[
λ1 ... λM

]
the vector of the costate variables associated with each

one of the M biomasses, the Hamiltonian H takes the form:

H = λ(Ξ−H) + µG

G = γ (A−K0 (τ))− ϕ
I∑
i=1

si (τ) ,

1We denote with δ the discount rate in slow time, i.e., the ten year discount rate.

7



and results in the following optimality conditions:

π
EmJ

+ λ1f1EmJ
+ λ2f2EmJ

+ µGEmJ
= 0, j = 1.., J,m = 1, 2 (9)

B
′

i (si)−D′
(

I∑
i=1

si

)
− µϕ = 0, i = 1.., I

ε

 λ′1 − δλ1

...

λ′M − δλM

+

 (π + λ(Ξ−H) + µG)x1

....

(π + λ(Ξ−H) + µG)xM

 = 0

µ′ − δµ+ πK + (λ(Ξ−H))K + µGK = 0

εx′ = Ξ−H

K ′0 = γ (A−K0)− ϕ
I∑
i=1

si

π =
J∑
j=1

πj (x,Ej) +
I∑
i=1

Bi (si)−D
(

I∑
i=1

si

)
. (10)

2.2 Optimal regulation of two competing resources

In order to obtain more tractable results we study the case of harvesting two

competing resources. More specifically, without loss of generality we assume

that the two carrying capacities K1(S), K2(S) are equal and denote them by

K(S) or - to simplify notation - K, which implies that the overall carrying

capacity is Ko = 2K. Then the evolution of the two biomasses is given by:

dx1 =
[
ρ1x1

(
1− x1

K
− a12

x2

K

)
− h1

]
dt, x1(0) = x10 (11)

dx2 =
[
ρ2x2

(
1− x2

K
− a21

x1

K

)
− h2

]
dt, x2(0) = x20.

8



The application of (9) provides the following optimality conditions:

pmβqmx
α
mEmj

β−1 − w − λmβqmxαmEmjβ−1 = 0, j = 1.., J,m = 1, 2 (12)

B
′

i (si)−D′
(

I∑
i=1

si

)
− µϕ = 0, i = 1.., I

ε (λ′1 − δλ1) + (p1 − λ1)αq1x
α−1
1

∑J
j=1 E1j

β+

λ1ρ1 (1− (2x1 + a12x2)/K)− λ2ρ2x2a21/K = 0

ε (λ′2 − δλ2) + (p2 − λ2)αq2x
α−1
2

∑J
j=1 E2j

β+

λ2ρ2 (1− (2x2 + a21x1)/K)− λ1ρ1x1a12/K = 0

µ′ − δµ+ λ1ρ1x1 (x1 + a12x2) /K2

+λ2ρ2x2 (x2 + a21x1) /K2 − µγ = 0

εx′1 = ρ1x1

(
1− x1

K
− a12

x2
K

)
− h1

εx′2 = ρ2x2

(
1− x2

K
− a21

x1
K

)
− h2

K ′0 = γ (A−K0)− ϕ
I∑
i=1

si.

In order to improve tractability we assume without loss of generality that

Bi (si) =
√
si, i = 1, 2 and that damages can be modeled by a quadratic

damage function. Furthermore we assume that α = β = 1/2 and ϕ = 2.

System (12) consists of nine equations. The first three of them are algebraic

equations from which we can solve for the control variables of our problem.

Thus we obtain:2

Emj = (
(pm − λm)βmqx

α
m

wm
)

1
1−β , Eβ

mj =
(pm − λm)βqmx

α
m

wm
,m = 1, 2 (13)

si : 1/2
√
si − 2

I∑
i=1

si − µϕ = 0.

The system of the remaining six equations is a system with fast and slowly

evolving variables. In particular we obtain the following set of equations

2We can obtain similar results by assuming a linear damage function of the form D (·) =
(·). Then si : 1/2

√
si − 1− µϕ = 0, , i = 1.., I. Here we present the results corresponding

to a quadratic damage function.
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which characterizes the evolution along an optimal path of biomasses, carry-

ing capacities, and their corresponding shadow values:

ε (λ′1 − δλ1) + (p1 − λ1)αq1x
α−1
1

∑J
j=1 E1j

β+

λ1ρ1 (1− (2x1 + a12x2)/K)− λ2ρ2x2a21/K = 0
(14)

ε (λ′2 − δλ2) + (p2 − λ2)αq2x
α−1
2

∑J
j=1 E2j

β+

λ2ρ2 (1− (2x2 + a21x1)/K)− λ1ρ1x1a12/K = 0

µ′ − δµ+ λ1ρ1x1 (x1 + a12x2) /K2

+λ2ρ2x2 (x2 + a21x1) /K2 − µγ = 0

εx′1 = ρ1x1

(
1− x1

K
− a12

x2
K

)
− h1

εx′2 = ρ2x2

(
1− x2

K
− a21

x1
K

)
− h2

K ′o = γ (A−Ko)− ϕ
I∑
i=1

si, (15)

in slow time τ . The above system is called "the slow system." Rescaling with

τ = εt, we obtain the so-called "fast system"

(λ′1 − εδλ1) + (p1 − λ1)αq1x
α−1
1

∑J
j=1E1j

β+

λ1ρ1 (1− (2x1 + a12x2)/K)− λ2ρ2x2a21/K = 0
(16)

(λ′2 − εδλ2) + (p2 − λ2)αq2x
α−1
2

∑J
j=1E2j

β+

λ2ρ2 (1− (2x2 + a21x1)/K)− λ1ρ1x1a12/K = 0

µ′ + ε{−δµ+ λ1ρ1x1 (x1 + a12x2) /K2

+λ2ρ2x2 (x2 + a21x1) /K2 − µγ} = 0

x′1 = ρ1x1

(
1− x1

K
− a12

x2
K

)
− h1

x′2 = ρ2x2

(
1− x2

K
− a21

x1
K

)
− h2

K ′o = ε

[
γ (A−Ko)− ϕ

I∑
i=1

si

]
, (17)

where in the second case, derivatives are evaluated with respect to fast evolv-

ing time t.

If we consider (17) we can obtain the dynamics of individual carrying

capacities as:
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K ′ = ε

[
γ (A/2−K)− (ϕ/2)

I∑
i=1

si

]
.

Systems ((14)-(15), (16 )-(17)), can be rewritten in a matrix notation as:

Fast
dX/dt = F(X,K,ε)

dK/dt = εG(X,K,ε)
, Slow

εdX/dτ = F(X,K,ε)

dK/dτ = G(X,K,ε)
, (18)

with X = (λ1, λ2, x1, x2)T ,K =(µ,Ko)
T the vectors of fast and slow vari-

ables respectively. Furthermore F = (F1,F2, F3, F4)T and G = (G1, G2)T ,

with

F1 =
εδλ1 − (p1 − λ1)αq1x

α−1
1

∑J
j=1 E1j

β−
λ1ρ1 (1− (2x1 + a12x2)/K) + λ2ρ2x2a21/K

(19)

F2 =
εδλ2 − (p2 − λ2)αq2x

α−1
2

∑J
j=1 E2j

β−
λ2ρ2 (1− (2x2 + a21x1)/K) + λ1ρ1x1a12/K

F3 = ρ1x1

(
1− x1

K
− a12

x2

K

)
− h1

F4 = ρ2x2

(
1− x2

K
− a21

x1

K

)
− h2

G1 = δµ− λ1ρ1x1 (x1 + a12x2) /K2 − λ2ρ2x2 (x2 + a21x1) /K2 + µγ

G2 = γ (A2 −K)− ϕ2

I∑
i=1

si, with, A2 = A/2, ϕ2 = ϕ/2,

where Eβ
mj and si are given in (13). By setting ε = 0 in the fast system we

define the layer problem, while by setting ε = 0 in the slow system we define

the reduced problem.

2.2.1 Slow Manifolds and Optimal Regulation

To approximate the “slow manifolds” which characterize the solution of

our management problem, we apply Fenichel’s invariant manifold theorem

(Fenichel 1979). The application of this theorem requires three conditions.

The first is related to the requirement that the functions F,G be continu-

ous. This requirement is satisfied. The second one is related to the reduced
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problem and requires the existence of functions of the form:

X = Ho(K) = [Ho
1(K), Ho

2(K), Ho
3(K), Ho

4(K)]

such that F(Ho(K),K,ε = 0) = 0, that is the fast evolving variables can be

solved as functions of the slow variables. In particular, taking into account

relationship (13) which gives the effort rate and manipulating, we obtain:

(p1 − λ1)2q2
1αβJw

−1
1 +

λ1ρ1 (1− (2x1 + a12x2)/K)− λ2ρ2x2a21/K = 0
(20)

(p2 − λ2)2αβq2
2Jw

−1
2 +

λ2ρ2 (1− (2x2 + a21x1)/K)− λ1ρ1x1a12/K = 0
(21)

1− x1/K − a12x2/K − J
(p1 − λ1)βq2

1

ρ1w1

= 0 (22)

1− x2/K − a21x1/K − J
(p2 − λ2)βq2

2

ρ2w2

= 0. (23)

Equations (22), (23), can be considered as a system on x1/K, x2/K , which

can be solved as function of the two costate variables. Then replacing

x1/K, x2/K into (20), (21), we obtain a system of two equations with

the λ1, λ2 being unknown variables. Solving and replacing back into (22),

(23), we obtain x1, x2, as functions of K. In particular we obtain, by solving

the linear system of (22)-(23),

x1/K + a12x2/K = 1− J (p1 − λ1)βq2
1

ρ1w1

a21x1/K + x2/K = 1− J (p2 − λ2)βq2
2

ρ2w2

x1/K =
1− a12 − J (p1−λ1)βq21

ρ1w1
+ a12J

(p2−λ2)βq22
ρ2w2

1− a12a21

(24)

x2/K =
1− J (p2−λ2)βq22

ρ2w2
− a21 + a21J

(p1−λ1)βq21
ρ1w1

1− a12a21

.
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To obtain a clear picture of the results, given the complexity of the problem,

we resort to numerical simulations. Replacing into (20) and (21) the follow-

ing parameter setting (see Da Rocha et al., 2014; Vardas and Xepapadeas,

2015):

β = α = 1/2, J = 2, p1 = p2 = 10, w1 = w2 = 5, q1 = 0, 048, q2 = 0, 042,

ρ1 = 0.45, ρ2 = 0.35, r = 0, 05, a12 = a12 = 0.3,

we obtain, using (24), the following solutions:3

sol1 = (x1,x2, λ1, λ2)1 = (0.315786K, 0.707977K,−367.664, 94.785) (25)

sol2 = (x1,x2, λ1, λ2)2 = (0.33198K, 0.309629K,−249.870, 40.6759)

sol3 = (x1,x2, λ1, λ2)3 = (0.75375K, 0.755806K, 0.05816, 0.0447838)

sol4 = (x1,x2, λ1, λ2)4 = (0.697341K, 0.278107K, 75.49248,−522.37705).

Finally accordingly to the third condition, we want the real parts of the

eigenvalues of the Jacobian matrix J = ∂F
∂X

(Ho(K),K,ε = 0) to be nonzero.

Negative real parts induce an attracting manifold while if there is at least

one positive real part the manifold is repelling. In our case the matrix J is

given by4

J=
∂F

∂X
=


∂F1
∂x1

∂F1
∂x2

∂F1
∂λ1

∂F1
∂λ2

∂F2
∂x1

∂F2
∂x2

∂F2
∂λ1

∂F2
∂λ2

∂F3
∂x1

∂F3
∂x2

∂F3
∂λ1

∂F3
∂λ2

∂F4
∂x1

∂F4
∂x2

∂F4
∂λ1

∂F4
∂λ2

 .
Using our parametrization we obtain the eigenvalues associated with each of

the soli i = 1, 2, 3, 4. It turns out that all eigenvalues have no zero real parts.

To select the slow manifold that the regulator is seeking to direct the

controlled system, we use Dockner’s (1985) Theorem 2 (iii) to identify the

point with the property of conditional stability (saddle point property, for

3This approach can be extended in a straightforward way to the case of M resources.
In this case we can solve for xm/K,m = 1, ..,M.

4Seethe Appendix for an analytic description of the matrix J .
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ε = 0). Following this criterion only sol4 is acceptable with all other solutions

being completely unstable.5

Then Fenichel’s theorem extends the analysis for an arbitrary small para-

meter ε and provides a slowmanifoldMε = {(X,K) ∈ R6 : X= (H
ε
(K),K,ε)}

such that:

dK/dτ = G(H
ε

(K),K,ε),

where the vector H
ε
(K) = H0(K) + εH(1)(K) + ... as ε→ 0, with

H0(K) = H0(K) (26)

H(1)(K)=[
∂F

∂X
]−1[

∂H0

∂K
G∗ − ∂F

∂ε
]

∂F

∂ε
= [

∂F1

∂ε
,
∂F2

∂ε
,
∂F3

∂ε
,
∂F4

∂ε
]T = [δλ1, δλ2, 0, 0]T

∂H0

∂K
=


∂Ho

1 (K)

∂µ

∂Ho
1 (K)

∂K
∂Ho

2 (K)

∂µ

∂Ho
2 (K)

∂K
∂Ho

3 (K)

∂µ

∂Ho
3 (K)

∂K
∂Ho

4 (K)

∂µ

∂Ho
4 (K)

∂K

 =


0

∂Ho
1 (K)

∂K

0
∂Ho

2 (K)

∂K

0 0

0 0

 .

Manipulating sol4 and using the following setting for the parameters6

β = α = 1/2, J = 2, p1 = p2 = 10, w1 = w2 = 5, q1 = 0, 048, q2 = 0, 042,

ρ1 = 0.45, ρ2 = 0.35, r = 0, 05, a12 = a12 = 0.3, I = 2

D (·) = (·)2, δ = 0.05, ϕ = 0.1, A = 50, ε = 0.04, l = 0.4, γ = l/ε = 10,

we obtain that the dynamics of the slow variables on Mε, for ε = 0.04, are

5If we calculate the corresponding eigenvalues of the Jacobian matrix J , for all K in the
range between 22 and 26, sol4 is the only one with two eigenvalues with positive and two
eigenvalues with negative real parts. Furthermore all four eigenvalues are real numbers.
For example for K = 24 and K = 25 we obtain

{6.30289,−5.32471,−0.0079588, 0.00100309}
{6.05072,−5.11102,−0.00829154, 0.0010449}.

We use the above range of values for K because it includes the optimal solutions for K.
6See Appendix for an analytic derivation of the the dynamics of the slow variables on

M and the associated steady state.
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given by: [
dµ/dτ

dK/dτ

]
=

 δµ− λ
ε
1ρ1x

ε
1 (xε1 + a12x

ε
2) /K2−

−λε2ρ2x
ε
2

(
xε2 + a21x

ε
1,

)
/K2 + µγ

γ (A2 −K)− ϕ2

∑I
i=1 si

 . (27)

The steady state (K,µ) can be obtained as:[
0

K

]
=

[
δµ− λε1ρ1x

ε
1 (xε1 + a12x

ε
2) /K2 − λε2ρ2x

ε
2

(
xε2 + a21x

ε
1,

)
/K2 + µγ

A2 − ϕ2
γ

∑I
i=1 si

]
[
µ

K

]
=

[
−0.64470

24.9001

]
, Ko = 2K = 49.8002 (28)

si : 1/2
√
si − 2

I∑
i=1

si − µϕ = 0,−→ si = 0.49926.

The Jacobian matrix J associated with system (27) is the following 2 × 2

matrix7

J =

[
(δ + γ) 0

(γ (A2 −K)− ϕ2

∑I
i=1 si)µ −γ

]
with determinant equal to −(γ + δ)γ < 0, and trace δ > 0. Thus the steady

state is a saddle point.

Assume that the initial carrying capacity of each resource is K(0) = 20.

Then applying a shooting method from the initial state (−1.2933, 20), we

obtain a good approximation for convergence at the steady state (µ,K) =

(−0.64470, 24.8448) and si = 0.49926, along the stable manifold of system

(27). Convergence is obtained at τ = 0.5. The corresponding initial value

for si is si(0) = 0.787 and the solution paths are shown in Figure 1. This

result means that if the regulator sets initial emissions at si(0) = 0.787 then

the optimal paths for emissions and harvesting are the paths shown in Figure

1. The optimal paths for harvesting and emissions can then be implemented

using taxes or quotas on harvesting and emissions. This would be the optimal

regulatory scheme that internalizes the time scale externality by taking into

7Taking into account (45) and (27) we can see that K disappears after some manipu-
lations.
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account time scale separation.8 Figure (1) also depicts the optimal paths of

the two biomasses x1, x2, for which the optimal steady-state biomass values

are (x1, x2) = (17.3253, 6.9095). These are the paths that will be attained if

the optimal regulatory scheme is applied.
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Figure 1: Optimal regulation

3 Ignoring the Time Scale Externality

The previous section characterized optimal regulation of resource harvest-

ing and emissions when the regulator takes into account the time scale ex-

ternality. However the most commonly followed approach when time scale

8In the Appendix we present the optimal paths for the case of a linear damage function.
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separation exists, is for the regulator or the agents competing for resource

harvesting to ignore it, and treat slowly evolving variables as fixed parame-

ters. In this section we explore the implications of ignoring the time scale

externality on the actions of the regulator or the competing agents.

3.1 Regulation when the time scale externality is ig-

nored

In order to study the impact on regulation when the time scale externality is

ignored, we assume a constant carrying capacity K̄ = K1(S) = K2(S) which

is not affected by the pollution stock. In this case the dynamics of the two

competing resources become

dx1 =
[
ρ1x1

(
1− x1

K̄
− a12

x2

K̄

)
− h1

]
dt = f1(x1, x2)dt, x1(0) = x10(29)

dx2 =
[
ρ2x2

(
1− x2

K̄
− a21

x1

K̄

)
− h2

]
dt = f2(x1, x2)dt, x2(0) = x20.

Thus we can define in fast time the following resource management problem:

max
E

∫ ∞
0

e−rt

[
J∑
j=1

πj (x,Ej) =
2∑

m=1

J∑
j=1

π (x,Emj) = π(x,E)

]
dt (30)

subject to , (29)

π (x,EmJ ) = pmqmx
α
mE

β
mj − wmEmj, and, πj (x,Ej) =

2∑
m=1

π (x,Emj) ,

with wm the cost per unit effort, pm the exogenous price of the harvested

resources and πj (x,Ej) the individual profits.9

The extension of the above model to M interactive populations with

biomass xm for m = 1, 2, ..,M , is straightforward. Denoting with aµν the

interaction coeffi cients between the µth, νth populations, with ρµ, µ = 1, ...M,

9The extension of the above model to M interactive populations with biomass xm for
m = 1, 2, ..,M , is straightforward. Denoting with aµν the interaction coeffi cients between
the µth, νth populations, ρµ, µ = 1, ...M, the corresponding intrinsic growth rates and
keeping the other variables and functions as in the previous sections, equation (29) can
be written in the general case as:
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the corresponding intrinsic growth rates and keeping the other variables and

functions as in the previous sections, equation (29) can be written in the

general case as:

dx = (Ξ−H)dt, where (31)

dx =

 dx1

..
dxM

 , H =

 h1

...
hM

 , hm =

J∑
j=1

hmj ,m = 1, ..,M

Ξ =

 ξ1

..ξm..
ξM

 , ξm = ρmxm

(
1−

M∑
µ=1

amµ
xµ
K̄

)
,

amm = 1,

M∑
µ=1,m 6=µ

amµ < 1, hmj = qmx
α
mE

β
mj

Then, problem (30) becomes:

max
E

∫ ∞
0

e−rt

 J∑
j=1

πj (x,Ej) =

M∑
m=1

J∑
j=1

π (x,Emj) = π(x,E)

 dt (32)

s.t., (31)

Manipulating we obtain the optimality conditions as:

λ
′

= Υ

x
′

= Ξ−H

Υ =



rλ1 − Jα( β
w1

)
β

1−β ((p1 − λ1)q1)
1

1−β x
α+β−1
1−β

1 − λ1ρ1

(
1−

∑M
µ=1A1µ

xµ
K̄

)
+
∑M
µ=2 λµρµxµaµ1/K̄

..rλm − Jα( β
wm

)
β

1−β ((pm − λm)q1)
1

1−β x
α+β−1
1−β

m − λmρm
(

1−
∑M
µ=1Amµ

xµ
K̄

)
+
∑M
µ=1,µ 6=m λµρµxµaµm/K̄..

rλM − Jα( β
wM

)
β

1−β ((pM −mM )qM )
1

1−β x
α+β−1
1−β

M − λMρM
(

1−
∑M
µ=1AMµ

xµ
K̄

)
+
∑M−1
µ=1 λµρµxµaµM/K̄
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dx = (Ξ−H)dt, where (33)

dx =

 dx1

..

dxM

 , H =

 h1

...

hM

 , hm =
J∑
j=1

hmj,m = 1, ..,M

Ξ =

 ξ1

..ξm..

ξM

 , ξm = ρmxm

(
1−

M∑
µ=1

amµ
xµ
K̄

)
,

amm = 1,

M∑
µ=1,m 6=µ

amµ < 1, hmj = qmx
α
mE

β
mj.

Then, problem (30) becomes:

max
E

∫ ∞
0

e−rt

[
J∑
j=1

πj (x,Ej) =
M∑
m=1

J∑
j=1

π (x,Emj) = π(x,E)

]
dt (34)

s.t. (31).

Manipulating we obtain the optimality conditions as:

λ
′
= Υ

x
′
= Ξ−H

Υ =



rλ1 − Jα( β
w1

)
β

1−β ((p1 − λ1)q1)
1

1−β x
α+β−1
1−β

1 − λ1ρ1

(
1−

∑M
µ=1A1µ

xµ
K̄

)
+
∑M

µ=2 λµρµxµaµ1/K̄

..rλm − Jα( β
wm

)
β

1−β ((pm − λm)q1)
1

1−β x
α+β−1
1−β

m − λmρm
(

1−
∑M

µ=1 Amµ
xµ
K̄

)
+
∑M

µ=1,µ6=m λµρµxµaµm/K̄..

rλM − Jα( β
wM

)
β

1−β ((pM −mM)qM)
1

1−β x
α+β−1
1−β

M − λMρM
(

1−
∑M

µ=1 AMµ
xµ
K̄

)
+
∑M−1

µ=1 λµρµxµaµM/K̄


.

Returning to the two-interacting-populations model, defining the current
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value Hamiltonian H as:

H(x,E, λ) = π(x,E) + λF,m = λ(t) =

[
λ1(t)

λ2(t)

]
, (35)

and manipulating we finally obtain the following Hamiltonian system for

biomasses and their costate variables:10

λ
′

=


rλ1 − Jα( β

w1
)

β
1−β ((p1 − λ1)q1)

1
1−β x

α+β−1
1−β

1 − λ1ρ1

(
1− 2x1+a12x2

K̄

)
+λ2ρ2x2a21/K̄

rλ2 − Jα( β
w2

)
β

1−β ((p2 − λ2)q2)
1

1−β x
α+β−1
1−β

2 − λ2ρ2

(
1− 2x2+a21x1

K̄

)
+λ1ρ1x1a12/K̄


x′ =

[
ρ1x1

(
1− x1

K̄
− a12

x2
K̄

)
− h1

ρ2x2

(
1− x2

K̄
− a21

x1
K̄

)
− h2

]
, hm =

J∑
j=1

hmj. (36)

3.1.1 Numerical simulations

In order to obtain a clear picture of the solution, that will also allow us to

provide comparisons with the case where carrying capacity is slowly changing,

we resort again to numerical simulations using our usual parameter setting

β = α = 1/2, J = 2, p1 = p2 = 10, w1 = w2 = 5, q1 = 0, 048, q2 = 0, 042,

ρ1 = 0.45, ρ2 = 0.35, r = 0, 05, a12 = a12 = 0.3, K̄ = 25.

Then (36) becomes:

λ
′

=

[
rλ1 − J( 1

4w1
)((p1 − λ1)q1)2 − λ1ρ1

(
1− 2x1+a12x2

K̄

)
+ λ2ρ2x2a21/K̄

rλ2 − J( 1
4w2

)((p2 − λ2)q2)2 − λ2ρ2

(
1− 2x2+a21x1

K̄

)
+ λ1ρ1x1a12/K̄

]

x′ =

[
ρ1x1

(
1− x1

K̄
− a12

x2
K̄

)
− J 1

2w1
(p1 − λ1)q2

1x1

ρ2x2

(
1− x2

K̄
− a21

x1
K̄

)
− J 1

2w2
(p2 − λ2)q2

2x2

]
. (37)

10See Appendix for details.
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The equations in system (37) are similar to the third and fourth equations of

(19), with K̄ = 25. Thus the steady states Si = (x1, x2, λ1, λ2), for i = 1, .., 4

which lead to nonextinction of both resources, are determined by setting

K̄ = 25 in (25)and are given by:

sol1 = (x1,x2, λ1, λ2)1 = (7.89465, 17.6994,−367.664, 94.785)

sol2 = (x1,x2, λ1, λ2)2 = (8.2995, 7.74072,−249.870, 40.6759)

sol3 = (x1,x2, λ1, λ2)3 = (18.8438, 18.8952, 0.05816, 0.0447838)

sol4 = (x1,x2, λ1, λ2)4 = (17.4335, 6.95268, 75.49248,−522.37705)

Stability properties are the same as in Section 2.2.1 and thus the acceptable

solution is the fourth one.

Assuming initial biomass values x1(0) = 1 and x2(0) = 5, Figure 2

depicts the results of the multiple shooting method. With initial values

(481, 9020,−519, 0229) for the costates, we obtain a satisfactory approxima-

tion of sol4 for t = 8.25.

4 Non-cooperative harvesting when the time

scale externality is ignored

This section studies the harvesting behavior of competing agents. Each agent

in the renewable resource sector ignores the pollution stock S and its link with

carrying capacity. The agents take the carrying capacity K̄ as parametric

and solve in fast time the problem:

max
E

∫ ∞
0

e−rt

[
J∑
j=1

πj (x,Ej) =
2∑

m=1

J∑
j=1

π (x,Emj) = π(x,E)

]
dt (38)

s.t., (29),

π (x,EmJ ) = pmqmx
α
mE

β
mj − wmEmj, and, πj (x,Ej) =

2∑
m=1

π (x,Emj) .
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Figure 2: Regulation when time separation is ignored
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Assuming open loop information structure, the open loop Nash equilibrium

(OLNE) is obtained by defining the current value Hamiltonian as:

H(x,E, λ) = π(x,E) + λF,m = λ(t) =

[
λ1(t)

λ2(t)

]

F =

[
ρ1x1

(
1− x1

K̄
− a12

x2
K̄

)
− h1j −

∑
l 6=j h̄1l

ρ2x2

(
1− x2

K̄
− a21

x1
K̄

)
− h2j −

∑
l 6=j h̄2l

]
.

In particular we assume that for agent j, harvesting is given by hmj =

qmx
α
mE

β
mj, m = 1, 2. Then similarly to the previous analysis, we can de-

rive open loop solutions for harvesting and effort, as functions of the costate

variables λm m = 1, 2:11

Emj = (
pm − λm
wm

qmx
α
mβ)

1
1−β , , j = 1, ..J,m = 1, 2.

The evolution of the costate variables is given by:

λ
′

m = rλm − λmρm
(

1− 2x1 + a12x2

K̄

)
− α(

β

w0

)
β

1−β ((pm − λm)qm)
1

1−β x
α+β−1
1−β

m

+λm(J − 1)α(
β

wm
)

β
1−β (pm − λ0)

β
1−β

q
1

1−β
m x

α+β−1
1−β

m ,m = 1, 2. (39)

11See the previous section and Vardas and Xepapadeas (2014) for more details regarding
the derivation of this formula.
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Adopting the same setting for the parameters, we obtain the following Hamil-

tonian system: 1213

λ
′

=


rλ1 − 1

4w1
((p1 − λ1)q1)2 − λ1ρ1

(
1− 2x1+a12x2

K̄

)
+λ1(J − 1) 1

4w1
(p1 − λ1)q2

1 + λ2ρ2x2a21/K̄

rλ2 − 1
4w2

((p2 − λ2)q2)2 − λ2ρ2

(
1− 2x2+a21x1

K̄

)
+

λ2(J − 1) 1
4w2

(p2 − λ2)q2
2 + λ1ρ1x1a12/K̄

 (40)

x′ =

[
ρ1x1

(
1− x1

K̄
− a12

x2
K̄

)
− J 1

2w1
(p1 − λ1)q2

1x1

ρ2x2

(
1− x2

K̄
− a21

x1
K̄

)
− J 1

2w2
(p2 − λ2)q2

2x2

]
.

4.1 Numerical simulations

To obtain meaningful comparisons with our previous results we resort again

to numerical simulations and study the nature of the steady states of our

system for K̄ = 25, with the other parameters being the same as in the

previous sections. The steady states Si = (x1, x2, λ1, λ2) for i = 1, .., t are

the following:

sol1 = (x1,x2, λ1, λ2)1 = (7.69264652849, 17.1831869,−369.3, 74.12)

sol2 = (x1,x2, λ1, λ2)2 = (7.95728377, 6.82868,−252.252,−399.0722)

sol3 = (x1,x2, λ1, λ2)4 = (18.8416, 18.8937, 0.0214518319, 0.02724053584)

sol4 = (x1,x2, λ1, λ2)3 = (16.80487, 6.2272628, 61.2206,−546.723).

12See Section 3.3.1 for more details regarding the derivation of these equations.
13In a noncooperative setup in the general case with M harvesters, the system of equa-

tions which characterizes the optimality conditions becomes:

λ
′

=



rλ1 − α( β
w1

)
β

1−β ((p1 − λ1)q1)
1

1−β x
α+β−1
1−β

1 − λ1ρ1

(
1−

∑M
µ=1A1µ

xµ
K

)
+λ1(J − 1)α( β

w1
)

β
1−β (p1 − λ1)

β
1−β

q
1

1−β
1 x

α+β−1
1−β

1 +
∑M
µ=2 λµρµxµaµ1/K̄

..rλm − α( β
wm

)
β

1−β ((pm − λm)q1)
1

1−β x
α+β−1
1−β

m − λmρm
(

1−
∑M
µ=1Amµ

xµ
K

)
+λm(J − 1)α( β

wm
)

β
1−β (pm − λm)

β
1−β

q
1

1−β
m x

α+β−1
1−β

m +
∑M
µ=1,µ6=m λµρµxµaµm/K̄....

rλM − α( β
wM

)
β

1−β ((pM −mM )qM )
1

1−β x
α+β−1
1−β

M − λMρM
(

1−
∑M
µ=1AMµ

xµ
K

)
+λM (J − 1)α( β

wM
)

β
1−β (pM − λM )

β
1−β

q
1

1−β
M x

α+β−1
1−β

M +
∑M−1
µ=1 λµρµxµaµM/K̄


x′ = Ξ−H,m = 1, ..M,Aii = 2aii, Aij = aij .
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Note that these are OLNE steady states. We select sol4 which has the saddle

point property, the rest being completely unstable (see Dockner, 1985).

Assuming as before initial biomass values x1(0) = 1 and x2(0) = 5,

Figure 3 depicts the results of the multiple shooting method. With initial

values (499.421,−562.963) for the costate variables we obtain a satisfactory

approximation of sol4 for t = 8.05.
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Figure 3: Open loop Nash equilibrium for competing agents

4.2 Implications from Ignoring the Time Scale Exter-

nality

To obtain a picture of the implications from ignoring the time scale exter-

nality, we present in Table 1 the steady-state levels of the biomasses of the
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two resources and the corresponding harvesting and emissions levels in the

cases of (i) optimal regulation (OR), (ii) regulation when the time scale ex-

ternality is ignored (R), and (iii) OLNE when the competing agents ignore

time scale separation. In case (i) the optimal steady state carrying capacity

is K∗ = 24.85, while in cases (ii) and (iii) where carrying capacity is taken

as fixed, we consider two values K̄ = 23 and K̄ = 27 and use the formulas,

hm =
∑J

j=1 hmj, hmj = qmx
α
mE

β
mj,m, j = 1, 2, Eβ

mj = pm−λm
wm

qmx
α
mβ.

Table 1. Biomass comparison
Steady States OR R OLNE

K∗ = 24.85 K̄ = 23 K̄ = 27 K̄ = 23 K̄ = 27

x1 17.32 16.04 18.83 15.46 18.15

x2 6.91 6.40 7.51 5.73 6.72

h1 0,53 0.48 0.57 0.37 0.43

h2 1,30 1.20 1.41 1.13 1.32

s1 = s2 0.499 – – – –

It should be made clear that the steady states for cases (ii) and (iii), that

is R and OLNE respectively, can be understood only as ex ante steady states

which will never be attained because in the actual natural system carrying

capacity will change slowly and thus the ex ante biomasses paths under R

or OLNE will deviate from the actual paths. This also implies that when

time separation is ignored, the solutions of the corresponding optimization

problems associated with R or OLNE are not time consistent. This is because

actual carrying capacity at t = s > 0 will be different from the actual carrying

capacity at t = 0, and therefore the optimal path starting at t = s will be

different from the optimal path starting at t = 0. When time separation is

taken into account, the resulting optimal path under OR is time consistent.

The fixed-carrying-capacity paths deviate therefore from the optimal paths.

This deviation can be clearly seen if we consider the impact from the indus-

trial sector on the carrying capacity, which exists but is not taken into account

when the regulator assumes a fixed K. Assume that the regulator chooses
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and implements optimal emissions (ŝ1, ŝ2) by solving the static problem

max
si

I∑
i=1

Bi (si)−D
(

I∑
i=1

si

)
. (41)

Then pollution, taking into account the link between carrying capacity and

pollution stock given by

Ko (t) = ω (S (t)) = A− θS (t) , θ > 0, K (t) ≥ 0 (42)

K ′o = −εS ′ = −ε (ϕs− lS) , Ko = 2K,

will accumulate according to S ′ (t) = ϕ (ŝ1 + ŝ2)−lS (t) , S (0) = S0. Let Ŝ (t)

be the resulting path of accumulated pollution. Then the carrying capacity

will evolve slowly according to:

K (t) = (A− θŜ (t))/2, K (0) = (A− θS0)/2. (43)

If, for example, we use our parametrization with ϕ = 2, l = 0.4, ε = θ = 0.04,

S0 = 1, and A = 50, and 2ŝ = 2 for uncontrolled emissions with respect to

time scale separation, then Ŝ (t) = 5−4e−0.4t andK (t) = 25−0.02Ŝ (t) . Thus

carrying capacity is slowly reducing and at a steady state limt→∞ Ŝ (t) = 5

and limt→∞K (t) = 24. Since our numerical results indicate that the optimal

steady-state biomasses are declining along with carrying capacity, treating

the carrying capacity as fixed by ignoring the time scale externality, implies

that the time inconsistent regulatory scheme R will induce excess harvesting.

5 Conclusions

In the present paper we study the impact of time scale separation and the

implications of the resulting time scale externality in a model of renewable

resource harvesting with interacting populations. In our setup the carry-

ing capacity of each population is evolving slowly in response to pollution

accumulating because of emissions generated in the industrial sector of the

economy. Using singular perturbation methods, we analyze the problem of
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a regulator seeking to internalize the time scale externality and we derive

the optimal paths for the population biomasses and pollution along with the

optimal regulatory scheme that includes the adjustments necessary to inter-

nalize the time scale separation. By solving the problem of a regulator and

the problem of competing harvesters when time scale separation is ignored

and carrying capacity is regarded as fixed, we identify the deviations relative

to the case where the time scale externality is internalized. We also show

that ignoring the time scale externality leads to time inconsistent regulation.

Our results are supported by numerical simulations.

Areas for further research include the study of prey-predator models with

time scale separation and the introduction of nonconvexities in ecosystems

dynamics. In particular if pollution dynamics, which induce a slow varia-

tion of the carrying capacity, are characterized by nonconvexities then the

slow manifold might contain more than one feasible branch. In this case an

additional task of optimal regulation would be to identify the optimal slow

branch and steer the fast system towards this branch.

Uncertainty is also another open issue, in particular the case where the

evolution of the interacting populations might be characterized by risk, or

measurable uncertainty, and the slow evolution of the carrying capacity might

be characterized by ambiguity. The application of robust control methods

when the structure of uncertainty differs according to the time scale could

be a promising area for further research.
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6 Appendix

6.1 Appendix 1: Matrix J

The matrix is defined as: J= ∂F
∂X

=


∂F1
∂x1

∂F1
∂x2

∂F1
∂λ1

∂F1
∂λ2

∂F2
∂x1

∂F2
∂x2

∂F2
∂λ1

∂F2
∂λ2

∂F3
∂x1

∂F3
∂x2

∂F3
∂λ1

∂F3
∂λ2

∂F4
∂x1

∂F4
∂x2

∂F4
∂λ1

∂F4
∂λ2

 , where

∂F1
∂x1

= 2λ1ρ1/K
∂F1
∂x2

= (a12λ1ρ1 + λ2ρ2a21)/K
∂F1
∂λ1

= −ρ1 (1− (2x1 + a12x2)/K) + 2(p1 − λ1)αβq2
1Jw

−1
1

∂F1
∂λ2

= ρ2x2a21S
∂F2
∂x1

= 2λ2ρ2/K
∂F2
∂x2

= (a21λ2ρ2 + λ1ρ1a12)/K
∂F2
∂λ1

= ρ1x1a12/K
∂F2
∂λ2

= −ρ2 (1− (2x2 + a21x1)/K) + 2(p2 − λ2)αβq2
2Jw

−1
2

∂F3
∂x1

= ρ1 (1− 2x1/K − a12x2/K)− J (p1−λ1)βq21
ρ1w1

∂F3
∂x2

= −ρ1x1a12/K
∂F3
∂λ1

= J
βq21
ρ1w1

x1

∂F3
∂λ2

= 0
∂F4
∂x1

= ρ2 (1− 2x2/K − a21x1/K)− J (p2−λ2)βq22
ρ2w2

∂F4
∂x2

= −ρ2x2a21/K
∂F4
∂λ1

= 0
∂F4
∂λ2

= J
βq22
ρ2w2

x2.

6.2 Appendix 2: The Slow Manifold

Fenichel’s theorem extends the analysis to an arbitrary small parameter ε and

provides a slowmanifoldMε defined asMε = {(X,K) ∈ R6 : X= (H
ε
(K),K,ε)}

such that:

dK/dτ = G(H
ε

(K),K,ε),
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where the vector H
ε
(K) = H0(K) + εH(1)(K) + ... as ε→ 0, with

H0(K) = H0(K) (44)

H(1)(K)=[
∂F

∂X
]−1[

∂H0

∂K
G∗ − ∂F

∂ε
]

∂F

∂ε
= [

∂F1

∂ε
,
∂F2

∂ε
,
∂F3

∂ε
,
∂F4

∂ε
]T = [δλ1, δλ2, 0, 0]T

∂H0

∂K
=


∂Ho

1 (K)

∂µ

∂Ho
1 (K)

∂K
∂Ho

2 (K)

∂µ

∂Ho
2 (K)

∂K
∂Ho

3 (K)

∂µ

∂Ho
3 (K)

∂K
∂Ho

4 (K)

∂µ

∂Ho
4 (K)

∂K

 =


0

∂Ho
1 (K)

∂K

0
∂Ho

2 (K)

∂K

0 0

0 0


Manipulating sol4 we obtain that:

[
∂F

∂X
]−1 =


0.00064223K −0.000687398K −1.68311 5.49517

0.000501827K 0.00129511K −6.68298 −15.4481

5.71002 −0.743681 429.902
K

−8981.07
K

−2.65132 8.2908 −9027.47
K

20478.8
K



G =

[
G1

G2

]
,
∂H0

∂K
=


0 0.69734

0 0.27810

0 0

0 0

 , ∂H
0

∂K
G− ∂F

∂ε
=


0.69734G2 − δλ1

0.27810G2 − δλ2

0

0



H(1)(K) =


0.00064223(0.69734G2 − δλε1)− 0.000687398K(0.27810G2 − δλε2)

0.000501827K(0.69734G2 − δλε1) + 0.00129511K(0.27810G2 − δλε2)

0

0


H

ε

(K) = H0(K)+εH(1)(K) + ...
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Then with ε = 0.04, the optimal trajectories of the fast variables Xε as

functions of the slow variables are given by:

Xε = (xε1,x
ε
2, λ

ε
1, λ

ε
2)T = H

ε

(K) =


0.69734K

0.27810K

75.4924

−522.3770

+ 0.04 (45)


0.00064223(0.69734G2 − δλε1)− 0.000687398K(0.27810G2 − δλε2)

0.000501827K(0.69734G2 − δλε1) + 0.00129511K(0.27810G2 − δλε2)

0

0


which provides dK/dτ = G(Xε,K,ε). The dynamics of the slow variables

on Mε are given by:

[
dµ/dτ

dK/dτ

]
=

 δµ− λε1ρ1x
ε
1 (xε1 + a12x

ε
2) /K2

−λε2ρ2x
ε
2 (xε2 + a21x

ε
1) /K2 + µγ

γ (A2 −K)− ϕ2

∑I
i=1 si

 . (46)

Taking into account the relationship (13) and adopting the following para-

meterization

β = α = 1/2, J = 2, p1 = p2 = 10, w1 = w2 = 5, q1 = 0, 048, q2 = 0, 042,

ρ1 = 0.45, ρ2 = 0.35, r = 0, 05, a12 = a12 = 0.3,

D (·) = (·)2, δ = 0.05, ϕ = 0.1, A = 50, ε = 0.04, l = 0.4, γ = l/ε = 10, I = 2,

we obtain the dynamical system characterizing the slow variables.

By further manipulation we obtain the steady states of the above system

which give the full system equilibria. Their derivatives with respect to K

evaluated at a specific steady state, determine the stability properties of the
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specific steady state. We obtain for the steady state (K,µ):[
0

K

]
=

[
δµ− λε1ρ1x

ε
1 (xε1 + a12x

ε
2) /K2 − λε2ρ2x

ε
2

(
xε2 + a21x

ε
1,

)
/K2 + µγ

A2 − ϕ2
γ

∑I
i=1 si

]
[
µ

K

]
=

[
−0.64470

24.9001

]
, Ko = 2 ∗K = 49.8003 (47)

si : 1/2
√
si − 2

I∑
i=1

si − µϕ = 0,−→ si = 0.49926

This steady state has the saddle property stability.

6.3 Appendix 3: Linear damage function

In this part we derive our results assuming that the damage function associ-

ated with emissions is linear. Similarly to the quadratic damage function we

obtain regarding sol4:

Xε = (xε1,x
ε
2, λ

ε
1, λ

ε
2)T = H

ε

(K) =


0.69734K

0.27810K

75.4924

−522.3770

+ 0.04 (48)


0.00064223K(0.69734G2 − δλε1)− 0.000687398K(0.27810G2 − δλε2)

0.000501827K(0.69734G2 − δλε1) + 0.00129511K(0.27810G2 − δλε2)

0

0

 ,

which provides dK/dτ = G(Xε,K,ε). The dynamics of the slow variables

on Mε are given by:

[
dµ/dτ

dK/dτ

]
=

 δµ− λε1ρ1x
ε
1 (xε1 + a12x

ε
2) /K2

−λε2ρ2x
ε
2 (xε2 + a21x

ε
1) /K2 + µγ

γ (A−K)− ϕ
∑I

i=1 si

 . (49)
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Adopting the usual parameterization,

β = α = 1/2, J = 2, p1 = p2 = 10, w1 = w2 = 5, q1 = 0, 048, q2 = 0, 042,

ρ1 = 0.45, ρ2 = 0.35, r = 0, 05, a12 = a12 = 0.3,

D (·) = (·), δ = 0.05, ϕ = 0.1, A2 = 25, ε = 0.04, l = 0.4, γ = l/ε = 10, I = 2,

we obtain the dynamical system characterizing the slow variables.

Manipulating we obtain the steady states of the above system which give

the full system equilibria. For si and the steady state (K,µ) we obtain:

[
0

K

]
=

 δµ− λε1ρ1x
ε
1,

(
xε1, + a12x

ε
2

)
/K2

−λε2ρ2x
ε
2

(
xε2 + a21x

ε
1,

)
/K2 + µγ

γ (A2 −K)− ϕ2

∑I
i=1 si


[
µ

K

]
=

[
−0.64470

24.9971

]
,

si : 1/2
√
si − 1− µϕ = 0,−→ si = 0.285644. (50)

The steady state (µ,K) = (−0.64470, 24.9971) is a saddle point as in the

case with quadratic damages.

Assuming K(0) = 20, we present the main findings in Figure 4 where we

obtain, by using shooting methods, a good approximation of the final steady

state (−0.64470, 24, 9636) using as initial state (−1.2878, 20). The steady

state is attained at τ = 0.5. The corresponding steady state values for the

biomasses are (x1, x2) = (17, 4081, 6, 9425).

Comparing to the quadratic damage function case, it can be noticed that

linear damages result in relatively higher carrying capacity and resource bio-

masses.
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Figure 4: Regulation with linear damage function
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6.4 Appendix 4: Regulation with fixed K

Using the Hamiltonian

H(x,E, λ) = π(x,E) + λF,m = λ(t) =

[
λ1(t)

λ2(t)

]
, (51)

we derive the following optimality conditions:

HEmJ
(x,E, λ) = βpmqmx

α
mE

β−1
mj − wm − βλmqmxαmE

β−1
mj = 0, j = 1, ..J.

(52)

HEmJEmi
= (p− λm)(β − 1)qmx

α
mE

β−2
mj < 0,m = 1, 2.

λ
′
= rλ−Hx(x,E, λ) =

rλ1 − αp1q1x
α−1
1

∑J
j=1 E

β
1j − λ1{ρ1

(
1− 2x1+a12x2

K̄

)
− αq1x

α−1
1

∑J
j=1E

β
1j}

+λ2ρ2x2a21/K̄

rλ2 − αp2q2x
α−1
2

∑J
j=1E

β
2j − λ2{ρ2

(
1− 2x2+a21x1

K̄

)
− αq2x

α−1
2

∑J
j=1E

β
2j}

+λ1ρ1x1a12/K̄


x′ (t) = F (x1, x2) =

[
ρ1x1

(
1− x1

K̄
− a12

x2
K̄

)
− h1

ρ2x2

(
1− x2

K̄
− a21

x1
K̄

)
− h2

]
, hm =

J∑
j=1

hmj,m = 1, 2.

Solving for Emj, we obtain

Emj = (
pm − λm
wm

qmx
α
mβ)

1
1−β , , j = 1, ..J,m = 1, 2,

and thus (52) becomes:

λ
′

=


rλ1 − Jα( β

w1
)

β
1−β ((p1 − λ1)q1)

1
1−β x

α+β−1
1−β

1 − λ1ρ1

(
1− 2x1+a12x2

K̄

)
+λ2ρ2x2a21/K̄

rλ2 − Jα( β
w2

)
β

1−β ((p2 − λ2)q2)
1

1−β x
α+β−1
1−β

2 − λ2ρ2

(
1− 2x2+a21x1

K̄

)
+λ1ρ1x1a12/K̄


x′ =

[
ρ1x1

(
1− x1

K̄
− a12

x2
K̄

)
− h1

ρ2x2

(
1− x2

K̄
− a21

x1
K̄

)
− h2

]
, hm =

J∑
j=1

hmj.
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