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Abstract

Human economies and ecosystems form a coupled system coevolving in time
and space, since human economies use ecosystems services and at the same
time a¤ect ecosystems through their production and consumption activities.
The study of the interactions between human economies and ecosystems is
fundamental for the e¢ cient use of natural resources and the protection of
the environment. This necessitates the development and use of models capa-
ble of tracing the main interactions, links and feedbacks. In developing this
chapter, our objective was to focus on a segment of rapidly developing lit-
erature on coupled ecological/economic models with an emphasis on climate
change. The advantage of this approach is that it introduces the reader to a
very important current research topic, but it also allows, by using climate as
the reference ecosystem, the exploration of new modeling approaches which
are relevant and useful for the modeling of other types of coupled ecologi-
cal/economic systems. These include modeling of deep structural uncertainty
by using robust control methods, exploring modeling through cumulative car-
bon budgeting, studying spatial transport phenomena and spatial aspects in
economic/ecological modelling.
Keywords: Coupled ecological/economic models, climate change, deep

uncertainty, robust control,cumulative carbon budgeting, energy balance cli-
mate models, spatial aspects in ecological/economic modeling.
JEL Classi�cation: Q20, Q40, Q54, Q57



1 Introduction

Human economies and ecosystems form a coupled system coevolving in time
and space, since human economies use ecosystems services1 and at the same
time a¤ect ecosystems through their production and consumption activities.
The study of the interactions between human economies and ecosystems is
fundamental for the e¢ cient use of natural resources and the protection of
the environment through the design of policy and management rules. This
necessitates the development and use of models capable of tracing the main
interactions, links and feedbacks. Models are necessary in order to under-
stand the issues involved and to derive e¢ cient policies. It is clear that, in
order to attain these objectives, these models should be coupled models of
ecosystems and economics systems.
The modeling of coupled ecological and economic systems can be traced

back to models dealing with management of natural resources. The natural
link between ecosystems and human economies has been manifested in the
traditional development of resource management or bio-economic models (for
example, Clark, 1990), in which the main focus has been on �shery or forestry
management where the impact of humans on ecosystems is realized through
harvesting and biomass depletion. Closer links have been developed, however,
as both disciplines evolve.
Thus the classical phenomenological-descriptive approach to species com-

petition based on Lotka-Volterra systems has been complemented by mech-
anistic resource-based models of species competition for limiting resources
(Tilman, 1982, 1988). This approach has obvious links to competition among
economic agents for limited resources. Furthermore, new insights into the
fundamental issues of the valuation of ecosystems or the valuation of biodiver-
sity have been derived (e.g., Weitzman, 1992, 1998a; Brock and Xepapadeas,
2003) by linking the functioning of natural ecosystems with the provision of
useful services to humans; or by using concepts such as ecosystems produc-
tivity or insurance from the genetic diversity of ecological systems against
catastrophic events; or by developing new products using genetic resources
existing in natural ecosystems (Heal, 2000).
The size and the strength of the impact of human economies in ecosystems

depend on the way in which certain actions, such as harvesting, extraction
of resources, emissions of pollutants, or investment in harvesting or pollution
abatement capacity, which can be chosen by humans and which in�uence the

1Examples of useful services to humans include provisioning services, such as food,
water, fuel, or genetic material; regulation services, such as climate regulation or disease
regulation; and cultural services and supporting services, such as soil formation or nutrient
cycling (see Millennium Ecosystem Assessment, 2005).
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evolution of ecosystems, are actually chosen. These actions can be regarded
as control variables, and the way in which they are chosen a¤ects the evo-
lution of quantities describing the state of the coevolving coupled ecosystem
and economic system. The state of the coupled system depends on the evo-
lution of ecological variables, such as species biomasses or stock of pollutants
or greenhouse gases, which determine the �ow of ecosystem services, along
with traditional economic variables such as consumption, investment, and
stock of produced or human capital.
The typical approach in economics is to associate the choice of the con-

trol variables with forward-looking optimizing behavior. Thus, the control
variables are chosen so that a criterion function is optimized, and the eco-
nomic problem of ecosystem management �where management means choice
of control variables �is de�ned as a formal optimal control problem. In this
problem the objective is the optimization of the criterion function subject to
the constraints imposed by the structure of the ecosystem and the structure
of the economy. These constraints provide the transition equations as well
as other possible exhaustibility constraints associated with the optimal con-
trol problem. For example in models of resource harvesting with generalized
resource competition, the ecosystem dynamics describe both biomass and
limited resource evolution (e.g., Brock and Xepapadeas, 2002; Tilman et al.,
2005) in biodiversity valuation problems. Brock and Xepapadeas (2003) show
that genetic constraints associated with development of resistance should be
part of the optimal control of the coupled system.
The solution of coupled ecosystem-economic system models, provided it

exists, will determine the paths of the state and the control variables and
the steady state of the system. These paths will determine the long-run
equilibrium values of the ecological and economic variables as well as the
approach dynamics to the steady state.2

In principle, two types of solution can be characterized: (i) a socially
optimal solution where all known constraints associated with the problem
and externalities associated with action of individual agents are taken into
account, and (ii) a privately optimal solution which corresponds to an unreg-
ulated market equilibrium where forward-looking agents maximize private
pro�ts and externalities are not internalized. The deviations between the
private solution and the social optimum justify regulation. Thus, policy de-
sign in this context implies that instruments, such as taxes or quotas, are
determined so that the social optimum is implemented in a competitive equi-

2Managed ecological systems which are predominantly nonlinear could exhibit dynamic
behavior characterized by multiple, locally stable and unstable steady states, limit cycles,
or the emergence of hysteresis, bifurcations or irreversibilities.
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librium.
In developing this chapter, our objective was not to review the large body

of literature on modeling of coupled ecosystem and economic systems, but
rather to focus on a segment of rapidly developing literature on coupled eco-
logical/economic models with an emphasis on climate change. The advantage
of this approach is that it introduces the reader to a very important current
research topic, but it also allows, by using climate as the reference ecosys-
tem, the exploration of new modeling approaches which are relevant and use-
ful for the modeling of other types of coupled ecological/economic systems.
These include modeling of deep structural uncertainty by using robust control
methods, exploring modeling through cumulative carbon budgeting, study-
ing spatial transport phenomena and spatial aspects in economic/ecological
modelling.

2 Coupled Ecological/EconomicModeling for
Robustness

Consider the following social optimization model of an economy dependent
upon a biosphere stock x given by

maxc
R1
t=0
e��tu(c (t) ; x (t) )dt

s:t:
_x (t)= F (x (t) ; c (t) ); x(0) = x0:

(1)

For example in the Steele-Henderson (1984) model of a �shery below,

F (x; c) = rx(1� k=x)� c� aR(x)
R(x) = x2=(b2 + x2):

(2)

x (t) is a valuable stock, e.g. biomass of �sh. 3The term R (x) introduces non-
linear feedbacks, which are physical processes that further impact on initial
change of the system under study. Feedbacks could be positive if the impact
is such that the initial perturbation is enhanced, or negative if the initial
perturbation is reduced. In the context of renewable resources feedbacks can
be related to nonlinear predation terms. In the analysis of eutrophication
of lakes, positive feedbacks are related to the release of phosphorus that has
been slowly accumulated in sediments and submerged vegetation, while in
climate change issues they can be related for example with the permafrost

3To ease notation in many case we will omit the explicit dependence of a variable on
time t and write x instead of x (t) and so on.
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carbon pool (Brock, Engström, and Xepapadeas, 2014a). Nonlinear feed-
backs in the resource dynamics introduce nonconvexities which are related
to the existence of multiple steady states, hysteresis, or irreversibilities and
cause the emergence of Sciba points (see the collection edited by Dasgupta
and Mäler, 2004).
In the case of an ecosystem that is stressed by consumptive activities

(e.g., Dasgupta and Mäler, 2004),

_x = F (x; c) = �c� �x+ aR(x); x(0) = x0
R(x) = x2=(b2 + x2);

(3)

where x is a stock of something bad, e.g. the stock of phosphorous sequestered
in algae in a lake ecosystem (Carpenter et al., 1999; Dasgupta and Mäler,
2004; Mäler et al., 2003) and c is consumptive activities that yield utility but
damage the services that enjoyers obtain, u(c; x); where the utility function
u(c; x) increases in c but decreases in x, and the nonlinear feedback term
R (x) introduces nonconvexities. An example in which optimal control c can
be obtained in a closed form solution analytically is the case

a = 0; u(c; x) = ln(c�e�Dx); D > 0; 0 < � < 1: (4)

Thus the current value Hamiltonian for problem (1)-(3) is

H (x; c; p) = u(c (t) ; x (t) ) + p [�c� �x+ aR(x)] (5)

and the �rst order necessary conditions (FONCs) resulting from the maxi-
mum principle, using (4), imply:

1

c
= ��p (6)

_c = (�+ �) c+ (1� aR0 (x))�c2 (7)

_x = �c� �x+ aR(x): (8)

All cases may be analyzed using phase diagram techniques in co-state and
state space since the FONCs of the optimal control problem result in two
ordinary di¤erential equations (ODEs) for the stock x (t) and its shadow value
p (t) which are autonomous. We refer to the collection edited by Dasgupta
and Mäler (2004) for analysis of selected cases and Crépin et al. (2012) and
Levin et al. (2013) for many examples. Mäler et al. (2003) and Kossioris et
al. (2008), by using a utility function which is logarithmic in bene�ts and
quadratic in damages,

u (c; x) = ln c� �x2; � > 0; (9)
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study a situation in which enjoyers interact strategically. The lake ecosys-
tem problem is analyzed as a di¤erential game with open loop and nonlinear
feedback Nash equilibrium with the feedback Nash equilibrium strategies ob-
tained numerically. For the same problem, Kossioris et al. (2011) study the
structure of optimal state-dependent taxes that steer the combined economic-
ecological system towards the trajectory of optimal management, and provide
an algorithm for calculating such taxes. More examples, together with dis-
cussion of early warning signals of impending regime changes and tipping
points, are given in the collection published in Theoretical Ecology, edited by
Dakos and Hastings (2013).
Before continuing with our analysis, we insert a word of caution. Brook

et al. (2013) caution that one-dimensional models like the above that focus
on nonlinear responses to anthropogenic forcing must be restricted to the
appropriate time and spatial scales in order to be relevant. For example,
they identify settings in which such models might be relevant: (i) there must
be enough spatial homogeneity in drivers and responses; (ii) there must be
enough interconnectivity at the spatial and temporal scales under scrutiny.
At the global level they argue that the �usual suspects� - climate change,
land use change, habitat fragmentation, and species richness - are not likely
to satisfy the conditions needed for a strong enough nonlinearity at the global
scale to induce a global scale tipping point. They do not dispute, however,
that tipping points may occur at smaller regional scales.
We turn now to introducing robustness into the analysis of management

models of human-dominated ecosystems.

2.1 Robust control methods in coupled ecological/economic
systems

2.1.1 An introduction to robust control methods

Robustness is related to the major and interrelated uncertainties associated
with coupled ecological/economic systems. These uncertainties are primarily
associated with two basic factors: (a) the high structural uncertainty over
the physical processes of environmental phenomena and (b) the high sen-
sitivity of model outputs to modeling assumptions. As a result, separate
models may arrive at dramatically di¤erent policy recommendations, gen-
erating signi�cant uncertainty over the magnitude and timing of desirable
policies. These uncertainties may impede adequate scienti�c understanding
of the underlying ecosystem mechanisms and the impacts of policies applied
to ecosystems.
A central feature of the above structure of uncertainty is that it might be
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di¢ cult or even impossible to associate probabilities with uncertain prospects
a¤ecting the ecosystem evolution. This is close to the concept of uncertainty
as introduced by Knight (1921) to represent a situation in which probabilities
cannot be assigned to events because there is ignorance insu¢ cient informa-
tion. Knight argued that uncertainty in this sense of unmeasurable uncer-
tainty is more common in economic decision making. Knightian uncertainty
should be contrasted to risk (measurable or probabilistic uncertainty) where
probabilities can be assigned to events and are summarized by a subjective
probability measure or a single Bayesian prior.
Inspired by the work of Knight and subsequently by Ellsberg (1961), eco-

nomic theorists have questioned the classical expected utility framework and
attempted to formally model preferences when probabilistic beliefs are not of
su¢ ciently high quality to generate prior distributions. Gilboa and Schmei-
dler (1989) developed the axiomatic foundations of maxmin expected utility,
an alternative to classical expected utility for economic environments featur-
ing unknown risk. They argued that when the underlying uncertainty of an
economic system is not well understood, it is sensible - and axiomatically
compelling - to optimize over the worst-case outcome (i.e., the worst-case
prior) that could conceivably come to pass.
Motivated by concerns about model misspeci�cation in macroeconomics,

Hansen and Sargent (2001a, 2001b, 2008) and Hansen et al. (2006) ex-
tended Gilboa and Schmeidler�s insights to dynamic optimization problems,
thus introducing the concept of robust control to economic environments.
A decision maker characterized by robust preferences takes into account the
possibility that the model used to design regulation, call it benchmark or ap-
proximating model P, may not be the correct one but only an approximation
of the correct one. Other possible models, say Q1; : : :;QJ ; which surround P;
should also be taken into account with the relative di¤erences among these
models measured by an entropy measure, or an entropy ball containing the
approximate model P: Hansen and Sargent (2003) characterize robust control
as a theory "... [that] instructs decision makers to investigate the fragility
of decision rules by conducting worst-case analyses," and suggest that this
type of model uncertainty can be related to ambiguity or deep uncertainty
so that robust control can be interpreted as a recursive version of maxmin
expected utility theory. The models inside the entropy ball are close enough
to the benchmark model that they are di¢ cult to distinguish with �nite data
sets. Then robust decisions rules are obtained by introducing a �ctitious �ad-
versarial agent�which we will refer to as Nature. Nature promotes robust
decision rules by forcing the regulator, who seeks to maximize (minimize) an
objective, to explore the fragility of decision rules with regard to departures
from the benchmark model. A robust decision rule means that lower bounds

6



to the rule�s performance are determined by Nature �the adversarial agent
�which acts as a minimizing (maximizing) agent when constructing these
lower bounds.
In terms of applications, climate change is an area where ambiguity and

concerns about model misspeci�cation are present and signi�cant. As Weitz-
man (2009) points out, the high structural uncertainty over the physics of en-
vironmental phenomena makes the assignment of precise probabilistic model
structure untenable, while there is high sensitivity of model outputs to al-
ternative modeling assumptions such as the functional form of the chosen
damage function and the value of the social discount rate (e.g., Stern, 2006;
Weitzman, 2010). Thus robust control approaches �t very well with climate
change problems, as well as with more general environmental and resource
economics problems, given the deep uncertainties associated with these is-
sues.4 For example a speci�c density function for climate sensitivity from the
set of densities reported by Meinshausen et al. (2009) can be regarded as the
benchmark model, but other possible densities should be taken into account
when designing regulation. One of these densities that corresponds to the
least favorable outcome regarding climate change impacts can be associated
with the concept of the worst case.
To provide a more formal presentation, let the set of states of the world

be 
; and consider an individual observing some realization !t 2 
: The
basic idea underlying the multiple priors approach is that beliefs about the
evolution of the process f!tg cannot be represented by a probability mea-
sure. Instead, beliefs conditional on !t are too vague to be represented by
such a single probability measure and are represented by a set of probability
measures (Epstein and Wang, 1994). Thus for each ! 2 
, we consider P (!)
as a set of probability measures about the next period�s state.5

The individual ranks uncertain prospects or acts �: Let u be a standard
utility function. The utility of any act � in an atemporal model is de�ned as
(Gilboa and Schmeidler, 1989; Chen and Epstein, 2002)

U (c) = min
Q2P

Z
u (�) dQ; (10)

4Issues of regulation under ambiguity have been studied using two main approaches:
smooth ambiguity and robust control. Smooth ambiguity (Klibano¤ et al., 2005) parame-
terizes uncertainty or ambiguity aversion in terms of preferences and nests the worst-case,
corresponding to robust control, as a limit of absolute ambiguity aversion. The approach
has been used in climate change issues (e.g., Millner et al., 2010), but questions regarding
the calibration of the regulator�s ambiguity aversion remain open. Robust control methods
have been applied to climate change by Athanassoglou and Xepapadeas (2012).

5Formally P is a correspondence P : 
!M (
) assumed to be continuous, compact-
valued and convex-valued andM (
) is the space of all Borel probability measures.
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while in continuous time framework, recursive multiple prior utility is de�ned
as:

Vt = min
Q2P

EQ

�Z T

t

e��(s�t)u (�) ds

�
: (11)

These de�nitions of utility in the context of multiple-priors correspond to
an intuitive idea of the �worst case�. Utility is associated with the utility
corresponding to the least favorable prior. With utility de�ned in this way,
decision making by using the maxmin rule follows naturally, since maximizing
utility in the multiple-priors case implies the maxmin criterion
Given the set of probability measures P ; the decision maker considers the

reference probability measure P and another measure Q 2 M (
) : The dis-
crepancy between the two measures is determined by the discounted relative
entropy

R(Q==P) =
Z +1

0

e��tEQ[
1

2
h2t ]dt; (12)

where h is a measurable function associated with the distortion of the prob-
ability measure P to the probability measure Q. To allow for the notion
that even when the model is misspeci�ed the benchmark model remains a
�good� approximation, the misspeci�cation error is constrained. Thus we
only consider distorted probability measures Q such that

R(Q==P) =
Z +1

0

e��tEQ[
1

2
h2t ]dt � � <1: (13)

Using (13) as the entropy constraint, Hansen and Sargent (2008) de�ne
two robust control problems, a constraint robust control problem and a mul-
tiplier robust control problem. Using problem (1) as reference the constraint
robust control problem is written as:

max
c(t)

min
h(t)

E0
Z 1

t=0

e��tu(c (t) ; x (t) )dt (14)

subject to (15)

d (t) = [F (x (t) ; c (t) ) + � (x (t)h (t))] dt+ � (x (t)) dZ (t) ; x(0) = x0(16)

and (13); (17)

where fZ (t) ; t � 0g is a Brownian motion in the underlying probability space
(
;F ;P) and h (t) is a measurable drift distortion which re�ects the fact that
the probability measure P is replaced by another measure Q: The drift dis-
tortion incorporates omitted or misspeci�ed dynamic e¤ects on the dynamics
of the state variable.
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The multiplier robust control problem is de�ned as:

E0
Z 1

t=0

e��t
�
u(c (t) ; x (t) )+

1

2
�h2 (t)

�
dt (18)

subject to (16) and x(0) = x0: (19)

In both extremization problems, the distorting process h (t) is such that
allowable measures Q have �nite entropy. In the constraint problem (14), the
parameter � is the maximum expected misspeci�cation error that the decision
maker is willing to consider. In the multiplier problem (18), the parameter �;
which is called the robustness parameter, can be interpreted as a Lagrangean
multiplier associated with entropy constraint (13). Our choice of � lies in an
interval (�min;+1), where the lower bound �min is a breakdown point beyond
which it is fruitless to seek more robustness. This is because the minimizing
agent is su¢ ciently unconstrained that he can push the criterion function to
�1 despite the best response of the maximizing agent. Thus when � � �min
, robust control rules cannot be attained. On the other hand, when � ! +1;
or equivalently � = 0, there are no concerns about model misspeci�cation
and the decision-maker may safely consider just the benchmark model.
The multiplier robust control problem, which is the more analytically

tractable of the two, is solved by using the Hamilton-Jacobi-Bellman-Isaacs
(HJBI) condition (Fleming and Souganidis, 1989)

�V (x) = max
c(t)

min
h(t)

�
u(c (t) ; x (t) )+

1

2
�h2 (t)+ (20)

V 0 (x) [F (x (t) ; c (t) ) + � (x (t)h (t))] +
1

2
�2 (x (t))V 00 (x)

�
;

where V (x) is the value function for the problem. As shown in Hansen et
al. (2006, Appendix D), if � (�) is independent of the control then the HJBI
condition is satis�ed and the orders of maximization and minimization can be
exchanged in (20). Thus �V (x) = maxc(t)minh(t) f�g = minh(t)maxc(t) f�g :
In the rest of the chapter we assume that this independence assumption is
satis�ed.
Solution of problem (20) will determine the optimal robust paths (c�� (t) ; x

�
� (t))

for a given level of robustness � which express the regulator�s concerns about
model misspeci�cation. Solution of the same problem for � ! 1 will pro-
vide paths (c�1 (t) ; x

�
1 (t)) when the regulator is not concerned about model

misspeci�cation and regards the benchmark model as adequate.
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2.1.2 A deterministic approximation to robust control methods
in ecosystem management

The stochastic di¤erential game (20) can be simpli�ed to a deterministic
game, which simpli�es considerably the solution without altering its struc-
ture. Consider the following robust control version of the last model, adapt-
ing the framework of Hansen et al. (2006), Hansen and Sargent (2008) and
Anderson et al. (2014):

maxfcigminfhigE0f
R1
t=0
e��t(u(c; x) + (1=2)(

P
i �i(")h

2
i )dtg

s:t:
dx = [(�+ "1=2�1h1)c� (� + "1=2�2h2)x+ (a+ "1=2�3h3)R(x)]dt
+"1=2�1cdZ1 � "1=2�2dZ2 + "1=2�3R(x)dZ3;
x(0) = x0
R(x) = x2=(b2 + x2); x(0) = x0:

(21)

We will exploit the scaling methods introduced by Anderson et al. (2012)
and used by Anderson et al. (2014) to scale the �s with " in such a way that as
"! 0 we obtain a deterministic robust control problem that can be analyzed
quite easily. We believe that a very important agenda for future research is
to extend the methods of Anderson et al. (2012), Hansen et al. (2006),
and others in the recent robust control literature to management modeling
of human-dominated ecosystems. We content ourselves with analysis of limit
problems here. Assuming independence of the shocks fdZi; i = 1; 2; 3g, the
HJBI equation for (21) is:

�W (x) = maxfcigminfhig fu(c; x) + (1=2)(
P

i �i(")h
2
i )

+Wx[(�+ "
1=2�1h1)c� (� + "1=2�2h2)x+ (a+ "1=2�3h3)R(x)]

+(1=2)[("1=2�1c)
2 + ("1=2�2x)

2 + ("1=2�3R(x))
2]Wxx

	
:

(22)

The FONCs for the minimizing agent are

h1 = �(1=�1("))Wx"
1=2�1c

h2 = (1=�2("))Wx"
1=2�2x

h3 = �(1=�3("))Wx"
1=2�3R(x):

(23)

The important thing to note is the following. Consider one of the terms
containing an hi in the HJBI equation, e.g.

(1=2)�2(")h
2
2 �Wx"

1=2�2h2x = �(1=(2�2(")))(Wx"
1=2�2x)

2

= �(1=(2�2))(Wx�2x)
2;

(24)

and assume that �2(") = �2"; and that the same linear scaling applies to all
�s. Now take the limit of the HJBI equation as " ! 0. Since the terms
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involving Wxx vanish as " ! 0, this suggests (under appropriate regularity)
that the limit HJBI equation is6

�W (x) = maxfhigminfcgfu(c; x) + (1=2)(
P

i �ih
2
i )

+Wx[(�+ �1h1)c� (� + �2h2)x+ (a+ �3h3)R(x)]g:
(25)

From now on we con�ne our attention to robust deterministic problems under
the assumption that scaling of the thetas and the sigmas as above has taken
place. We �nd it more convenient to use optimal control theory rather than
the HJBI equation to analyze (25). The Hamiltonian is

H = maxfcigminfhgfu(c; x) + (1=2)(
P

i �ih
2
i )

+�[(�+ �1h1)c� (� + �2h2)x+ (a+ �3h3)R(x)]g:
(26)

The FONCs for the minimizing agent and the maximizing agent in (25) are

h1 = �(1=�1)��1c
h2 = (1=�2)��2x
h3 = �(1=�3)��3R(x)

(27)

uc(c; x) + �(�+ �1h1) = 0
_� = ���Hx = ��� fux(c; x) + �[�(� + �2h2) + (a+ �3h3)R0(x)]g:

(28)
The state equation is

_x = (�+ �1h1)c� (� + �2h2)x+ (a+ �3h3)R(x)
x(0) = x0:

(29)

After solving for the hs and the optimal control c, the co-state and state equa-
tions are two autonomous of time ODEs which may be phase diagrammed
and analyzed by standard qualitative methods to locate candidates for opti-
mal solutions.
Before we turn to phase diagram analysis, we exhibit a special case where

there is a closed form solution. Assume that

u(c; x) = ln(c�e�Dx);0 < � < 1; D > 0
0 = a = �2 = �3:

(30)

In this case, the co-state equation is

_�= (�+ �)�+D; or (31)

�= �D=(�+ �) (32)

6For details regarding the limit of the HJBI equation as " ! 0; see Campi and James
(1996).
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at the steady state. Insert the solution h1 = �(1=�1)��1c into the FONCs
for c;

�=c = ��(�+ �1h1) = ��(�+ �1(�(1=�1)��1c)) (33)

c = f��+ [(��)2 + 4��2]1=2g=(2�2) (34)

 � �21=�1: (35)

We used L�Hospital�s Rule to guide us to the correct root of the quadratic
in c which is the positive root of equation (34). Call this root, c+. More
precisely, take  ! 0 and obtain

c+ ! �(�+ �)=(D�): (36)

This is the solution that would be obtained if �1 = 0 or 1=�1 = 0, i.e.
��1 =1�, i.e., no robustness. It is easy to check that

c+ < c
� = �(�+ �)=(D�); (37)

where c� denotes the steady state solution when the manager has no doubts
about its speci�cation of the dynamics, i.e. �1 =1. A picture of the forces
a¤ecting the steady-state optimal control c; the doubts about the speci�ca-
tion of the dynamics, �1 and the standard deviation of the shocks bu¤eting
the dynamics, �1, can be obtained by running a numerical simulation of the
optimal control given in (34). Assuming � = 1; � = 0:06; � = 0:02; D = 0:03
and � = 0:5; which imply, using (32), a steady-state � = �0:375; the steady-
state optimal control c (�1; �1) is shown in �gure 1.

Figure 1: The steady-state optimal control c (�1; �1)
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The shape of the surface suggests that optimal consumptive activities
at the steady state are reduced as concerns about model misspeci�cation
increase, i.e., �1 is reduced. As �1 !1; which implies that there are no con-
cerns about model misspeci�cation, consumptive activities increase towards
the c� = 1:33: Another interesting property of this model, stemming from the
speci�cation of the logarithmic utility function (30), is that the Hamiltonian
system for the state and the costate variables is independent of (�1; �1) and
can be written as

_x = ��
�
� �x (38)

_� = (�+ �)�+D; (39)

with steady states

x� =
� (�+ �)

�D
; �� = � D

(�+ �)
: (40)

This implies that the paths for the state and the costate variables and
the corresponding steady state, are independent of (�1; �1) : This property
will not extend to more general utility functions.

3 Some Recent Work in Climate Economics
with Emphasis on New Modeling of Car-
bon Budgeting, Robustness, and Spatial Trans-
port

It is standard in a handbook chapter to review the relevant literature in each
section of the chapter. However, in the case of integrated assessment mod-
eling in climate-economics, the literature is huge and there are already good
sources that review this massive area of research. A few of the most recent
sources that also give critiques are Nordhaus (2008, 2013), Pindyck (2013a,
2013c), and Stern (2013). Brock, Xepapadeas, and Yannacopoulos (2014b)
review recent literature on inter-temporal spatial dynamic environmental eco-
nomic modeling. Rather than going over terrain that is competently covered
elsewhere, this section discusses some very recent work that emphasizes spa-
tial transport phenomena in climate-economics models and also reviews a
cumulative carbon budgeting approach that abstracts from the di¢ cult is-
sues surrounding the parametric speci�cation of a damage function. We
also include some discussion of robustness and stochastic forcing where the
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robustness parameter is scaled relative to the standard deviation of the sto-
chastic shocks in such a way as to yield an approximate deterministic problem
(Anderson et al., 2014).7

In addition we provide a brief discussion of policies needed to deal with
greenhouse gases (GHGs) that have di¤erent lifetimes. Pierrehumbert (2014)
argues that appropriate policies should focus on putting more emphasis on
long-lived GHGs in contrast to basing policies on global warming potentials
(GWPs) independent of lifetime of the GHGs. Even narrowing the focus to
this much smaller slice of the area requires that we concentrate on a relatively
narrow spectrum of the hierarchy of climate-economic models. Models of the
climate component range from the complex general models, which are com-
puter models with spatial resolution as �ne as current computer technology
can handle, to simple analytical energy balance models and �box�models.
Models of the economic component also have a similar complexity hierarchy.
We use the simplest possible models of both the climate component and the
economic component here.

3.1 Cumulative Carbon Budgeting to Implement Tem-
perature Limits

We begin this section by o¤ering a potentially radical approach to mitigating
some controversies in the literature IAMs. Pindyck has written a recent
series of papers (see the references, especially Pindyck (2013a, 2013c) that
argue that too many assumptions, especially regarding damage functions, are
made that do not have strong support in reality. That is, he argues that the
exact speci�cations of �damage functions�seen in a lot of the literature on
IAMs are weakly supported by hard evidence. Roe and Baker (2007) explain
why it is di¢ cult to make progress on reducing the uncertainty about a
key parameter, the climate sensitivity. Roe and Bauman (2013) critique
the use of the uncertainty distribution of climate sensitivity in the existing
literature on IAMs because much of the uncertainty is only relevant in the
very distant future. Finally Roe (2013) argues that the whole IAM enterprise
by arguing that it is just a �numbers game�. To put it another way, these
objections to the usual approach in climate economics based upon cost bene�t
analysis (CBA) are similar to the list of problems with CBA discussed by
Held (2013). However, we do not want to overstate criticism of CBA. For

7While this type of scaling in small noise expansions in robustness analysis is a useful
device for simplifying a complex stochastic problem into a simple deterministic problem for
analytical work, it has to be handled with care because the scaling needed may be incon-
sistent with detection probabilities that are consistent with available data sets (Anderson
et al., 2012).
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example, recent research on damages at the regional level (e.g., Barreca et
al., forthcoming) could be aggregated appropriately to produce a global scale
damage function with stronger foundations than current speci�cations of
global damage functions. Nevertheless it is worthwhile, for conceptual clarity,
to investigate a stark threshold-based option for comparison with existing
work.
Meanwhile Matthews et al. (2009) and Matthews et al. (2012) have ad-

vanced a very interesting argument that the increase in mean global yearly
temperature, which we refer to as just �temperature�from now on, is approx-
imately proportional to cumulated carbon emissions in each of the respected
big climate models that they simulate. They call this constant of propor-
tionality the cumulated carbon response parameter (CCR). Matthews et al.
(2012) argue that this �nding of approximate constancy of the CCR parame-
ter allows a cumulated carbon budget to be set that should not be exceeded
for a given threshold temperature. Matthews et al. (2009) and Matthews
et al. (2012) argue that there is evidence to support the proportionality re-
lationship in reality and, hence, this relationship could be used for policy
purposes.
Here is the potentially radical idea that we develop in this section. In-

stead of struggling with the problem of specifying an exactly parameterized
damage function, we will let the climate science community set a thresh-
old temperature that they agree should not be exceeded in order to avoid
catastrophic climate change. We then use the Matthews et al. (2009) CCR
parameter to set a cumulated carbon budget which should not be exceeded.
Of course this implies an �implicit�damage welfare cost function which is
essentially plus in�nity when the threshold is exceeded. To put it another
way, output that is left over for consumption is full output until the thresh-
old is reached, and then it becomes zero. Our e¤ort could be also viewed as
a very crude simpli�cation of Weitzman�s (2012) much more sophisticated
treatment in which he replaces the �standard� quadratic damage function
with a damage function that increases much more sharply as temperature
increases and replaces thin-tailed distributions of climate sensitivity with
fat-tailed distributions like the Pareto distribution. It can be argued that
this is taking too extreme a stand on a particular threshold temperature. In
any event we explore the conclusions that taking this stand implies. This
stand implies that our job as economists is to design a set of e¢ cient insti-
tutions, i.e., policy instruments to implement the optimal path of emissions
of the economy that do not exceed this cumulated carbon budget. In some
sense we are taking the position that the climate science community has the
expertise to set the limiting global average temperature increase that the
climate system can tolerate and the economic science community�s job is to
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design the best set of policies to maximize the welfare of the world economy,
subject to this cumulated carbon emissions budget constraint. This idea is
not unique to us. It is similar to the cost e¤ectiveness analysis (CEA) advo-
cated by Held (2013). As far as we know, using the Matthews et al. (2009)
and Matthews et al. (2012) climate module to implement Held�s CEA and
the discussion of implementation of CEA by decentralized market-based in-
stitutions is new ,although it is closely related to some of the analysis in
Anderson et al. (2014).
We realize that our approach has uncertainty problems that may be as

great or greater than the received approach with detailed speci�cation of
objects like damage functions and approaches that deal with the �fat-tailed�
distribution of possible values of the usual climate sensitivity parameter (e.
g., Weitzman, 2011; Roe and Baumann, 2013). For example climate science
has not settled on what the value of the critical threshold temperature is
and readers of Matthews et al. (2009) and Matthews et al. (2012) will
notice right away that the CCR parameter varies across respected big climate
models. In any event, for readers who feel that our approach is too radical,
it is fairly straightforward to extend it to cases where the damage function
increases sharply over a domain of temperatures for which the climate science
community has a strong consensus that going beyond temperatures in this
domain would be truly catastrophic. We discuss these problems later. It
is easiest to explain our approach with formal modeling. We will do the
simplest deterministic case �rst because that will be enough to explain the
basic ideas before turning to more complicated and realistic cases.
We assume that the global average temperature evolves much as in the

Anderson et al. (2014) working paper which used the temperature dynamics
climate model from the Matthews et al. (2009) and Matthews et al. (2012)
papers. To our knowledge the Anderson et al. paper is the �rst paper in the
climate economics literature to use the Matthews et al. approach for coupled
climate-economic models. Anderson et al. still use damage functions as in
Golosov et al. (2014), Nordhaus (2008) and others. The approach we use
here is new and is not in Anderson et al. although it is closely related to
some of the analysis in section 2 of that paper.

3.1.1 Deterministic Case: The Simplest Possible Model

We start with a speci�cation where a closed form solution is available. Sup-
pose Tc is chosen by the climate science community as the temperature which
should not be exceeded to avoid catastrophic climate change. Since it is stan-
dard to work with the increment to temperature since pre-industrial times,
�temperature�here is always short for �incremental temperature�. For exam-
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ple, a standard choice for Tc is 2�C, that is two degrees Centigrade. However,
this choice has recently become controversial (e.g., Victor and Kennel 2014).
Nevertheless, it stands to reason that climate scientists and policy makers in
general might want to try to keep the temperature from getting much bigger
than, say, 3�C even if they felt that 2�C was too cautious. Indeed some cli-
mate scientists and economists (e.g., Hansen et al., 2013) argue that 2�C is
too high for the planet to tolerate without serious harm and that 1�C should
be the limit. Held (2013) argues for the 2�C limit as a sensible limit to set
based upon current knowledge in climate science.
Stern (2013) discusses many extremely unpleasant e¤ects that might oc-

cur if the Earth�s temperature reaches 4�C. While the approach based upon
cumulative carbon budgeting that we use here is extremely stark it does have
the advantage of separating the model component speci�cation tasks accord-
ing to relative expertise. That is, speci�cation of the global average tem-
perature target not to be exceeded is left to the climate science community,
and design of incentive structures to implement a cumulative carbon budget
not to exceed that target is left to the economic science community. Since
speci�cation of a target temperature not to be exceeded is speci�cation of an
�extreme�damage function of zero until the target is reached, then minus
in�nity for temperatures larger than target, what our approach is basically
saying is this: The climate science community has expertise in specifying
a �penalty function� on temperature increases and the economics commu-
nity has expertise in incentive mechanism design that should be exploited.
This separation of speci�cation tasks in the modeling exercise has elements
of transparency and speci�cation task separation across science communities
according to relative expertise that might appeal to writers like Stern (2013)
and Pindyck (2013b).
Repetto (2014) in his review of Nordhaus (2013) takes issue with the cost

bene�t approach to climate economics. Our approach here could be viewed
as a start in developing an alternative approach that avoids some of the prob-
lems with the CBA approach at the expense of introducing other problems.
Our view is that it is useful to place our approach on the table for discussion.
We will not take a stand on its value relative to received approaches such
as Nordhaus (2013) and many others who use a CBA type of approach to
climate economics. In any event, the Matthews et al. (2009) and Matthews
et al. (2012) framework allows speci�cation of a target cumulative carbon
budget not to be exceeded once a target temperature not to be exceeded is
speci�ed. It is easiest to explain the approach proposed here by working out
some simple examples.
The proportionality of temperature to cumulated carbon emissions can

17



be speci�ed as

T (t)� T (0) = �
Z t

0

E (u) du; (41)

where T (t) and T (0) denote current temperature and initial (e.g. prein-
dustrial) temperature respectively, � is the CCR parameter and E (u) is
emissions of GHGs emitted at time u 2 [0; t] : Thus the rate of change of
temperature is proportional to current emissions or

_T (t) = �E (t) ; T (0) = T0: (42)

Probably the simplest �precautionary� approach to cumulative carbon
budgeting that might appeal to some climate scientists and that might be
illustrated with a toy model like this one is to take a value of the CCR
parameter � from the high end of the distribution of values across models
displayed in, for example Matthews et al. (2009), call it �max; and simply
solve the problem,

max
E(t)

�Z 1

t=0

e��tu(yE�)dt

�
(43)

subject to
_T = �E; T (0) = T0; (44)

for the dynamics of global average temperature, where y is an exogenous
productivity function, and

_S = � _T = ��maxE; S(0) = Tc � T0
S(t) � Tc � T (t):

(45)

This problem is just a standard exhaustible resource problem with the initial
reserve set equal to

Tc=�max: (46)

We will see this same theme appear in the simple �toy� robust control
problem with multiplicative uncertainty that we discuss below.

3.1.2 Robust Emission Control with Multiplicative Uncertainty

We introduce uncertainty and concerns about model misspeci�cation in the
temperature dynamics of model (43)-(44). Assuming that the drift distortion
- which is chosen by the adversarial (i.e. the minimizing) agent - enters
temperature dynamics multiplicatively, the deterministic approximation of
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the stochastic robust control problem discussed above requires solving the
robust control problem8

max
E
min
v

�Z 1

t=0

e��t(u(yE�) + (1=2)�v2)dt

�
(47)

subject to
_T = (�+ v)E; T (0) = T0: (48)

The ODE (48) describes the dynamics of global mean temperature (GMT),
denoted here by T (t) for each date t, with v denoting the distortion of the
temperature dynamics due to model misspeci�cation concerns which is cho-
sen by the minimizing agent, and E denoting GHGs emissions which by a
suitable choice of units can become equivalent to fossil fuel usage. Further-
more,

_R = �E; R(0) = R0
_S = � _T = �(�+ v)E; S(0) = Tc � T0
S(t) � Tc � T (t)

(49)

describe the dynamics of fossil fuel usage and the dynamics of the �safety
reserve� S(t) � T (t) � Tc. The idea here is that the planner feels that
he/she knows from reading Gillett et al. (2013), Matthews et al. (2009) and
Matthews et al. (2012) that there is some true value of the CCR parameter9

and sets for example,

� = 1:5oC=1000PgC; (50)

based on the mean value reported by Matthews et al. (2012, page 4369),
but wishes to, for example, robustify its choice against a possible choice of
Nature in the 5-95% range of 1 to 2:1�C reported by Matthews et al. (2012,
page 4369).
Specifying the utility function as u(yE�) = ln y + � lnE; and noting

that since ln y is exogenous it does not a¤ect optimization, the current value
Hamiltonian is given by

H = max
E
min
v
f� lnE + �S(�(�+ v)E) + �v2=2g: (51)

8As we will see below, the multiplicative uncertainty problem is much easier to solve
than the additive uncertainty case.

9The CCR parameter � is expressed in terms of degrees Celsius per 1000 PgC. 1 PgC
(petagram of Carbon) = 1 GtC (gigatonne of carbon). 1 GtC = 109 tonnes C = 3.67 Gt
carbon dioxide.
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The FONCs for a Nash equilibrium imply

E = �=(�S(�+ v))
v = �SE=� = �=(�(�+ v)):

(52)

The solution of (52) for v is:

v�= (��+D1=2)=2;
D � �2 + 4�=�: (53)

We have chosen the positive root since a larger CCR is worse for the welfare
of the maximizing agent. Since the path for the co-state variable is given by

�S(t) = �S(0)e
�t; (54)

using the constraint

S0 =
R1
t=0
(�+ v�)E(t)dt =

R1
t=0
(�+ v�)(�=(�S(t)(�+ v

�))dt =
) �S(0) = �=(�S0)

(55)

allows us to solve for �S(0). The solutions for energy use and the dynamics
of S(t) are given by

E(t) = �e��t=(�S(0)(�+ v
�)) = (�S0e

��t)=(�+ v�) (56)

S(t) = S0 �
R t
s=0
(�+ v�)E(s)ds

= S0 �
R t
s=0
[(�+ v�)(�S0e

��s)=(�+ v�)]ds = S0e
��t:

(57)

Note that in the non-robust case, i.e. when there are no concerns about
model misspeci�cation so that � !1 and v ! 0; energy use is independent
of energy�s share in production, i.e. energy use is independent of �. But in
the robust case, energy use decreases in every period when energy�s share
increases. Another useful result is the time consistency of the equilibrium
solution which is easy to show from (57). An extremely important property
of the multiplicative uncertainty case is that S(t) � 0 holds for all positive
dates for solution (57). Thus our solution procedure has actually produced
an equilibrium solution to the zero sum game.
The value of the equilibrium of this zero sum dynamic game for the max-

imizing player isZ 1

t=0

e��t� ln(E(t))dt =

Z 1

t=0

e��t� ln(�S0e
��t=(�+ v�))dt: (58)

Although the case of logarithmic utility is popular, the equilibrium solution
has many useful properties that are special to this case. We investigate the
more general case,

u(yE�) = [(yE�)1� � 1]=(1� ): (59)
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The Hamiltonian for this case is

H = [(yE�)1� � 1]=(1� ) + (1=2)�v2 � �S((�+ v�)E): (60)

The FONCs give us the equations (suppressing the dependence upon t except
when needed for clarity):

v� (t) =
�S (t)E (t)

�
(61)

E� (t) =
1

�
[�S(�+ v

� (t) )y�1]1=[�(1�)�1] (62)

�S(t) = �S(0)e
�t: (63)

Equations (61)-(63) imply that the solution for v(t) must satisfy

v�(t) = (1=�)[
�
�S(t)

(�(1�))� (�+ v�(t))y(t)(�1)
�

]1=[�(1�)�1]: (64)

We see right away from (61)-(63) that for the logarithmic case,  = 1,
the time dependent terms drop out of (64) and we obtain equation (52) for
v(t) = v�; which is constant in time and is independent of the shadow price
�S(t) of the state variable, S(t). Since �(1 � ) � 1 < 0, we see that the
RHS of (64) is decreasing in v and the LHS is increasing in v: It is easy to
see that for each date t there is a unique v�(t) that solves (64). Even if y(t)
is constant, there will still be time dependence of v�(t) unless  = 1. The
constancy of v�(t) as a function of time is important for time consistency of
the equilibrium solution of the game.
For the nonlogarithmic case ( 6= 1); the system (61)-(63) needs to be

solved numerically. Assuming y (t) = y0egt; where g > 0 denotes an exoge-
nous growth rate and replacing the discount rate � with ! = � � g (1� ) ;
an algorithm for numerically solving the nonlinear system can be described
as follows:

1. Take a discrete time horizon t = 0; :::; T for su¢ ciently large T and
calculate the discrete approximation !̂ of the continuous time discount
rate !; using ! = ln (1 + !̂) ;

2. Choose an �s (0) and numerically solve (61),(62) for E
�
t and v

�
t ; t =

0; :::; T ;

3. Calculate the sum S�0 =
P

t (�+ v
�
t )E

�
t ;

4. Repeat steps 2 and 3 for di¤erent values of �s (0) : Select the value for
�s (0) for which the paths (E

�
t ; v

�
t ) result in a sum S

�
0 that approximates

the true S0:

21



3.1.3 Cumulative Carbon Budgeting and Climate Changes Dam-
ages

The cumulative carbon budgeting framework can be combined with an ex-
plicit damage function associated with climate change to determine robust
optimal emission policy. Writing the utility function as y (t)E (t)a e�DT (t);
with the term e�DT (t) re�ecting climate change damages and assuming log-
arithmic utility, the robust control problem for the regulator can be written
as:

max
E
min
v

�Z 1

t=0

e��t(� lnE �DT + (1=2)�v2)dt
�

(65)

subject to
_R = �E; R (0) = R0 (66)
_T = (�+ v)E; T (0) = 0 (67)

Tc �
Z 1

0

(�+ v)Edt � 0: (68)

The current value Hamiltonian for this problem is

H = � lnE�DT+(1=2)�v2��RE+�T (�+v)E+�e�t
�
Tc �

Z 1

0

(�+ v)Edt

�
;

(69)
with optimality conditions

E (t) =
�

�R + (�e
�t � �T ) (�+ v (t))

(70)

v (t) =
1

�

�
�e�t � �T

�
E (t) (71)

�

�
Tc �

Z 1

0

(�+ v)Edt

�
= 0; � � 0 (72)

_�R = ��R (73)

_�T = ��T +D: (74)

Note that taking the forward solution of (74), �T (t) =
R1
s=t
e��(s�t) (�D) ds =

�D=� for all t; which is constant. Now assume R0 is large enough that some
of the initial reserve is left in the ground in the non-robust case. Then we
can try for a solution where �R (t) = 0 for all t � 0. Using (70) to substitute
E (t) into (71), we obtain

v (t) =
�

� (�+ v (t))
: (75)
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Thus v (t) = v� constant and

E� =
�

(�+D=�) (�+ v�)
: (76)

Substituting E� into the isoperimetric constraint (67), a �� that satis�es the
constraint can be determined. The procedure can easily be extended to the
case where T (0) = T0 > 0; T0 < Tc:

3.2 Climate change policy with multiple life time for
greenhouse gases

Pierrehumbert (2014) has raised the important point that policy needs to take
into account not only the GWP of a GHG but also the atmospheric lifetime
of the gas. For example, methane has a much shorter lifetime but a higher
GWP than CO2. This part of our climate economics section explores policy
on multiple life time gases in the context of a simple energy balance model
with forcing determined by stocks of two GHGs, #1 with in�nite life and #2
with short life but larger GWP, modelled as in the equations (78)-(79) below
which abstract from the spatial considerations presented in section 3.3. We
represent the problem and the di¤erent e¤ects of the two gases introduced
below in a very stark way and caution the reader thus. Notation is close to
that in section 3.3. Furthermore, instead of a limit temperature Tc; we have
introduced a damage function in (77). The positive value of � > 0 penalizes
increases in global mean temperature by loss of consumable output.
Consider the following problem:

max
fE1(t);E2(t)g

�Z 1

t=0

e��tu(y(t)(E1(t) + E2(t))
�e��(T (t)�T0))dt

�
(77)

subject to

C _T (t) = �BT (t) + � ln[(M1(t) +NM2(t))=(M1(0) +NM2(0))];
T (0) = 0

(78)

_M1(t) = b1E1(t) ; M1(0) =M10 > 0 given
_M2(t) = �m2M2(t) + b2E2(t) ; M2(0) =M20 > 0; given
_R1(t) = �E1(t); R1(0) = R10; given
_R2(t) = �E2(t); R2(0) = R20; given.

(79)

For clarity of focus we study a polar case where GHG #1 stays in the
atmosphere forever and GHG #2 decays according to m2 > 0, but the GWP
of #2 is N > 1 times that of #1. Initially it might be thought that, in order
to simplify the problem, we could also assume that the known reserves of
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the two sources of energy that produce emissions of the two GHGs are so
large that the optimal costates will turn out to be zero. However, under the
damage function above, this causes contradictions for any �nite reserve, no
matter how large, as we will show below.
The Hamiltonian and FONCs for this problem for the log utility case

are, putting M � M1 + NM2 and dropping terms that are irrelevant for
optimization,

H = ln y + � ln(E1 + E2)� �(T � T0) + �M1
(b1E1) + �M2

(�m2M2 + b2E2)(80)

+�T [(�B=C)T + (�=C)] ln(M1 +NM2))� �R1E1 � �R2E2:

The FONCs of optimal control for (80) associated with the evolution
of the co-state variables which are interpreted as the shadow values of the
corresponding stocks are:

_�T = (�+B=C)�T + � (81)

�T (t) = ��=((�+B=C)) � ��T ; for all t (82)

_�M1
= ��M1

� ((���T=C)(1=M)) (83)

_�R1 = ��R1 (84)

�M1
(t) =

Z 1

s=t

e��(s�t)(���T=C)(1=M(s))ds (85)

_�M2
= (�+m2)�M2

� ((���T=C)(N=M)) (86)

�M2
(t) = N

Z 1

s=t

e�(�+m2)(s�t)(���T=C)(N=M(s))ds (87)

_�R2 = ��R2 : (88)

In (81)-(88) we write the di¤erential equations and their forward solutions for
the co-state variables for the two gases as well as for the temperature co-state
variable. These are part of the solution for the optimal control problem. We
always impose the usual transversality conditions which help pick out these
solutions for the co-state variables. Note that the co-state variable solution
for temperature turns out to be a constant in time.
The Hamiltonian (80) can be written, after setting E := E1 + E2; as

H = ln y + � ln(E) + �M2
b
2
E � �R2E + (89)�

�M1
b
1
� �R1

�
E1 �

�
�M2

b
2
� �R2

�
E1

��(T � T0)� �M2
m2M2

+�T [(�B=C)T + (�=C) ln(M1 +NM2)]:
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Since the Hamiltonian is linear in E1 we obtain the switching rule,

E1 = 0; E2 = E; if b1�M1
� �R1 < b2�M2

� �R2
E1 = E;E2 = 0; if b1�M1

� �R1 > b2�M2
� �R2 :

(90)

One might think it is intuitive that the shadow prices of the reserves,�Ri(0; �;R0i); i =
1; 2 would go to zero as R0i ! 1; i = 1; 2, but it is not quite so simple.
Equations (85) and (86) imply that the shadow prices grow at rate � from
any positive initial value, no matter how small, so we must proceed with
care. For example, at �rst glance, one might think that as � ! 0, it would
be obvious that the long-lived GHG, #1, would not be used, but the fact that
the initial shadow prices of the reserves �Ri(0; �;R0i); i = 1; 2 depend upon
� and may even increase as � decreases, makes it di¢ cult to actually prove
precise results for this system. Nevertheless we may obtain some results and
stay within the scope of this chapter. We do enough here to make a strong
case that policy analysis for multiple lifetime GHGs is a very fruitful and
important area for future research.
Put � � ����T=C. Since �Mi

< 0; i = 1; 2, the switching rule (90) may
be written in the more transparent �cost�form

E1 (t) = 0; E2 (t) = E (t) (91)

if b1f
Z 1

s=t

e��(s�t)(�=M(s))dsg+ �R1(0; �;m2; R10)e
�t >

b2Nf
Z 1

s=t

e�(�+m2)(s�t)(�=M(s))dsg+ �R2(0; �;m2; R20)e
�t

E1 (t) = E (t) ; E2 (t) = 0

if b1f
Z 1

s=t

e��(s�t)(�=M(s))dsg+ �R1(0; �;m2; R10)e
�t <

b2Nf
Z 1

s=t

e�(�+m2)(s�t)(�N=M(s))dsg+ �R2(0; �;m2; R20)e
�t:

The rule (91) says to use the GHG that is cheapest in terms of social marginal
cost at each point in time. Pierrehumbert (2014) stresses that policy focus
should be on mitigating emissions of the long-lived gas #1 which plays the
role of CO2 in our model in contrast to the short-lived gas #2, which plays
the role of methane, even though the short-lived gas has a larger GWP. Even
though the switching rule in (91) is somewhat complicated, we may still draw
some conclusions without too much work.
First, if some of R10 is not used, if the shadow price of #2 is positive,

then it is not optimal to eventually specialize in using #2. To show this, by
way of contradiction, note that the shadow price of #1 is zero, �R1(t) = 0,
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if it is not all used, and if the shadow price of #2 is positive it must grow at
the rate �. But since, M10 > 0, we must have 1=M(t) � 1=M10 for all dates
t: Thus the social marginal cost of #1 is bounded above by �=(�M10) while
the social marginal cost of #2 is eventually growing at least by rate �. Hence
eventually it will be cheaper to switch to #1. This is a contradiction.
Second, here is a corollary to the above argument : �R2(0; �;m2; R20) �

�R1(0; �;m2; R10) � 0. To prove this by way of contradiction, subtract
�R1(0; �;m2; R10)e

�t from both sides of (91). Note that if our claim does
not hold repeat the same type of argument as above to get a contradiction.
Third, since _Ri = �Ei; i = 1; 2, the shadow price of one of the GHGs,

can�t be zero if the other is positive. We prove this assertion by way of
contradiction. If the shadow price of gas i were zero at some point in time,
then it must be zero at date t = 0; since _�Ri = ��Ri. But the shadow price of
the other gas, call it j, being positive, grows at rate �. Eventually the social
marginal cost of GHG j; i.e. ��Mj

(t) + �Rj(t), because it grows at least
at rate �, must exceed the social marginal cost of GHG i, by an argument
similar to that above, which causes a switch to i and usage of i until the
reserve is exhausted which then causes the shadow price to become positive.
This is a contradiction.
Fourth, at �rst we thought it would be simple to show that as � ! 0

eventually it would be optimal to specialize in using GHG #2 since it decays
in the atmosphere but GHG#1 does not decay. However, since the shadow
prices depend upon the decay rate m2 as well as the discount rate � it is not
so straightforward.
While we have barely scratched the surface of the interesting interaction

of economics and climate science stimulated by Pierrehumbert (2014), we
think that we have done enough to indicate that this is a promising area for
future research. Of course we have neglected adjustment costs of switching
and other complexities of the real world. This analysis has been pushed far
enough to suggest that it is important to develop this kind of analysis of
management policies toward multi-lived GHGs emissions in more realistic
models. There are many directions in which this analysis can be taken.
Implementation by di¤erential taxes on di¤erent GHGs, for more general
speci�cations of utility functions, general production functions, etc., as well
as extension to robustness to treat speci�cation doubts on the part of the
planner as in Anderson et al. (2014) are all promising research directions.
We turn now to a very short illustrative discussion of implementation of

equilibrium solutions by decentralized market institutions.
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4 Implementation

The framework above assumes that the economist�s job is just to imple-
ment the best way to satisfy the cumulative carbon budget constraint rec-
ommended by climate scientists. A natural way (at least for economists) is
to try to �nd an optimal energy tax that implements the optimal solution to
problem (47) in competitive equilibrium. A representative consumer solves
the problem

max
c

�Z 1

t=0

e��tu(c)dt

�
; (92)

subject to
c+ _b = � + pE + rb+ Tr; b(0) = 0: (93)

Here Tr(t) is lump sum redistribution to consumers of the energy taxes
imposed on the representative �rm at each date t; and pE is the lump sum
redistribution of revenues from the representative energy �rm to consumers.
The representative �rms solve the problem

� = max
fx;Eg

fyE� � (� + p)Eg: (94)

Let E�(t) denote the equilibrium function of energy use in the robust control
problem (47), which is a function of date t. De�ne

p(t) + � �(t) = y�E�(t)��1: (95)

A representative energy �rm solves

� = max
fEg

�Z 1

t=0

e�
R t
s=0 r(s)dsp(t)E(t) + �R0(R0 �

Z 1

t=0

E(t)dt

�
: (96)

The FONCs for the representative energy �rm are

e�
R t
s=0 r(s)dsp(t) = �R0 )

_p(t)
p(t)
= r(t) ; p(0) = �R0 :

(97)

This �Hotelling�s Rule� is just what we would expect since this is stan-
dard economics. An interesting wrinkle here occurs when the robust control
problem recommends leaving some of R0 in the ground. In this case the en-
ergy price p(t) = 0 for all dates t; and the value of the representative energy
�rm is zero.

Proposition 1 Assume that the solution to problem (92) leaves some of R0
in the ground. Suppose �rms solving problem (94) face energy tax function,
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� �(t) = y(t)�E�(t)��1, then they will pick their pro�t-maximizing level of
energy use to be E�(t) at each date t. If the pro�ts and taxes distributed lump
sum to the consumer solving problem (92) subject to the constraint (93) are
evaluated at the (�)-solution, then in equilibrium where borrowing and lending
b(t) = 0 for all dates t, the consumption will be c(t) = c�(t) = y(t)E�(t)� for
all dates t.

Proof. Facing � �(t) = y(t)�E�(t)��1+ p(t), the representative �rm�s FONC
is

y(t)�E(t)��1 = � �(t) + p(t) = y(t)�E�(t)��1 + p(t): (98)

We will show that p(t) = 0 for all dates, t. Hence, in this case, by (98) it must
be the case that E(t) = E�(t) for all dates t. This shows that the �rms pick
the (�)-level of energy use at each date t. Suppose by way of contradiction
that �R0 > 0. Then by the FONCs for the representative energy �rm we
will have p(t) > 0 for all dates t and the energy �rm will exhaust all of R0,
because �R0 > 0. However if p(t) > 0 for all dates t in (96) (actually if it is
positive for any date t), then less energy will be used in the (�)-solution since
the price is higher. Thus the total energy use must be less than the total
energy used in the (�)-solution. This contradicts �R0 > 0. Hence �R0 = 0
and thus p(t) = 0 for all dates t. This ends the proof for the case of the
representative �rm.
Turning to the consumers, the budget constraint when there is no bor-

rowing and lending (which must be the case in equilibrium) is

c(t) = �(t) + Tr(t) =
��(t) + Tr�(t)
= yE�(t)� � � �(t)E�(t) + � �(t)E�(t) = yE�(t)�:

(99)

Remark 2 Notice that the function of time E�(t) can be an arbitrary func-
tion of time and the method above can still be used to �nd a tax function
� �(t) that will implement it, provided that the su¢ cient condition, �R0 > Tc,
for �R0(0) = 0 holds.

Note that the equilibrium return on assets is given by

r�(t) = �� u
00(c�(t))(dc�(t)=dt)

u0(c�(t))
; (100)

which can be worked out in closed form for this particular example, if needed.
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5 Energy Balance Climate Models and Spa-
tial Transport Phenomena

EBCMs are a useful and tractable way to model spatial e¤ects on local tem-
peratures of �outside� forcing of the climate system (North et al., 1981).
Consider the following EBCM,

C _Tb(x; t) = QS(x)a(x)� (A+BTb(x; t))
+D@[D(x)(1� x2)@Tb(x; t)=@x]=@x];

(101)

where the notation follows North et al. (1981).That is,

C;Q; x; S(x); A;B; Tb(x; t); @[D(x)(1� x2)@Tb(x; t)=@x]=@x;

denote respectively heat capacity per unit area (a constant), solar constant,
sine of latitude x, solar energy received at latitude x, empirical constants
A;B, �baseline� temperature of the climate system at latitude x with no
outside human-induced forcing, and spatial energy transport operator. Now
assume that for t � 0 a human-induced forcing h(t) is �switched on�where
we imagine that date zero is pre-industrial, e.g. date zero is 1750 and h(t)
is produced by humans using fossil fuels. This produces an �anomaly�, i.e.
a departure from the solution of (101), which we denote by T (x; t) which
satis�es the equation,

C _T (x; t) = �BT (x; t)+ @

@x
[D(x)(1� x2)@T (x; t)=@x] + h(t); (102)

T (x; 0) = 0:

In writing h(t) instead of h(x; t) for the human injections into the dynamical
system, we are assuming that the e¤ects of the emissions at each latitude are
rapidly distributed across the globe�s atmosphere relative to the time scale
of the dynamics (102).
In order to show the relationship between the spatial climate dynamics

(93) and the dynamics of global temperature, integrate both sides of (102)
over latitudes, x = �1(minus 90 degrees) to x = +1 (plus 90 degrees), to
obtain

C _T (t) �
Z 1

x=�1
_T (x; t)dx = (103)

= �B
Z 1

x=�1
dxT (x; t) +

Z 1

x=�1
dx
@

@x
[D(x)(1� x2)@T (x; t)=@x] +

Z 1

x=�1
dxh(t) =

= �BT (t) + 2h(t);
T (0) = 0:
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The usual formulation of human induced forcing h(t) is

h(t) = � ln(M(t)=M0);
_M(t) = �mM(t) + bE(t);M(0) =M0 given;

(104)

where �;M(t);m; b denote respectively the climate sensitivity, the concentra-
tion of GHGs, e.g. CO2 in the atmosphere (in ppm), removal rate parameter,
and unit e¤ect parameter of each unit of fossil fuels used. Allen et al. (2009),
Matthews et al. (2009), Matthews et al. (2012), and Gillett et al. (2013)
suggest that when the reaction of the carbon cycle (e.g. the response of the
ocean and land to increased human-induced injections into the atmosphere)
is taken into account, the dynamics (103) and (104), which we rewrite below
as

_T (t) = �(B=C)T (t) + (2=C)� ln(M(t)=M0);
T (0) = 0;
_M(t) = �mM(t) + bE(t);M(0) =M0 given;

(105)

might be quite closely approximated by the dynamics (if an �ocean�is added
as in Pierrehumbert (2014, Equation (4)),

_T (t) = �E(t); T (0) = 0; (106)

for an appropriate value of the climate carbon response parameter, �, of
Matthews et al. (2009) and Matthews et al. (2012). Pierrehumbert (2014,
Equation (4), Figure 3) obtains the near linearity of the increase in global
mean temperature as cumulated emissions increases with a simple two box
model that includes an ocean as well as a shallow mixed layer like the above
simple energy balance �one box�model (96). Cai et al.�s (2012b) DSICE
model has a two layer temperature dynamics and a three layer carbon cy-
cle. It is plausible that approximate linearity of the increase in global mean
temperature with cumulated emissions might occur in their model too.
The papers of Brock, Engström, and Xepapadeas (2014b) and Brock et al.

(2013) use the spatial energy balance approach like equation (102), together
with speci�cation of damage functions at each spatial location, to discuss the
impact of energy transport as well as to o¤er a framework for allocating the
burden of mitigation across space. If one abandons the attempt to specify
damage functions and allocates the job of specifying a safe limit for global
average temperature to climate scientists we can adapt the simple logarithmic
utility example above to illustrate some approaches to allocating the burden
of mitigation across locations.
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Consider the problem

max
nR1

t=0
e��t(

R 1
x=�1w(x) ln(y(x; t)E(x; t)

�)dx)dt
o

subject to (106) andR 1
x=�1E(x; t)dx = E(t):

(107)

The statement of problem (107) leads us to the key issue raised by spatial
concerns and that is how to specify the welfare weights, fw(x)g. In a series
of works, Chichilnisky and Heal (1994, 2000) and Chichilnisky and Sheeran
(2009) have long argued that poorer countries and countries that have not
polluted as long as the developed countries should bear less of the burden
of mitigation. While it is somewhat standard to give larger weights to coun-
tries or locations with larger populations, there are other considerations for
assigning weights besides population weighting.
A recent paper by Saez and Stantcheva (2013) proposed an approach to

choosing welfare weights in optimal tax theory that could be adapted here.
Their approach is to use empirical evidence on attitudes towards redistribu-
tion and who should bear the biggest tax burden to discipline the choice of
welfare weights. We believe that it would be useful to adapt their approach
to specify welfare weights as a function of each country�s historical emissions,
current yearly emissions, yearly emissions per capita, growth in yearly emis-
sions per capita, etc. Of course it is beyond the scope of this chapter to do
the empirical work that would be required to data-discipline the choice of
welfare weights here.
The simplest illustrative approach is just to base the weights on the �rel-

ative blame�for the problem. This could be done by specifying the welfare
weight function as a decreasing function of the share of total emissions since
1750 as in (109) below. Figure 2 shows these shares across countries.
A possible allocation of welfare weights that captures the idea that lo-

cations that have emitted relatively heavily in the past should be allowed a
smaller share of the world carbon budget in the future can be characterized
as follows. Let Z 0

�1
E(s)ds (108)

denote total world emissions up to the reference date zero. De�ne

w(x) = 1
Z

h
exp(��s(x)

R 0
�1E(t)dt)

i
;

Z �
R 1
x0=�1 dx

0 exp(��s(x0)
R 0
�1E(t)dt);

(109)

where � > 0 is an �intensity�tuning parameter for penalization of locations
that have emitted heavily in the past, and s(x) denotes the share of location
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Figure 2: Fossil fuel CO2 cummulative emissions 1751-2012 Source:
http://www.popularmechanics.com/science/environment/climate-change/

x in past total world emissions. While x denotes the sine of latitude in our
illustrative example here, the approach in (109) could be extended to actual
countries by replacing x by (x; y) where x is latitude and y is longitude and
integrating over the set of (x; y) that characterizes a country. Even easier is
to replace x and the integral with country index k and a sum over countries.
Solving the sub problem

max

Z 1

x=�1
w(x) ln(E(x)�)dx; s:t:

Z 1

x=�1
E(x)dt = E; (110)

we obtain

E(x) = w(x)E;

U(E) =
R 1
x=�1w(x) ln(E(x)

�)dx =
R 1
x=�1w(x) ln(w(x)

�)dx+ ln(E�):
(111)
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Hence, we see that for the case of logarithmic utility we can easily adapt
the above treatment of robust control to get the solution of problem (107)
for any limit temperature, Tc; and for any set of welfare weights. This brings
us to implementation.
One way to implement the solution is to allocate at base date zero, to

each x, a number of �rights to emit�equal to

w(x)

Z 1

t=0

E�(t)dt = w(x)((Tc � T0)=�); (112)

where example values of Tc; T0; � are 2�C, 0:85�C (IPCC working group 1
contribution to AR5), and 1:5�C per 1000 PgC emitted (Matthews et al.,
2012). Then, as in Chichilnisky and Sheeran (2009), a world trading mar-
ket for emission permits would set the world market price. Of course, in
the real world, settling on the weights, i.e. the initial allocation of rights
across countries, the number of rights to be allocated, etc., is a very di¢ cult
problem. Chichilnisky and Sheeran (2009) suggest possible ways of getting
around such political problems, e.g. by bargaining over the distribution of
marketable rights.
Weitzman (2014) is a very recent paper which suggests that negotiating

over a uniform price for carbon can induce a large free riding emitter to
support a higher price when it considers that everyone else being bound to
pay that price would reduce negative externalities imposed by the rest upon
that free riding emitter. The Chichilnisky-Sheeran type bargaining over the
distribution of rights might be harnessing similar type incentives since the
trading market will strike a uniform world-wide price.

5.1 Discounting for Climate Change

There is a substantial literature on the choice of the discount rate, or the
consumption discount rate, which is appropriate for discounting future costs
and bene�ts which are associated with environmental projects (e.g., Arrow
et al. 1996; Weitzman, 1998b, 2001; Newell and Pizer, 2003). In this section
we show how the approach of cumulative carbon budgeting can be used to
adjust the consumption discount rate in order to take climate change into
account. The consumption discount rate can be de�ned by the equilibrium
condition in two equivalent ways: (i) following Arrow et al. (2012, 2014) and
considering a social planner who would be indi¤erent between $1 received at
time t and $" received today when the marginal utility of $" today equals the
marginal utility of $1 at time t, or (ii) following Gollier (2007) and considering
a marginal investment in a zero coupon bond which leaves the marginal utility
of the representative agent unchanged.
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Assuming that the utility function of the representative agent depends on
consumption and damages associated with the time path of global average
temperature

U = u (c (t) ; T (t)) ; (113)

the equilibrium condition associated with the Arrow et al. (2014) approach
implies that

"uc (c (0) ; T (0)) = e��tuc (c (t) ; T (t)) ; or (114)

" =
e��tuc (c (t) ; T (t))

uc (c (0) ; T (0))
= e�rtt; (115)

where rt denotes the annual consumption discount rate between periods 0
and t; and � is the utility discount rate. The equilibrium condition associated
with the Gollier (2007) approach implies that

uc (c (0) ; T (0)) = e
��tuc (c (t) ; T (t)) e

rtt; (116)

where rt is interpreted as per period rate of return at date 0 for a zero coupon
bond maturing at date t: Both approaches are equivalent for determining the
consumption discount rate. Assume, as it is common in this case, a constant
relative risk aversion utility function

u (c (t) ; T (t)) =
1

1� �
�
c (t) e�DT (t)

�1��
; 0 < � <1; (117)

where � is both the coe¢ cient of relative risk aversion and (minus) the elastic-
ity of marginal utility with respect to consumption. Then using equilibrium
condition (116), the Matthews et al. (2009) and Matthews et al. (2012)
framework where _T (t) = �E (t) implies that

rt = �� d

dt
lnuc (c (t) ; T (t)) = ��

d

dt
[��c (t)� (1� �)DT (t)](118)

rt = �+ �g (t) + (1� �)D�E (t) ; (119)

where g (t) = �c (t) =c (t) is the consumption rate of growth, � + �g (t) is the
standard Ramsey discount rate, and the term (1� �)D�E (t) is the climate
change adjustment to the Ramsey rule for discount rate. The sign of the ad-
justment depends on the value of �: Regarding this value, Mehra and Prescott
(1985) suggest that a value above 10 is not justi�able, while Dasgupta (2008)
suggests that values of � in the region of 1.5 to 3 would be reasonable.10 Thus

10Note that Cline (1992) uses � = 0; � = 1:5; Nordhaus (1994) � = 3%, and � = 1;
Stern (2006) � = 0:1%; � = 1: See Dasgupta (2008) for a detailed discussion of these
assumptions.
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values of � greater than 1 are plausible, and therefore in such cases climate
damage e¤ects cause market discount rates to be smaller than the Ramsey
rule. Since the e¤ect is larger the larger are D and � and the emissions
path E (t), the plausible assumption that the world will continue increasing
emissions before they �nally start to decrease (e.g., see Pierrehumbert, 2014,
Figure 1), implies that e¤ect of climate change on market discounting in
(119) could be quite large for � greater than 1.
Consider now the case where spatial considerations are explicitly intro-

duced by allowing for spatially dependent welfare weights w(x) along the
lines of welfare weights introduced in section 5, and spatial di¤erentiation of
damages, so that the utility function is de�ned as

U = u (c (x; t) ; T (x; t)) = w (x)

�
c (x; t) e�D(x;T (t))

1� �

�1��
: (120)

The term D (x; T (t)) can be regarded as shorthand for the impact of the
global heating of the Earth on damages at location x; which includes heat
transport e¤ects as in the EBCMs discussed in Brock et al. (2013) and Brock,
Engström, and Xepapadeas (2014b). The equilibrium condition associated
with the Arrow et al. (2014) approach implies thatR

X
e��tuc(c (x; t) ; T (x; t)) dxR
X
uc(c (x; 0) ; T (x; 0)) dx

= e�rtt: (121)

Using the speci�c utility function we obtain

rt = �� 1
t
ln

( R
X

�
w (x) c (x; t)�� e�(1��)D(x;T (t))

�
dxR

X

�
w (x) c (x; 0)���� e�(1��)D(x;T (0))

�
dx

)
; or (122)

rt = �� d

dt
ln

�Z
X

�
w (x) c (x; t)�� e�(1��)D(x;T (t))

�
dx

�
: (123)

This can be regarded as an average global consumption discount rate
between periods 0 and t; that a social planner will use for cost bene�t cal-
culations over the entire spatial domain. The location speci�c discount rate
can be determined by using, the equilibrium condition (119) to obtain

rt (x) = �� d

dt
lnuc (c (x; t) ; T (x; t)) ; or (124)

rt (x) = �+ �g (t; x)� (1� �) @D (x; T (t))
@T

�E (t) : (125)

In this case the consumption discount rate in a certain location depends on
the location speci�c consumption rate of growth and the damages due to
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climate change associated with the location.11 It should be noted however
that if there is a world capital market, arbitrage would force the local rates
rt(x) equal to a global market rate rt: A thorough analysis of this would need
to model borrowing and lending in each location in world capital markets.
Of course if for some reason each x is is treated as a closed economy then
rt(x) would be the equilibrium rate inside that "country" x. This analysis
could be an interesting area for future research.

6 Spatial Aspects in Economic/Ecological Mod-
elling

In section 5 we introduced EBCMs as a tractable way to model spatial e¤ects
in local temperatures. While spatial e¤ects are a very important aspect of
climate change economics, their importance is extended to a large number
of areas related to environmental and resource economics (e.g. Wilen, 2007;
Brock and Xepapadeas, 2010; Xepapadeas, 2010; Kyriakopoulou and Xepa-
padeas, 2013; Brock, Xepapadeas and Yannacopoulos, 2014a, 2014b, 2014d)
but also to other areas.
Biology has been an area where spatial e¤ects in the context of mech-

anisms generating form, or spatial patterns, have been extensively studied.
The question of �how the leopard got its spots�has been central to this type
of analysis (e.g., Levin and Segel, 1985; Okubo and Levin, 2001; Murray,
2003).
In economics, spatial patterns in a static framework have been extensively

studied in the context of new economy geography (e.g., Krugman, 1996; Fu-
jita et al., 1999; Baldwin et al., 2001; Fujita and Thisse, 2002). Recent
research in this area explicitly studies spatial dynamics agglomeration for-
mation in models of competitive industries and models of economic growth
(Boucekkine et al., 2009; Boucekkine et al., 2013; Brock, Xepapadeas, and
Yannacopoulos 2014a, 2014d).
In environmental and resource economics, the spatial dimension has been

introduced mainly in the context of �shery management with the use of
metapopulation models to study harvesting rules or reserve creation (e.g.,
Sanchirico and Wilen, 1999, 2001, 2005; Smith and Wilen, 2003; Sanchirico,
2005; Wilen, 2007; Costello and Polasky, 2008). More recently Brock and
Xepapadeas (2005, 2008, 2010) and Brock, Xepapadeas, and Yannacopoulos
(2014c) by using continuous spatial dynamic processes (see also Smith et

11The utility discount rate � and elasticity of marginal utility � are assumed to be the
same across locations. This assumption can easily be relaxed.
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al., 2009) generalized the concept of Turing di¤usion-induced instability to
dynamic optimization problems and studied pattern formation and agglom-
eration emergence in optimal control problems with applications to resource
management. It is interesting to note that the spatial pattern of local tem-
peratures in models of climate and the economy can be studied in the same
general context with models studying interactions in natural, economic or
uni�ed systems of ecosystems and the economy, which evolve in time and
space.
Uncertainty or ambiguity related to concerns about model misspeci�ca-

tion and robust control approaches discussed in the previous sections can be
naturally extended to spatial settings. In this case, a situation emerges in
which a decision maker or a regulator distrusts his model and wants good
decisions over a cloud of models that surrounds the regulator�s approximat-
ing or benchmark model, but these concerns have a spatial structure and
may di¤erent across locations given the characteristics and structure of the
problem. The problem of spatially structured uncertainty has been studied
by Brock, Xepapadeas, and Yannacopoulos (2014c) where a central result is
the development of spatial robust control regulation, and the potential emer-
gence of spatial hot spots, which are locations where the spatial structure of
uncertainty causes regulation to break down.
In this section we use methods that allow us to obtain a deterministic

control problem (Campi and James, 1996; Anderson et al., 2012; Anderson
et al., 2014) to study spatially extended models of ecosystems and economy.
The purpose is to show how models with spatially structured ambiguity can
be developed and explicitly solved in order to obtain spatially dependent
robust control rules, and explore the potential emergence of hot spots.

6.1 Spatially extended deterministic robust control prob-
lems

We develop a spatially extended linear �quadratic (LQ) robust control prob-
lem, which can be regarded as an LQ version of problem (6) with spatial
transport related to the state variable. In particular we consider a bounded
spatial domain. Then c (t; z) ; x (t; z) ; and h (t; z) denote control, state and
distortion at time t and location z respectively. Spatial transport can be
introduced in the following way. Assume that the mass or substance asso-
ciated with the state variable which is located at point z moves to nearby
locations and that the direction of the movement is such that mass from
locations where mass is abundant, i.e., locations of high mass concentration,
moves toward locations of low mass concentration. This is the assumption
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of Fickian di¤usion, or Fick�s �rst law, and is equivalent to stating that the
�ux of mass denoted by x (t; z) is proportional to the gradient of the mass
concentration, i.e., the spatial derivative of concentration, or

J (t; z) = �D@x (t; z)
@z

; (126)

where D is the di¤usion coe¢ cient or di¤usivity measuring how fast mass
moves from locations of high concentration to locations of low concentration.
In terms of the spatial EBCM the state variable can be interpreted as heat
moving from the equator to the Poles. In terms of ecosystem modeling the
state variable can be interpreted as concentration of a resource or pollution
at a speci�c location. Following Brock, Xepapadeas, and Yannacopoulos
(2014b, 2014d), the spatiotemporal evolution of a state variable under Fickian
di¤usion and concerns about model misspeci�cation re�ected in a Hansen-
Sargent entropic constraint can be written as

dx =

�
�c (t; z)� �x (t; z) +D@

2x (t; z)

@z2
+ "1=2�h (t; z)

�
dt+ "1=2�x (t; z) dW

(127)
where W is a Hilbert space-valued Wiener process.12 Thus the LQ version
of problem (6) is

max
c(t;z)

min
h(t;z)

Z 1

0

Z
Z

e��t
�
�c (t; z)� �

2
c (t; z)2 (128)

�
2
x (t; z)2 +

� (")

2
h (t; z)2

�
dzdt (129)

subject to (127) , x (0; z) = x (z) ;

and appropriate spatial boundary conditions.
Let

g (x; c; h) = �c (t; z)� �
2
c (t; z)2 � 

2
x (t; z)2 +

� (")

2
h (t; z)2 (130)

f (x; c; h; xzz) = �c (t; z)� �x (t; z) +D@
2x (t; z)

@z2
+ "1=2�h (t; z) :(131)

The HJBI equation for problem (128) can be written as

�V (x) = max
c
min
h

�Z
Z

[g (x; c; h) dz + V 0 (x) f (x; c; h; xzz) (132)

+V 00 (x) " (�h)2
�
dz
	
;

12For de�nitions, see for example da Prato and Zabczyk (2004).
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where V 0 (x) ; are V 00 (x) Frechet di¤erentials of the value function.13

Following Campi and James (1996), Anderson et al. (2012) and Anderson
et al. (2014) let � (") = �" and scale the � with " in such a way that as
"! 0 we obtain the HJBI equation which is associated with the deterministic
robust control problem in the spatiotemporal domain, or

�V (x) = max
c
min
h

�Z
Z

[g (x; c; h) dz + V 0 (x) f (x; c; h; xzz)] dz

�
: (133)

Equation (133) can be associated with the spatial deterministic robust control
problem

max
c(t;z)

min
h(t;z)

Z 1

0

Z
Z

e��t
�
�c (t; z)� �

2
c (t; z)2 � 

2
x (t; z)2 +

�

2
h (t; z)2

�
dzdt(134)

subject to
@x (z; t)

@t
= �c (t; z)� �x (t; z) + �h (t; z) +D@

2x (t; z)

@z2
:

Problem (134) which has been studied by Derzko et al. (1984), Brock and
Xepapadeas (2008), and Brock, Xepapadeas, and Yannacopoulos (2014b),
has a Hamiltonian representation:

max
c(t;z)

min
h(t;z)

�
�c (t; z)� �

2
c (t; z)2 � 

2
x (t; z)2 +

�

2
h (t; z)2 (135)

p (t; z)

�
�c (t; z)� �x (t; z) + �h (t; z) +D@

2x (t; z)

@z2

��
: (136)

The maximum principle implies the following FONCs for the controls:

c (t; z) =
�+ �p (t; z)

�
(137)

h (t; z) = ��
�
p (t; z) : (138)

Then the Hamiltonian system is a system of backward-forward PDEs:

@p (t; z)

@t
= (�+ �) p (t; z) + x (t; z)�D@

2p (t; z)

@z2
(139)

@x (t; z)

@t
=

��

�
+

�
�2

�
� �

2

�

�
p (t; z)� �x (t; z) +D@

2x (t; z)

@z2
: (140)

13A heuristic derivation of the HJBI equation is presented in the Appendix.
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As shown analytically in Brock, Xepapadeas, and Yannacopoulos (2014b),
by using solutions of the form

x (t; z) =
P

n xn (t) sin
�
n�
L
z
�

p (t; z) =
P

n pn (t) sin
�
n�
L
z
� (141)

where n is the number of Fourier modes. The system of backward-forward
PDEs (139)-(140) can be transformed into a countable set of linear ODEs.
This system can be written as:

dpn(t)
dt

= (�+ � + �n) pn (t) + xn (t)
dxn(t)
dt

= ��
�
+
�
�2

�
� �2

�

�
pn (t)� (� + �n)xn (t)

xn (0) = �n ; limt!1 e
��tpn (t)xn (t) = 0

x (z) =
P

n �n sin
�
n�
L
x
�
; �n =

2
L

R L
0
x (z) sin

�
n�
L
x
�

�n =
D�2

L2
n2:

(142)

Solving system (142) for a su¢ cient number of Fourier modes and substi-
tuting back the solutions for into (137),(138), and (141) we can obtain the
optimal robust spatiotemporal paths for the state, costate and control vari-
ables.

6.1.1 An Example

To provide a worked out example of the approach we use the following pa-
rameterization of the linear quadratic pollution control problem.14

Parameter Value
� 224:26
� 1:9212
 0:0223
� 0:0083
� 0:2343
� 0:03
� 1
D 1

14This parametrization has been used by Karp and Zhang (2006), Athanassoglou and
Xepapadeas (2012) for the study of linear quadratic climate change models. We use
the same parametrization here, although we are not calibrating a spatial climate change
model, to show how the spatially dependent solution for the states and the controls can
be constructed
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The spatial dimension is introduced by considering a spatial domain Z =
[0; 2�], allowing for spatial transport with di¤usion parameter D = 1, and
considering the following initial spatial distribution for the stock variable:

x (0; z) = 100 exp
�
� (z � �)2

�
; z 2 [0; 2�] : (143)

We solved the system (142) for the �rst six modes n = 1; :::; 6 and for two
di¤erent values of � = f1; 10g : The steady state of the Hamiltonian system
corresponding to each mode was a saddle point. Setting the constant asso-
ciated with the positive eigenvalue equal to zero, the solutions for the state
and the costates were of the general form

pn (t) = p�n + �
1
nCne

snt (144)

xn (t) = x�n + �
2
nCne

snt; (145)

where (x�n; p
�
n) is the steady state for mode n; sn is the negative eigenvalue,

(�1n; �
2
n) is the eigenvector corresponding to the negative eigenvalue, and Cn

is a constant determined by initial conditions on xn (0) : The mode-solutions
(144), (145) are substituted into (141) to obtain the spatiotemporal paths
for the state, costate and control functions. Figures 4 - 7 show these paths
for � = 10:

3:pdf
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7 Future Directions

The literature on climate economics models is huge; this chapter has reviewed
only a relatively narrow slice of work on climate economics models where
space and distributional questions play a major role. We think that the tools
and methods presented in this review, using climate economics as the main
vehicle, provide useful insights about the way to model coupled ecosystems
and economic systems. In this section we become even more speculative and
discuss potential future directions that research might take.

7.1 Bottoms Up Implementation Rather than Top Down
Implementation

Ostrom (2009) has stressed the problems inherent in any kind of top down
central authority organizing e¤ective adaptation and policy measures in a
massive collective action problem like global climate change. Indeed the
climate management problem could be labeled, �The Mother of All Collective
Action Problems�. This is so because the spillover e¤ects are world-wide.
Given the di¢ culties of organizing any kind of collective action at such a
large scale, Ostrom argues for a bottoms up approach in what she calls a
polycentric approach, in which entities at multiple scales adapt and respond
individually. For example, California, which is bigger than a lot of countries,
has instituted strong responses to climate change on its own. Since California
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tends to be a world leader, its example may prompt others to take action.
This is a good place to discuss adaptation as well as mitigation in dealing

with climate change. Adaptation has the attractive feature that its bene�ts
tend to be local so that any unit of government at any scale that bears costs
of adaptation will also capture its bene�ts at the local scale. For example,
a unit of government at the scale of a beach front that taxes beach front
owners to pay for adaptation to storm surges serves a public that bene�ts
directly from that adaptation when the next storm surge hits that beach
front community. This �scale matching�of bene�ts and costs of adaptation
is absent in the case of mitigation. In the case of mitigation a nation or state
that pays costs of mitigation ends up bene�ting the whole planet and, hence,
failing to capture the full bene�ts of its contribution.
As units of government at di¤erent scales struggle to organize collective

action on adaptation, this may lead to formation of e¤ective institutions that
might be leveraged to organize collective action on large scale issues such as
mitigation. We see this kind of work, given the lead of Ostrom, as especially
promising in the study of potentially e¤ective policy actions to deal with
global climate change. In particular the bene�ts from adaptation can be
quite large relative to costs, e.g. it can be quite dramatic as documented
by de Bruin et al. (2009) in the context of the DICE model modi�ed for
adaptation, which they dub AD-DICE. At smaller scales than DICE or even
RICE�s regional scales, Deschênes and Greenstone (2007, 2011) document

43



climate damages at smaller scales. The very recent report �Heat In The
Heartland� (Gordon, 2015), projects climate damages at smaller scales for
the U.S. Midwest. As coping and adaptation develops at smaller scales, it is
feasible that units of government will form at scales of spillover externalities
(e.g. river authorities to manage increased �ooding from climate change and
water management authorities to manage increased stress on aquifers). As
these units of government form, it is plausible to imagine that they might
cooperate to manage externalities that spill across their boundaries. Thus
we believe that an especially fruitful area of future research is to draw on
work such as Ostrom (2009) for endogenous institution formation at various
scales, work like Deschênes and Greenstone (2007, 2011) for documentation
of climate damages at various scales, and work on adaptation at various scales
to try to understand what institutions are likely to form at what scales.

7.2 Stochastic Modelling and Computational Approaches

Climate models come in a hierarchy ranging from the simplest models of
energy balance (North, 1975a, 1975b; North et al., 1981), energy and mois-
ture balance (Fanning and Weaver, 1996), which can be solved analytically,
to models that are larger but still small enough that their mechanisms can
be comprehended with a combination of analytical and computational work.
Examples of the latter are Nordhaus�s (2008, 2013) DICE and RICE models
and the DSICE model of Cai et al. (2012a, 2012b, 2012c, 2013a, 2013b) and
Cai et al. (2014), which contrast with the big General Circulation Models
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(Weaver et al., 2001).
An important area for future research would be to extend work on the

coupled heat balance EBCMs and economic models of Brock et al. (2013)
and Brock, Engström, and Xepapadeas (2014a, 2014b) to coupled heat and
moisture balance EBCM�s like the Fanning and Weaver (1996) model. This
approach adds to the PDE describing the dynamic evolution of temperature
across latitudes, and a second one describing the evolution of surface spe-
ci�c humidity at latitude x: Human actions take the form of emissions of
GHGs and geoengineering that blocks incoming short-wave radiation. The
advantage of this approach would be to provide more insights into the spatial
impacts of climate change and the associated policies in terms of tempera-
ture precipitation and evaporation. This research would �t well with the
work recently developed by Brock, Xepapadeas and Yannacopoulos (2014b,
2014c), on spatial hot spots which are locations where regulation breaks down
due to deep structural uncertainty. Hot spots indicate locations where dam-
ages might be excessive and extra attention is required by regulators. Hot
spot research regarding changes in precipitation and evaporation at localized
scales may be more important than hot spot research regarding temperature
changes at smaller scales. Local damages can be modelled by damage func-
tions of the form exp[�D(x; t)T (t)]; which have been useful in characterizing
spatial discounting.

7.3 Bifurcations and Tipping Points

Cai et al. (2012b) extend their DSICE model to include tipping points which
may or may not be caused by bifurcations. However, they do not treat spatial
transport or space itself in their model. We see a particularly promising line
of research to be that of extending the work of Cai, Judd, and Lontzek to
include spatial transport phenomena. This kind of framework would be very
useful for economic analysis of the risk of bifurcations and how much it might
be worth to society to avoid such risks. A major concern in spatial settings
when compensatory transfers are not available is inequalities of burdens of
future climate change across the globe.
Very recent papers have appeared on potential bifurcations of Arctic Sea

ice (Eisenman and Wettlaufer, 2009; Abbot et al., 2011). One potential value
of spatial transport modeling is that it might augment the case for di¤erent
policies treating GHGs that have short lives in the atmosphere but much
higher GWPs compared to GHGs like CO2 emitted from coal and oil usage
that have very long lives in the atmosphere. To explain further if there is
a relatively short-term immediate �damage reservoir�threat like a potential
bifurcation of Arctic Sea ice, it might make sense to tax short-lived GHGs
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with very large GWPs like methane emissions at a temporary higher rate
to slow down current global warming even though the extra consumption of
fossil fuels with long-lived GHGs will result in more damaging warming in
the long term future. The framework used by Brock, Engström, and Xepa-
padeas(2014b) and Brock et al. (2013) that couples economic models with
energy balance models with spatial energy transport could be extended to
GHGs with di¤erent lives in the atmosphere and di¤erent GWPs. Brock et
al. (2013) includes the phenomenon of polar ampli�cation, while Brock, En-
gström, and Xepapadeas(2014a) includes a damage reservoir that is present
because of an endogenous ice line as in the papers by North (1975a, 1975b).
North�s bifurcations are not the same as the bifurcations discussed in Eisen-
man and Wettlaufer (2009) and Abbot et al. (2011), but are related in
mathematical structure. We believe that this kind of framework could shed
light on the temporal spatial structure of optimal policy intervention on emis-
sions of GHGs with di¤erent lives in the atmosphere and di¤erent GWPs.
For example, while there are strong arguments for uniform taxes on a unit of
emissions independent of location, especially if costless compensatory trans-
fers are available for poorer areas, Pierrehumbert�s (2014) argument which
we discussed earlier reminds us that short-lived GHGs with relatively large
GWPs should be treated di¤erently than long-lived GHGs like CO2.
Local bifurcations and local tipping points might be sources of extreme

local events that are accentuated and magni�ed by climate change. Leeds
et al. (2013) have done work on simulating future climate under changing
covariance structures. They discuss forcing by spatial stochastic processes
with thicker tails than the spatial white noise processes used by, for example
Kim and North (1992) in their spherical energy balance model. Later ver-
sions of spherical spatial energy balance models used by Brock et al. (2013)
have polar ampli�cation e¤ects. We believe that a useful direction for fu-
ture research would be to include the bifurcation possibility of Abbot et al.
(2011) and the resulting impact on damages across space and to compare the
changing spatial covariance structure that results with the �ndings of Leeds
et al. (2013). In the same context designing an optimal "Tech Fix" path
to a sustainable low carbon economy is an area of promising future research
(David and van Zon, 2014)
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8 Appendix

8.1 Appendix I: The Case of Additive Uncertainty

While we believe that the case of multiplicative uncertainty that we treated
in the main text does a better job of re�ecting the model uncertainty, i.e. the
variation in the CCR parameters across respected climate models discussed
by Matthews et al. (2009) and Gillett et al. (2013), for completeness we
treat an example of additive uncertainty in this Appendix.
Consider the following deterministic robust control problem which is a

drastic simpli�cation of the model of Daniel et al. (2014) but with robustness
added:

max
E
min
v

�Z 1

t=0

e��t(u(yE�) + (1=2)�v2)dt

�
(146)

subject to

_T = �E + Cv; T (0) = T0 (147)

for the dynamics of GMT, denoted here by T (t) for each date t, and,

_R = �E; R(0) = R0
_S = � _T = �(�E + Cv); S(0) = Tc � T0
S(t) � Tc � T (t)

(148)

for the dynamics of fossil fuel usage and the dynamics of the �safety reserve�
S(t) � T (t) � Tc. Although robustness is typically associated with stochas-
tic models, deterministic models can be derived from stochastic robustness
models by scaling the robustness parameter with the standard deviation of
stochastic forcing shocks and then taking the standard deviation to zero in a
type of �small noise�approximating procedure (Anderson et al., 2014). This
type of procedure leads to problem (146)-(148). We say more about this
later but treat deterministic problems for now. Note that the requirement
that S(t) � 0 for all dates t translates into equation (149) for the central
case, Tc = 2�C. Here y = y(t) is an exogenously given function which is
augmented by fossil fuel input E�; 0 < � � 1 to give total consumption,
y(t)E(t)� at each date t. The utility function u(c) is assumed to be strictly
concave, strictly increasing, twice continuously di¤erentiable and to satisfy
the usual Inada conditions, u0(0) =1; u0(1) = 0.
At the risk of repeating, what we have done with (148) and the require-

ment S(t) � 0 is this. Rather than attempting to specify a detailed parame-
terized damage function, we simply let the climate scientists specify Tc and

47



impose the constraint

Tc �
Z 1

t=0

(�E + Cv)dt: (149)

As Hansen and Sargent (2008) explain in their book, the presence of the
minimizing agent is simply a device to help the maximizing agent design a
policy that works well for a set of deviations around a baseline and the role of
the parameter � is to index the width of the set of deviations the maximizing
agent wishes to robustify against. The equilibrium value of v in the problem
(146) is the drift distortion that is most consequential for the robust planner.
We refer the reader to Hansen and Sargent (2008) for detailed exposition of
robustness in economic modeling.
The idea here is that if T (t) > Tc happens at any date t; then catastrophic

climate change may occur and the level of risk is unacceptable at a GMT
equal to, Tc, e.g. 2�C as in Held (2013). Hence we impose the constraint
S(t) � 0 to keep T (t) � Tc for all dates t. When we want to illustrate with a
particular value of Tc, we will use the focal 2�C benchmark for catastrophic
climate change because it is the one commonly used in the literature. Of
course when we solve the problem above for a candidate equilibrium, we
need to check that S(t) � 0 actually holds for all dates t � 0 before we
can actually proclaim that it is an equilibrium. We can use a smaller or
larger benchmark and the same analysis used here will apply. Some climate
scientists might select a larger (smaller) threshold temperature if they were
doing cumulative carbon budgeting. We interpret the literature as saying
that many researchers have the same concerns about the levels of deep un-
certainty in the layers upon layers of assumptions built into the IAMs that
Pindyck (2013a, 2013b) has in economics and researchers like Curry and
Webster (2011) have in climate science.
The robust control speci�cation (146) and (147) is an attempt to capture

the model uncertainty emphasized by Matthews et al. (2009) and Matthews
et al. (2012) in their discussion of the CCR parameter. An alternative
speci�cation of (147) is

_T = (�+ Cv)E; T (0) = T0; (150)

where the term (� + Cv) is a more direct representation of the uncertainty
of the CCR parameter discussed in Matthews et al. (2009) and Matthews et
al. (2012). We will call (150) multiplicative uncertainty and (147) additive
uncertainty. If speci�cation (150) is used, equation (148) and the constraint
(149) is replaced by

_S = �(�+ Cv)E; S(0) = S0 = T0 � Tc
Tc �

R1
t=0
(�+ Cv)Edt:

(151)
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We solved the robust control problem with speci�cation (151) in the main
text. Note that equation (148) basically says that we have two reserves, a
fossil fuel reserve and a safety reserve. Since both of these reserve dynamics
in equation (148),

_R = �E; R(0) = R0; _S = �(�E + Cv); S(0) = S0; (152)

imply the integral constraintsZ 1

t=0

Edt � R0;
Z 1

t=0

(�E + Cv)dt � S0; (153)

we could replace the dynamics (152) by the integral constraints (153) and
treat our problem as a robust isoperimetric control problem. This approach
may be easier in some applications. However, we use the reserve dynamics
equations (152) here because for the non-robust case we see that our problem
is just a standard exhaustible resource problem but with two reserves rather
than just one.
The FONCs for a dynamic Nash equilibrium of problem (146) are given

from optimal control theory as

H � u(yE�) + (1=2)�v2 + �R(�E) + �S(��E � Cv)
0 = Hv = �v � �SC
0 = HE = u

0�)y�E��1 � �R
_�R = ��R �HR = ��R;
_�S = ��S �HS = ��S:

(154)

Here is a simple result that follows directly from the FONCs (154).
Result 1: If �R0 > Tc, then some of R0 is left in the ground. That

is some of the world�s fossil fuel reserves become worthless, i.e. the shadow
price function �R(t) of fossil fuels must be zero.
Proof. The proof is by way of contradiction. From (154) �R(t) = �R(0)e

�t.
Hence if �R(0) > 0, then all of the reserve R0 is exhausted as t!1, hence,
if we use speci�cation (149), recalling that we show below that the FONCs
for v(t) imply v(t) � 0 for all t, we have

Tc �
Z 1

t=0

(�E + Cv)dt = �R0 + C

Z 1

t=0

vdt > �R0: (155)

But (155) is a contradiction to �R0 > Tc. If we use speci�cation (151) and
modify the FONCs (154), we have

Tc �
Z 1

t=0

(�+ Cv)Edt = �R0 + C

Z 1

t=0

Evdt > �R0 (156)
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which is a contradiction just as above.
The requirement that limt!1 T (t) � Tc and the dynamics of global av-

erage temperature speci�ed in (147), above as well as the FONCs requiring
v(t) � 0 for all dates t; are what really drive this result. Note that the result
is independent of the presence of a minimizing agent, i.e. it holds even if
C = 0 or � = 1. The presence of the minimizing agent just makes the
bound on how much of the initial reserve can be used tighter.
Recently some organizations have received a lot of publicity over the idea

that known reserves of fossil fuels are already so large that some of the
known reserves are at risk of becoming wasted assets (e.g. Carbon Tracker,
http://www.carbontracker.org/). Hence, it is useful, as a thought experi-
ment, to analyze the case where some of the known reserves will be left in
the ground. Here we focus on the case where Assumption 1 below holds.
Assumption 1: �R0 > Tc, i.e. Result 1 holds.
If the utility function u(c) = ln(c); we may solve the FONCs for a closed

form solution. The FONCs for this special case become,

H � ln(y) + � ln(E) + (1=2)�v2 + �R(�E) + �S(��E � Cv)
0 = Hv = �v � �SC
0 = HE = �=E � �R � ��S
_�R = ��R �HR = ��R;
_�S = ��S �HS = ��S:

(157)

We start the procedure of solving equations (157) under Assumption 1 in
order to uncover su¢ cient conditions that need to be imposed to reach a
solution, recalling that Assumption 1 implies �R(0) = 0,

S0 =
R1
t=0
(��=(�R + ��S) + C

2�S=�)dt
=
R1
t=0
(�=�S + C

2�S=�)dt =
R1
t=0
e��t(�=�S(0)dt+

R1
s=0
(e�tC2�S(0)=�)dt

= �=(��S(0)) + �S(0)
R1
s=0
(e�tC2=�)dt:

(158)
Hence, in order to obtain a solution, we need to impose conditions that imply,Z 1

s=0

(e�tC2=�)dt <1: (159)

One route is to assume � is constant and to require that the function C(t)
satisfy Z 1

s=0

e�tC2dt <1: (160)

Motivated by (160) we assume the following.
Assumption 2: C(t) = C0e��t; �� 2� < 0.
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Under Assumptions 1 and 2 we arrive at the equation

S0 = �=(��S(0)) + C
2
0�S(0)=(�(2�� �)); (161)

which can be written in the equivalent form,

C20�S(0)
2=(�(2�� �))� �S(0)S0 + �=(�) = 0 (162)

with roots
�S(0) = [S0 �D1=2]=[2(C20=�(2�� �))]
D � S20 � 4(�=�)(C20=�(2�� �)):

(163)

We next make the following assumption.
Assumption 3: The roots of (162) are real. Therefore

D � 0; i:e:; S20 � 4(�=�)(C20=(�(2�� �)) � 0: (164)

Note that given the values of the other parameters, (164) holds if � > �c
where �c solves the equationD = 0. In analogy with work on robust control in
economics (e.g., Hansen and Sargent, 2008), we call �c the breakdown point.
We select the negative root since it agrees with the non-robust solution

�S(0) = �=(�S0); (165)

i.e. the solution when � = 1. This can be seen by applying L�Hospital�s
Rule to the limit by taking 1=� ! 0. The dynamics of the candidate solution
for the safety reserve are given by

_S(t) = � _T (t) = ��=�S(t)� C2(t)�S(t)=�;
= �(�=�S(0))e��t � C2(0)�S(0)e(��2�)t=�
S(0) = Tc � T0 � S0
S(t) � Tc � T (t):

(166)

We call the solution (166) a candidate solution because one must check
that the solution satis�es S(t) � 0 for all positive dates. It can be shown
that for � large enough, solution (166) satis�es S(t) � 0 for all positive dates.
The proof uses (165) and the negative root goes to zero as � !1.
The distortion to the dynamics of temperature induced by the robust

planner is
C2(0)�S(0)e

(��2�)t=� (167)

i.e., the robust planner twists the temperature dynamics towards higher tem-
peratures to induce the economy towards smaller use of fossil fuels compared
to the non-robust case � =1. Note that a solution to the simple non-robust
case requiring that S(t) � 0 for all dates t is analytically equivalent to an
exhaustible resource problem where the reserve, R0; is replaced by the ad-
justed reserve, Tc=�. We must deal with one more issue before turning to a
discussion of implementation and that is time consistency.
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8.1.1 Time Consistency Issues of Solutions to Zero Sum Robust
Control Games

Let, for any date t, S(tjS0) denote the solution to the dynamic zero sum
game (146) starting with initial condition S0. If t2 > t1 > 0 are any two
dates, for time consistency we must check the property

S(t2jS(t1jS0)) = S(t2jS0): (168)

That is to say that the players will choose to play the same equilibrium
value at date t2 starting from initial condition S(t1jS0) at date t1 with t2� t1
periods �to go�as the players will choose to play with the full t2 periods to
go starting from date zero. We compute (168) to check if and when it holds.

S(t2jS0) = S0 � (�=�S(0))
R t2
r=0
dte��r � C2(0)�S(0)

R t2
r=0
dte(��2�)r=�

= S0 � (�=(��S(0))[1� e��t2 ]� (C2(0)�S(0)=(�(2�� �))[1� e(��2�)t2 ]
(169)

S(t2jS(t1jS0)) = S(t1jS0)� (�=�S(t1))
R t2
r=t1

dte��r � C2(0)�S(t1)
R t2
r=t1

dte(��2�)r=�

= S(t1jS0)� (�=(��S(t1))[1� e��(t2�t1)]� C2(0)�S(t1)=(�(2�� �))[1� e(��2�)(t2�t1)]:
(170)

If (169) and (170) behaved like solutions to an ODE (168) would hold
because it is a basic property of solutions of ODEs. However, here, the
shadow price

�S(0) � f(S0) = [S0 �D1=2]=[2(C20=(�(2�� �))] � [S0 �D1=2]=(2a)
a � C20=(�(2�� �))
D � S20 � 4(�=�)(C20=�(2�� �)) = S20 � 4ac
c � �=�

(171)
�S(t1) � f(S(t1jS0)) = [S(t1jS0)�D1=2]=[2(C20=�(2�� �))]
D � S(t1jS0)2 � 4(�=�)(C20=�(2�� �)):

(172)

It seems pretty clear that unless C0 = 0 or 1=� = 0, i.e. we are back
in the pure non-robust, non-distorted dynamics case, the time consistency
condition S(t2jS(t1jS0)) = S(t2jS0) will not hold.
This problem is a common di¢ culty with the open loop concept of Nash

equilibrium used here. Unless one is willing to take the view that this kind
of equilibrium can be used as a rolling plan where the planner re-solves the
system at each date t and does not worry about whether what it had planned
to do at a later time based upon a plan made at an earlier time is actually
desirable when a new plan is drawn up at an intermediate time, then the
open loop concept of equilibrium here is not satisfactory.
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As shown in Kossioris et al. (2008), re-optimization might also be neces-
sary in order to reach the best steady state, even if we consider non linear
feedback Nash equilibrium strategies. Re-optimization takes place in the fol-
lowing sense. Given an initial state, the feedback Nash equilibrium strategy
is calculated. This strategy will lead to a steady state which is not the best,
after some time has elapsed the state of the system is estimated and the feed-
back strategy is recalculated using this state as an initial state. The process
is continued until the calculated feedback strategies lead to the best steady
state. We view our results here as a very rough preliminary insight into
what conclusions from robust planning under carbon budgeting make look
like. Future research should attempt to develop time consistent concepts of
dynamic Nash equilibrium for use in robust planning.
It is also useful to investigate the equilibrium value of the planner�s ob-

jective for the log utility example worked out above. We have:

V (S0) �
R1
t=0
e��t� ln(e��t�=(��S(0))dt = (�=�)fln(�=�)� ln(�S(0)g

�
R1
t=0
e��t��te��tdt:

(173)
Recall from (173) that �S(0) = f(S0). We explore the shape of the equilib-
rium value function by computing, V 0(S0); V 00(S0),

V 0(S0) = �(�=�)f 0(S0)=f(S0)
V 00(S0) = �(�=�)ff 00(S0)=f(S0)� f 0(S0)2=f(S0)2g:

(174)

It is easy to check that f 0(S0) < 0. Hence, V 0(S0) > 0, which is what would
be expected from the economics. It appears that V 00(S0) might have either
sign. For the case � =1 it is easy to check that

�S(0) = �=(�S0)
V (S0) �

R1
t=0
e��t� ln(e��t�=(��S(0))dt = (�=�)fln(�=�)� ln(�S(0)g

�
R1
t=0
e��t��te��tdt = k0 + (�=�) ln(S0);

(175)
where k0 is a constant. Hence V (S0) is concave increasing which is what
would be expected in this non-robust case, because it is essentially the same
as a standard exhaustible resource problem.

8.2 Appendix II: A heuristic derivation of the HJBI
equation for the spatial robust control problem

The problem is to determine admissible, that is, piecewise continuous con-
trols, c (�; �) ; h (�; �) on [0;1)� [0; L] which extremizeZ 1

0

Z
Z

e��tg (x; c; h) dzdt (176)
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where x is governed by the stochastic PDE

@x

@t
= f (x; c; h; xzz) dt+ "

1=2�hdW; (177)

with initial conditions x (0; z) = x (z) and appropriate boundary conditions.
Following Fond (1979) in the development of a dynamic programming ap-
proach to optimization in the context of distributed-parameter problems, let
the value function be

V (x (z)) = max
c(t;z)

min
h(t;z)

Ex
�Z 1

0

Z
Z

e��tg (x; c; h) dzdt
�
: (178)

The principle of optimality states that

V (x (z)) = max
c(t;z)

min
h(t;z)

0�t��t

Ex
�Z �t

0

Z
Z

e��tg (x; c; h) dzdt
�
+ (179)

max
c(t;z)

min
h(t;z)

�t�t�1

Ex
�Z 1

�t

Z
Z

e��tg (x; c; h) dzdt
�
:

Following Chang (2004) equation (179) can be written as:

0 = max
c(t;z)

min
h(t;z)

0�t��t

Ex
�
e��!�tg (x!�t; c!�t; h!�t)�t+ e��tV (x+�x)� V (x)

	
(180)

where 0 � ! � 1 such that !�t 2 [0;�t] and v!�t ! v as�t! 0; v = x; c; h.
For su¢ ciently small �t we have e���t = 1� ��t+ o (�t) and

e��tV (x+�x)� V (x) = [V (x+�x)� V (x)]� ��tV (x+�x) + o (�t) :
(181)

Assuming that the value function satis�es the requirements for the ap-
plication of Ito�s lemma in in�nite dimensions (see Curtain and Falb, 1970),
then

V (x+�x)� V (x) = V 0 (x)�x+ 1
2
V

00
(x) (�x)2 + o (�t) : (182)

Taking the conditional expectation we obtain

Ex [V (x+�x)� V (x)] = (183)�
V 0 (x) f (x; c; h; xzz) +

1

2
V

00
(x) " (�x)2

�
�t+ o (�t) : (184)

Dividing by �t and letting �t! 0; we obtain the HJBI equation (132).
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