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Abstract

We present methods and tools that can be used to study dynamic

environmental resource management in a spatial setting, to explore

∗This research has been co-financed by the European Union (European Social Fund —
ESF) and Greek national funds through the Operational Program "Education and Life-
long Learning" of the National Strategic Reference Framework (NSRF) - Research Funding
Program: Aristeia —Athens University of Economics and Business - Spatiotemporal Dy-
namics in Economics. W. Brock is grateful for financial and scientific support received
from the Center for Robust Decision Making on Climate and Energy Policy (RDCEP)
which is funded by a grant from the National Science Foundation (NSF) through the
Decision Making Under Uncertainty (DMUU) program.We would like to thank an anony-
mous reviewer for valuable comments on an earlier draft of this paper and Joan Stefan for
technical editing.

1



spatially dependent regulation, and to understand pattern formation.

In particular we present the maximum principle and its use in the

context of the emerging frontier of applications of optimal control of

diffusive transport processes to environmental and resource economics.

We show how optimal spatiotemporal control induces pattern forma-

tion, and how deep uncertainty with a spatial structure can be handled

with spatial robust control methods. Finally we show how models with

diffusive transport can be extended to allow for long-range effects and

more general transport mechanisms.

Keywords: Diffusion, optimal control, pattern formation, robust

control, hot spots, spatial externalities.
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1 Introduction

Research in the field of environmental and resource economics has been con-

ducted in a predominantly dynamic framework in which the temporal evolu-

tion of the main factors characterizing the state of the environmental system

under study is explicitly taken into account. Resource management issues -

both in the context of renewable resources such as fisheries, or ecosystems

where many resources interact among themselves; or exhaustible resources

such as fossil fuels - are analyzed in terms of dynamic models where the re-

source stock is a state variable that evolves in time and harvesting or extrac-

tion per unit time is a control variable. The evolution of the state variables

under the influence of resource growth functions and harvesting or extraction

is modeled in general by dynamical systems consisting of nonlinear ordinary

differential equations (ODE).

In a similar way pollution management problems are dynamic when pollu-

tion has stock and not flow characteristics, such as accumulation of phospho-

rus in a lake that may cause eutrophication, accumulation of sulfur dioxide

and nitrogen oxide in the atmosphere causing acid rain, or accumulation of

airborne particles and pollutants from combustion creating "brown clouds."

In this case the state variable is the stock of pollutant, control variables are

emissions or emission abatement, and again the system’s evolution is de-

scribed by dynamical systems of ODEs. In the context of climate change the

state of the system is described by environmental variables such as the stock

of greenhouse gases (GHGs) and temperature, along with economic variables

such as the stock of capital across economies, or the stock of available fossil

fuels. The dynamical system describing the climate and the economy, which

is an integrated assessment model (IAM), includes both climate dynamics

and economic growth dynamics and is represented by nonlinear ODEs. In

IAMs, control variables that relate to climate change could be emissions,
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mitigation, or geoengineering.

The generally accepted method for solving problems in the areas men-

tioned above is by using optimal control and Pontryagin’s maximum prin-

ciple, or dynamic programming and the Hamilton-Jacobi-Bellman (HJB)

equation. The maximum principle provides valuable information through

the costate variables about the shadow value of the resources or the pollu-

tion stock along optimal paths, while the dynamic programming approach is

very useful in characterizing feedback controls. In any case the method to

be used depends on the existing problems and the information that the so-

lution is supposed to provide. In this paper we will focus on reviewing work

in the newly emerging frontier of applications of optimal control of diffusive

transport processes to environmental and climate problems in economics.

This forces us to deal with optimal control problems with infinite dimen-

sional state spaces. Fortunately in many cases there are series expansion

techniques that render such apparently formidable problems quite tractable.

Variables describing the state of an environmental system such as re-

sources (renewable or exhaustible), pollutants, GHGs, heat, and precipitation

have a profound spatial dimension in addition to their temporal dimension.

This is because:

(i) Resources or pollutants are harvested, extracted, emitted, or abated in

a specific location or locations.

(ii) The impacts of environmental variables, whether beneficial or detri-

mental, have a strong spatial dimension. For example in the context of

climate change, temperature at the Poles increases faster than at the

equator, which is Polar amplification (Alexeev et al. (2005), Alexeev

and Jackson (2013); the brown cloud is mainly associated with South

Asia and the Indian Ocean; acid rain impacts can be identified around

the globe in places such as Eastern Europe, Scandinavia, the United

States and Canada, and China; while fisheries have crashed in differ-

ent parts of the world (e.g., Peruvian coastal anchovies, cod fishery off

Newfoundland).
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(iii) There is transport of environmental state variables across geographical

space due to natural processes. Thus in climate change, the energy

balance climate models (EBCM) explicitly account for the transport

of heat across the globe from warm areas to cool areas by an amount

proportional to the gradient of the temperature (North et al. (1981),

Wu and North (2007)). In models that combine energy balance and

moisture balance (e.g. Fanning and Weaver (1996)) there is horizontal

heat and moisture transport across the globe. Air-borne contaminants

are transported in the atmosphere from the source of emissions due to

turbulent eddy motion and wind (Weaver et al. (2001), Fanning and

Weaver (1996)).

The discussion above suggests that the spatial dimension is important

in environmental and resource economics. When forward-looking optimizing

economics agents that take decisions regarding resource management or emis-

sions ignore transport effects, they essentially ignore the impact of their own

actions on the utility or profits of agents located at different sites. This is a

spatial externality, which is not internalized. Therefore policy must involve

mechanisms to internalize spatial spillovers, along with potential temporal

spillovers.

While there is a huge literature related to the spatial economy in the

context of New Economic Geography, the papers closest to the research

area which concerns us are Desmet and Rossi-Hansberg (2010) and Desmet

and Rossi-Hansberg (2012). Much less research has been done that empha-

sizes the spatial aspect in environmental and resource economics, although

there are notable exceptions in several cases. Spatially dependent taxes have

been proposed to regulate environmental externalities (Goetz and Zilberman

(2000), Xabadia et al. (2004a), Xabadia et al. (2004b), Goetz and Zilberman

(2007), Kyriakopoulou and Xepapadeas (2013)); pattern formation and regu-

lation have been studied in the context of semi-arid areas models with explicit

plant dispersal and transport of surface and soil water across the semi-arid

areas (HilleRisLambers et al. (2001), Brock and Xepapadeas (2010)); spa-

tial fishery models have been developed around metapopulation models that
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combine larval-dispersal processes and adult movements in a geographical

space of multiple interconnected patches (Wilen (2007), Smith et al. (2009)).

Spatial models of climate and the economy have also been developed, which

combine economic growth models with climate models based on ECBM with

heat transport (e.g. Brock et al. (2013)), or with a temperature function with

spatial characteristics (Desmet and Rossi-Hansberg (2012)), or with regional

damage functions (Nordhaus (2010), Hassler and Krusell (2012)).

The lack of substantial literature incorporating spatial issues in environ-

mental and resource economics can be attributed to the technical diffi culties

involved when the mathematics of optimal control theory dealing with finite

or infinite horizon problems is extended to infinite dimensional state spaces

that naturally emerge when optimization takes place in spatiotemporal do-

mains. It should be noted that dealing with infinite horizon problems seems

to have been barely touched in the New Economic Geography literature, be-

cause of the need to deal with infinite dimensional spaces, which also explains

their absence from the environmental economics literature. The exceptions in

the environmental economics literature mentioned above try to overcome the

mathematical complication by imposing a certain structure to the problem

that allows simplifications and sometimes closed form solutions. However,

the importance of transport phenomena in environmental economics, and

the need to design regulation for internalizing spatial externalities emerg-

ing from these transport phenomena, makes it necessary to extend dynamic

optimization methods into spatial settings.

In this context our paper studies dynamic optimization for the manage-

ment of environmental resources in spatiotemporal settings, where spatial

transport phenomena across space are explicitly taken into account. We

present approaches that deal with dynamic optimization in infinite dimen-

sional spaces which can be used as tools in environmental and resource eco-

nomics, along with examples of their application. We also present methods

which can be used to study the emergence of spatial patterns in dynamic

optimizations models. Our methods draw on the celebrated Turing diffusion

induced instability but are different from Turing’s mechanism since they ap-

ply to forward-optimization models. We believe that this approach provides
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the tools to analyze a wide range of problems with explicit spatial structure

which are very often encountered in environmental and resource economics.
1

2 Modeling Spatial Transport Phenomena

To model transport phenomena we consider a bounded spatial domain O ⊂
Rd representing geographical space. In most applications the geographical
space will be one- or two-dimensional, i.e., d = 1 or d = 2. It is often

assumed that the spatial domain is a circle or a torus in order to eliminate

the influence of boundary conditions on outcomes related to the emergence

of spatial patterns. Let y (t, x) denote the stock or the concentration or the

density of an environmental state variable at time t ≥ 0 and spatial point

x ∈ O. The spatial behavior of y is modeled by assuming that the functions
y (t, ·) belong for all t to an appropriately chosen function space H.2

The state of the system at point s ∈ O is expected to influence the

state of the system at point x ∈ O through transport phenomena. For

instance biomass, pollution, or heat can be transported across locations. Let

us assume that y(t, x) represents the concentration of a quantity of interest at

point x ∈ O and time t, e.g., biomass. This stock grows locally (i.e. the local
population multiplies and dies) and is transported from x to other locations

while at the same time biomass from other locations is transported to x.

In this context consider, therefore, a dynamic fishery occupying an area

which for simplicity is taken to be one-dimensional, i.e., a finite line segment,

or a circle. Thus y (t, x) is the biomass concentration at time t and spatial

1There is a substantial literature on IAMs in which “space”is taken into account (e.g.
the big IAMs RICE/DICE, PAGE, FUND). General Circulation Models (GCMs) are also
full of spatial transport phenomena but the models are so complicated that all the work is
essentially numerical. We are trying to add value by working with models of intermediate
complexity so that the reader can actually understand the forces and the mechanisms
generating the results.

2A convenient choice is to let H be a Hilbert space such as the space of square integrable
functions on O, or an appropriately chosen subspace, e.g. the space of square integrable
functions on O = [−L,L] satisfying periodic boundary conditions in order to model a
circular spatial domain.
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point x (see for example the models presented in sections 4.1 and 4.1). As-

sume that biomass located at point x moves to nearby locations and that

the direction of the movement is such that biomass from locations where bio-

mass is abundant, i.e., location of high biomass concentration, moves towards

locations of low biomass concentration. This is the assumption of Fickian

diffusion, or Fick’s first law, and is equivalent to stating that the flux of

biomass denoted by J (t, x) is proportional to the gradient of the biomass

concentration, i.e., the spatial derivative of concentration, or

J (t, x) = −D∂y (t, x)

∂x
(1)

where D is the diffusion coeffi cient or diffusivity measuring how fast biomass

moves from locations of high concentration to locations of low concentration.

Fickian diffusion shown by (1) can be derived by a random walk approach to

diffusion in which individual particles move randomly backward and forward

along a line in fixed steps (see for example Murray (2002) ). In the random

walk approach, the diffusion coeffi cient D measures how effi ciently particles

disperse from a high to a low density.

In a region x0 < x < x1, the rate of change of the biomass is equal to the

rate of flow across the boundary plus the net amount of biomass created in

the region. If the biomass grows in the region according to logistic growth

f (y (t, x)) = ρy (x, t)
(

1− y(x,t)
K

)
, where ρ is an intrinsic growth rate and K

is a carrying capacity, and is reduced by harvesting at a rate u (t, x), then

by writing F (y(t, x), u(t, x)) = f (y (t, x))− u(t, x), the total rate of change

of biomass in the region [x0, x1] is:

∂

∂t

∫ x1

x0

y(t, x)dx =

∫ x1

x0

F (y(t, x), u(t, x))dx+ J (t, x0)− J (t, x1) (2)

where the integral on the right hand side denotes the net biomass creation

in the region, and the term J (t, x0) − J (t, x1) denotes the rate of biomass

flow across the boundary of the region. This setup is presented in Figure 1.

FIGURE 1

Fickian diffusion
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Taking x1 = x0 + ∆x and the limit as ∆x→ 0 we obtain

∂

∂t
y(t, x) = F (y(t, x), u(t, x)) +

∂J (t, x)

∂x
. (3)

Using (1) to obtain ∂J(t,x)
∂x

= −D ∂y2(t,x)
∂x2

, the spatiotemporal evolution of the

biomass is described by the diffusion equation:

∂

∂t
y(t, x) = D

∂2

∂x2
y(t, x) + F (y(t, x), u(t, x)). (4)

This type of diffusion equation has been used in the examples of section 4.3

More complex cases of diffusion, when for example D is not constant, or the

spatial domain is not one-dimensional, can be modelled by the more general

approach summarized in the rest of this section.

Consider a general bookkeeping equation:

∂

∂t
y(t, x) = B(t, x)−D(t, x) + I(t, x)−O(t, x), (5)

where B, D are births and deaths at x, I is the influx of biomass into x

from other locations and O is the outflux from x to other locations. Let

f(t, x) = B(t, x)−D(t, x) the local growth term and Ψ(t, x) = I(t, x)−O(t, x)

the flux term. If no new biomass is generated in O, i.e. B −D = f = 0, so

the local rates of change are due to biomass being transported while the total

quantity is kept constant then Ψ must have the property that
∫
OΨdx = 0.

The bookkeeping equation (5) in the absence of net local birth and death

rates can be expressed (invoking Gauss’divergence theorem) as

∂

∂t
y(t, x) = −∇ · J(t, x), (6)

where J is a vector field often called the flux of material and ∇· is the
divergence operator (sometimes the alternative notation divJ is used). In

3The pollution equation of section 4.3 can be easily derived by following the same
approach.
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Cartesian coordinates J = (J1, J2, J3) and

∇ · J =

3∑
i=1

∂Ji
∂xi

.

We now consider a model where the local flux of material J is given by a

generalization of Fick’s law, that is we consider that material flows to regions

of lower density but now spatial variability with respect to all possible direc-

tions has to be taken into account and this is done using the spatial gradient

operator∇ (not to be confused with∇·) that acts on a scalar field y providing
a vector field defined (in Cartesian coordinates) as∇y =

(
∂y
∂x1
, ∂y
∂x2
, ∂y
∂x3

)
. The

three-dimensional generalization of Fick’s law is J(t, x) = −D(t, x)∇y(t, x)

and therefore the vector field is

J = (J1, J2, J3) = (−D ∂y

∂x1

,−D ∂y

∂x2

,−D ∂y

∂x3

). (7)

Note that in the one-dimensional case, where y depends only on x = x1, our

expression for J degenerates to a scalar, J(t, x) = −D ∂y
∂x
. Substituting (7)

in (6) gives us a partial differential equation (PDE) for the evolution of y of

the form
∂

∂t
y(t, x) =

3∑
i=1

∂

∂xi

(
D(t, x)

∂y

∂xi
(t, x)

)
where we use the shorthand notation x = (x1, x2, x3). If D is independent of

x, then the above equation is simplified to

∂

∂t
y(t, x) = D∆y(t, x),

where ∆ is the Laplace operator defined (in Cartesian coordinates) as

∆y(t, x) =
∂2

∂x2
1

y(t, x) +
∂2

∂x2
2

y(t, x) +
∂2

∂x2
3

y(t, x).

Consider local growth f = B − D, which may depend on the current local
state of the system at x and possibly a control procedure u (t, x) which in

environmental and resource economics could reflect policies such as harvest-
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ing, emissions, pollution control, or extraction . Expressing f by f(t, x) =

F (y(t, x), u(t, x)), the model becomes:

∂

∂t
y(t, x) = ∇ · (D∇y(t, x)) + F (y(t, x), u(t, x)), (8)

which for constant D and a one-dimensional space reduces to (4).

In the case, for example, of a two-dimensional EBCM (e.g. North et al.

(1981), or Brock et al. (2013) for an economic application of this model

in the economics of climate change), the evolution of surface temperature

at latitude θ ∈ [−π/2, π/2] and longitude φ ∈ [−π, π] denoted by T (r, t) ,

r = (θ, φ) is given by

C (r)
∂T (t, r)

∂t
= h (T (t, r) ,v)− I (r, t) + E (t) +∇ · (D (x)∇T (r, t)) (9)

where C (r) denotes local heat capacity, h (T (t, r) ,v) denotes incoming so-

lar radiation as a function of surface temperature and parameters v of the

natural system, I (r, t) denotes outgoing radiation, E (t) denotes global emis-

sions of GHGs from anthropogenic sources and D (x) , x = sin θ represents

the diffusion term for all different forms of heat transport across the globe.

A common parametrization for this term is D (x) = D0 (1 +D2x
2 +D4x

4) .

The possibly nonlinear function F reflects the dynamics of the system

even in the absence of spatial effects. A common general choice for F is a

separable form such as F (y, u) = f(y)−Bu. Thus f (y) will denote resource

dynamics and u could be a harvesting, emission or extraction function and

B a mapping between function spaces, which quantifies the effect that har-

vesting at any point x ∈ O will have on the rate of change of the state of the
system at point x ∈ O. In (9) for example f is the term h (T (t, r) ,v)−I (r, t)

and u is the term E (r) . The map B is called the control to state map and

may be either local or nonlocal in space. This map can be illustrated by

two examples. The first one is when we harvest from the population directly

at every point at a local rate u(t, x), then (Bu)(t, x) = u(t, x) and B = I

the identity mapping, as is also the case for E (t) in (9). This is the typical

harvesting or extraction, or emission control problem. The second one is
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when we harvest at a local rate u(t, x) in Oh ⊂ O (i.e., we only harvest at

selected points in our domain), then (Bu)(t, x) = 1Oh(x)u(t, x) where 1Oh
is the indicator function of the subset Oh, meaning that (Bu)(t, x) vanishes

if x 6= Oh. This can be regarded as an example of protected areas within
the spatial domain of interest. The dynamics of the system’s state in the

absence of control depend on the specific problem analyzed. If we use logis-

tic growth in modeling the spatiotemporal evolution of biomass, our model

is reduced to the celebrated Fisher-Kolmogorov-Petroskii-Piskunov (FKPP)

equation which is commonly used in the natural resources literature.

Equation (8) must be complemented with an initial condition y(0, x) =

y0(x), and boundary conditions. The boundary conditions will provide in-

formation about what the solution is expected to do at all times at the

boundary of the spatial domain O. Possible boundary conditions are: (i)
Periodic boundary conditions; (ii) Dirichlet type boundary conditions which

means specifying the concentration y on the boundary. A particular class is

setting this quantity to 0 which corresponds to hostile boundaries; (iii) Neu-

mann type boundary conditions which means specifying some coordinates

of the flux vector at the boundary. A common choice is setting the flux in

the normal direction equal to 0 corresponding to impermeable boundaries.

In one dimension, boundary conditions for (4) could take different forms:

(i) The spatial domain is a circle or y (t,−L) = y (t, L) for all t, (ii) hos-

tile boundaries or y (t,−L) = y (t, L) = 0 for all t, or (iii) zero flux at the

boundaries or ∂y(t,−L)
∂x

= ∂y(t,L)
∂x

= 0 for all t.

The above formulation allows for the treatment of any number of interact-

ing species with spatially nonhomogeneous densities. For example a spatially

dependent Lotka-Volterra predator-prey model, with population densities at

time t and point x ∈ O, y1(t, x) and y2(t, x) respectively, takes the form

∂

∂t
y1(t, x) = f1(y1(t, x), y2(t, x))− (B1u1)(t, x) +D1

∂2

∂x2
y1(t, x),

∂

∂t
y2(t, x) = f2(y1(t, x), y2(t, x))− (B2u2)(t, x) +D2

∂2

∂x2
y2(t, x),

where u1, u2 are the harvesting of the two species, B1, B2 are the relevant
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control to state operators, and f1, f2 are the functions modelling the nonlinear

interactions between the species. The species may have different transport

terms, as denoted by the difference in the diffusion coeffi cients D1 6= D2,

while more complicated transport terms may also be considered.

3 Dynamic Optimization in a Spatial Setting

Having obtained a suitable model of the general form (4), for the evolution

of the state of the system subject to the choice of a particular control process

u, we examine now how to choose u optimally so as to optimize an objective

defined in terms of the spatial domain and the spatial and temporal evolution

of the system. In environmental and resource economics the traditional ob-

jective is to maximize a general benefit or utility function that may depend

on the control process and resource’s stock. For example in models with har-

vesting, the benefit function depends on the flow of harvest and the resource

stock, while in pollution control models the benefit function depends on the

flow of emissions and the stock of pollutants.

A general formulation for the dynamic optimization problem in a spatial

setting with forward-looking agents can be defined in terms of a local benefit

(or utility) function U(t, x, y(t, x), u(t, x)) which assigns benefits at time t

and spatial point x ∈ O given that the state of the system is y(t, x) and

the control exerted is u(t, x). Given U we consider the following spatial

optimization problem:

max
u∈U

∫
x∈O

∫ ∞
0

e−rtU(t, x, y(t, x;u), u(t, x))dtdx, subject to (4)

where r > 0 is a discount rate. This problem can be interpreted as corre-

sponding to a situation where a social planner (or regulator) chooses a control

procedure in order to maximize global benefits for the whole spatial domain

by taking into account spatial interactions.

This is an infinite dimensional optimization problem in which we seek to

find a function u∗ ∈ U (within the admissible class of controls) such that the
process y(u∗), i.e., the solution to (4) with u = u∗, is the maximizer of the
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above functional. There are two general approaches to this problem, which

under technical conditions are equivalent. The first is a dynamic program-

ming approach which yields a PDE for the value of the problem, called the

Hamilton-Jacobi-Bellman (HJB) equation. This equation is a PDE on an

infinite dimensional Hilbert space. The optimal control policy can be found

in terms of the solution of this equation but the mathematical treatment,

though elegant and rigorous, soon moves beyond standard expertise encoun-

tered in the economics profession. The other approach is that of the maxi-

mum principle. This is a generalization in Hilbert space of the well-known

maximum principle often employed in the treatment of finite dimensional

economics systems. According to this approach, we need to introduce an

auxiliary process p which is called the costate. In this approach, a dynamical

evolution law is derived for the costate variable p and the optimal control u∗

is obtained as a functional of the process p. The infinite dimensional version

of the maximum principle, though formally looking very similar to its finite

dimensional counterpart, presents important mathematical intricacies which

we cannot fully treat here. We will thus simply state it and use it in order to

derive certain important phenomena that may arise in dynamic optimization

in a spatial setting (see for example Derzko et al. (1980), Derzko et al. (1984),

Brock and Xepapadeas (2008), Brock and Xepapadeas (2010)).

We begin our presentation of the maximum principle with a finite horizon

version of the problem of the form

max
u∈U

∫
x∈O

∫ T

0

e−rtU(t, x, y(t, x;u), u(t, x))dtdx+

∫
O
e−rTΦ(y(T, x))dx,

subject to (4)

where we assume that the period over which the system is controlled is the

finite interval [0, T ] and a value Φ for the final state of the system y is also

added. We also assume that U := {u : [0, T ] × O : u(t, x) ∈ C ⊂ R, t ∈
[0, T ], x ∈ O}, where C is an appropriate subset of R (typically [0, b]).

The first step in the formulation of the maximum principle is the definition

of the current value Hamiltonian function H : [0, T ]×O×R×R×C → R as

14



H(t, x, y, p, u) = U(t, x, y, u)+pF (t, x, y, u) which is now considered as a func-

tion from a subset of a finite dimensional set into R. Next we maximize the
functionH over all u ∈ C (this is treated as a finite dimensional and static op-
timization problem) and obtain the maximizer u∗ = arg maxH(t, x, y, p, u),

which is evidently a function of the remaining variables now treated as para-

meters. We thus denote u∗ = C(t, x, y, p), where C : [0, T ]×O ×R×R→ R
is the function which describes the variability of the maximizer of the Hamil-

tonian function when t, x, y, p are treated as parameters. We then define the

function H∗ : [0, T ]×O×R×R→ R as H∗(t, x, y, p) = H(t, x, y, p, u∗). We

summarize this first step as

H(t, x, y, p, u) = U(t, x, y, u) + F (t, x, y, u)p,

u∗(t, x, y, p) := C(t, x, y, p) = arg max
u∈C

H(t, x, y, p, u),

H∗(t, x, y, p) := H(t, x, y, p, u∗(t, x, y, p)). (10)

The function C will be used in the sequel to define a feedback control rule.
We then consider the following evolution equation for the process p,

∂

∂t
p(t, x) = rp(t, x)−D ∂2

∂x2
p(t, x)− ∂

∂y
H∗(t, x, y(t, x), p(t, x))

p(x, T ) =
∂

∂y
Φ(y(T, x)),

which is now a final value problem, i.e., a problem treated with a final rather

than an initial condition. The third term is the derivative of the function H∗

defined above, with respect to the static variable y, and then this function is

calculated at (t, x, y(t, x), p(t, x)). It can be proved using duality arguments

that if (y∗, u∗) is an optimal pair for the finite horizon system, then y∗ and
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u∗ must solve the following system of forward-backward PDEs

∂

∂t
y∗(t, x) = +D

∂2

∂x2
y∗(t, x) +

∂

∂p
H∗(t, x, y∗(t, x), p∗(t, x)), (11)

y∗(0, x) = y0(x), (12)

∂

∂t
p∗(t, x) = −D ∂2

∂x2
p∗(t, x) + rp∗(t, x)− ∂

∂y
H∗(t, x, y∗(t, x), p∗(t, x)), (13)

p∗(x, T ) =
∂

∂y
Φ(y(T, x)) (14)

and u∗ is connected with the pair (y∗, p∗) by

u∗(t, x) = C(t, x, y∗(t, x), p(t, x)). (15)

An explanation for the appearance of the term D ∂2p
∂x2

in the costate equa-

tion (13) can be provided by considering a heuristic derivation of conditions

(11)-(14) using a standard variational approach for deriving the necessary

conditions for the maximum principle (e.g. Kamien and Schwartz (1991)).

In this case the term −D
∫
x∈O p (t, x) ∂2y(t,x)

∂x2
dx which appears when the vari-

ational argument is applied should be integrated by parts twice with respect

to x in order to express the second derivative of y with respect to x in terms

of the derivatives of p with respect to x. This leads to the appearance of

the term −D
∫
x∈O x (t, x) ∂2p(t,x)

∂x2
dx and finally to (13). For the details of this

approach see for example Brock and Xepapadeas (2006).

Questions regarding suffi ciency and necessity of the above maximum prin-

ciple are related to the concavity properties of the Hamiltonian (see, e.g.,

Oksendal (2005)).

So our strategy for looking for a candidate for an optimal control and

optimal path can be summarized as follows:

. Solve the static optimization problem (10).

. Solve the forward-backward parabolic problem (11)-(14) to obtain the

pair of functions (y∗, p∗).

. Calculate the optimal control using (15).
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A few remarks are in order at this point.

1. System (11)-(14) is a forward-backward system, the state variable

(forward variable) y is treated as an initial value problem while the costate

variable (backward variable) p is treated as a final value problem. The costate

has an important economic interpretation since it represents the shadow value

of the state at each point of time and space, i.e., it is a local dynamic shadow

value.

2. Note the change in sign in front of the diffusion operator in the costate

(backward) equation (13) of system (11)-(14). This is important for the well

posedness of the system since a diffusion equation cannot be solved backwards

in time. This is an ill-posed problem.

3. We point out that in the spatially homogeneous case, the state-costate

(forward-backward) equations (11), (13) become the ODEs used in optimal

control problems where only temporal variability of the state is taken into

account. This can be treated with a phase plane analysis which provides a

nice geometrical intuition of the optimal path as a stable saddle path.

4. There exist generalizations for systems like the Lotka-Volterra system

and for more general types of transport equations.

5. There is a case where uncertainty can also be treated using the maxi-

mum principle, but that requires the introduction of a new type of stochastic

differential equations called forward-backward stochastic differential equa-

tions (see Oksendal (2005)). For a generalization of the saddle point concept

in this context, see Yannacopoulos (2008).

6. While equations (11)-(14) are written as an equality that holds for

every (t, x) ∈ [0, T ] × O, i.e., we assume that (y∗, p∗) is a classical solution,

PDEs very rarely have solutions that enjoy this property. However, the

maximum principle is still valid if the solutions are understood in a more

generalized form, called the weak formulation, in which the functions (y∗, p∗)

are considered as elements of appropriately chosen Lebesgue spaces, as is

standard practice in the modern theory of PDEs.

7. In the infinite horizon case we must take the above finite horizon results

appropriately to the limit T →∞. This requires some knowledge concerning
the behavior of the solution as t → ∞, called the transversality condition.
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Loosely speaking this involves setting limt→∞
∫
O e
−r ty(t, x)p (t, x) dx = 0

(Benveniste and Scheinkman (1982)). These transversality conditions de-

termine the behavior of (y, p) as t → ∞ and even though the phase space

here is infinite dimensional, we may consider the familiar analogue of the

saddle point in two-dimensional phase space.

8. There are many excellent expositions of control theory for PDEs.

Unfortunately as space is limited we limit ourselves to the 21st century and

from this set only cite three: Glowinski et al. (2008), which also provides

a lot of important information concerning the numerical treatment of such

problems; Komornik and Loreti (2005), an excellent and highly readable

exposition which at the same time provides deep insight into the abstract

theoretical issues; and Zuazua (2007), a valuable introduction which leads

the reader to the current problems in the field.

4 The Maximum Principle in Environmental

Economics: Examples

4.1 Target following in the FKPPmodel: Linear quadratic

problems

Consider the case where the objective of the decision maker is to control

the system so as to keep it as close as possible to a predetermined target yd
which may be a function of space and time. Deviations from this target are

costly and so is the control procedure needed to keep the system close to the

desired target. In the limit of small deviations from the target, the evolution

equation may be approximated by the linearized equation around the target,

and the cost functional which models the distance from the target may be

assumed to be quadratic in the deviations in state and control. This leads us

to a wide class of spatial optimal control problems, that of linear quadratic

problems.

As a concrete example, consider a model where the spatio-temporal dis-
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tribution of biomass is evolving according to an FKPP equation of the form

∂

∂t
y(t, x) = D

∂2

∂x2
y(t, x) + ρy(t, x)

(
1− y(t, x)

K

)
− u(t, x), (16)

where ρ is the intrinsic growth rate, K is the carrying capacity and u is

the harvesting rate. Assume that the desired state of the population is a

fraction γ of the carrying capacity uniformly over space, i.e. yd(t, x) = γK,

t ∈ [0, T ], x ∈ O. It can be seen that this is achieved by imposing a constant
and homogeneous in space harvesting rate u(t, x) = ud(t, x) = ρKγ(1 −
γ). Suppose now that for some reason, this desired equilibrium has been

disrupted, and the state of the system at time t = 0 is equal to y(0, x) =

γK + ȳ(0, x). Obviously, this spatial disruption is going to “propagate”

through space and time and is going to create spatiotemporal deviations

from the desired states whose exact form is given by the solution of (16).

Setting y(t, x) = γK + ȳ(t, x) and u(t, x) = ρKγ(1− γ) + ū(t, x), in (16) we

obtain

∂

∂t
ȳ(t, x) = ρ(1− 2γ)ȳ(t, x)− ū(t, x)− ρ

K
ȳ(t, x)2 +D

∂2

∂x2
ȳ(t, x). (17)

Keeping the system as close as possible to the desired state and harvesting

target yd and ud means keeping the deviations ȳ and ū as close as possible

to zero. Suppose that we wish to choose ū so as to minimize the functional

Jε =

∫
O

∫ T

0

e−rt
(
P

2ε
ȳ(t, x)2 +

Q

2
ū(t, x)2

)
dtdx

for some ε > 0, under the dynamic constraint (17). Note that by the choice

of control functional to be minimized the state ȳ for the optimal path will be

kept small and of order comparable to ε (if Jε is finite then necessarily the

integral of ȳ2 over all space and time must be of order ε) so the quadratic

term in (17) will be small and may be neglected, keeping only the linear

terms in the equation. The target following problem can thus be considered

as a linear quadratic optimal control problem, i.e., a problem of minimizing
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Jε under the linear dynamic constraint

∂

∂t
ȳ(t, x) = ρ(1− 2γ)ȳ(t, x)− ū(t, x) +D

∂2

∂x2
ȳ(t, x).

The solution of this problem by construction stays ε- close to the desired

target. This can be treated with the application of the maximum principle4

which yields

u∗ = − p
Q
,

H∗ = −P
2ε
y2 +

1

2Q
p2 + ρ(1− 2γ)yp,

and the optimal path is provided by the solution of the forward-backward

system

∂

∂t
ȳ∗(t, x) = ρ(1− 2γ)ȳ∗(t, x)− p̄∗(t, x)

Q
+D

∂2

∂x2
ȳ∗(t, x),

∂

∂t
p̄∗(t, x) = rp̄∗(t, x) +

P

ε
ȳ∗(t, x)− ρ(1− 2γ)p̄∗(t, x)−D ∂2

∂x2
p̄∗(t, x) (18)

with initial condition ȳ∗(0, x) = ȳ(0, x) and final condition p̄∗(T, x) = 0.

The forward-backward system (18) is a special case of the general linear

quadratic problem (39) described in Section 9.1 in the Appendix for the

choice of parameters c1 = ρ(1 − 2γ), c2 = − 1
Q
, c3 = P

ε
, c4 = −c1. System

(18) admits an exact solution following the procedure, described in detail in

Section 9.1 in the Appendix, in terms of a Fourier series expansion, which if

we assume hostile boundary is

ȳ∗(t, x) = e
rt
2

∑
n

(
Ā(n)eσ̄(n)t + B̄(n)e−σ̄(n)t

)
sin
(nπ
L
x
)
,

ū∗(t, x) = − 1

Q
e
rt
2

∑
n

(
A(n)eσ̄(n)t +B(n)e−σ̄(n)t

)
sin
(nπ
L
x
)
,

4Minimizing J is equivalent to maximizing −J.
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with

σ̄(n) =
1

2

√
r2 − 4bn,

bn = −λ2
n − (r + c4 − c1)λn + (c1r + c1c4 − c2c3),

λn =
Dπ2

L2
n2

and the constants Ā(n), B̄(n), A(n) and B(n) are given explicitly by equa-

tions (43) and (44) in the Appendix.

This explicit solution highlights the spatial variability of the optimal con-

trol as well as the spatial variability of the deviation from the target and

shows clearly that in the presence of transport, dealing only with the tem-

poral aspects of the optimal control problem can be misleading. In Figure

2 we present the optimal path and the optimal control for a typical set of

parameters for this problem.

FIGURE 2

Optimal path and optimal control policy for the target following example

This solution, as well as the solution of more general linear quadratic

problems, leads to a spatial feedback control rule. Therefore, an important

observation is that the optimal stabilization policy is space dependent, i.e.,

there is no way to bring the system optimally close to the desired state unless

we apply different policy procedures at different spatial points. A one-size-

fits-all policy (i.e., a spatially homogeneous policy) is clearly sub-optimal!

Linear quadratic control problems play an important role in the theory of

spatial optimal control for the following two reasons. First, they are one of

the few cases that are subject to exact analytic solutions or to semi-analytic

solutions through use of the Ricatti equation, and as such offer important

insight into the phenomena that may arise in dynamic optimization in spatial

settings. Second, nonlinear problems may be approximated around a desired

state by a properly constructed version of a linear quadratic control problem.

For details on the construction of this approximation in which the lineariza-

tion is ingeniously designed to take into account the effects of higher order
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terms in the dynamics, the reader may consult the classic work of Magill

(e.g., Magill (1977a), Magill (1977b)) and the excellent exposition in Judd

(1998)). For a detailed discussion of the tracking problem with a special

reference to resource economics, see e.g. Brock et al. (2012d).

4.2 Renewable resource harvesting in a spatial setting

Assume that y models the spatiotemporal distribution of biomass (e.g. popu-

lation of fish in a spatially distributed fishery) and u is a harvesting function.

Harvesting generates revenues at location x ∈ O according to a concave rev-
enue function R : R → R, so that R(u(t, x)) denotes the revenues from

harvesting at time t and point x ∈ O. Harvesting costs are stock dependent
and modelled by a function C : R×R→ R such that harvesting costs at time
t and point x ∈ O are C(u(t, x), y(t, x)). The stock of fish generates further

environmental benefits associated with values from non-consumptive services

(e.g. regulation, or existence values) modelled by a function B : R→ R such
that environmental benefits at time t and point x ∈ O are B(y(t, x)). Let

the equation for the evolution of the biomass be of the form

∂

∂t
y(t, x) = D

∂2

∂x2
y(t, x) + F (y(t, x))− u(t, x). (19)

A regulator seeks to maximize discounted benefits for the whole spatial do-

main by choosing the harvesting function u to maximize the functional

J :=

∫
O

∫ T

0

e−rt[R(u(t, x))− C(u(t, x)), y(t, x)) + B(y(t, x))]dtdx+

e−rT θ

∫
O
y(T, x)dx,

under the dynamic constraint (19) and possibly the constraint y(t, x) ≥ 0

for all t, x, where θ is the value per unit of fish biomass at the end of the

planning horizon. In order to make the algebra simpler and to provide an

explicit form for the resulting forward-backward system, as we only use this

example for the sake of illustration, we choose R(u) = ln(u), assume that the

cost function depends only on u, i.e., C(u, y) = αu, α > 0, and we set r = 0.
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The Hamiltonian for this problem is

H(t, x, y, p, u) = R(u)− C(u, y) + B(y) + (F (y)− u)p,

and defines u∗ = arg maxuH(t, x, y, p, u). Then, the first order condition for

maximization of H, for the specific choice of the functions R and C, yields

u∗ =
1

p+ α
, (20)

and this defines the function C. We may then calculate H∗ as

H∗(t, x, y, p) = − ln(p+ α)− α

p+ α
+

(
F (y)− 1

p+ α

)
p

= − ln(p+ α) + F (y)p− 1

and therefore

∂

∂y
H∗ =

d

dy
F (y)p,

∂

∂p
H∗ = − 1

p+ α
+ F (y).

The forward-backward equation for this problem becomes

∂

∂t
y∗(t, x) = D

∂2

∂x2
y∗(t, x) + F (y∗(t, x))− 1

p∗(t, x) + α
, (21)

y∗(0, x) = y0(x), (22)

∂

∂t
p∗(t, x) = −D ∂2

∂x2
p∗(t, x)− F ′∗(t, x))p∗(t, x), (23)

p∗(T, x) = θ. (24)

This system can be complemented with boundary conditions, e.g., Dirichlet

boundary conditions for y∗ and p∗ or no flux boundary conditions for y∗ and

p∗. Once the solution of (21)-(24) has been obtained, we may compute the

optimal control using (20). Equations (21)-(24) are a fully coupled forward-

backward system of diffusion equations which is also nonlinear. In general,

system (21)-(24) does not admit analytic solutions and has to be treated

numerically.
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4.3 Pollution control in a spatial setting

Consider y as modelling the stock of a pollutant which presents spatio-

temporal variability. The pollutant is assumed to diffuse in the environment

and its evolution is given by the PDE

∂

∂t
y(t, x) = u(t, x)−my(t, x) +D

∂2

∂x2
y(t, x), (25)

where m is the natural rate of decay of the pollutant and u(t, x) is the rate of

pollutant emissions at time t and location x. Emissions are a by-product of

production and generate benefits. At the same time the increasing concen-

tration of pollutant is assumed to be harmful. An environmental regulator

seeks to maximize discounted net benefits from production (i.e. emissions),

or maximize over u the functional

J =

∫
O

∫ ∞
0

e−rt[B(u(t, x))− D(y(t, x))]dtdx,

where B : R→ R is a concave function modelling benefits from emissions and
D : R→ R is a convex function modelling damage from the concentration of
pollutants. This maximization problem has to be solved under the dynamic

constraint (25).

The relevant current value Hamiltonian is H(t, x, y, p, u) = B(u)−D(y)+

(u−my)p and assuming differentiability of the first order condition yields

u∗ = I(p),

where I is the inverse function of B′. This allows us to calculate the Hamil-

tonian H∗ as a function of y and p and formulate the forward-backward

system (14) with initial condition for y at t = 0 but with a transversality

condition at infinity. For general choice of the benefit and damage func-

tions this will lead to a nonlinear system of PDEs whose solution will deter-

mine the optimal control but which may only be treated numerically. For

the sake of illustration we assume a quadratic damage function of the form

D(y) = 1
2
cy2 and a quadratic benefit function of the form B(u) = a1u− 1

2
a2u

2
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with 0 ≤ u < a1
a2
so that we have only the increasing part of the benefit

function. A straightforward calculation yields that u = 1
a2

(a1 + p) and the

Hamiltonian is of quadratic form

H∗ =
1

2a2

(p+ a1)2 −m(p+ a1)y +ma1y −
c

2
y2.

For p < 0, with p (t, x) interpreted as the shadow cost of pollution at time t

and location x, the forward backward system (14) takes the form

∂

∂t
y∗(t, x) = +D

∂2

∂x2
y∗(t, x)−my∗(t, x) +

1

α2

p∗(t, x) +
a1

a2

,

∂

∂t
p∗(t, x) = −D ∂2

∂x2
p∗(t, x) + rp∗(t, x)− cy∗(t, x) +mp∗(t, x). (26)

This equation admits a steady state solution which is also uniform in space

given by

ys =
(r +m)a1

m(r +m)a2 + c
, ps = − a1c

m(r +m)a2 + c

which is an acceptable solution as it leads to

us =
m(r +m)a1

m(r +m)a2 + c
<
a1

a2

.

Therefore we will consider spatially varying perturbations around this desir-

able state, by expressing y∗(t, x) and p∗(t, x) in terms of y∗(t, x) = ys+y(t, x),

and p∗(t, x) = ps + p(t, x) where now the functions y(t, x) and p(t, x) satisfy

the linear system

∂

∂t
y(t, x) = +D

∂2

∂x2
y(t, x)−my(t, x) +

1

α2

p(t, x),

∂

∂t
p(t, x) = −D ∂2

∂x2
p(t, x) + rp(t, x)− cy∗(t, x) +mp(t, x), (27)

with homogeneous Dirichlet boundary conditions. It also satisfies an initial

condition for y(0, t) = φ(x) and the transversality condition

lim
t→∞

∫
O
e−r ty(t, x)p (t, x) dx = 0
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for all x ∈ O. The forward-backward system (27) is a special example of the
general linear system treated in Section 9.2 in the Appendix, for c1 = −m,
c2 = 1

a2
, c3 = −c, c4 = −c1. The solution which satisfies the transversality

condition is found using the general procedure described in Section 9.2 by

y(t, x) = e
rt
2

∑
n

ane
−σ̄(n)t sin

(nπ
L
x
)
,

p(t, x) = e
rt
2

∑
n

c1 − λn − r
2

+ σ̄(n)

c2

ane
−σ̄(n)t sin

(nπ
L
x
)
.

where

σ̄(n) =
1

2

√
r2 − 4bn,

bn = −λ2
n − (r + c4 − c1)λn + (c1r + c1c4 − c2c3),

λn =
Dπ2

L2
n2

and an are the coeffi cients in the Fourier expansion of φ as shown in the

Appendix. Then the optimal path and the optimal control policy is given by

y∗(t, x) =
(r +m)a1

m(r +m)a2 + c
+ e

rt
2

∑
n

ane
−σ̄(n)t sin

(nπ
L
x
)
,

u∗(t, x) =
m(r +m)a1

m(r +m)a2 + c
+

1

a2

e
rt
2

∑
n

c1 − λn − r
2

+ σ̄(n)

c2

ane
−σ̄(n)t sin

(nπ
L
x
)
.

In Figure 3 we present a typical calculation for the optimal path and the

optimal control policy for the pollution control example, displaying clearly

the spatial variability.

FIGURE 3

Optimal path and optimal control policy for the pollution control example

4.4 Spatial regulation

The above examples reveal that when the environmental system is character-

ized by spatial transport, then regulation will in general be space dependent
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and will be characterized by the solution of a system of PDEs derived from

the maximum principle. The spatially dependent regulation will be optimal

in the sense that it will describe the optimal control process, e.g., harvesting

or emissions, so the objective is maximized for the whole spatial domain. We

will call this problem the socially optimal management problem (SOMP). The

SOMP should be distinguished from the case in which there is an economic

agent located at each spatial point that makes profit maximizing harvesting

or emission decisions at this location and acts spatially myopically by ignor-

ing spatial transport. This means that he ignores the impact of his decisions

on the stocks accumulated in the other locations. We will call this problem

the privately optimal management problem (POMP). At the POMP the spa-

tiotemporal evolution of the state variable will be determined by (4) with the

control process replaced by the spatially myopic control of each agent. The

spatiotemporal evolution of the state variable will be different between the

SOMP and the POMP, and the optimal regulation determined by the SOMP

will correct for the spatial externality and induce the system to follow the

optimal spatiotemporal evolution y∗.

5 Pattern Formation in Spatially Controlled

Systems

A point of interest is whether pattern formation occurs in an optimally con-

trolled spatial system, since this relates to the spatial structure of regulation.

Assume that the uncontrolled spatially dependent system admits a steady

state ȳ(t, x) = yh which is spatially homogeneous. This means that yh is such

that f(yh) = 0.

Consider now the controlled system and the corresponding state-costate

system of equations (11 -14) which provides the optimal path and the control.

Suppose that we are interested in states of the controlled system which are

small deviations from this homogeneous state yh, i.e., we look for solutions
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of the form

y(t, x) = yh + εȳ(t, x),

p(t, x) = 0 + εp̄(t, x)

u(t, x) = 0 + εū(t, x)

where ε is a small parameter and ȳ(t, x) are the spatio-temporal deviations

around the homogeneous state (obtained for the uncontrolled system) while

p̄(t, x), ū(t, x) are the corresponding costate and control variables. We sub-

stitute this solution ansatz in (11 -14) and, taking a series expansion in the

small parameter ε, we obtain a linear approximation of the original equation

which is valid for the evolution of small deviations around the steady state.

This linearized equation is of the general form

∂

∂t
ȳ(t, x) = +D

∂2

∂x2
ȳ(t, x) + A1ȳ + A2p̄(t, x), (28)

∂

∂t
p̄(t, x) = −D ∂2

∂x2
p̄(t, x) + A3ȳ(t, x) + A4p̄(t, x). (29)

The coeffi cients A1, A2, A3, A4 = (r − A1) arise from the linearization of (11

-14) around the point (y, p, u) = (yh, 0, 0). Without loss of generality we may

assume yh = 0.

Let us also assume for simplicity, and without loss of generality, that

the physical domain is O = [0, L] and 0 and L are considered as hostile

boundaries, so that ȳ(t, 0) = ȳ(t, L) = 0 for all t. The same boundary

condition must be assumed for the costate variable p̄. We may now expand

ȳ and p̄ into a Fourier series, and on account of the boundary conditions this

Fourier series will only contain the sinusoidal terms

ȳ(t, x) =
∑
n

yn(t) sin
(nπ
L
x
)
, p̄(t, x) =

∑
n

pn sin
(nπ
L
x
)
, x ∈ [0, L].

Note that the above functions automatically satisfy the boundary conditions.

As the Fourier series expansion for a function is unique, we may identify the

functions ȳ and p̄ with their Fourier coeffi cients, i.e. the sequences {yn} and
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{pn}. Substituting into the equation and assuming that B = I for simplicity

and then projecting along the various elements of the Fourier basis yields a

system of ODEs for (yn, pn) of the form

d

dt
yn = (−λn + A1) yn + A2pn, (30)

d

dt
pn = A3yn + (λn + r + A4) pn (31)

where λn = Dn2π2

L2
, and this is valid for every n ∈ N. Furthermore, recall that

A4 = −A1 where r is the discount factor. Note that these systems are all

separated. Since the Fourier basis consists of eigenfunctions of the diffusion

operator, we often refer to equations (30), (31) as the spectral decomposition

of the forward-backward system (28),(29). By the uniqueness of the Fourier

transform these two systems are equivalent, but (30), (31) is much easier

to handle as it is a countable system of ODEs (rather than a PDE) and

furthermore, it is a fully decoupled system in the sense that we may solve

it for each n ∈ N separately. The spatial dependence of the solution is

regained from the solution of (30), (31) by resuming the relevant Fourier

series. Equations (30), (31) have to be treated as a two-point boundary

value problem, initial and final value problem for yn and pn respectively, or

equivalently for the given yn(0) we must choose a pn(0) so that the desired

value of pn(T ) is achieved for any n ∈ N (similarly to a shooting problem).
This is equivalent to picking pn(0), n ∈ N, along the eigen-direction of stable
manifold of the saddle point, which is our familiar visualization method for

solving a control problem if we had a finite dimensional problem.

At this stage it is a good idea to eliminate pn from system (30), (31).5

This yields a second order equation in terms of yn only, of the form

d2

dt2
yn − r

d

dt
yn + bnyn = 0, n ∈ N,

5This does not affect the well-posedeness of the control problem as such since p is
a shadow (auxiliary) variable and its elimination from the final system bypasses several
conceptual issues arising with respect to its long-term behaviour. An alternative but
equivalent approach is presented in the Appendix.
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where

bn = −λ2
n − (r + A4 − A1)λn + (A1r + A1A4 − A2A3),

whose general solution is given as an exponential yn(t) = C1,ne
σ1(n)t+C2,ne

σ2(n)t

where σ1,2(n) are the roots of the quadratic s2 − rs + bn = 0, which are ex-

plicitly given as

σ1,2(n) =
1

2
r ± σ̄(n), σ̄(n) =

1

2

√
r2 − 4bn, n ∈ N.

The long-term behavior of the linearized system is now fully determined by

the behavior of these roots. If for some Fourier mode n we have that the

real parts of σ1,2(n) are negative, then the effect of this term will soon die

out in the Fourier series representing the solution, thus not contributing to

the spatial variability of y. If for some Fourier mode n we have that one of

these roots has a positive real part, then this will give rise to an exponen-

tially increasing term in time, which will contribute to the spatial variability

of y as a sinusoidal term in the Fourier series of y. Therefore, this will

be a term contributing to the spatial pattern of y in the long run. How-

ever, note that not all terms corresponding to a positive real part of the

roots σ1,2(n) are acceptable. The system is controlled and therefore terms

whose temporal growth is excessive will be suppressed in the long run by

the control procedure. A simple rule of thumb to find the acceptable terms

is to note that if limt→∞ e
−rty(t, x)2 6= 0 or limt→∞ e

−rtp(t, x)2 6= 0, then

the infinite horizon linear quadratic control problem is not well posed as

the functional becomes infinite. We must thus consider only solutions such

that limt→∞ e
−rty(t, x)2 = 0 and limt→∞ e

−rtp(t, x)2 6= 0 and this rules out

terms which grow at an exponential rate in time larger than r
2
. We will

call this condition a sustainability condition and we note that this is fully

compatible with the Benveniste-Scheinkman transversality condition (Ben-

veniste and Scheinkman (1982)). Therefore, the terms that will contribute

to the final pattern are those with n such that max(Re(σ1(n), σ2(n)) ∈ [0, r
2
].

This observation allows us to provide a detailed analysis of the long-term

spatio-temporal behavior of y.

If r2 − 4bn < 0, then the roots of the quadratic are of the form σ1,2(n) =
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r
2
± iσ0, so they are complex conjugates with real part exactly equal to r

2
.

These are temporally oscillatory modes which are marginal (in the sense

of the sustainability condition) and may be associated with a Hopf type

bifurcation.

If r2 − 4bn > 0, then σ1,2(n) are real, and σ1(n) > r
2
thus violating the

sustainability condition. On the other hand σ2(n) satisfies the transversality

condition at infinity, leading to an acceptable solution of the form

y(t, x) = e
rt
2

∑
n

cne
−σ̄(n)t sin

(nπ
L
x
)
,

and the long term pattern will be of the form

ypattern(t, x) =
∑
n∈Nu

cn exp
((r

2
− σ̄(n)

)
t
)

sin
(nπ
L
x
)
,

where Nu = {n ∈ N : r
2
− σ̄(n) > 0}. Therefore, all modes n such that

r −
√
r2 − 4bn < 0 will not contribute in the long term pattern and if this

inequality holds for every n we expect the long run equilibrium to present no

spatial variability. If bn < 0 this condition is certainly true and all modes are

stable. On the other hand the modes n such that r−
√
r2 − 4bn > 0 will con-

tribute to the long-term pattern and will correspond to the spatial variability

of the long-run equilibrium. Therefore the condition for pattern formation in

the long-run equilibrium is the existence of n ∈ N such that r−
√
r2 − 4bn > 0.

Whether this condition will hold or not depends on (a) the form of the spa-

tially homogeneous system (i.e. the coeffi cients A1, A2, A3, A4), (b) the dis-

count factor r, (c) the nature of the spatial domain, i.e. the length L, and

(d) the diffusion coeffi cient D. Clearly, there may be more than one mode

which can turn unstable, depending on the combination of the relevant para-

meters. However, we can see that in general the modes that are likely to turn

unstable are modes corresponding to small values of λn, i.e., to small values

of n (as n becomes large, bn → −∞ so modes with large n are expected to be

stable). How small n should be depends on the ratio D
L2
and the parameters

A1, A2, A3, A4 and r, thus clarifying the interplay between the properties of

the domain, the diffusion coeffi cient and the intrinsic dynamics of the system.
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The picture is clarified even more if we assume that the spatially independent

system presents a saddle point structure which implies that A1A4−A2A3 < 0,

so that bn is expected to be negative for every n unless r + A4 − A1 < 0 or

A1 > 0 (and n is small). A small n in the Fourier series corresponds to well

formed large scale patterns with respect to the spatial variable, so it corre-

sponds to patterns which are not expected to be merely short-scale spatial

fluctuations that may be swept away as an effect of diffusion. In Figure 4 we

present some typical stability diagrams. On the vertical axis we display the

value of the acceptable eigenvalue r − σ̄(n) for various values of n. As we

move from panel (a) to panel (c), the parameter D/L2 is increasing. In the

top panel we observe that the first 3 Fourier modes are unstable whereas in

the bottom panel all Fourier modes are stable. In Figure 5 we present the

solution of the system for random initial condition for the cases. The top

figure corresponds to the choice of parameters of panel (a) in Figure 4. We

observe the evolution of a long-term spatial pattern which is compatible with

the transversality condition. The second figure corresponds to the choice of

parameters of panel (c) in Figure 4. We observe that no spatial pattern is

formed as expected, and the system relaxes to the flat steady state.

FIGURE 4

Stability diagrams for various values of the parameter D/L2

FIGURE 5

Pattern formation and absence of pattern formation

Summarizing:

. If r2−4bn < 0, then we have marginal modes leading to spatio-temporal

oscillations (Hopf type instability).

. If bn < 0, then we have stable modes (no pattern formation).

. If 0 ≤ bn ≤ r2

4
, then we have unstable modes (pattern formation).

This mechanism is reminiscent of the celebrated Turing instability mecha-

nism but with a very important difference: It arises from a controlled system
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and in fact the control procedure may encourage and lead to the development

of the pattern. This type of mechanism has been called optimal diffusion in-

duced instability (e.g., Brock and Xepapadeas (2008), Brock et al. (2012a)).

Furthermore the controlled nature of the system selects the unstable modes;

note that unlike Turing instability, in our case the unstable modes are those

for which Re(σ1,2(n)) ∈ (0, r
2
]. Optimal diffusion induced instability is a

phenomenon which can occur in domains other than [0, L], in dimensions

higher than 1, for boundary conditions other than the Dirichlet and also for

transport mechanisms other than diffusion.

6 Robust Control and Hot Spot Formation

The optimization described in the sections above is subject to noise and

uncertainty, as it is very common in models of resources and environment.

Uncertainties are related to sources such as limited modelling capacity of the

natural system and lack of theories to anticipate thresholds; major gaps in

global and national monitoring systems; the lack of a complete inventory of

species and their actual distributions; and emergence of surprises and un-

expected consequences. These uncertainties may impede adequate scientific

understanding of the underlying mechanisms and the impacts of regulatory

policies applied to ecosystems. Furthermore, uncertainty may have a spatial

structure in the sense that the degree of uncertainty may vary across the loca-

tions of the natural system. A model with spatial transport and uncertainty

can be written as:

∂

∂t
y(t, x) = D

∂2

∂x2
y(t, x) + f(y(t, x))−Bu(t, x) +

∂

∂t
N(t, x, ω),

where the term N(t, x, ω) corresponds to statistical fluctuations around the

mean observed state of the system. These fluctuations are assumed to vary

both in space and time and must average to 0. Our modelling of the statisti-

cal fluctuations is of course arbitrary, however general considerations based

on the central limit theorem suggest that if we consider the fluctuations
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(noise) to be the overall outcome of many statistically independent errors,

then N(t, x) is expected to have some sort of Gaussian distribution. We use

a stochastic process, the Wiener process, to model this kind of uncertainty

and we define N(t, x) using a Fourier series expansion in space,

N(t, x) =
∑
n

cnwn(t) sin
(nπ
L
x
)
,

where {wn(t)} are independent standard one-dimensional Wiener processes
and {cn} are real numbers, the choice of which characterizes N as an element

of an appropriate function space (either H or larger). Our model for the

evolution of y may take the form of an Itō differential equation as

dy(t, x) =

(
D
∂2

∂x2
y(t, x) + f(y(t, x))−Bu(t, x)

)
dt

+
∑
n

cn sin
(nπ
L
x
)
dwn(t). (32)

An important conceptual step in the modelling is knowing the distribution

of the family of random variables w(t) = {wn(t)}. Our initial “idea”about
them is that they are distributed as w(t) = N(0, It) where 0 is the zero

element in H and I is the identity operator in H. This corresponds to our
belief that we can predict well the mean behavior of the system as given by

equation (32). However, this is not always true and we may also have certain

doubts about the validity of our mean or benchmark model, which in effect is

equivalent to assuming that wn(t) is not distributed as N(0, I t) but rather as

N(
∫ t

0
v(t̄, x)dt̄, I t) where v(t, x) is a general drift term. The possibility that

the w(t) is distributed according to a different probability law is essentially

equivalent to viewing our model (32) as a whole family of modelsM, each of

which is identified with a choice of a function v characterizing the probability

law of the term w generating the fluctuations. Since v ∈ H admits a Fourier
expansion, let us assume that {vn} are the real numbers which are the Fourier
modes of v. A deep result in stochastic analysis (Girsanov’s theorem) allows

us to view the whole family of models in terms of a family of Itō differential
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equations.6 Assuming f(y) = A1y to simplify (the fully nonlinear case has

been treated in Brock et al. (2012a)), we obtain the spatiotemporal dynamics

as the solution of the stochastic PDE

dy(t, x) =

(
D
∂2

∂x2
y(t, x) + A1y(t, x)−Bu(t, x)

)
dt

+
∑
n

∑
m

cnvm sin
(nπ
L
x
)

sin
(mπ
L
x
)
dt

+
∑
n

cn sin
(nπ
L
x
)
dw̄n(t), (33)

where w̄ = {w̄n} is a sequence of standard Wiener processes. Using the
Fourier decomposition of the functions y, u, v, we can view (33) as a countable

set of ordinary Itō type equations of the form

dyn = (−λnyn + A1yn −Bun +
∑
m

Cmnvm)dt+ cndw̄n, n ∈ N, (34)

where

Cmn =
∑
`

c`

∫ L

0

sin
(nπ
L
x
)

sin
(mπ
L
x
)

sin

(
`π

L
x

)
dx.

The system of Itō differential equations (34) can be understood as the spectral

form of the original stochastic PDE (33) (in a form completely analogous to

the deterministic case of Section 5), which is an equivalent formulation but

easier to work with.

For particular choices of the family of models we are interested in, for

example assuming models for which wn(t) =
∫ t

0
vn(t̄)dt̄ + w̄n(t) for every

6According to Girsanov’s theorem we may consider our model as not under the proba-
bility law P (which corresponds to the Itō stochastic differential equation (32) in which the
fluctuations are introduced by the Wiener process w) but under the new probability law
Q which is related to the law P via a Radon-Nikodym derivative of exponential form. The
new model (33) involves a linear correction in the drift term involving the process v and
now the fluctuations are introduced by the process w̄ which is a standard Wiener process
under the probability law Q (see Brock et al. (2012a) for details and references therein).
Note that even if F is nonlinear, the above procedure is still valid and introduces a linear
correction in the drift term.
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n ∈ N, the infinite matrix (Cnm) may be diagonal and (33) simplifies to

dyn = (−λnyn + A1yn −Bun + cnvn)dt+ cndw̄n, n ∈ N. (35)

If vn = 0 for every n ∈ N, then the state dynamics in (35) correspond to
the benchmark model. This situation where a single probability model - or a

unique prior - is suffi cient to analyze the phenomenon and formulate decision

rules can be identified as the case of pure risk or measurable uncertainty in

which the decision maker is able to assign probabilities to outcomes. If vn is

not zero, however, we have at the same time statistical fluctuations and lack

of knowledge concerning the “true”statistical model describing the random

fluctuations. We will call this situation deep uncertainty or ambiguity. This

is a situation where the decision maker operates in the realm of many models

- or multiple priors. Under ambiguity the decision maker does not have the

ability to determine a precise probability structure for the physical or the

economic model, or to put it differently, to measure uncertainty using a

single probability model.

Note that this uncertainty has a spatial character as well, since vn is in

general a function of n and time and through the Fourier series representa-

tion the variability in n corresponds to variability in the spatial variable x.

Therefore, this approach allows for differentiated levels of uncertainty across

space, a situation which is very realistic for a number of applications. For

example, in the context of resource economics, imagine modelling a spatially

extended fishery. Our knowledge of the parameters of the model comes from

statistical estimation techniques and as such provides accuracy as long as a

suffi cient number of measurements of a relevant quantity are available. For

example, in the context of the FKPP model, estimation of the growth rate

can be derived from measurements of the levels of the population. There

are regions of the fishery in which collection of measurements is not easy, so

there is lack of suffi cient data leading to poor validation of the model, hence

enhanced uncertainty concerning the statistical fluctuations in the vicinity

of this region. For a detailed discussion of the issue of spatial uncertainty in

fishery modelling, see e.g., Brock et al. (2012d). Similar situations arise for
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instance in climate change modelling (see e.g. Xepapadeas and Yannacopou-

los (2013)).

Decision making under ambiguity can be studied in the context of Wald

(1950) who suggested that a maxmin solution could be a reasonable solution

to a decision problem, where an a priori probability distribution does not exist

or is not well known to the researcher. One way to approach the maxmin

solution is to use the idea of least favorable prior (LFP) decision theory,

as developed by Gilboa and Schmeidler (1989), which results in maxmin

expected utility theory and represents an axiomatic foundation of Wald’s

criterion.

In the context of minimax expected utility we consider two players, the

decision maker who optimizes an objective, for example minimizes the dis-

tance from a target, and a second adversarial agent (let us call her Nature)

who actually chooses the model from a family of models M. The deci-

sion maker is not completely ignorant concerning the true model, she has

a feeling of which fluctuations are acceptable or not, and therefore Nature

is constrained to choose her model from within this universe of acceptable

models. As an example of that, consider the case of a fishery again. As part

of the uncertainty which affects management we can consider the weather

conditions. The decision maker will consider a large number of scenarios

apart from some very extreme ones which simply cannot happen, such as for

instance snow in August or a heat wave in February in the Mediterranean

(or the opposite in fisheries near Chile). One of the many ways of mod-

elling the universe of acceptable scenarios (or probability laws) is using the

concept of Kuhlback-Leibler entropy between two probability distributions.

In the present context we will focus on the probability distribution of the

Wiener process w and consider two probability laws (models/measures) for

w, P and Q. According to the first, w ∼ N(0, It), whereas according to the

second w ∼ N(
∫ t

0
vdt, It). A (pseudo)-distance between the two laws is the

Kuhlback-Leibler entropy defined as

H(P | Q) =

∫
Ω

ln

(
dP
dQ

)
dP,
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where dP
dQ is the Radon-Nikodym derivative of the two measures. We consider

thus that the allowed universe of models are the models such that a properly

temporally discounted and spatially weighted version of this distance (or a

symmetric version of it) is less than some allowed value, which is what we call

hereafter an entropy ball. This is because for the class of models considered

it can be shown (see e.g. Brock et al. (2012a)) that the entropic constraint

is equivalent to a quadratic constraint which in spectral form yields

E

[∑
n

∫ T

0

vn(t)2dt

]
≤ H,

where E denotes the expectation operator under Q.
We now consider the problem of targeting a particular desired state yh for

a resource stock under deep uncertainty in the context of a linear quadratic

model (see Brock et al. (2012a) or Brock et al. (2012d) for a specific appli-

cation in resource economics). The problem can be formulated in terms of a

robust control problem, e.g., Hansen and Sargent (2008), as

min
{un}

max
{vn}

E

[∫ T

0

e−rt
∑
n

(Pyn(t)2 +Qun(t)2 −Rvn(t)2)dt

]
.

The first two terms are control and deviation costs and the third is a penalty

term related to the entropic constraint, so that R can be regarded as a La-

grange multiplier, hereafter called the robustness parameter. It can be shown

(Hansen and Sargent (2008)) that low values of R reflect strong concerns

about deep uncertainty and model misspecification, while R → ∞ implies

that we trust the benchmark model. This is a stochastic differential game

which, by employing Fourier decomposition, has been transformed into an

infinite dimensional but separable problem which only involves the temporal

variable, and all information on spatial variability can be regained by recom-

posing the Fourier series. Therefore, the robust control problem is equivalent

to the following sequence of decoupled problems:

min
{un}

max
{vn}

E
[∫ T

0

e−rt(Pyn(t)2 +Qun(t)2 −Rvn(t)2)dt

]
, n ∈ N,
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subject to the constraints (35). Each of these problems is a standard linear

quadratic stochastic differential game for real valued stochastic processes

which can be easily solved in terms of the Hamilton-Jacobi-Bellman-Isaacs

formulation. We omit details and provide the final solution.7 The optimal

path is given in terms of the solution of the Itō equation

dyn =

(
−λn + A1 −

B2

2Q
Mn +

c2
n

2R
Mn

)
Fnyn + cndw̄n, n ∈ N,

where Mn is the root of the algebraic quadratic equations(
c2
n

2R
− B2

2Q

)
M2

n + (−2λn + A1)Mn + 2P = 0, n ∈ N (36)

and the optimal policy is given by the feedback rules

un =
BMn

2Q
yn, vn =

cnMn

2R
yn, n ∈ N.

The above not only provides us with an explicit solution of the optimal

control strategy for solving the tracking problem for the spatially extended

system under ambiguity, but also allows some valuable qualitative insight

into the interaction of control, uncertainty and spatial variability. If the

robustness parameter is low enough, which implies very strong ambiguity

aversion, then (36) may not have a real solution for a mode n. In this case

regulation breaks down. We will call this case a hot spot of type I. In Brock

et al. (2012a) it is shown, using a more general model, that with location

specific entropic constraints, very strong ambiguity aversion for a specific

location may cause global regulation to break down. This location is a type

I hot spot. A type II hot spot emerges when ambiguity aversion in a specific

location induces pattern formation through the optimal diffusion induced

instability mechanism. Finally if the objective of the regulator (tracking

cost) under robust control and ambiguity aversion in a specific location is

very high relative to the cost when R→∞, which is the case of no concerns
about model misspecification, then we have the emergence of a hot spot of

7The interested reader may consult Brock et al. (2012a) and references therein.
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type III.

To summarize, we classify hot spots into 3 different types:

. Hot spot of type I: Breakdown of control procedure and thus breakdown

of global regulation as a result of the interaction of ambiguity aversion,

spatio-temporal uncertainty and endogenous spatio-temporal dynamics

of the system.

. Hot spot of type II: Global regulation is possible but spatial pattern

formation (similar to Turing instability) occurs as a result of it.

. Hot spot of type III: Global regulation is possible but the cost of ro-

bustness becomes high relative to the cost of regulation that disregards

any concerns about model misspecification.

A detailed study of the occurrence of the above types of hot spots (with

detailed estimates for the relevant parameter ranges) can be found in Brock

et al. (2012a). In general hot spots of type I are expected to appear in

systems where R→ 0 (a fact which is related to the loss of concavity for the

value function of the game). Hot spots of type II occur if there exist Fourier

modes with n such that

1

2
(r −

√
Kn) ≤ −λn + A1 ≤

1

2
(r +

√
Kn),

Kn = r2 + 8P

(
c2
n

2R
− B2

2Q

)
≥ 0.

This condition determines the modes that may become unstable, and thus

characterizes the spatial structure of the pattern. Note that both control

and uncertainty play an important role in the emergence of unstable patterns

and the robust control procedure may either have a stabilizing effect with

respect to generation of spatial instability or the opposite. The robust control

procedure is expected to facilitate the onset of instabilities if Q
R
> B2

c2n
, and

this is certainly true in the case where R→ 0.

Robust control methods in economics have been receiving increasing at-

tention over the last decade. General approaches can be found for example
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in Hansen and Sargent (2001b), Hansen et al. (2006), Hansen and Sargent

(2008). The general methodology has been applied to areas such as macro-

economics (e.g. Hansen and Sargent (2001a), Onatski and Williams (2003),

Hansen and Sargent (2003), Leitemo and Söderström (2008)), finance (e.g.

Maenhout (2004), Maenhout (2006)), or environmental and resource eco-

nomics (e.g. Roseta-Palma and Xepapadeas (2004), Vardas and Xepapadeas

(2010), Asano (2010), Athanassoglou and Xepapadeas (2012)). Robust con-

trol methods either in a temporal or in a spatiotemporal setup seems to

provide a prominent area for further research.

Other types of uncertainty may be also taken into account. One type

of uncertainty that is often important is uncertainty with respect to model

parameters, e.g. the exact value of the diffusion coeffi cient D. Then a ro-

bust control procedure can be formulated as a min-max approach where the

controller minimizes over u (assuming D known) and then nature chooses D

over a set of possible values in such a manner as to maximize the “loss”of

the controller (see for example Armaou and Christofides (2001), El-Farra and

Christofides (2001)). These problems may be treated using versions of the

Hamilton-Jacobi-Bellman-Isaacs equation (e.g. Bardi and Capuzzo-Dolcetta

(2008)).

7 Generalizations and Extensions

In this section we discuss several directions in which our results may be gener-

alized and extended. While diffusion has been a dominant model in resource

economics, it may not be an adequate representation in certain cases. This is

because diffusion relates to local transport, i.e. only quantities from a small

neighborhood Nx around x can affect what is happening in x. In practice,
this is not necessarily so. Long-range effects may be important. For instance,

if we are interested in the transport of avian species, then a diffusion approx-

imation may not be satisfactory as birds may fly from rather distant places

to affect the location under consideration. Also, when economic quantities

are studied, long-range spatial externalities may become important. Clearly,

a generalization of the diffusion model in the state equation is called for.
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A general model can take the form of

∂

∂t
y(t, x) = f(y(t, x), Y (t, x)) +Bu+ (T1y)(t, x),

where f(y(t, x), Y (t, x)) represents local growth for y at x ∈ O, Bu is the
effect of controls u on the system and (T1y)(t, x) is a transport term which

quantifies how y migrates from one spatial point to the other and the overall

contribution of such activity to the change of the rate of the system at x.

As the term (T1y)(t, x) presents the net transport, i.e. inflow minus outflow,

it will have to average to 0 over the whole space O. Apart from direct

transport we also allow for spatial externalities which have an effect on the

local growth f , and are represented by Y = (T3y)(t, x), which is a non-local

term modelling how activity at neighboring site s ∈ O affects the growth of
the state variable at site x ∈ O. The effects of control may also be nonlocal.
This is a reasonable assumption when controlling the system at site s ∈ O has
effects on the state of the system at site x ∈ O through the inter-connectivity
of the system. For example, fishing activity at one location affects, through

transport phenomena, the stock of biomass in other locations. In this case

(Bu)(t, x) = (T2u)(t, x). A general model for such nonlocal effects can be to

define

(Tiy)(t, x) :=

∫
s∈O

wi(x− s)y(t, s)ds, i = 1, 2, 3

where wi : O → R is a function, called a kernel function, which quantifies
the effect that activity at site s ∈ O is expected to have on activity at site
x ∈ O. The kernel formulation is general enough to include positive and neg-
ative externalities, localized transport processes related to standard diffusion

models, long-range transport effects, discrete structures, etc. Therefore our

general class of models will be of the form

∂

∂t
y(t, x) = f(y(t, x), (T3y)(t, x)) + (T2u)(t, x) + (T1y)(t, x), (37)

where spatial effects are assumed to be present in transport phenomena (the

T1 term), in the externality effects of the control procedure (the T2 term) and

in the externality effects in growth (the T3 term). A large variety of spatial
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models falls within the general class of models (37).

Kernels can be used to describe positive spatial externalities (e.g., pro-

ductivity enhancement) and negative spatial externalities (e.g., congestion).

Bell-shaped and inverted bell-shaped kernels have been used to model posi-

tive and negative spatial externalities respectively (Murray (2002), Papageor-

giou and Smith (1983), Krugman (1996)), which can be further combined to

produce composite externalities as for example in Figure 6. It can be shown

that our general formulation (37) covers and extends the general class of

diffusion models, in the sense that under specific assumptions the kernel

representation of spatial transport leads to the diffusion approximation (for

a discussion of this approximation in a biological context see, e.g., Murray

(2002)).

FIGURE 6

Composite externality - two hump kernel

An important class of spatial models are purely discrete models. This

corresponds to the case where economic activity can be thought of as located

at discrete sites or cells centered at points {x1, · · · , xN} ⊂ O. Then the
state of the system can be thought of as a sum of delta functions y(t, x) =∑N

i=1 yi(t)δxi(x) and similarly for u so that the functions y(t, x) and u(t, x)

can be replaced by vectors y(t) = (y1(t), · · · , yN(t)) and u(t, x) = (u1(t), · · · , uN(t))

in RN . When the kernel operators act on these localized functions, they are
replaced by

(T1y) = ((T1y)1, · · · , (T1y)N),

where

(T1y)i =
N∑
j=1

w1,ijyj,

and w1,ij = w1(xi − xj) for i, j = 1, · · · , N . Similarly for the other kernels.
Therefore, the action of the integral operators Ti, i = 1, 2, 3 can be realized

as matrix multiplication with the N ×N matrices W1,W2,W3 with elements

Wr = (wr,ij), r = 1, 2, 3 and i, j = 1, · · · , N , and thus the integrals under-
stood as sums. Within the general class of such models, (37) becomes a
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system of ODEs of the form

d

dt
yi(t) = f(yi(t),

n∑
j=1

w3,ijyj(t),

N∑
j=1

w2,ijuj(t))) +

N∑
j=1

w1,ijyj(t), (38)

where i = 1, · · · , N . In this model we have included the nonlocal effects of the
control term in the function f (this is always possible by proper redefinition

of f).

This class of models may also be considered an approximation of the

spatial continuous models such as (37), by a discretization procedure (see

Xepapadeas and Yannacopoulos (2013)).

8 Concluding Remarks

The purpose of the paper was to review and present tools and methods

that can be used to study dynamic environmental resource management in a

spatial setting, to explore spatially dependent regulation, and to understand

pattern formation. Most of the results presented here hold true for more gen-

eral spatio-temporal evolution laws, and many applications and extensions

of this methodology to areas outside environmental economics are possible

and have already been performed. For example in Petracou et al. (2013), a

general model of the form (38) has been constructed in order to account for

human migration patterns by taking into account discrete choice theory and

economic factors in the relevant transport operator. This model has been

coupled with an economic growth model in order to predict future spatial

patterns in the economy as an effect of labor migration. In Brock et al.

(2012b) a general discrete model of the form (38) has been proposed as an

attempt to understand the emergence of spatial patterns in the economy as

a result of the interplay between spatial knowledge externalities and adjust-

ment costs. In Xepapadeas and Yannacopoulos (2013), a spatially extended

nonlinear climate model has been approximated by a discrete approximation

and robust control results concerning optimal mitigation policies have been

provided, using techniques from the theory of viscosity solutions. There is
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also a growing literature in which the tools presented here are applied to

problems of spatial economic growth (e.g., Camacho and Zou (2004), Cama-

cho et al. (2008), Boucekkine et al. (2009), Brito (2011), Brock et al. (2012c),

Boucekkine et al. (2013a), Boucekkine et al. (2013b), ). Optimal control in a

spatiotemporal context is relatively new in environmental economics, but we

believe it is an approach that can provide significant new insights into many

important issues.

9 Appendix: Solution of the forward back-

ward system

9.1 Finite horizon problems

The forward-backward PDEs for the problems related to linear state equa-

tions and quadratic objective functionals encountered in Section 4 reduce to

the general form

∂y
∂t

= c1y + c2p+D ∂2

∂x2
y

∂p
∂t

= c3y + (r + c4)p−D ∂2

∂x2
y

(39)

where in general c1 and c4 are related by the condition c1 + c4 = 0 (as follows

by assuming in equation (14) that H∗ is a quadratic function). Furthermore,

we also have some information concerning the signs of the coeffi cients, since

H∗ must be a concave function (for a maximization problem). The system

of equations (39) must be solved with initial condition y(0, x) = φ(x), final

condition p(T, x) = 0 and homogeneous boundary conditions of Dirichlet

type.

This type of systems can be solved in a rather algorithmic fashion follow-

ing the procedure sketched below:

STEP A. We look for solutions in terms of Fourier series of the form

y(t, x) =
∑

n yn(t) sin
(
nπ
L
x
)

p(t, x) =
∑

n pn(t) sin
(
nπ
L
x
)
.

(40)
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Any function (of suffi cient regularity) satisfying these boundary conditions

has an expression of this type, so it is a matter of choosing the right coeffi -

cients yn and pn so as to satisfy the PDEs. We do not worry about initial

and final conditions yet.

STEP B. We expand the initial condition φ : [0, L] → R in a Fourier

series of the above form in terms of

φ(x) =
∑
n

an sin
(nπ
L
x
)
, an =

2

L

∫ L

0

φ(x) sin
(nπ
L
x
)
dx.

STEP C. Substituting8 the series (40) into the system of equations (39)

and letting λn = Dπ2

L2
n2 we obtain for every n ∈ N a system of ODEs for yn

and pn of the form

y′n = (c1 − λn)yn + c2pn,

p′n = c3yn + (r + c4 + λn)pn, (41)

yn(0) = an, pn(T ) = 0.

STEP D. We now solve for any n ∈ N the eigenvalue problem for the

matrix

C(n) =

(
c1 − λn c2

c3 r + c4 − λn

)
which is equivalent to the solution of the quadratic equation

σ2(n)− (r + c1 + c4)σ(n) + [(c1 − λn)(r + c4 + λn)− c2c3] = 0

which on account of the special symmetry of the system becomes

σ2(n)− rσ(n) + bn = 0

where bn = −λ2
n − (r + c4 − c1)λn + (c1r + c1c4 − c2c3). This yields two

8Noting (a) that D ∂2

∂x2 sin
(
nπ
L x
)

= −λn sin
(
nπ
L x
)
where λn = Dn2π2

L2 and (b) that∫ L
0

sin
(
nπ
L x
)

sin
(
mπ
L x
)
dx = 0 if n 6= m.
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solutions:

σ1,2(n) =
r

2
± σ̄(n), σ̄(n) =

1

2

√
r2 − 4bn, (42)

with corresponding eigenvectors

E1,2(n) =

(
c2

c1 − λn − σ1,2(n)
, 1

)′
.

STEP E. The general solution of the system of ODEs (41) in step C is

given for every n ∈ N

yn(t) = A(n)
c2

c1 − λn − σ1(n)
eσ1(n)t +B(n)

c2

c1 − λn − σ2(n)
eσ2(n)t,

pn(t) = A(n)eσ1(n)t +B(n)eσ2(n)t,

where A(n) and B(n) are constants to be determined.

STEP F. For every n ∈ N determine (A(n), B(n)) by the initial and final

conditions, i.e., by the solution of the linear system

A(n)
c2

c1 − λn − σ1(n)
+B(n)

c2

c1 − λn − σ2(n)
= an,

A(n)eσ1(n)T +B(n)eσ2(n)T = 0.

This readily yields

A(n) =

(
c1 − λn − r

2

)2 − σ̄(n)2(
c1 − λn − r

2
+ σ̄(n)

)
−
(
c1 − λn − r

2
− σ̄(n)

)
e2σ̄(n)T

an
c2

,

B(n) = −A(n)e2σ̄(n)T . (43)

STEP G. The optimal state is then given by

y(t, x) = e
rt
2

∑
n

(
Ā(n)eσ̄(n)t + B̄(n)e−σ̄(n)t

)
sin
(nπ
L
x
)

47



where

Ā(n) :=

(
c1 − λn − r

2

)2 − σ̄(n)2(
c1 − λn − r

2
+ σ̄(n)

)2 −
[(
c1 − λn − r

2

)2 − σ̄(n)2
]
e2σ̄(n)T

an,

B̄(n) := −

[(
c1 − λn − r

2

)2 − σ̄(n)2
]
e2σ̄(n)T[(

c1 − λn − r
2

)2 − σ̄(n)2
]
−
(
c1 − λn − r

2
− σ̄(n)

)2
e2σ̄(n)T

an,

(44)

whereas the optimal control is proportional to

p(t, x) = e
rt
2

∑
n

(A(n)eσ̄(n)t +B(n)e−σ̄(n)t) sin
(nπ
L
x
)
.

Note that for the cases of interest it usually holds that σ̄(n) ∈ R so

that the above solution is the usual saddle point structure found in temporal

control problems, but now we have one ”copy”of such a structure for every

mode n ∈ N. The factor e rt2 takes care of discounting effects. Note that the
above solutions are formal Fourier series whose convergence must be studied,

and that depends on the nature of the coeffi cients an of Fourier expansion of

the initial condition. Such expansions may also form the starting point for

the construction of generalized (weak) solutions.

9.2 Infinite horizon problems

The forward-backward PDEs for the problems related to linear state equa-

tions and quadratic cost functionals in infinite horizon encountered in Section

4 reduce to the general form (39) with initial condition y(0, x) = φ(x) but

now the final condition is replaced by the transversality condition

lim
t→∞

∫
O
e−r ty(t, x)p (t, x) dx = 0.

The problem is still complemented with homogeneous boundary conditions

of Dirichlet type.

Steps A, B, C, D, E are identical to the finite horizon case. The major
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difference here comes in the determination of the constants A(n) and B(n)

so that the transversality condition is satisfied.

STEP F
′
. We inspect carefully for each n ∈ N the characteristic expo-

nents σ1,2(n) as given by (42). If for every n ∈ N, σ̄(n) ∈ R then σ1(n) > r
2

and σ2(n) < r
2
, so that the part of the solution related to eσ1(n)t is not com-

patible with the transversality condition. Therefore, the general solution

satisfies the transversality condition only if A(n) = 0, so that the acceptable

solution is

yn(t) = B(n)e
rt
2

c2

c1 − λn − r
2

+ σ̄(n)
e−σ̄(n)t,

pn(t) = B(n)e
rt
2 e−σ̄(n)t,

where B(n) are constants to be determined. These are determined by the

initial condition for y, and it is easily seen that the solution is

yn(t) = ane
rt
2 e−σ̄(n)t,

pn(t) =
c1 − λn − r

2
+ σ̄(n)

c2

ane
rt
2 e−σ̄(n)t.

STEP G
′
. The optimal state is then given by

y(t, x) = e
rt
2

∑
n

ane
−σ̄(n)t sin

(nπ
L
x
)
,

whereas the optimal control is proportional to

p(t, x) = e
rt
2

∑
n

c1 − λn − r
2

+ σ̄(n)

c2

ane
−σ̄(n)t sin

(nπ
L
x
)
.
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Figure 1: Fickian diffusion

Figure 2: Optimal path and optimal control policy for the target following
example
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Figure 3: Optimal path and optimal control policy for the pollution control
example
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Figure 4: Stability diagrams for various values of the parameter D/L2
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Figure 5: Pattern formation and absence of pattern formation
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Figure 6: Composite externality - two hump kernel
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