
 

 

 

 

 

  

 

Optimal Scheduling of  
Greenhouse Gas Emissions under 

Carbon Budgeting and Policy Design 
 
 
 

Elettra Agliardi 
  
 

Anastasios Xepapadeas 
 
 
 
 
 
 
 
 
 

Working Paper Series 
18-08 

March 2018 

DEPARTMENT OF INTERNATIONAL AND 
EUROPEAN ECONOMIC STUDIES 
ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS 



Optimal Scheduling of Greenhouse Gas

Emissions under Carbon Budgeting and Policy

Design

Elettra Agliardi
University of Bologna

Anastasios Xepapadeas
Athens University of Economics and Business

and University of Bologna

January 18, 2018

Abstract

We solve a problem of optimal scheduling of GHG emissions for a
climate change policy that is consistent with the COP21 targets and has
to be monitored at a fixed time horizon. Our model is dynamic and
stochastic where production, and therefore well-being, increase in carbon
emissions, but, at the same time, anthropogenic cumulative emissions
determine a super-linear impact on the observed stochastic damage. We
compare the optimal unconstrained path of emissions and the constrained
path of emissions and evaluate when the carbon budget is exhausted. A
sensitivity analysis is also developed to examine the effects of resilience,
impact of emissions on damage and uncertainty. Our results have direct
implications in terms of policy and show that uncertainty and the way we
introduce it in the model are likely to influence the efficacy of the climate
change policies for the foreseeable future.

1 Introduction

Global warming is one of the biggest challenges of the planet and (anthro-
pogenic) emissions of a broad range of greenhouse gases (GHGs) of varying
lifetimes and radiative forcing are taken as major contributors (Matthews et
al, 2009; Meinshausen et al, 2006). The atmospheric concentration of carbon
dioxide (CO2) has increased from a pre-industrial level of about 280 ppm to
over 400 ppm in recent years. At the same time, average land and surface tem-
peratures have increased by approximately 0.9 degrees C since pre-industrial
times. The concentration of all GHGs (CO2 equivalent) is the highest in the
last 800000 years (see IPCC, 2014) and, in the absence of mitigation policies,
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is expected to increase in this century above 1000 ppm. Consequently, an un-
broken average temperature increase of about 4 degrees C might result by the
end of this century, which is well above global mean temperature targets for
dangerous anthropogenic interference (DAI) (see, Zickfeld et al., 2009; Solomon
et al, 2010). Therefore, the ultimate objective of climate policies is to reduce
emissions in order to achieve “stabilization of GHGs concentrations in the at-
mosphere at a level that would prevent DAI with the climate system” (United
Nations Framework Convention on Climate Change, article 2).

The limit temperature level recognized by international climate policies, and
adopted in the COP21 agreement, is 2 degrees C (or preferably 1.5 degrees C).
This temperature stabilization target has since been reaffirmed on a number
of occasions and has led to develop a range of allowable cumulative emissions
targets that are compatible with the specified temperature target (Wigley, 2004;
Kriegler and Bruckner, 2004; Knutti et al, 2005; Meinshausen, 2009; Matthews,
et al 2009; Zickfeld et al, 2009). In particular, it has been estimated that in order
to stabilize global mean temperature increase at 2 degrees C the carbon budget
of cumulative emissions should be approximately 0.8 Tt C — see Matthews et al,
2009 -, even though large uncertainties in equilibrium climate sensitivity prevent
highly confident estimates of the emissions stabilization levels (see Pindyck,
2013; Heal and Millner, 2014, Freeman, Wagner and Zeckhauser, 2015). In view
of the persistence in the atmosphere of the effects of cumulative emissions, it
would imply almost net zero new emissions by 2050 (UNFCCC, 2016).

Although there is no specific mechanism to force a country to set a target by a
specific date, nor enforcement measures if the set target is not met, a monitoring
system has been agreed, such that the implementation has to be evaluated every
5 years, with the first evaluation in 2023. Actually, the absence of enforcement
measures and specific penalties for countries that do not fulfil the agreed targets
has been questioned a lot, because it may put at risk the implementation of the
COP21 agreement itself, and therefore appropriate mechanism designs to enforce
the agreement are called for.

In this paper we study a setting to evaluate whether such implementation is
feasible. More specifically, we consider a dynamic and stochastic model where
production, and therefore well-being, increase in carbon emissions, but, at the
same time, anthropogenic cumulative emissions determine DAI, with a super-
linear impact of emissions on the observed damage. Moreover, we add a stochas-
tic component into the damage function. In particular, total damage (per unit
of emission) is represented by a stochastic process which consists of two compo-
nents. One component of damage is supposed to be affected by the sequence of
past GHG emissions, so that damage is increased by an amount which is propor-
tional to emissions at any time. The other component is exogenous and allows
us to describe fluctuations in actual economic damages, since we assume that its
impact may fluctuate around its deterministic part in a random way. Finally, in
order to capture the complexities of climate inertia and the carbon-climate re-
sponse feedbacks, we introduce a parameter governing the absorbing capacity of
the environment, which represents its resilience property. We suppose that car-
bon emissions are gradually dissipated and thus their negative economic impact
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is partly absorbed by the environment. Let ρ ≥ 0 denote the parameter gov-
erning this absorbing capacity of the environment, which represents resiliency.
In other words, when ρ = 0 the negative effect of carbon emissions persists for-
ever; at the other extreme, ρ =∞ describes immediate absorption of the carbon
emissions. This specification allows us to have a pretty general characterization
of damage, which is consistent with recent literature (see e.g. Weitzman, 2010,
for a discussion of alternative damage functions).

Firstly, we study the optimal scheduling of GHG emissions for a climate
change policy design that has to be monitored at a fixed time horizon and is
consistent with the above-mentioned objectives (Section 2). In particular, we
study how the optimal scheduling of emissions is affected by targets in the cu-
mulative levels of emissions that have to be achieved at specified dates, as stated
in the monitoring procedures of the international climate change agreements. A
sensitivity analysis is developed to examine the effects of resilience, impact of
emissions on damage and uncertainty (Section 3).

Then we examine a case where a penalty is set by an institutional regulator in
order to provide incentives to reduce the impact of GHG emissions within a fixed
time horizon (Section 4). For example, one can think of emissions that need not
to surpass a prescribed level in order to mitigate ecological and social damage
in future times. If an upper threshold is surpassed at the specified monitoring
time, then a penalty - in proportion to cumulative emission damages - should
be paid on the exceeding amount. We compare the path of emissions we find
in this case with the path of emissions in the absence of penalties to evaluate
under which circumstances the proposed penalty may act as an incentive device
to enforce the agreement.

This paper contributes to the literature in at least three ways. First, in
contrast to the majority of the literature, which uses an arbitrary specification
for the damage function, it develops an approach for deriving a convex damage
function which incorporates the effects of cumulative past carbon emissions. Sec-
ond, it allows for damage uncertainty by explicitly introducing into the objective
function of the optimization problem the variance of climate change damages
weighted by the regulator’s concerns regarding uncontrolled effects. Third, it
introduces the possibility of a penalty which is potentially paid by the repre-
sentative firm if the damages from cumulative emissions exceed the voluntary
agreed carbon budget at some point during the planning horizon.

The organization of this paper is as follows. Section 2 describes the model.
Section 3 presents the main result in Proposition 1, providing the solution to
the optimization problem, develops a numerical simulation with calibrated data,
which allows us to evaluate whether the target of COP21 can be implemented,
and presents a sensitivity analysis of the optimal scheduling of emissions to
changes in the relevant parameters. Section 4 introduces a penalty as a mech-
anism design (Proposition 2) and discusses its effects. Section 5 contains the
conclusions. Finally, all proofs are in the Appendix.
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2 The model

Let us consider the problem of a social planner who has to maximize global well-
being with a fixed time horizon by choosing paths for GHG emissions subject
to technology and the climate constraints.

We adopt a discrete time schedule, where t1 < t2 < .... denote the times
at which the decisions on the production process are made by observing the
information available at the current time. The information set is modelled
throughout a filtered probability space where {Ik}k=0,...,N denotes an increasing
family of σ-algebras on a given probability space. In the sequel, the conditional
expectations E(. | Ik) will be denoted as Ek.

Let x1, ... xN denote the amount of emissions at time t1, ....tN as a conse-
quence of the production process. We assume that the process {xk} is adapted
to the given filtration, that is, the decision maker at each decision time is aware
of the negative environmental effects of his policy.

The total social damage (per unit of emission) due to GHG emissions is rep-
resented by a stochastic processDt. There is substantial discussion and, perhaps
more importantly, uncertainty, about the appropriate damage function, due to
imperfect understanding of feedback effects, among other things. Therefore, it
is relevant to allow for uncertainty, as we do in this paper. We suppose that
total damage consists of two components. One component, D0t , which is related
to the global warming potential of GHGs, allows us to describe fluctuations in
actual economic damages, since we assume its impact may fluctuate around its
deterministic component in a random way. A simple model for these random
fluctuations is an arithmetic Brownian motion, i.e. dD0t = σdWt , where Wt

is a Wiener process with respect to the fixed filtration that represents the in-
formation available to the decision maker. More generally, this assumption can
be replaced by any martingale with respect to the reference filtration. Here we
adopt an arithmetic Brownian motion, because it is the easiest way to model
randomness and allows us to obtain an explicit analytic solution1 .

The other component of damage is supposed to be affected by the sequence
of emissions, xk, that is, Dtk is increased by an amount εxk, ε > 0. Notice that
our damage function has emissions as its argument (as also in Nordhaus, 2007,
and van der Ploeg, 2014), whereas other models express damages as a function
of a climate indicator, such as global temperature (see, e.g., Weitzman, 2010).
Here we follow the argument in Golosov et al (2014), where the Dtk mapping
can be thought of in two steps. The first is the mapping from emissions to the
global mean temperature, as outlined since Matthews et al. (2009). The second
is the mapping from temperature to damage. Thus, our taking emissions as an
input should be viewed as a composition of the typical damage function, with
temperature as an argument, and another function mapping carbon emissions
into temperature2 .

1The occurrence of negative damage due to the assumption of an arithmetic Brownian
motion is avoided by taking small values of the volatility σ.

2As recalled by Golosov et al (2014), typical approximations used in climate science make
the former mapping convex and the latter mapping concave, so it is not clear whether the
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Our assumption results in a superlinear impact of the emissions on the
observed damage, which is consistent with the literature showing strong car-
bon/climate feedbacks and more persistent warmings due to GHGs (see, e.g.,
Solomon et al, 2010). We suppose that GHG emissions are gradually dissipated
and thus their negative economic impact is partly absorbed by the environment.
Let ρ ≥ 0 denote the parameter governing this absorbing capacity of the envi-
ronment, which represents its resilience property. In other words, when ρ = 0
the negative effect of emissions persists forever; at the other extreme, ρ = ∞
describes immediate absorption of emissions.To summarize, the dynamics for D
are as follows:

Dk = D
0
k + ε

k−1∑

j=1

e−ρ(tk−tj)xj (1)

where D0 follows an arithmetic Brownian motion with zero drift and variance
parameter σ2, and the notation Dk stands for Dtk , for notational brevity. As
an emission ∆x = 1

ε
∆D is responsible for an incremental damage ∆D, the

incremental damage resulting soon after an emission xk can be computed as
follows:

∫Dk+εxk
Dk

1
ε
δdδ = 1

2ε [(Dk + εxk)
2 − (Dk)2] = Dkxk + εx2k

2

In general, the total cumulated damage, soon after time tk, can be computed
recursively as follows:

k∑

j=1

xjD
0
j + ε

k∑

j=1

(
x2j

2
+
∑

i<j

e−ρ(tj−ti)xixj) (2)

Therefore, the total cumulated damage is characterized by a superlinear
effect of emissions. Unless ρ =∞ , in which case damage is affected by the sum of
xj and x

2
j only, if there is persistence of climate changes due to emissions (that is,

for the other values ρ ≥ 0 different from∞), then total damage is strengthened
by previous emissions (the term

∑
i<j e

−ρ(tj−t1)xixj). This non linear feature
captures the exceptional persistence displayed by CO2, that renders its warming
nearly irreversible for more than 1000 years, and also by other GHGs, which,
although not irreversible, persist notably longer than the anthropogenic changes
in the GHGs concentrations themselves (see Solomon et al, 2010).

Figure 1 plots a path for the total cumulated damage after two subsequent
emissions. In panel (b), there is a full permanent impact of the emissions, while
in panel (a) a resilience effect mitigates the impact over time.

overall function mapping into damages should be convex or concave.
Figure 1 in Golosov (2014) shows the composition of the emissions-to-temperature and

temperature-to-net-of-damages mappings, as calibrated by Nordhaus. The composition im-
plied by Nordhaus’s formulation is first concave, then convex, while Golosov et al’s function
is exponential, which makes our approximation rather reasonable as well.
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(a) Case ρ = 0.1 (b) Case ρ = 0
Figure 1. Cumulated damage with two emissions

The objective of the decision maker is to minimize the expected total damage
over a time horizon T = tN , while maximizing the total utility. We will study
the case where a regulatory target in terms of cumulative emissions is set by
international agreements within the time horizon.

In this paper a quadratic utility will be adopted, that is, U(x) = ux− 1
2wx

2,
which is common in the literature (e.g.,Dockner and Van Long, 1993). This
function could be seen as a reduced form of a problem where the utility function
is a function of consumption, which itself depends on economic output, which
is a function of emissions3 . The parameter u measures the effect on marginal
benefits from emissions, while w the strength of their diminishing returns. For
simplicity, no discount rates are considered here (moreover, real-world interest
rates are close to zero, and see also the argument in Stern (2008) in favour of
intergenerational equity). Thus, the objective function to be maximized is of
the form:

supx1,...,xN E0[
∑N
k=1(uxk − 1

2wx
2
k − xkD0k − ε(

x2k
2 +

∑
i<k e

−ρ(tk−ti)xixk))]

If we compare it with the so-called Chichilnisky’s criterion (1997), which pro-
poses a weighted average between the discounted sum of instantaneous costs and
the long run cost associated with pollution, here more emphasis is placed on
future generations, because the cumulated effect of emissions, that is, the final
environmental damage, is given weight one. Such a specification is consistent

3One can think of a simple growth model with the utility function U(c) = ac − 1

2
bc2, where

c denotes consumption. Let us define the budget constraint for the economy with an Ak
production function such as ct = Akt− kt+1+(1− d)kt, where k is the capital stock and d is
the depreciation rate. If we define emissions as proportional to output, that is xt = sAkt,where
s is an exogenous parameter of emission intensities, then we get the following expression for
the the utility function: U(xt) = a(

xt
s
−

xt+1

sA
+ (1− d) xt

sA
)− 1

2
b(xt

s
−

xt+1

sA
+ (1− d) xt

sA
)2

and therefore the sum of the utility functions over t is:
∑
t
U(xt) = a

∑
t
(xt
s
−

xt+1

sA
+(1−

d) xt
sA
)− 1

2
b
∑

t
(xt
s
−
xt+1

sA
+(1−d) xt

sA
)2. If b = 0, then

∑
t
U(xt) =

a

s
(1− d

A
)
∑

t
xt = u

∑
t
xt.

Therefore, if utility is also linear in consumption (see Weitzman, 1998), then it becomes a
function of emissions too. This argument can be applied to the general case of a quadratic
utility function whenever w is small.
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with the notion of sustainability (see also the discussion in Asheim and Mitra,
2010).

Note that the expectation of the cumulated effect of emissions can be rewrit-
ten as follows:

E0[
∑N
k=1 xkD

0
k + ε

∑N
k=1(

x2k
2 +

∑
i<k e

−ρ(tk−ti)xixk)] =

= D0
∑N
k=1 xk + ε

∑N
k=1[xkVk−1 +

x2k
2 ]

where Vk =
∑k
j=1 e

−ρ(tk+1−tj)xj for k ≥ 1 (and V0 = 0) is the volume of
cumulated emissions (up to time tk+1) if the dissipating effect is taken into
account.

If the decision maker is also concerned about the risk of random fluctuations
in damage, then an additional term in the form of a variance should be added,
so the optimization problem takes the form:

supx1,...,xN E0[(u−D0)
∑N
k=1 xk −

∑N
k=1(

(ε+w)x2k
2 + εxkVk−1)]−

−γ
2 var0[

∑N
k=1 xkD

0
k + ε

∑N
k=1(

x2k
2 +

∑
i<k e

−ρ(tk−ti)xixk)]

where γ denotes the risk aversion parameter. This assumption can be justified
in the framework of the standard mean-variance approach, which has been em-
ployed in financial economics extensively. One can approximate the objective
function according to Taylor expansion. Then, in view of the assumption of an
arithmetic Brownian motion, which implies that we are dealing with Gaussian
random variables and the solution {xk}k=1,...N is deterministic, the expression
above is justified. The variance term can be written as follows:

E0[σ2(
∑N
k=1 xkWtk)

2] = σ2
∑N
k=1[x

2
ktk + 2xk

∑
i<k xiti].

Thus, the optimization problem is as follows:

sup
x1,...,xN

(u−D0)
∑N
k=1 xk−

N∑

k=1

[(ε+w+γσ2tk)
x2k
2
+εxkVk−1+γσ

2xk
∑

i<k

xiti] (3)

with Vk+1 = e
−ρ(tk+1−tk)(Vk + xk) for k ≥ 0, V0 = 0.

Here the parameter γ embodies the concern of the decision maker regarding
the uncontrolled effect of the outstanding volume of emissions, measured by the
variance. Notice that the introduction of a variance term has not been explored
much in the literature, while it is relevant to study the effects of the variability
of system behaviour changes (see Brock and Carpenter, 2006, where they stress
that increased variance may provide a leading indicator of regime shifts that
can be used in ecosystem management).
In the following we confine ourselves to the case of equally spaced time intervals,
tk − tk−1 = ∆t, to simplify the exposition. Furthermore, e−ρ∆t will be denoted
by β and γσ2∆t will be denoted by Γ.
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3 Adding the carbon budget constraint

Our objective is to study how the optimal scheduling of emissions is affected by
targets in the cumulative levels of emissions that have to be achieved at spec-
ified dates, as stated in the monitoring procedures of the international climate
change agreements. For example, in case of CO2 emissions, climate policy sets
an upper threshold to mitigate global warming. This is consistent with the
use of the cumulated carbon budget which should not be exceeded for a given
threshold temperature, as formulated by Matthews et al (2009) and Matthews
et al (2012)4 . One can safely think of other pollutant emissions that need not
to surpass a prescribed level (set by a regulator) in order to mitigate ecological
and social damage in future times. As a first analysis, we assume that an upper
threshold, Z, is set by the regulator on the total amount of emissions up to the
monitoring time T . In our setting, it amounts to adding a constraint of the
form:

∑N
k=1 xk ≤ Z (4)

Then the constrained optimization problem can be solved through Kuhn-Tucker
method. Let us define the Lagrangian as follows:

L(x1, ..., xN , λ) = (u−D0)
∑N
k=1 xk −

N∑

k=1

[(ε+w + kΓ)
x2k
2
+ εxk

k−1∑

j=1

βk−jxj +

Γxk
∑

i<k

ixi]− λ[
∑N
k=1 xk − Z]

where λ ≥ 0 is a Lagrange multiplier.
Then the first-order condition for positive xk is ∂L

∂xk
= 0, k = 1, ..., N . It

amounts to solving a linear system of the form:

M



x1
...

xN


 =



u−D0 − λ

...

u−D0 − λ




where the matrix M is as follows:




ε+w + Γ εβ + Γ εβ2 + Γ ... εβN−1 + Γ
εβ + Γ ε+w + 2Γ εβ + 2Γ ... εβN−2 + 2Γ
... ...

εβN−1 + Γ εβN−2 + 2Γ ... ... ε+w +NΓ


 (5)

4Matthews et al (2009) found that the increase in mean global yearly temperature is
approximately proportional to cumulated carbon emissions in all their simulations. They
suggest that such relationship could be used for policy purposes, so that the coefficient of
proportionality allows us to set a cumulated carbon budget that should not be exceeded if a
given temperature has to be maintained.
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The following proposition provides the solution to our optimization problem.
A proof is in the Appendix.

Proposition 1 Assume that u > D0 and that an upper threshold, Z, is set
by the regulator on the total amount of emissions. Then the optimal policy is
obtained as follows:

x∗1
...

x∗N


 =M−1(u−D0 − λ)I,

where I =




1
...

1


, the matrix M is defined in (4), and λ = u−D0− Z∑

i,j
m̃i,j

,

with M−1 = (m̃i,j).

In principle, this can be easily accomplished, but for high dimensions one has
to resort to numerical computation, which will be performed in Section 3.1.

Observe that λ in Proposition 1 is the shadow price of the carbon budget,
which can be interpreted as a measure of the social cost of carbon. If we take,
as an example, N = 1, then λ = u − D0 − (ε + w + Γ)Z. Since λ ≥ 0, then
Z ≤ u−D0

ε+w+Γ , which implies that Z should be decreased, if the impact of each
emission on damage increases (ε), or aversion to uncertainty and /or variance
increase (Γ), or the strength of diminishing returns on marginal benefits from
emissions increases (w).

Finally, we compute the optimal carbon tax. In this context, it amounts to
solving the tax rate at which the representative firm’s profit maximizing emis-
sions equal the optimal emissions chosen by the regulator, as from Proposition
1. The representative firm faces an exogenous tax τ on emissions and solves a
static problem

max
xk
uxk −

1

2
wx2k − τkxk , k = 1, ...N

which means that emissions are

x0k =
u− τk
w

We want to choose the tax so that the firm’s profit maximizing emissions
are equal to the optimal emissions chosen by the regulator. This means that

u− τk
w

=M−1(u−D0 − λ)I

Solving for τk we obtain

τk = u−wM−1(u−D0 − λ)I
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or
τk = u−wx∗k , k = 1, ...N (6)

where x∗k are optimal emissions chosen by the regulator. Thus, taxes are
increasing over time.

3.1 A numerical simulation

In this section we perform a numerical simulation with calibrated data which
will allow us to evaluate whether the target of COP21 can be implemented.

We take a monitoring period of 40 years, N = 40, in most of our analysis,
and start in year 2015, so that T=2055. For our calculations we need to calibrate
the following parameters: ε, β, u and w.

In order to calibrate ε, we follow the argument in Golosov et al (2014), which
is based on the calibration of damages in Nordhaus (2008). When calibrating
the damage function, using a bottom-up approach collecting a large number of
studies on various effects of global warming, a 0.48% loss of global GDP can be
estimated at 2.5 degrees C heating, corresponding to about 1,035 GtC, while
the pre-industrial atmospheric CO2 concentration is 581 GtC. Thus, equalling
the calibrated damage function in Golosov et al. (2014) to our expression (1),
we get ε = 1, 057×10−5. In order to calibrate β, we also follow the argument in
Golosov et al (2014) for their calibration of the parameter describing the total
fraction of a unit emitted at time 0 that is left in the atmosphere at time s.
For simplicity, we consider a constant resilience over time, which corresponds
to s=1. Thus, we get β = 0.507.

The parameter w of the utility function is taken from Karp and Zhang (2006),
w = 1.9212, who estimate a quadratic benefit-of-emissions function equivalent
to the quadratic abatement function in Nordhaus. Then the corresponding
parameter u in the utility function is obtained considering that emissions in
2015 (the starting year in our calibration) were 36.3 GtC (as from from Carbon
Dioxide Information Analysis Center (CDIAC) of the U.S. Oak Ridge National
Laboratory, Global Carbon Budget 2016). Thus, u = 69.74. Moreover, we take
the risk aversion parameter γ = 2, consistently with the literature that usually
takes values between 1 and 3 (see Pindyck, 2013). Finally, we need to calibrate
σ. It is well known that it is hard to estimate how climate change will affect the
economy, a problem on which we have very little data to base empirical work
(see Pindyck, 2013). In order to get an estimate of the variance of damage, we
first consider the estimate of the variance of the gamma distribution employed
by Pindyck (2012) to describe the temperature change distribution, and then
the estimates of the economic impact of temperature changes. If we take the
estimates of the economic impact of temperature changes as in Golosov et al.
(2014) at 2.5 degrees C heating, then we get σ = 0.01 approximately. If we
follow Nordhaus (2008) estimates at 2 degrees C heating, then σ = 0, 02 , which
is higher but of the same order of magnitude.
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The target Z in terms of cumulative emissions that has not to be surpassed
in order to be compatible with the 2 degrees C temperature target is (approxi-
mately) 800 GtC, as stated also in the Global Carbon Project (2016).

In Figure 2 the solution of the unconstrained problem is depicted. In Figure
3 it is shown that the carbon budget is exhausted in year 2037, if we employ
the variance of damage, as deducted from Golosov et al (2014). A slightly
different result would be obtained if we had based our estimate of the variance
on Nordhaus (2008), that is, the carbon budget is exhausted in year 2040.

Thus, emissions have to be reduced drastically over next years if the con-
straint has to be satisfied. Figure 4 compares the unconstrained emission and
the constrained emission schedules over the next 40 years.
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With the parameter values above, we can compute λ, the social cost of
carbon, which becomes λ = 29.12 approximately (if we employ the variance of
damage as deducted from Golosov et al. (2014), while it is λ = 22.82, if we base
our estimate of the variance on Nordhaus (2008)).

Finally, we can compute the optimal carbon taxes, as from expression (6).
Figure 5 represents the path of the optimal carbon taxes consistent with con-
strained emissions, which is increasing. Similarly, one can compute the path of
carbon taxes in case emissions are unconstrained, and, of course, carbon taxes
would be lower.
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3.2 Sensitivity analysis

In what follows a sensitivity analysis is presented where the base case is the
unconstrained case with the parameter values above. Figure 6 shows the optimal
scheduling of emissions for N=20 points in time, as the resilience parameter is
decreased.
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Figure 6. Dependence of the emission schedule on the resilience parameter.

Figure 6 shows that the optimal amount of each emission is larger if the
resilience parameter is higher, that is, if the environment has a better absorption
capacity, then more emissions are allowed

Figure 7 depicts the effect of an increased impact of each emission on damage,
which is captured by the parameter ε. The result is as expected: an increase in
ε forces a reduction in the optimal scheduling.
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Figure 7. Dependence of the emission schedule on ε.

In Figure 8 the effects of aversion to uncertainty and /or increased variance
are explored by increasing the parameter Γ. The parameter Γ embodies the
concern regarding the actual negative effect of pollution and the effectiveness of
technology to harness future damage. In Figure 7 the parameter σ is two times
the base case parameter.
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Figure 8. Dependence of the emission schedule on risk aversion and volatility.

The concern about uncertainty has a dramatic effect on the optimal scheduling
of emissions: the larger risk aversion and/or volatility, the smaller the amount of
emissions. This result is in keeping with the "precautionary principle" (see, e.g.,
Taleb et al., 2014; Athanassoglou and Xepapadeas, 2012). Thus, if the decision
maker has high concern about uncertainty, then a more restrained policy should
be adopted, reducing emissions.

4 A penalty as an alternative mechanism design

In this section a different perspective is taken regarding the form of constraint
on the emissions that has to be imposed in order to achieve an optimal policy.
We suppose that if an upper threshold, Z̃, on the damages related to cumulative
emissions is surpassed, then a penalty - in the proportion η - should be paid on
the exceeding amount.

Assume that T = tN and thus a penalty is paid on max[∆N − Z̃, 0]. In
our setting, ∆ is related to prior emissions and, at the same time, incorporates
the environmental resilience. It pays the role of a ’climate vector’ defined in
the literature (see Iverson and Karp (2017), for example).Then, the objective
function needs to be modified as follows:

sup
x1,...,xN

(u−D0)
∑N
k=1 xk −

N∑

k=1

[(ε+w + kΓ)
x2k
2
+ εxkVk−1 + Γxk

∑
i<k

ixi]

−ηE0[max(∆N − Z̃, 0)] (7)

Note that E0[max(∆N−Z̃, 0)] = E0[max(σWT +D0+εVN−Z̃, 0)], whereWt is
a Wiener process and V is assumed to be a deterministic quantity. Proposition
2 gives the expression for the penalty. A proof is given in the Appendix.
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Proposition 2 The expectation at time 0 of the penalty takes the form: −ηp(VN),
where p(V ) is computed as follows: p(V ) = (D0 + εV − Z̃)Φ(D0+εV−Z̃

σ
√
T

) +

σ
√
Tϕ(D0+εV−Z̃

σ
√
T

), with Φ and ϕ denoting the cumulative distribution function

and the density function, respectively, of the standard Gaussian distribution.

Note that
∂V p(V ) = εΦ(

D0+εV−Z̃
σ
√
T

).

Thus, the optimal solution to (7) can be obtained along the lines of Proposition
1. Unfortunately, x∗k cannot be written in an explicit form, but needs to be
computed numerically. To be more explicit, consider the equation yielding x∗k.
The first-order condition is:

M



x1
...

xN


 =



u−D0 − ηεβΦ(D0+εV−Z̃

σ
√
T

)

...

u−D0 − ηεβΦ(D0+εV−Z̃
σ
√
T

)


 (8)

that can be solved for xk only numerically.
One can think of the penalty as another type of tax. In this case from the

problem of the representative firm we can set x̂k =
u−τ̂k
w

, where x̂k is obtained
from the first-order condition (8), and then solve for τ̂k. The tax will be paid

only if ∆N > Z̃.
We can compare the constrained optimization problem, as from Proposition

1, with the problem with the penalty as from equation (7). If ε = 1 and ρ = 0,
for an easy comparison, then we find that the boundary 800 GtC is satisfied, if
η = λ. When σ→ 0, the problem with the penalty collapses into the constrained
problem with η = λ (see equation (8)). If we compute p(.) for

∑N
k=1 xk = Z,

ε = 1 and ρ = 0, we get: p = σ
√
T√
2π

. Thus, p(.) increases with σ, while η(= λ)

decreases with σ.
Overall, we can compute the penalty ηp(.), as from Proposition 2, as a

function of σ. Figure 9 shows that as σ increases, the penalty has to be increased
because of the effect of uncertainty in order to keep emissions under control.
This result has relevant policy implications, since it implies that in the presence
of uncertainty the penalty should be increased, in order to achieve the target, a
result which is in keeping with a precautionary argument.
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The argument above does not consider the beneficial effect of a positive
resilience parameter, ρ, and small values of ε (< 1). In this case, the expression
of the penalty obtained in Proposition 2 shows that one can afford a lower η, if
the regulator accounts for the mitigating effects of resilience.

5 Conclusion

This paper examines a problem of optimal scheduling of GHG emissions for a
climate change policy that is consistent with the COP21 targets and has to be
monitored at a fixed time horizon. In particular, we consider a dynamic and
stochastic model where production, and therefore well-being, increase in carbon
emissions, but, at the same time, anthropogenic cumulative emissions determine
a super-linear impact on the observed damage. Moreover, we add a stochastic
component into the damage function. We compare the optimal unconstrained
path of emissions and the constrained path of emissions and evaluate when the
carbon budget is exhausted. A sensitivity analysis is also developed to examine
the effects of resilience, impact of emissions on damage and uncertainty.

Then we examine an alternative mechanism to achieve the target, that is,
through a penalty set by an institutional regulator in order to provide incentives
to reduce the impact of GHG emissions within a fixed time horizon. We compute
the value of the penalty and show that the introduction of a penalty can be an
effective instrument to keep the cumulated emissions below the agreed threshold.
Our results have direct implications in terms of policy and show that uncertainty
and the way we introduce it in the model are likely to influence the efficacy of
the climate change policies for the foreseeable future.

Some extensions of the basic model can be explored. First, one could develop
our model with two countries - or two regions of the world, say, the north and
the south - and explore the effects on the optimal path of emissions, in case
the north is producing more carbon emissions than the south, but the south is
affected more negatively by the world cumulated total damage. Both cases of
two countries acting cooperatively or non-cooperatively could be examined and
the effects of the various parameters (resilience, impact of emissions on damage,
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correlation of the impact of emissions, uncertainty) could be studied. Moreover,
alternative enforcement measures and specific penalties could be studied for
countries that do not fulfill the agreed targets in terms of total emissions.

Another extension refers to the stochastic process describing the damage
function. Here an arithmetic Brownian motion was assumed, because it is the
easiest way to model randomness and allowed us to obtain an explicit analytic
solution. Economic models hardly ever account in a meaningful way for the
uncertainty over climate sensitivity as well as damage uncertainty, so a frame-
work with alternative stochastic processes, able to account for this drawback,
is called for. Of course, the analytic of the model would become more involved
and an explicit analytic solution cannot be obtained.

6 Appendix

Proof of Proposition 1.

The result follows from the first order conditions on L(x1, ..., xN , λ).

From M



x1
...

xN


 =



u−D0 − λ

...

u−D0 − λ


 we get



x1
...

xN


 =M−1(u−D0 − λ)I, where I =




1
...

1




Moreover, since Z =
∑N
k=1 xk = XT I = (u − D0 − λ)ITM−1I, we get

λ = u−D0 − Z∑
i,j
m̃i,j

, with M−1 = (m̃i,j).

For example, if N = 1, then λ = u−D0 − (ε+w + Γ)Z, and λ ≥ 0.

Proof of Proposition 2.

Let us compute E0[max(σWT − S, 0)], with S = Z̃ −D0 − εVN . Rewrite:

max(σWT − S, 0) = [σWT − S]1{σWT−S>0}

where 1A denotes the indicator function of the set A, that is 1A = 1 on A and
1A = 0 elsewhere. As

WT√
T

follows a standard normal distribution,

E0[S1{σWT−S>0}] = S.Prob[
WT√
T
> S

σ
√
T
] = SΦ(− S

σ
√
T
),

where Φ denotes the cumulative distribution function of the standard Gaussian
distribution. On the other hand,

E0[WT 1{σWT−S>0}] =
√
TE0[

WT√
T
1{WT√

T
> S

σ
√
T

} ] =
√
T
∫ +∞

S

σ
√
T

x.ϕ(x)dx
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where ϕ denotes the density function of the standard Gaussian distribution.

An antiderivative of xϕ(x) is −1√
2π
exp[−x2

2 ] = −ϕ(x) = −ϕ(−x) and thus the

integral on the right-hand side is computed as:
∫ +∞

S

σ
√
T

x.ϕ(x)dx = ϕ( −S
σ
√
T
).

Therefore

E0[max(σWT − S, 0)] = σ
√
Tϕ( −S

σ
√
T
)− SΦ(− S

σ
√
T
).

7 References

Asheim, G.B. and T. Mitra, 2010. Sustainability and discounted utilitariansm
in models of economic growth. Mathematical Social sciences, 59, 148-169.

Athanassoglou, S and A. Xepapadeas, 2012. Pollution Control with Uncer-
tain Stock Dynamics: When and How to be Precautios, Journal of Environmen-
tal Economics and Management, 62, 304-320

Brock, W.A. and S.R. Carpenter, 2006. Rising variance: a leading indicator
of ecological transition, Ecology Letters, 9, 311-18

Chichilniski G,1997. What is sustainable development? Land Economics,
73, 476-491

Dockner, E.J and N. Van Long, 1993, International Pollution Control: Coop-
erative versus Noncooperative Strategies, Journal of Environmental Economics
and Management, 25, 13-29.

Freeman, M.C, Wagner, G and R.J. Zeckhauser, 2015. Climate sensitivity
uncertainty: when is good news bad? NBER WP 20900

Golosov, M., Hassler, J, Krusell, P and A. Tsyvinski, 2014, Optimal taxes
on fossil fuel in general equilibrium, Econometrica,82, 41-88

Hansen,J., R. Ruedy, M. Sato and K. Lo, 2010. Global surface temperature
change, Review of Geophysics, 1-29

Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G.A.,
Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V.,
Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A.,
Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J.,
Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, Ja.,
Perlwitz, Ju., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev,
N., Thresher, D., Wielicki, B.,Wong, T., Yao, M., Zhang, S., 2005. Efficacy of
climate forcings. Journal of Geophysical Research 110, D18104.

Hansen J. et Lebedeff S.,1987.. Global trends of measured surface air tem-
perature. Journal of Geophysical Research, 92, 11, 13345—13372

Heal G. and A. Millner, 2014. Uncertainty and Decision-Making in Climate
Change Economics, Review of Environmental Economics and Politics

IPCC, 2014. Climate Change (2014), Synthesis Report, Summary for Poli-
cymakers. Available online at:

18



https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf
Iverson T. and L. S. Karp, 2017. Carbon taxes and commitment with non

constant time discounting, mimeo, https://escholarship.org(uc/item/3hw6s14v
Karp, L. S. and J. Zhang, 2006. Regulation with anticipated learning about

environmental damages, Journal of Environmental Economics and Management,
51 (3), 259—279.

Knutti et al (2005), Probabilistic climate change projections for CO2 stabi-
lization profiles, Geophys Research Letters, 32, L 22707

Kriegler, E. and T. Bruckner, 2004. Sensitivity analysis of emissions corri-
dors for the 21 century, Climate Change 66, 345-387

Laepple, T., Huybers, P.,2014.. Global and regional variability in marine sur-
face temperatures. Geophys. Res. Lett. 41, 2528—2534, http://dx.doi.org/10.1002/
2014GL059345.

Latif, M., 2010. Uncertainty in climate change projections. Journal of Geo-
chemical Exploration, 110, 1—7.

Le Quere et al (2016) Global Carbon Project. Global carbon budget 2016,
Futurearth

Manoussi, V. and A. Xepapadeas, 2017. Cooperation and competition in
climate change policies: Mitigation and climate engineering when countries are
asymmetric. Environmental and Resource Economics, 66, 605-627.

Matthews, D., N.G. Gillett, P.A. Stott and K. Zickfeld, 2009. The propor-
tionality of global warming to cumulative carbon emissions, Nature, 829-833

Matthews, D., Solomon, S. and R. Pierrehumbert, 2012. Cumulative carbon
as a policy framework for achieving climate stabilization, Philosophical Trans-
actions of the Royal Society of London, 370, 4365-4379.

Meinshausen, M., B. Hare, T.M. Wigley, D Van Vuuren, M.G. J Den Elzen
and R. Swart, 2006.. Multi-gas emissions pathways to meet climate targets,
Climate Change, 75, 151-194

National Centers For Environmental Information (NOAA), 2016. Global
Surface Temperature Anomalies. Available online at:

https://www.ncdc.noaa.gov/oa/climate/research/1998/anomalies/anomalies.html
Nazarenko, L., et al. , 2015. Future climate change under RCP emis-

sion scenarios with GISS ModelE2, J. Adv. Model. Earth Syst., 7, 244—267,
doi:10.1002/2014MS000403

Nordhaus, W. , 2007. To Tax or Not to Tax: The Case for a Carbon
Tax,Review of Environmental Economics and Policy, 1 (1), 26—44.

Nordhaus, W , 2008. A Question of Balance: Weighing the Options on
Global Warming Policies, Yale University Press

Pierrehumbert, R. , 2014. Short-lived climate pollution, Annual Review of
Earth and Planetary Sciences, 42, 341-379

Pindyck, R. 2012. Uncertain outcomes and climate change policy, Journal
of Environmental Economics and Management, 63, 289-303

Pindyck, R. , 2013. Climate Change Policy: what do the models tell us?,
Journal of Economic Literature, 51 (3), 860-872

Stern, N. , 2008. The Economics of Climate Change. The Stern Review,
Cambridge University Press.

19



Solomon S., Daniel J. S, Todd, J, S, Murphy, D.M., Plattner, G-K, Kuntti,
R. and Friedlinstein P. , 2010. Persstence of climate changes due to a range of
GHGs, PNAS, 107, 43, 18354-9

Taleb, N.N., Read, R., Douady, R., Norman, J., Bar-Yam Y., 2014 The
Precautionary Principle (with applications to the genetic modification of organ-
isms). Extreme Risk Initiative. NYU School of Engineering Working Paper
Series, 1-24

Tol, R. , 2005. Adaptation and Mitigation: trade-offs in substance and
methods, Environmental Science and Policy, 572-578

Tollefson, J., 2014. Climate change: the case of the missing heat. Nature
505, 276—278, http://dx.doi.org/10.1038/505276a.

Van der Ploeg, F. 2014, Abrupt positive feedback and the social cost of
carbon, European Economic Review, 67, 28-41

Weitzman, M. , 1998. Why the far-distant future should be discounted at
its lowest possible rate, Journal of Environmental Economics and Management,
36, 201-208

Weitzman, M. , 2009. On modeling and interpreting the economics of
catastrophic climate change, Review of Economics and Statistics, 91, 1-19.

Weitzman, M , 2010. What is the damage function for global warming and
what difference might it make, Climate Change Economics, 1, 57-69

Wigley, TML 2004. Choosing a stabilization target for CO2,Climate Change,
67, 1-11

Witt D.A., J de Boor, N. Hedlund and P. Osseweijer, 2016. A new tool to
map the major worldviews in the Netherlands and USA, and explore how they
relate to climate change. Environmental Science & Policy, 63, 101-112.

Zickfeld, K., M. Eby, H., Matthews D.and A. J. Weaver , 2009. Setting
cumulative emission targets to reduce the risk of dangerous climate change,
PNAS, 16129-16134

20


	PAPER TITLE 3(1)
	Manuscript2018 copy

