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Abstract

This paper examines robustness in international pollution control emerg-

ing from the regulator’s concerns regarding possible misspecification of the

natural system that is used to model pollution dynamics. Cooperative and

noncooperative robust policy rules are determined along with the cost in

terms of value loss of being robust relative to conventional policy rules.
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1 Introduction

International pollution control is an issue that has acquired great significance

during recent decades, both in terms of academic research and in terms of

applied policy making. As Barrett (2005, p. 1459) points out, “It is a cliche

to say that nature obeys no borders - but it is also true.”Thus many major

environmental problems entail situations in which activities in one country

create negative externalities not only in the country itself but also in other

countries. Such problems include the pollution of rivers and lakes that border

more than one country - a transboundary pollution problem - and regional

or global environmental problems, such as acid rains, ozone depletion and

climate change.

From the point of view of resource allocation, problems associated with

global pollution, such as climate change, belong to the theory of the voluntary

provision of public goods, or more precisely ‘public bads’, since global pollu-

tion satisfies the basic characteristics of a public good, namely nonrivalry in

consumption and nonexcludability.

The general methodological approach in dealing with these problems is

to: (i) determine a noncooperative solution through which countries choose

their emission levels by optimizing individual objectives without taking into

account the external costs imposed on other countries, (ii) determine a coop-

erative solution through which countries determine their emissions by opti-

mizing a global objective so that a Pareto effi cient outcome is obtained, and

(iii) compare the cooperative and noncooperative solutions. In this way one

can explore the ineffi ciency of the noncooperative equilibrium and propose a

course of action that can achieve the effi cient outcome, which is the global

pollution level that maximizes global welfare.

International pollution problems are very often analyzed in a dynamic

setup, since the pollutants associated with these problems are of a stock

or fund type and environmental damages are associated with the stock of

the accumulated pollutant in the ambient environment. When cooperative

solutions are analyzed, standard optimal control techniques which are applied

to environmental and resource economics are used (e.g. Xepapadeas, 1997,
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chapter 2). When conflict and strategic interactions among countries make

necessary the analysis of noncooperative solutions, then the differential games

framework has been extensively used.1

Uncertainty is another issue that has been addressed extensively in these

problems. Apart from a general kind of uncertainty associated with the future

costs and benefits of an action, there is the specific uncertainty associated

with the evolution of the natural system. This uncertainty could arise from

sources such as major gaps in knowledge, limited modelling capacity and

lack of theories to anticipate thresholds, and emergence of surprises and un-

expected consequences. These uncertainties may impede adequate scientific

understanding of the underlying natural system mechanisms and the impacts

of policies applied to these systems. The discussion about the uncertainty

surrounding climate sensitivity and the implications of fat tailed distribu-

tions in climate policies has highlighted the types of uncertainty surrounding

the evolution of natural systems (e.g. Stern, 2007; Weitzman, 2009). For the

purposes of our analysis we will refer to the overall uncertainty associated

with these sources as scientific uncertainty.

One feature of the above structure of uncertainty is that it might be

diffi cult or even impossible to associate probabilities with uncertain shocks

affecting the natural system evolution. This is close to the concept of uncer-

tainty as introduced by Frank Knight (1921) to represent a situation where

there is ignorance, or not enough information to assign probabilities to events.

Knight argued that uncertainty in this sense of unmeasurable uncertainty is

more common in economic decision making. It seems that this type of uncer-

tainty might also be relevant for modeling the evolution of natural systems.

Knightian uncertainty is contrasted to risk (measurable or probabilistic

uncertainty) where probabilities can be assigned to events and are summa-

rized by a subjective probability measure or a single Bayesian prior. The

concept of Knightian uncertainty or ambiguity has been associated formally

with a concept of multiple priors (Gilboa and Schmeidler, 1989), as well as

with a concept of uncertainty or ambiguity aversion, which in general in-

1For a recent survey of the use of dynamic games in economics and pollution control,
see Jorgensen et al. (2010).
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creases with an ignorance parameter (Chen and Epstein, 2002).

In economics, decision making under risk is typically modelled as expected

utility maximization. Gilboa and Schmeidler (1989), motivated by the Els-

berg (1961) paradox, provided an axiomatic foundation of Wald’s (1950)

maxmin criterion, and showed that a maxmin expected utility theory based

on the least favorable prior (LFP) can be used under conditions of Knightian

uncertainty.2

Ambiguity aversion and decisions based on maxmin criteria and LFPs can

be associated with the concept of the precautionary principle (PP), which

is an approach wherein actions are taken to anticipate and avert serious or

irreversible harm, such as for example the prevention of severe damages or an

irreversible catastrophic event associated with climate change, in advance of

or without a clear demonstration that such action is necessary. As Marchant

(2003, p. 1799) states, "By formalizing and bringing precaution to the fore-

front, the precautionary principle has the potential to make environmental

decision making more deliberative, transparent, and coherent."

The idea of an LFP, or a worst-case scenario, and serious or possibly

irreversible changes can be intuitively put together, since the emergence of

an LFP could lead to serious damages or an irreversible change. Therefore a

direct link can be made between LFP ideas and the PP. Scientific uncertainty

or model uncertainty underlying the natural systems can be manifested in

multiple priors. The decision maker cannot choose among them but one or

more of these priors, the LFP, could lead to severe damages or irreversible

change. To prevent these damages, which are not clearly demonstrated since

the decision maker does not know that the LFP will prevail, precaution might

be desirable in designing specific policy rules, which implies that the decision

rule could be based on the LFP. Thus, the maxmin expected utility could

be used as a conceptual framework for designing management rules which

adhere to a precautionary behavior.

The purpose of this paper is to explore the implications of introducing

2Given a set of prior probability distributions associated with the multiple priors frame-
work, the LFP is the one that corresponds to the least favorable outcomes. It can be
associated with the concept of the worst-case scenario. Under Knightian uncertainty the
researcher cannot choose one prior to define expected utility as is done under risk.
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ambiguity associated with uncertainty in the evolution of natural systems

and precautionary concerns based on preferences for robustness under sci-

entific uncertainty, in a stylized international pollution control problem. By

comparing solutions under risk and under ambiguity, we provide a measure of

the impact of adopting robust approaches in international control along with

an approach to determine the extra cost of being robust and precautionary.

2 Modeling ambiguity

The type of uncertainty described above can be modeled by associating it

with the case of a decision maker who is trying to make good choices when he

regards his model not as the correct one, but as an approximation of the cor-

rect one or, to put it differently, when the decision maker has concerns about

possible misspecifications of the correct model and wants to incorporate these

concerns into the decision-making rules (e.g., Salmon, 2002; Hansen and Sar-

gent, 2001a,b; 2008; Hansen et al., 2006; JET, 2006). The misspecification

concerns emerge because the regulator cannot assign probabilities to events

or, to put it in the Gilboa and Schmeidler context, the regulator is faced with

multiple priors.

Having concerns about model misspecification, following Hansen et al.

(2006) or Hansen and Sargent (2008), means that the regulator distrusts

his model and wants good decisions over a cloud of models that surrounds

the regulator’s benchmark model. The models in the cloud are diffi cult to

distinguish with finite data sets.

The cloud of models or the set of approximate models is obtained by

disturbing a benchmark model by introducing a misspecification error, so that

the admissible disturbances reflect the set of possible probability measures

that the decision maker is willing to consider, or alternatively how ambiguous

the decision maker is about the benchmark model. The more ambiguous the

regulator is, the larger is the cloud of approximate models that he is willing

to consider. In this setup the good or robust decisions are obtained by

introducing a fictitious ‘adversarial agent’which we will refer to as Nature.

Nature promotes robust decision rules by forcing the regulator, who seeks to
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maximize an objective, to explore the fragility of decision rules to departures

from the benchmark model. A robust decision rule to model misspecification

means that lower bounds to the rule’s performance are determined by Nature,

the adversarial agent who acts as a minimizing agent when constructing these

lower bounds. Hansen et al. (2006) show that robust control theory can be

interpreted as a recursive version of maxmin expected utility theory (Gilboa

and Schmeidler, 1989). In this context the decision maker cannot or does not

formulate a single probability model and maximizes expected utility assuming

the probability weights are chosen by Nature.

In this paper ambiguity is modeled in terms of a robust control problem.

As will become clear later, the standard expected utility maximizing model

could be derived as a special case of the robust control model when the

regulator has no concerns about model misspecification and completely trusts

the benchmark model. By comparing the decision rules between the two cases

—mistrust versus complete trust in the benchmark model —it is possible to

compare the impact of ambiguity and robustness on decision rules derived

from international pollution control models as well as the cost implied by

concerns about model misspecification and the desire to be precautionary

when designing regulation.3

3 International pollution control under model

misspecification

The cooperative and the noncooperative setup of international pollution con-

trol is modeled in the standard way (e.g. van der Ploeg and de Zeeuw (1992)

or Dockner and van Long (1993)). To make the model simple, so that it is

easier to trace the impact of ambiguity and precaution, the two-country lin-

ear quadratic specification of Dockner and van Long is adopted. Thus there

are two countries indexed by i = 1, 2. Output in each country is a function

of emissions Qi = Fi (Ei) , where Fi (·) is strictly concave with Fi (0) = 0.

3For a similar approach to resource management, see for example Roseta-Palma and
Xepapadeas (2004) and Vardas and Xepapadeas (2010).
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Emissions contribute to the stock of a global pollutant P (t) . The evolution

of the pollution stock is described by the usual linear differential equation,4

Ṗ = E1 + E2 −mP ,P (0) = P0, (1)

wherem > 0 reflects the environment’s self cleaning capacity and t is dropped

to ease notation. Utility in each country, assuming constant population nor-

malized to one, is ui (Fi (Ei))−C (P ) with C (P ) being the cost of the global

pollutant where

ui (Fi (Ei)) = AEi −
1

2
E2i , A > 0 (2)

C (P ) =
s

2
P 2, s > 0. (3)

Thus each country’s objective is to maximize individual welfare or

max
Ei≥0

∫ ∞
0

e−ρt
(
AEi −

1

2
E2i −

s

2
P 2
)
dt, (4)

subject to pollution dynamics, where e−ρt is the appropriate discount fac-

tor.. Uncertainty is introduced in the standard way, so that the stock of the

pollutant accumulates according to the stochastic differential equation

dP = (E1 + E2 −mP ) dt+ σdẑ, P (0) = P0 fixed (5)

where {ẑ(t) : t ≥ 0} is a Brownian motion on an underlying probability space
{Ω,F , G}. In the terminology of the previous section, this is the benchmark
model.5

Following Hansen and Sargent (2001a,b; 2008), concerns about model

misspecification are introduced by a family of stochastic perturbations of the

Brownian motion, so that the probabilities implied by (5) are distorted by

replacing the measure G by a measure Q. The main idea is that stochastic

4To keep things simple nonlinearities and nonconvexities in the dynamics are not con-
sidered. For their implication, see for example Kossioris et al. (2008).

5It should be noted that for any fixed (E1, E2) > (0, 0) , (5) is an Ornstein-Uhlenbeck
process with long-term mean E1 + E2 and long-term variance σ2/2.
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processes under Q will be diffi cult to distinguish from those under G using

finite data. The perturbed model is obtained by replacing ẑ(t) with:

ẑ (t) = z(t) +

∫ t

0

v (s) ds (6)

where {z(t) : t ≥ 0} is a Brownian motion and {v(t) : t ≥ 0} is a mea-
surable drift distortion which can be interpreted as a misspecification error

of the pollution dynamics which is expressed in terms of deviations from

the benchmark case. The benchmark case is defined for v (t) := 0. The

discrepancy between the distributions G and Q is measured by the relative

entropy,

R (Q) =

∫ ∞
0

e−ρtEQ
|v (t)|2

2
dt. (7)

By requiring that

R (Q) ≤ η, (8)

the decision maker can restrict the size of the relative entropy and establish

the set of distributions that will be considered. By choosing η, the decision

maker can determine the ‘size’of the cloud of approximate models that will be

considered given a benchmark model, which in a sense could determine how

much misspecification is justified given the existing knowledge and history

of the natural system. Considering a least favorable prior which would cor-

respond to a large η does not need to imply a catastrophic event, but rather

reflects the ‘maximum’misspecification that the regulator wants to embody

into the decision rule, given the existing data and history of the phenomenon

under consideration. Pollution dynamics under model misspecification can

be written, by replacing dẑ with dz, as:

dP = (E1 + E2 −mP + σv) dt+ σdz, P (0) = P0 fixed. (9)

When the regulator has no concerns about model misspecification, that is
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v = 0, then we are in the case of decision making under risk where expected

utility theory is appropriate. When the regulator has concerns about model

misspecification, that is v 6= 0, then we are in the case of decision making

under ambiguity or uncertainty where maxmin expected utility theory is

appropriate. Two robust control problems have been associated with the

problem of maximizing (4) subject to (9) (Hansen and Sargent (2001a,b;

2006; 2008): the constrained robust control problem

J (η) = max
E1,E2

min
v
E0
∫ ∞
0

e−ρt
(
AEi −

1

2
E2i −

s

2
P 2
)
dt (10)

subject to (9) and (8)

and the multiplier robust control problem

J (θ) = max
E1,E2

min
v
E0
∫ ∞
0

e−ρt
(
AEi −

1

2
E2i −

s

2
P 2 +

1

2
θv2
)
dt (11)

subject to (9).

In both problems, the minimizing agent, Nature, chooses v. In the mul-

tiplier problem, θ ∈ (θ,+∞] , θ > 0 is a penalty parameter restraining the

minimizing choice of the v (t) function. The lower bound θ is a so-called

breakdown point beyond which it is fruitless to seek more robustness be-

cause the minimizing agent is suffi ciently unconstrained so that he can push

the criterion function to −∞ despite the best response of the maximizing

agent. Thus when θ < θ, robust control rules cannot be attained. On the

other hand when θ → ∞, then there are no concerns about model misspec-
ification. As shown by Hansen and Sargent (2006), under certain regularity

assumptions the penalty parameter θ can be interpreted as the Lagrangian

multiplier of the constrained robust control problem. Thus there is a direct

link between θ and the size of entropy the the regulator is willing to incorpo-

rate into the policy rule. Although the constrained robust control problem is

more intuitive, the approach that has been followed in general is the solution

of the more tractable multiplier robust control problem.

It should be noted that a non-negativity (or irreversibility) constraint on

emissions Ei ≥ 0 is not imposed in the robust control problems (10) or (11),
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which implies that clean up is possible. There are of course many cases in

pollution control where a more realistic assumption would be to impose the

non-negativity constraint. If under emissions non-negativity there are models

where a certain emission profile may cause irreversible damages, low emis-

sions have a positive option value, since if the LFP that causes the irreversible

damage is realized, the regulator is not irrevocably committed to a high stock

of the pollutant implying unavoidable costs. Thus the irreversibility is a con-

sequence of the policy maker’s inability to reduce the stock of pollution which

is captured by the non-negativity constraint, Ei ≥ 0.Without the nonegativ-

ity constraint low emissions have no option value since clean up is possible.6

In this paper emission irreversibility is not considered, which would have re-

quired the use of a Kuhn-Tucker multiplier, or as is more common in these

problems, a real options approach, where the ‘stopping’domain Ei = 0 and

the interior domain Ei > 0 are joined by value matching and smooth pasting

conditions.7 The relation between emission irreversibility and ambiguity is

beyond the purpose of the present paper and could be an interesting area for

future research. Since, however, irreversibility of emissions and damages, a

case which is closer to the concept of the PP, is not explicitly considered, the

policies described in this paper will be referred to as robust policies rather

than as policies associated with a PP.

In this robust control framework, the following sections analyze the coop-

erative and noncooperative solutions of the international pollution problem

under risk and under ambiguity.

4 The cooperative solution under risk

The cooperative solution is obtained by maximizing expected joint welfare de-

fined by (4). Given the linear quadratic structure of the problem, a quadratic

6I would like to thank an anonymous reviewer for pointing this out.
7See for example Dixit and Pindyck (1994) for the general approach of real options and

Xepapadeas (1998), Wirl (2008) for application to environmental policy issues.

9



value function

W (P ) = −1

2
αP 2 − βP − γ (12)

with first and second derivatives

DW = −αP − β ,D2W = −α (13)

is considered. The Hamilton-Jacobi-Bellman (HJB) equation for this prob-

lem, whereDW andD2W denote the first and second derivatives of the value

function respectively, is:

ρW = max
E1,E2

{
A (E1 + E2)−

1

2

(
E21 + E22

)
− sP 2+ (14)

DW (E1 + E2 −mP ) +
1

2
σ2D2W

}
.

Optimality implies

E1 = E2 = A− β − αP. (15)

Then

ρ

(
−1

2
αP 2 − βP − γ

)
= (16)

2A (A− β − αP )− (A− β − αP )2 − sP 2

− (αP + β) [2 (A− β − αP )−mP ]− α

2
σ2.

The parameters of the value function are obtained as usual by equating

coeffi cients of the same power. In this case the optimal cooperative emissions

in a feedback form will be

E∗ = (A− β)− aP. (17)

Substituting optimal cooperative emissions from (17) into (5), the evolution

of the pollutant stock under the cooperative solutions will be determined by
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the solution of the stochastic differential equation

dP = [2 (A− β)− (2α +m)P ] dt+ σdz. (18)

This an Ornstein-Uhlembeck process with solution

P (t) = P0e
−r0t + µ

(
1− e−r0t

)
+

∫ t

0

σer0(u−t)dzu (19)

r0 = 2α +m,µ =
2 (A− β)

2α +m
. (20)

The mean and variance corresponding to the cooperative solution are

EP (t) = P0e
−r0t + µ

(
1− e−r0t

)
(21)

varP (t) =
σ2

2r0

(
1− e−2r0t

)
, (22)

with long-run expected value EP ∗ = µ = 2(A−β)
(2α+m)

, varP ∗ = σ2

2r0
= σ2

2(2α+m)
. It

is obvious that if α > 0 this steady state will be stable.

To make the solution clear and to make possible comparisons with the

noncooperative and the ambiguity cases, we use a numerical example where

ρ = 0.05, σ = 1, A = 100,m = 0.03, s = 1. (23)

Then α = 0.972878, β = 96.0509, E∗ (t) = 3.94914 − 0.972878P (t) , and

EP ∗ = 3.9976.

Figure 1 below presents the time path for EP ∗ (t) (thick line) along with

a belt of ±3
√
varP ∗ (t) (dashed lines) from an initial stock accumulation

P0 = 2.
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Figure 1: EP ∗ (t)± 3
√
varP ∗ (t)

5 Robust control and the cooperative solu-

tion under ambiguity

When concerns about misspecification of the pollution dynamics exist, then

the cooperative solution can be obtained as the solution of the following

multiplier extremization problem, which has already been defined above, as:

max
E1,E2

min
v
E0
∫ ∞
0

e−ρt

[∑
i=1,2

(
AEi −

1

2
E2i −

s

2
P 2
)

+
θv2

2

]
dt (24)

subject to (9). (25)

The benchmark optimal control problem is a special case of (24) for v (t) ≡
0, and corresponds to the cooperative solution under risk. Using again a

quadratic value function W 0 (P ) = −1
2
α0P 2−β0P −γ0, the Isaacs condition

(Fleming and Souganidis, 1989) leads to the HJB equation:
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ρW 0 = max
E1,E2

min
v

{
A (E1 + E2)−

1

2

(
E21 + E22

)
− sP 2 +

1

2
θv2+ (26)

DW (E1 + E2 −mP + σv) +
1

2
σ2D2W

}
.

Optimality implies

v0 =

(
α0P + β0

)
σ

θ
(27)

and

E01 = E02 = A− β0 − α0P. (28)

It is clear that if θ → ∞, then v → 0 and we are back to the benchmark

model. The value function becomes:

ρ

(
−1

2
α0P 2 − β0P − γ0

)
= (29)

2A
(
A− β0 − α0P

)
−
(
A− β0 − α0P

)2 − sP 2 +
1

2
θ

[(
α0P + β0

)
σ

θ

]2

−
(
α0P + β0

) [
2
(
A− β0 − α0P

)
−mP + σ

(
α0P + β0

)
θ

]
− α

2
σ2,

and the parameters of the value function are obtained as before by equating

coeffi cients of the same power. Substituting the optimal choice of the ad-

versarial agent (27) and optimal robust cooperative emissions (28) into (9),

the evolution of the pollutant stock under the cooperative solution will be

determined by the solution of the Ornstein-Uhlembeck process

dP =
[(

2
(
A− β0

)
− σ

θ
β0
)
−
((

2 +
σ

θ

)
α0 +m

)
P
]
dt+ σdz (30)
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with mean and variance

EP (t; θ) = P0e
−r00t + µ0

(
1− e−r00t

)
(31)

varP (t; θ) =
σ2

2r00

(
1− e−2r00t

)
(32)

r00 =
(

2 +
σ

θ

)
α0 +m, µ0 =

2
(
A− β0

)
− σ

θ
β0(

2 + σ
θ

)
α0 +m

. (33)

Thus our results are a function of the penalty parameter θ. Provided that

α0 and β0 converge to finite values as θ → ∞, and this has been verified
for all numerical simulations, then the limit of EP (t; θ) and varP (t; θ) as

θ → ∞ converge to their benchmark value, indicating that the model with

no misspecification concerns can be regarded as a special case of the robust

control model when θ →∞. Thus when θ becomes large, the results regarding
the parameters of the value function, the optimal emissions and the expected

steady state pollution accumulation should converge to the results obtained

for the benchmark model. Figure 2 presents α0 as a function of θ.

Figure 2: α0 vs θ

The parameter remains positive so the stability requirement is satisfied

and as θ increases it tends to the benchmark case value of α = 0.972878.

Figure 3 presents the value function for three values of the penalty para-

meter θ = {50, 100, 500} .
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Figure 3: The value function

The value function shifts downward as θ decreases (the top line corresponds to

θ = 500 while the bottom to θ = 50) indicating that as concerns about model

misspecification increase, the robust control of the system becomes more

costly as the system loses value. Table 1 shows the values of the value function

at different levels of θ with P set at the initial value P0 = 2 . Therefore robust

control under concerns about model misspecification becomes more costly. As

misspecification concerns increase, the changes in the value function, as θ is

reduced, can be interpreted as the cost of robustness or the cost of being more

precautionary in order to avoid potentially severe damages associated with

the emergence of an LFP from the cloud of models that satisfy the entropy

constraint.

Table 1: The cost of robustness under cooperation
θ W 0 (2)

50 -1909.69

100 -896.69

500 -93.58

1000000 106
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Figure 4 presents optimal robust emissions in feedback form for different

values if θ = {50, 100, 500} . As concerns about misspecification increase,
optimal robust cooperative emissions are reduced and the emission function

shifts downwards as shown in figure 4, where the top line corresponds to

θ = 500 and the bottom line to θ = 50.

Figure 4: Optimal robust emissions

Finally figure 5 presents the time path of expected robust cooperative

pollution accumulation for θ = {50, 100, 500}. As misspecification concerns
increase, that is θ is reduced, the steady state robust pollution accumulation

is reduced. This is in line with the behavior of the emissions function. An

increase in misspecification concerns (decrease of θ), because the regulator

increases the size of entropy to be incorporated into the decision rule, will

reduce the robust emission policy function and will lead to reduced expected

pollution accumulation. This is indicated by a shift of the EP 0 (t) path down-

wards in figure 5, where the top line corresponds to θ = 500 and the bottom

line to θ = 50. As θ increases, ambiguity goes down and misspecification con-

cerns decrease, robust emissions increase and as a result steady state stock

increases too and eventually converges to the benchmark value.

16



Figure 5: Robust cooperative pollution accumulation

Finally figure 6 below presents the time path for EP 0 (t) ± 3
√
varP ∗ (t)

from the initial stock accumulation P0 = 2 for θ = 50.
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Figure 6: EP 0 (t)± 3
√
varP ∗ (t) , θ = 50

Note that the expected steady state pollution accumulation for θ = 50 is

3.959, for θ = 1 is 2.701, while the expected accumulation at the benchmark

model (θ →∞) is 3.9976.

6 The noncooperative solution under risk

To study the noncooperative solution where each country maximizes expected

individual welfare subject to pollution dynamics, we assume that each coun-

try follows linear time stationary feedback strategies (or closed-loop) strate-

gies (Basar and Olsder, 1982), which are decision rules which condition in-

dividual emissions on the current stock of the global pollutant in a linear

fashion,8 or Ei (t) = ζ0 + ζ1P (t) . Feedback strategies are associated with

the concept of feedback Nash equilibrium which is a strongly time-consistent

noncooperative solution (Basar, 1989).

The feedback Nash equilibria (FBNE) for the linear quadratic inter-

national pollution game result from solving the dynamic programming or

Hamilton-Jacobi-Bellman equations in the value functions Wi. The func-

tions and parameters of our problem do not directly depend on time, so the

problem is stationary. Therefore the equilibrium strategies can be repre-

sented in a time-stationary feedback form, Ei (t) = ζ0+ ζ1P (t), i = 1, 2, and

the value functions Wi depend only on the state x. Furthermore, since the

problem is symmetric, only symmetric equilibria are considered.

The value function for each country is

Wi (P ) = −1

2
αiP

2 − βiP − γi (34)

8For the analysis of nonlinear strategies, see Dockner and van Long (1993), Rubio and
Casino (2002), and Kossioris et al. (2008).
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and the corresponding HJB for each country is

ρWi = max
Ei

{
AEi −

1

2
E2i −

s

2
P 2+ (35)

DWi (E1 + E2 −mP ) +
1

2
σ2D2Wi

}
.

Optimality implies

Ei = A− βi − αiP = E1 = E2, (36)

so individual country strategies are in a feedback or closed loop form. Drop-

ping the index i due to symmetry, the HJB satisfies

ρ

(
−1

2
αP 2 − βP − γ

)
= A (A− β − αP )− 1

2
(A− β − αP )2 (37)

−s
2
P 2 +− (αP + β) [2 (A− β − αP )−mP ]− α

2
σ2.

To compare cooperative and noncooperative solutions under risk, we con-

tinue our numerical example. The feedback equilibrium strategy is defined

as Ei (t) = 36.3672 − 0.55931P (t) , i = 1, 2, α1 = α2 = 0.55931, while the

expected FBNE pollution steady state is EPFBNE = 63.3235. The com-

parison of the cooperative equilibrium with the FBNE confirms the well

known result that the FBNE results in higher emissions and higher steady-

state pollution accumulation than the cooperative equilibrium. The FBNE

is stochastically stable since αi > 0. Figure 7 presents the time path for

EPFBNE (t) ± 3
√
varPFBNE (t) from an initial stock accumulation P0 = 2.

The comparison of figure 7 with figure 1 clearly shows the differences be-

tween the cooperative and the feedback Nash equilibrium in terms of the

equilibrium path of the state variable.
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Figure 7: EPFBNE (t)± 3
√
varPFBNE (t)

7 Robust control and the noncooperative so-

lution under ambiguity

A robust FBNE can be obtained as the solution of the extremization multi-

plier problem

max
Ei

min
vi

∫ ∞
0

e−ρt
[(
AEi −

1

2
E2i −

s

2
P 2
)

+
θv2i
2

]
dt (38)

subject to (39)

dP = (E1 + E2 −mP + σvi) dt+ σPdz, (40)

where vi is the misspecification error for country i when countries follow

time stationary linear feedback strategies. Assuming again a quadratic value

function W 0
i (P ) = −1

2
α0iP

2 − β0iP − γ0i , the Isaacs condition leads to the
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HJB equation for each country:

ρW 0
i = max

Ei≥0
min
vi

{
AEi −

1

2
E2i −

s

2
P 2 +

1

2
θiv

2
i + (41)

DW 0
i (E1 + E2 −mP + σvi) +

1

2
σ2D2W 0

i

}
.

Optimality implies

vi =

(
α0iP + β0i

)
σi

θi
(42)

E∗i = A− β0i − α0iP, (43)

and the HJB satisfies

ρ

(
−1

2
α0iP

2 − β0iP − γ0i
)

= (44)

A
(
A− β0i − α0iP

)
− 1

2

(
A− β0i − α0iP

)2 − s

2
P 2 +

1

2
θi

[(
α0iP + β0i

)
σ

θi

]2
+

DW 0
i

(
2
(
A− β0i − α0iP

)
−mP + σ

(
α0iP + β0i

)
θi

)
− α0i

2
σ2.

The HJB equation (44) implies that the parameters of the value function

and the optimal feedback strategy for each country depend on the penalty

parameter θ. Thus (44) can be used to determine a robust FBNE which is

the FBNE under conditions of ambiguity. As θ →∞ the robust FBNE tends

to the FBNE under conditions of risk. The numerical example is used again

to obtain a clearer picture of the results.

Figure 8 presents α0i as a function of θ.
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Figure 8: a0i vs θ

The parameter remains positive so the stability requirement is satisfied, and

as θ increases it tends to the benchmark case value of αi = 0.55931.

Figure 9 presents the value function for two values of the penalty para-

meter θ = {10, 500} .

Figure 9: The value function for FBNE
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The value function shifts downward as θ decreases (in figure 9 the top

line corresponds to θ = 500 and the bottom line to θ = 10), indicating that

as concerns about model misspecification increase the robust control of the

system in each country becomes more costly as in the cooperative solution.

Table 2 shows the values of the value function at different levels of θ with

P0 = 2. The changes in the value function as θ reduces can be interpreted as

the cost of each country being robust when no cooperation is taking place.

Table 2: The cost of robustness at the FBNE
θ W 0

i (2)

5 -34084.3

10 -33636.8

102 -33281

106 -33192.3

Figure 10 presents optimal noncooperative country emissions in feedback

form for different values of θ = {10, 500} . These are the feedback equilibrium
strategies parametrized by the parameter θ. As in the cooperative case,

increased misspecification concerns reduce the noncooperative equilibrium

emissions.
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Figure 10: Optimal feedback emissions at the FBNE

Figure 11 presents the time path of the expected robust FBNE pollu-

tion accumulation for θ = {50, 500}. As individual misspecification concerns
increase, that is θ is reduced, the expected steady-state robust pollution ac-

cumulation is reduced. This is indicated by a shift of the EP 0FBNE (t) path

downwards in figure 11, where the top line corresponds to θ = 500 and the

bottom line to θ = 50.

Figure 11: FBNE robust pollution accumulation

As θ increases, that is ambiguity is reduced, the steady-state stock increases

and eventually converges to the noncooperative benchmark value. Finally

figure 12 below presents the time path for EP 0FBNE (t) ± 3
√
varP 0FBNE (t)

from the initial stock accumulation P0 = 2 for θ = 50.
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Figure 12: EP 0FBNE (t)± 3
√
varP 0FBNE (t), θ = 50

8 Cooperation and the Cost of Robustness

Comparison of the results obtained from the numerical example, although not

conclusive, suggest that concerns about model misspecification formulated in

the context of robust control induce conservative behavior in the sense of re-

ducing emissions both at the cooperative and the noncooperative solution

relative to the pure risk case. Furthermore, reduced emissions under robust

control lead to lower expected steady-state pollution accumulation. Com-

parisons of the value functions for different levels of the penalty parameter θ

indicate that the more the regulator is concerned about model misspecifica-

tion, the more costly is the design of robust control policies, that is, policies

which perform well even when the emerging model is not the benchmark

model. Increased concerns about model misspecification can be interpreted

as ‘increased ambiguity’regarding the laws governing the phenomenon, and

the desire to design good rules as ambiguity increases.

In our approach the level of ambiguity is related to the choice of θ. Al-
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though this might be seen as arbitrary in the sense that θ is a free parameter,

the relation between the multiplier and the constraint control problems might

be used to discipline the choice of θ. In particular, the solutions of all the

problems considered in this paper for a specific θ̂ < ∞ will determine the

relative entropy between the benchmark model and the distorted model that

corresponds to this θ̂. If prior knowledge about the natural phenomenon can

be used to specify η, that is to determine the misspecification or the size of

entropy that the regulator is willing to consider, the relation between the

chosen θ̂ and the specified η can be established. The problem can be solved

for a set of θ until the relative entropy implied by a specific θ is suffi ciently

close to η. Alternatively, as suggested by Hansen and Sargent (2008) detec-

tion probabilities obtained from data of the past history of the phenomenon

can be used in more general setups to discipline the choice of θ.

Allowing for misspecification concerns and preferences for robustness to

shape the policy rules introduces a contex-specific precaution. Hansen and

Sargent (2001b) identify in this context precautionary savings, or boosting of

the price of risk. In our case this precaution can be identified with reduced

emissions in order to prevent damages which might arise if the benchmark

model is used for designing the policy, but due to misspecification, another

model, from the cloud of models which are considered, emerges. However

in this context more precaution is costly since the value of the system is

reduced under robust policies and increased ambiguity which is captured by

reductions in the ambiguity parameter θ, or the increase of η.

Some insight about the relative costs of robustness between the cooper-

ative and the noncooperative solutions can be gained from figure 13 which

depicts the loss in the value for the cooperative solution and the FBNE for

both countries as θ is reduced from 500 to 200 at steps of 10. The results

suggest that for the specific numerical example, robustness seems to be more

costly under cooperation (solid line) relative to the FBNE. On the average

the loss at the cooperative solution is 13% higher relative to the FBNE.
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Figure 13: Cost of robusness, cooperative vs FBNE

9 Concluding remarks

This paper studies an approach for incorporating ambiguity and concerns

about model misspecification in a problem of international pollution control.

Since our knowledge regarding the dynamics underlying the accumulation

of transboundary or global pollutants has gaps —sometimes significant gaps

— it seems that this type of approach is relevant for decision making. It

should be noted that in many pollution control problems, ambiguity could

be more profound in the cost implied by any level of stock and not in the

laws of motion for the stock itself, which implies that ambiguity could be

associated with the damage function. In the model presented in this paper,

the distinction of whether ambiguity arises in the processes governing the

pollutant cost or the pollutant stock does affect the qualitative results which

are derived from the presence of ambiguity in the relationship between future
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emissions and current welfare. Ambiguity that directly affects damages can

be introduced by writing the damage function as B (t)C (P ) where B (t) is

a Brownian motion. Ambiguity in this context implies that B (t) should be

perturbed by measurable drift distortions. Although this approach increases

the complexity of the model since it introduces a second state variable it

might be an interesting area for further research.

The international pollution control problem was formulated in terms of

robust control decision rules which are decision rules that might perform

well for a set of models around a benchmark model which the decision maker

thinks might be misspecified. Since this approach is directly related to deci-

sion making when a worst-case scenario might emerge, these robust decision

rules can be associated with context-specific precaution.

Using this framework the paper derives robust decision rules for cooper-

ative and noncooperative solutions regarding the emissions of two countries

which contribute to a global pollutant. It is shown that decision rules derived

when there is no concern about misspecification and the benchmark model

is trusted, are a special case of the robust control model where concerns are

parametrized by a penalty parameter. Using a simple linear quadratic model,

robust decisions rules for the cooperative and the feedback Nash equilibrium

with linear feedback strategies were derived.

A concern for precaution and the consequent adoption of a more precau-

tionary approach does, however, incur higher costs. The dynamic program-

ming approach followed here allowed the determination of the value function,

and the determination of the costs involved in terms of value loss from in-

creased concerns about misspecification and increased precaution. By com-

paring the robustness costs under cooperation and noncooperation, it might

be possible to study the structure of the incentives for precaution in the two

solutions. Better understanding of the structure of costs associated with pre-

caution and the relevant trade-offs might be useful in the design of policies

to deal with global pollutants, since the deep uncertainties associated with

the evolution of these pollutants are what generate the precautionary needs.

An open issue in robust control is learning.9 In the robust control ap-

9Gollier et al. (2000), Asano (2010) have shown how the anticipation of future learning
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proach, learning is not explicitly incorporated into the modelling. One reason

(Hansen and Sargent 2008) is that because the regulator discounts the future,

the regulator cannot disregard current concerns about model misspecification

and wait for enough data to gather so that these concerns can be eliminated.

Hansen and Sargent suggest estimation and filtering approaches that could

eliminate specific misspecifications concerns. Concerns that cannot be elim-

inated are incorporated into the lifetime entropy constraint (8). The more

misspecifications concerns can be eliminated by learning at this stage, the

smaller is η, the larger is θ and the smaller the cost of robustness and concerns

for precaution. The question remains, however, of how to incorporate new

knowledge into the model when enough data have been gathered to justify a

revision of the entropy constraint constant η.

The analysis was kept at the linear quadratic level in order to make

clear certain key issues. Possible extensions could be symmetry breaking

so that the concerns about misspecification are different among countries,

more extensive simulations in order to better trace relative precautionary

costs, and allowing for nonconvexities in pollution dynamics so that flips and

multiple basin of attractions are possible.

can affect the precautionary principle.
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