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Abstract The use of quadratic trends for modeling natural resources' prices is a common prac- 

tice. However, as shown in this paper, the specification of the trend as a second degree polynomial  

is the least preferable with respect to a set of model selection criteria, when compared to very 

simple models that involve trigonometric trend functions. All models are estimated on the price 

series of aluminum, copper, iron, lead, nickel, silver, tin, zinc, bituminous coal, petroleum and 

natural gas, providing in most cases evidence against the long-run increase of the corresponding 

natural resource real prices, with interesting policy implications. 
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1 Introduction 
 

Natural resource pricing defines, to a large extend, the stock and flows of natural resources over 

time, which has direct implication for the achievement of sustainable development (Tietenberg 

and Lewis, 2012). The implications of increased natural resource scarcity and its effect on eco- 

nomic growth have been discussed since the 18th century. Malthus (1798) and Ricardo (1817) held 

that agricultural land scarcity implied strict limits on population growth and the development of 
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living standards. In his seminal article, Harold Hotelling (1931) offered his well-known counterar- 

gument: Competitive firms would manage exhaustible resource stocks to maximize present-value 

profits; competitive extraction paths would therefore match those chosen by a social planner 

seeking to maximize intertemporal social surplus; and subject to the caveat of social and private 

discount rates equality; equivalence between competitive outcome and the work of a rational 

social planner would be achieved. The Hotelling rule provides the fundamental no-arbitrage con- 

dition that every competitive or efficient resource utilization path has to meet. In its basic form 

it indicates that along such a path the price of an exhaustible resource has to grow with a rate 

that equals the interest rate. 

The issue of the specification of trends in natural resource prices has been considered by a 

significant number of researchers during the last century. Barnett and Morse (1963) examined 

trends in the prices and unit costs of extractive goods in the United States. Smith (1979) employed 

an econometric analysis of annual (1900-1973) price data of four aggregate resource groups and 

concluded that the trend in mineral prices was negative with the rate of decline decreasing over 

time in absolute magnitude. Slade (1982) allowed for the presence of technological progress which 

reduces the production cost and therefore the price paths for nonrenewable natural resources can 

be U-shaped. The empirical findings of Berck and Roberts (1996) suggested that it is more 

adequate to consider that resource prices exhibit trend over short time of periods, while this 

trending behaviour is not reflected in the large samples. Slade and Thille (1997) developed 

another theoretical model (different than Slade 1982) which is able to produce substantial periods 

of falling prices. 

Another strand of the literature on commodity prices considered the possibil- 

ity that the evolution of real prices is governed by stochastic trends. Ahrens and 

Sharma (1997) considered the prices of eleven natural resources. They applied a set 

of unit root tests on each price series. The combined results of these tests could 

not reject the unit root hypothesis only for two price series, while they provided 

evidence against the existence of a stochastic trend for the prices of three natural 

resources. For the rest five price series, however, the results of the unit root tests 

were inconclusive, highlighting the weaknesses of the corresponding unit root test- 

ing procedures. Pindyck (1999) examined whether the evolution of the real prices 
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of oil, coal and natural gas is governed by stochastic trends. Pindyck made a sig- 

nificant remark concerning the failure of the augmented Dickey-Fuller test to reject 

the null hypothesis of a stochastic trend due to small sample size. He also identified 

the inability of a quadratic trend specification to capture the long term evolution of 

real prices. In order to increase the flexibility of the quadratic trend specification, 

he then developed a model where the coefficients of the constant and linear terms 

follow autoregressive processes. In other words, Pindyck used the quadratic trend 

specification as a starting point in order to develop a more general stochastic trend 

model. 

From another perspective, Postali and Picchetti (2006) argued that the Geomet- 

ric Brownian Motion can perform well as a proxy for the movement of oil prices. 

On the other hand, they pointed out that this type of approximation is reasonable 

in adequately small samples, because when the sample covers one hundred or more 

annual observations, the evidence supports a trend-stationary behavior with struc- 

tural breaks for the price of oil. Lee, List and Strazicich (2006) also considered the 

case of structural breaks. Their results rejected stochastic trend behavior under the 

alternative of a quadratic trend with two breaks for the same eleven price series 

used by Ahrens and Sharma (1997). 

Summarizing the results of the aforementioned literature, we come to the follow- 

ing conclusions: (a) There is no evidence that second degree polynomials (in other 

words, quadratic functions with or without linear terms) are able to capture the 

long-term evolution of natural resource prices. (b) The empirical evidence does not 

support either the existence of unit root components in these prices. (c) The intro- 

duction of either structural breaks or (stochastic) changes on the coefficients of the 

quadratic trend in models for the prices of natural resources seem to outperform a 

unit root specification of these prices. 

The failure of the simple quadratic functions to succeed in capturing the evolution 

of natural resource prices seems to be a result of one very specific characteristic: 

quadratic functions are explosive. On the other hand, the “success” of the ³structural  

break³ or ³stochastic coefficient³ approaches relies on the fact that they allow for 
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a non-explosive behaviour of the real prices. This observation, brings back into 

the surface the ³rule³ of Hotelling. This rule, in a more general setting which is 

compatible with the existing evidence on natural resource prices, can be re-stated 

as follows: “the price of an exhaustible resource that corresponds to a competitive 

or efficient resource utilization path, will oscillate around the interest rate.” 

 

In this paper we argue that the use of quadratic trend functions as a starting point 

for the devolopment of models for the evolution of natural resource prices is struc- 

turally inadequate. Motivated by the theoretical premises provided by Hotelling, we 

evaluate the performance of a quadratic trend specification for the real prices of the main fuel 

and metal resources that have been considered in the literature reviewed above with respect 

to models based on very simple trend functions that allow oscillatory behavior of 

the real prices. Specifically, by using a set of model selection criteria we find that simple 

trigonometric trend models, outperform Slade's (1982) quadratic trend model, as well as a more 

general one, that nests both the trigonometric and quadratic models. The use of (simple) 

trigonometric functions is not novel in time series analysis. However, this option 

has been neglected from the literature on natural resource prices. Our results provide 

evidence supporting the view that oscillatory behavior is more common than the existence of a 

long-run monotonic trend, linear or quadratic, in the real prices of natural resources. 

 

The paper is organized as follows: Section 2 presents four competitive trend spec- 

ifications for the price of a natural resource commodity. These specifications are 

estimated on the price series of eleven major natural resources. The estimated mod- 

els are then evaluated by means of three well-known information criteria (Akaike, 

Schwarz, Hannan and Quinn). Section 3 assesses the ability of the three information 

criteria to distinguish the true data generating process among the four specifications. 

Specifically, for the cases where the three criteria disagree we perform a simulation 

study in order to examine which criterion provides stronger evidence. The results 

of the simulation study combined with the model selection of the three information 

criteria support the ability of very simple trigonometric trend functions to capture 

the dynamics of the real price for nine out of the eleven natural resources. On the 
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other hand, the existence of a quadratic trend finds support in only six cases. Section 

4 concludes the paper. 

 
 

 
2 Model Estimation and Selection 

 

 
 

Let the real price, yt, of a natural resource commodity be equal to the sum of a deterministic, 

g(t; 8), and a stochastic component. Following Slade (1982), the empirical literature has specified 

g(t; 8) as a quadratic polynomial of t. In order, however, to allow for more than one full U-shaped 

cycles we suggest the following specification: 

 
g(t; 8) = c 

 
+ c t + c t2 + c 

 

sin

 
t 

  

+ 1

   

+ c t

 

sin 

  
t 

  

+ 1

 

, d > 0. (1) 
 
 

The two extra terms, (sin( t ) + 1) and t(sin( t ) + 1) in (1) capture the potentially oscillating 
d d 

behaviour of the real price, while d controls for the number of the sinusoidal cycles that are likely 

to be present in a sample of T observations. For example, for T=100, a d equal to 7.5, 10, 15 or 

30 corresponds to approximately 2, 1.5, 1 and 0.5 cycles, respectively. The above specification 

nests the following three cases: 
 

Case 1: The General model, in which ci 

 
0, i ∈ (0, 1, 2, 3, 4}. 

 

Case 2: The Polynomial model, in which c3 = c4 = 0. 

Case 3: The Oscillatory model, in which c1 = c2 = 0. This case can be further decomposed into 

two additional subcases, according to whether the coefficient c4 is equal to zero. Specifically, if 

both c3  and c4  are different from zero, we refer to this case as Oscillatory−I  model. The second 

case, occurs when c1 = c2 = c4 = 0 and c3 /= 0. We refer to this case as Oscillatory−II  model. It 

is worth noting that both Oscillatory-I and Oscillatory-II models are very simple and a selection 

of one of them against the Polynomial model, on the basis of a ”goodness-of-fit” criterion, does 

not raise any overfitting issues. 

 

The next step is to estimate the following equation 
 
 

pt = g(t; 8) + ut , (2) 

0 3 
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where g(t; 8) corresponds to each of the four models (General, Polynomial, Oscillatory-I and 

Oscillatory-II), on the real prices of the main fuel and mineral resources. Specifically, historical 

real prices (at constant 1998 U.S. dollars) for aluminum, copper, iron, lead, nickel, silver, tin 

and zinc were obtained from U.S. Geological Survey for the period 1900–2010, while historical 

real prices for bituminous coal, petroleum and natural gas (at constant 2005 U.S. dollars) were 

collected from Energy Information Administration for the periods 1949–2010, 1900–2010 and 

1922–2010, respectively. As far as measurement units are concerned, we have used 8/ton for 

aluminum, copper, iron, lead, nickel, tin, zinc and bituminous coal, 8/kgr for silver, 8/barrel for 

petroleum and 8/(1000 cubic feet) for natural gas. At his point we must emphasize the fact 

that our goal is not to propose the most sophisticated model for the modeling of 

natural resource prices, but to evaluate the status of the quadratic trend specification 

as the main starting point for their study. 

Because in all cases ut exhibits a very high degree of persistence, any nonparametric correc- 

tions are likely to produce misleading inferences on the trend coefficients. Vogelsang (1998) found 

that when ut is a near-to-unit root process, the nonparametric corrections produce Wald tests 

that suffer from severe size distortions. As the largest root, g, approaches unity, the empirical 

sizes become very large and deteriorate with the sample size, since the unit-root asymptotics be- 

come dominant. On the other hand, the approach of parametric GLS corrections exhibits much 

better properties, producing test statistics with empirical sizes very close to their corresponding 

nominal ones. Moreover, when g is close to one, GLS was found to exhibit very good power 

properties (see also Canjels and Watson, 1997). 

All models are estimated by GLS, for each of the eleven commodities. The error term, ut, is 

assumed to follow either an AR(1) or an AR(2) or an ARMA(1,1) process. The results from these 

three alternative specifications are largely the same, and therefore we discuss the results only for 

the AR(1) case.The estimation of the frequency parameter, d, is obtained by a minimization of 

the sum of squared residuals using a sufficiently fine grid of values for d, which corresponds to a 

step of .5. 

Table 1 presents the selected models from the application of the information criteria suggested 

by Akaike (1973), Schwarz (1978) and Hannan and Quinn (1979), denoted by AIC, SIC and HQ 

respectively. We make the following observations: 
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(TABLE 1 AROUND HERE) 
 
 

(a) All information criteria agree for the cases of aluminum, gas, iron, petroleum, silver 

and tin. Specifically, all information criteria select the Polynomial model for aluminum, the 

Oscillatory-II model for gas, the Oscillatory-I model for iron, and the General model for petro- 

leum, silver and tin. 

(b) For the rest five resources, the models do not agree. However, only for zing three diferent 

models are selected, while for coal, copper, lead and nickel, two of the three criteria agree. 

(c) Of the cases where the three information criteria do not agree, the Polynomial model is 

selected only for nickel, while it is not selected by any of the information criteria for the cases of 

coal, copper, lead and zink. 

The results of Table 1 provide a preliminary indication that supports the adequacy of models 

involving oscillatory components for the modeling of natural resource prices. However, in order 

to robustify the interpretation of these results we have to investigate the extent to which AIC, 

SIC and HQ are capable of detecting the correct model within a set, M, of competitive models 

which consists of the General, the Polynomial, the Oscillatory-I and the Oscillatory-II models 

defined above. Next section focuses on this issue. 

 
 

3 Evaluation of the Model Selection Criteria 

 

To investigate the ability of AIC, SIC and HQ to detect the correct model between 

the ones described in cases 1 to 3, we conduct a Monte Carlo study. Concerning the trend 

function, we examine four alternative scenarios, namely, we consider the cases where g(t; 8) 

follows (i) the General model, (ii) the Polynomial model, (iii) the Oscillatory-I model, and (iv) 

the Oscillatory-II model. For each scenario, we examine the percentages by which the AIC, 

SIC and HQ select the correct model between the four models mentioned above. The number 

of replications is equal to 5000 and the sample size is set to 100. The models are estimated 

by Generalised Least Squares (GLS), in which the error term is assumed to follow an AR(1) 

process, ut = gut—1 +vt, while the true parametric structure of the error is assumed to be known. 

Additional experiments, in which the order, p, of the AR(p) specification in GLS is higher than 
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the true lag order of the autoregressive representation of ut, have also been conducted, with 

results similar to those of the ”full information” case. Concerning the parameters, 8, of the trend 

functions, we explored many alternative parameter settings. Our interest, however, lies on the 

real prices of the of the set of commodities, C := (coal,copper,lead,nickel,zinc}, for which the 

models selected by the three information criteria do not coincide. Specifically, we use the following 

procedure: 

(a) For each commodity in C we estimate models (i) - (iv). 

(b) We use the estimated values of each model to generate the replications, as described in the 

previous paragraph. 

(c) For each replication, we re-estimate models (i) - (iv) and we use AIC, SIC and HQ to select 

between the re-estimated models. 

(d) We report the percentages, at which each information criterion selects the candidate models, 

given that the true data generating process (DGP) is the one whose estimated values had been 

used for the generation of the replications. 

The results of the Monte-Carlo simulations that correspond to the real prices of coal, copper, 

lead, nickel and zinc are reported in tables 2 to 6, respectively. We observe the following: 

(i) Recall that for the real prices of coal the General model was selected by AIC and SIC, and the 

Oscillatory-I model was selected by HQ. When the Monte-Carlo study is based on the estimates 

obtained using the real prices of coal (table 2), we have the following results: If the data were 

generated by the General model, the selection rate of any other model by any of the model 

selection criteria would be approximately 0%. This fact provides evidence against the hypothesis 

that the DGP is described by the General model because the Oscillatory-I model was selected 

by HQ. If the data were generated by the Polynomial model, the selection rates of the General 

model by SIC, and of the Oscillatory-I model by HQ would be only 1% and 4%, respectively. This 

fact provides evidence against the hypothesis that the Polynomial model describes the DGP. If 

the data were generated by the Oscillatory-I model, the selection rates of the General model by 

AIC and SIC would be 30% and 7%, respectively. Although the selection rate that corresponds 

to SIC is not large, it is over 5%. Finally, if the data were generated by the Oscillatory-II model, 

the selection rates of the General model by AIC and SIC would be 18% and 2%, respectively, 

while the selection rate of the Oscillatory-I model by HQ would be 9%. The very small selection 
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rate of the General model by SIC in this case, provides evidence against the hypothesis that the 

Oscillatory-II model describes the DGP. Concluding, we note that evidence is provided against 

the existence of a polynomial component in the DGP (being described by either the General or 

the Polynomial model). On the other hand, the results of the Monte-Carlo study do not provide 

strong evidence against the possibility of the specific selection in table 1, when the DGP is 

described by the Oscillatory-I model. 

(ii) Concerning copper, the General model was selected by AIC, while the Oscillatory-II model 

was selected by SIC and HQ (table 1). When the Monte-Carlo study is based on the estimates 

obtained using the real prices of copper (table 2), we observe the following: If the data were 

generated by the Polynomial or the Oscillatory-I models, the selection rates of the Oscillatory-II 

model by SIC and HQ would be approximately 0%. This fact provides evidence against the hy- 

pothesis that the DGP is described by either the Polynomial or the Oscillatory-I model. Another 

significant result of the Monte Carlo simulation is that when it is based on the estimates from 

the General model, the rates at which SIC and HQ select the Oscillatory-II model are high (61% 

and 28%, respectively). When the Monte Carlo simulation is based on the estimates from the 

Oscillatory-II model, the selection rate of the General model by AIC is significant too (27%). 

These results imply that between the four candidate models, the General and the Oscillatory-II 

are the ones that better capture the dynamics of copper's real price. The combined use of the 

three selection criteria, however, is not able to identify with high conviction which of these two 

models better fits the data. Nevertheless, the selection of the General model or the Oscillatory-II 

model, instead of the Polynomial one, clearly implies that the oscillatory term is a significant 

component of a model that aims to capture the dynamics of copper's real prices. 

(iii) The results are similar concerning the real prices of lead. Specifically, as in the case of copper, 

the General model was selected by AIC, while the Oscillatory-II model was selected by SIC and 

HQ. The results and the conclusions of the Monte Carlo simulations which were based on the 

estimates from the real prices of lead (table 2), are also similar to the ones that correspond to 

copper. 

(iv) As far as nickel is concerned, the results are significantly different than the ones of the 

previous cases. Specifically, the General model was selected by AIC, while the Polynomial model 

was selected by SIC and HQ. When the Monte-Carlo study is based on the estimates obtained 
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using the real prices of nickel (table 5), we have the following ewsults: If the data were generated 

by the General model, the selection rate of the Polynomial model by SIC and HQ would would 

be 31% and 12% respectively. If the data were generated by the Polynomial model, the selection 

rate of the General model by AIC would be 47%. Therefore, when the values of the parameters 

are the ones estimated on the real prices of nickel, the model selection criteria cannot identify 

with high conviction the correct model between the General and the Polynomial. If the data were 

generated by the Oscillatory-I model, the selection rate of the General model by AIC would be 

36%. On the other hand, the rates at which SIC and HQ would select the Polynomial model are 

11% and 5% respectively, implying that given the selection of the Polynomial model by HQ it is 

rather not probable that the data were generated by the Oscillatory-I model. Finally, if the data 

were generated by the Oscillatory-II model, the selection rate at of the General model by AIC 

would be 25%. On the other hand, the rates at which SIC and HQ would select the Polynomial 

model would be 10% and 8% respectively. In this case, it is again less probable that the data 

were generated by the Oscillatory-II model (although the 8% selection rate does not provide as 

strong evidence as the corresponding 5% selection rate when the data were generated by the 

Oscillatory-I model). 

 

(v) Concerning the real prices of zinc, the General model was selected by AIC, the Oscillatory-I 

model was selected by SIC and the Oscillatory-II model was selected by HQ. We observe that 

when the Monte Carlo simulation is based on the estimates obtained using the real prices of zing 

we have the following results: If the data were generated by the Polynomial or the Oscillatory-I 

models, the selection rates of the Oscillatory-II model by HQ would be 3% and approximately 0%, 

respectively. Furthermore, if the data were generated by the Oscillatory-II model, the selection 

rate of the Oscillatory-I model by SIC would be 4%. On the other hand, if the data were generated 

by the General model, the selection rates of the General model by AIC, the Oscillatory-I model by 

SIC and the Oscillatory-II model by HQ would be 77%, 21% and 23%, respectively. Therefore, the 

Monte Carlo simulations provide evedence against the hypothesis that the data were generated 

by one of the Polynomial, Oscillatory-I and Oscillatory-II models, while, at the same time renders 

probable the specific models' selection when the data are generated by the General model. 

 

The results of the analyses of the previous and current sections can be summarized as follows: 
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(a) Among the four simple candidate models for the description of the trend function of the real 

prices of eleven natural resources, the Polynomial (quadratic trend) model was selected alone 

only for aluminum, while it was also selected as a possible alternative to the General model for 

the real prices of nickel. 

(b) The General model was the only model selected for petroleum, silver, tin and zinc. It was also 

selected as a possible alternative to the Polynomial model for nickel, and to the Oscillatory-II 

model for copper and lead. 

(c) The Oscillatory-I model was the only model selected for coal and iron. 
 

(d) The Oscillatory-II model was the only model selected for gas, while it was also selected as a 

possible alternative to the General model for the real prices of copper and lead. 

 

 
4 Conclusions 

 
 

This paper revisited the literature on the long-run trend of natural resource real prices. Simple 

models that support oscillatory trend behavior were introduced and tested against the standard 

quadratic trend model and a more general model that nests both oscillatory and quadratic trends 

on eleven natural resource prices via the model selection criteria of Akaike (AIC), Scharz (SIC) 

and Hannan and Quinn (HQ). 

The aforementioned models were first estimated using the series of real prices of eleven major 

natural resource commodities. Then, AIC, SIC and HQ were applied for each commodity and each 

estimated model. The three information criteria agreed only for six of the eleven commodities. 

Specifically, they selected models with oscillatory and not quadratic trends for gas and iron, 

models with both oscillatory and quadratic trends for petroleum, silver and tin, and a model 

with a quadratic and not an oscillatory trend for aluminum. 

For each of the rest five commodities the selected models by the three criteria did not coincide. 

In order to assess the performance of the model selection criteria in these cases, a Monte Carlo 

study was conducted based on the estimated values of the parameters for each model. The results 

of the study provided evidence that contributed in the refinement of our analysis. Specifically, it 

was found that most probably, the real prices of coal can be described by a model that includes 

an oscillatory trend and does not include a quadratic trend. It was also found that zinc most 
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probably follows a trend which includes both a quadratic and an oscillatory component. For 

copper and lead, although the Monte Carlo study provided evidence against the existence of a 

quadratic trend alone, it could not select with high conviction between a model with an oscillatory 

trend and a model with both oscillatory and quadratic components. Finally, for nickel, the Monte 

Carlo study provided evidence against the existence of an oscillatory trend alone. Nevertheless, 

it could not select with high conviction between a model with a quadratic trend and a model 

with both oscillatory and quadratic components. 

Our study provided evidence that supports the existence of oscillatory componets in the 

trends of the real prices of nine of the eleven major natural resource commodities, namely, coal, 

copper, gas, iron, lead, petroleum, silver, tin, and zinc. On the other hand, the existence of a 

quadratic trend component was identified in the real prices of six of the eleven commodities, 

namely, aluminum, nickel, petroleum, silver, tin, and zinc. Given the very simple structure of the 

oscillatory models introduced in this study, the results of our analysis highlight the importance of 

the inclusion of oscillatory components when modeling natural resources prices. They also support 

the view of Jacks (2013) who, mainly using descriptive statistics, found indications of 

cyclical components in the real prices of thirty commodities. Given the theoretical 

premises of economic theory (Hotelling, 1931), a direct consequence of our results is 

that the quadratic trend specification is structurally inadequate to be used as a starting 

point for the devolopment of models for the evolution of natural resource prices. 
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A Tables 
 

Table 1. Performance of Information Criteria: Percent Selections of the Competitive Models 

(%, rounded to the nearest integer) 
 

T AIC SIC HQ 
 d 7.5 10 15 30  7.5 10 15 30  7.5 10 15 30 
 True=Gen. 43 41 74 72  8 10 32 31  22 23 56 54 

100 Pol. 53 57 26 28  80 85 67 69  70 73 44 46 

 OsI 4 2 0 0  12 5 1 0  8 4 0 0 

 OsII 0 0 0 0  0 0 0 0  0 0 0 0 

 True=Gen. 100 100 100 100  98 99 98 100  100 100 100 100 

200 Pol. 0 0 0 0  2 1 2 0  0 0 0 0 

 OsI 0 0 0 0  0 0 0 0  0 0 0 0 

 OsII 0 0 0 0  0 0 0 0  0 0 0 0 

 Gen. 24 23 25 24  3 3 3 3  10 10 11 11 

100 True=Pol. 73 74 75 76  92 92 97 97  86 86 89 89 

 OsI 3 3 0 0  4 5 0 0  4 4 0 0 

 OsII 0 0 0 0  1 0 0 0  0 0 0 0 

 Gen. 20 20 19 20  1 1 1 1  6 7 6 6 

200 True=Pol. 80 80 81 80  99 99 99 99  94 93 94 94 

 OsI 0 0 0 0  0 0 0 0  0 0 0 0 

 OsII 0 0 0 0  0 0 0 0  0 0 0 0 

 Gen. 14 16 16 18  1 2 1 2  6 6 6 8 

100 Pol. 27 27 5 12  25 26 2 14  27 29 4 13 

 True=OsI 53 54 23 70  50 56 11 84  55 58 18 79 

 OsII 6 3 56 0  24 16 86 0  12 7 72 0 

 Gen. 19 20 19 19  1 1 1 1  7 7 6 6 

200 Pol. 0 0 0 0  0 0 0 0  0 0 0 0 

 True=OsI 81 80 72 81  99 99 63 99  93 93 75 94 

 OsII 0 0 9 0  0 0 36 0  0 0 19 0 

 Gen. 17 14 12 15  1 1 1 1  6 4 4 5 

100 Pol. 2 10 12 11  1 5 5 4  2 8 9 7 

 Os.I 15 14 14 9  5 5 4 3  10 10 8 6 

 True=OsII 66 62 62 65  93 89 90 92  82 78 79 82 

 Gen. 13 12 12 12  0 0 0 0  3 3 2 2 

200 Pol. 0 3 2 0  0 1 1 0  0 2 2 0 

 Os.I 15 14 14 15  3 3 3 3  9 7 8 9 

 True=OsII 72 71 72 73  97 96 96 97  88 88 88 89 
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Table 2. Natural Resource Prices: Model Selection and Estimation (p-values below) 

 
Metal Criteria Model c0 c1 c2 c3 c4 g d 

ALUMINUM AIC, HQ, Pol. 13.451 -.280 .002   .661  

 SIC  .000 .000 .000   .000  

COAL AIC, SIC, Gen. -.589 -.012 .000 -.054 .000 .839 6.5 

   .000 .000 .000 .024 .279 .000  

 HQ OsI .029   -.071 .001 .885 9 

   .000   .000 .000 .000  

COPPER AIC, HQ, OsII 2.761   .847  .801 7.5 

 SIC  .000   .063  .000  

NATURAL GAS AIC, HQ, OsII .065   -.030  .721 30 

 SIC  .000   .000  .000  

IRON AIC, HQ, OsI .827   -.418 .009 .808 10 

 SIC  .000   .000 .000 .000  

LEAD AIC, HQ, OsII 1.245   .194  .777 7.5 

 SIC  .000   .164  .000  

***NICKEL AIC, HQ, Pol. 15.911 -.272 .002   .723  

 SIC  .000 .016 .012   .000  

*PETROLEUM AIC, HQ, Pol. .192 -.005 .000   .804  

 SIC  .079 .216 .031   .000  

SILVER AIC, HQ, OsII 162.510   90.690  .719 10 

 SIC  .006   .043  .000  

TIN AIC, HQ, OsII 18.977   -4.404  .851 15 

 SIC  .000   .056  .000  

*ZINC AIC, SIC OsI 1.459   .482 -.005 .598 7.5 
   .000   .012 .017 .000  

 HQ Pol 2.276 -.020 .000   .647  

   .000 .227 .363   .000  
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