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Abstract

We study climate change policies using the novel pattern scaling

approach of regional transient climate response, to develop a regional

economy-climate model under conditions of deep uncertainty associ-

ated with: (i) temperature dynamics, (ii) regional climate change dam-

ages, and (iii) policy in the form of carbon taxes. We analyze coop-

erative and noncooperative outcomes. Under deep uncertainty, robust

control policies are more conservative regarding emissions, the higher

the aversion to ambiguity is, while damage uncertainty seems to pro-

duce more conservative behavior than climate dynamics uncertainty.

As concerns about uncertainty increase, cooperative and noncooper-

ative policies tend to move close together. Asymmetries in concerns

about uncertainty tend to produce large deviations in regional emis-

sions policy at the noncooperative solution. We calculate the cost of

robustness in terms of welfare. If aversion to ambiguity is sufficiently

high, optimal regulation might not be possible. The result is associ-

ated with the existence of regional hot spots and temperature spillovers

across regions, a situation which emerges in the real world. In such

cases, deep uncertainty about the impacts of climate change makes

robust regulation infeasible. We show that, if resources are devoted

to learning, which reduces uncertainty concerns, robust regulation is

facilitated.

∗The authors gratefully acknowledge technical editing assistance from Joan Stefan.
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1 Introduction

The need for regional analysis of the impacts of climate change, in contrast

to the global approach taken by Integrated Assessment Models (IAMs) such

as DICE (Nordhaus and Sztorc, 2013; Nordhaus, 2014), has been clearly

recognized in the literature (see, for example, Easterling, 1997). In fact,

major IAMs such as RICE (e.g., Nordhaus, 2011), FUND (e.g., Anthoff

and Tol, 2013), or PAGE (e.g., Hope, 2006) explicitly include regional com-

ponents. The regional aspects have been extended to both regional tem-

perature effects and regional economic effects (e.g., FUND, PAGE), or to

regional economic effects with predictions about mean global temperature

(e.g., RICE).

Multi-region modeling in climate change economics has been developed

since RICE. Desmet and Rossi-Hansberg (2015) developed a spatial model

of climate change, Krusell and Smith (2017) introduced a 20,000 region

spatial model, and Hassler and Krusell (2018) discuss approaches to multi-

region climate modeling. Regional aspects of climate change and associated

policies have been introduced in low-dimensional IAMs in which regional

temperature dynamics are driven by endogenous mechanisms of heat and

precipitation transport from the Equator to the Poles (see Brock et al., 2013,

2014a; Brock and Xepapadeas, 2017, 2018; Cai et al., 2018). The climate

science part of these models is based on one- or two-dimensional dynamic

energy balance models, defined either in continuous space (e.g., North et

al., 1981) or in discrete South-North “two-box” models (e.g., Langen and

Alexeev, 2007). Energy balance climate models generate spatial variability

of temperature across regions through the endogenous mechanism of heat

transfer. Another approach which climate science uses to generate spatial

temperature variation across regions is pattern or statistical downscaling,

or statistical emulation methods (see, for example, Castruccio et al., 2014;

Hassler et al., 2016; Krusell and Smith, 2017).

Regional temperature differentiation also emerges from the use of the
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transient climate response to cumulative carbon emissions (TCRE) on a

regional basis. The TCRE embodies both the physical effect of CO2 on

climate and the biochemical effect of CO2 on the global carbon cycle (e.g.,

Matthews et al., 2009, 2012; Knutti, 2013; Knutti and Rogelj, 2015; Mac-

Dougal et al., 2017). The TCRE, denoted by λ, is defined as λ = ∆T (t)
CE(t) ,

where CE(t) denotes cumulative carbon emissions up to time t and ∆T (t)

the change in temperature during the same period. The approximate con-

stancy of λ suggests an approximately linear relationship between a change

in global average temperature and cumulative emissions. This roughly linear

relationship has also been recognized by the IPCC (2013).

In a recent paper, Leduc et al. (2016) identify an approximately linear

relationship between cumulative CO2 emissions and regional temperatures.

This relationship is quantified by regional TCREs or RTCREs. The RTCRE

parameters range from less than 1◦C per TtC for some ocean regions, 5◦C

per Ttc in the Arctic, and Leduc et al. (2016) consider their approach to

be a novel application of pattern scaling. The high RTCRE in the Arctic is

indicative of Arctic amplification. It is well-known that Arctic amplification

could cause serious detrimental environmental effects which could be diffused

to other regions south of the Arctic (IPCC, 2013; Brock and Xepapadeas,

2017). Thus one implication of adopting a regional representation of climate

is that changes in the temperature in one region could generate damages

in another region. It should be noted that the existence of geographical

spillover damage effects across regions is supported by recent studies1 and

that this issue could be important for policy purposes but, as far as we know,

is not addressed by large-scale IAMs.

In models of climate and economy, the use of the RTCRE approach to

model regional differences instead of the structural approach based on an

endogenous heat transfer mechanism could provide a simplified but realis-

tic reduced-form mechanism for modeling regional temperature dynamics.

Once explicit regional modeling for temperature dynamics has been adopted,

an issue that has to be addressed is the concept of the economic optimum

or economic equilibrium which will emerge in a coupled climate-economy

model which seeks to explore climate policy. In major IAMs which involve

1See, for example, Francis et al. (2018) who suggest that further Arctic warming may
favor persistent weather patterns that can lead to weather extremes, or Wu and Francis
(2019).
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optimization at the global or regional level such as DICE or RICE, the objec-

tive is the maximization of a global welfare criterion (as with DICE) or the

sum of welfare criteria across regions (as with RICE). In the case of RICE,

the solution for the given objective corresponds to a cooperative solution

in which a social planner chooses emissions paths to maximize aggregate

regional welfare subject to economic and climate constraints. This assump-

tion implies that regions or countries have agreed, through some kind of

international agreement, to follow cooperative emission paths.

This approach is useful in identifying optimal cooperative emission paths

and indicating policy instruments such as carbon taxes to attain these paths.

However, when it comes to the real world, countries or regions might not

be willing to follow a cooperative solution. Although they may recognize

the impact of climate change on global welfare, a specific region or country

might be willing to choose emission paths which will maximize own wel-

fare, which will be in general gross benefits from using fossil fuels net of

own climate damages. When, however, the climate change is studied for

the global economy, with countries or regions seeking to maximize own net

welfare, the solution concept for analyzing policy issues is not that of a co-

operative equilibrium. The appropriate solution concept is the solution of a

noncooperative dynamic game.

Thus the explicit introduction of regional temperature dynamics enlarges

the set of possible solution concepts. If all regions agree to cooperate then

the appropriate solution is the cooperative one, but if they decide to maxi-

mize own net welfare then the appropriate solution if that of a noncooper-

ative game. In the noncooperative case it is important to distinguish two

cases. In the first case, countries maximize their own welfare by committing

to an emission path and taking the response paths of other countries as

given. This corresponds to the open loop Nash equilibrium (OLNE). In the

second case, countries choose their emissions conditional on the observed

temperature levels. In this case countries follow Markov perfect strategies

and the solution concept is that of a feedback Nash equilibrium (FBNE).

The comparison of cooperative and noncooperative solutions was stud-

ied by Brock and Xepapadeas (2018) in the context of a two-box regional

model (South-North) based on the Langen and Alexeev (2007) model with

heat transport Polar-wise. In the present paper we study cooperative and

noncooperative solutions in the context of a multi-regional model in which
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temperature dynamics are based on the RTCRE approach of Leduc et al.

(2016). The contribution of this approach is that it allows for the study of

an explicit multi-regional model, not just a two-region model, by using the

simplified but realistic framework of RTCRE.

It is well-known that the study of climate change, and more specifically

the economics of climate change, is characterized by fundamental uncertain-

ties (Heal and Millner, 2014). As Pindyck (2017) points out, we know very

little or nothing about parameters or functions which are fundamental in cli-

mate change economics, such as climate sensitivity or the damage function.

In the same context, Anthoff and Tol (2013) and Gillingham et al. (2015)

characterize parameters of climate-economy modeling which embody consid-

erable uncertainties, while Lemoine (2010), Nordhaus and Moffat (2017) and

Hassler et al. (2018) discuss in detail the impacts of uncertainty on climate

sensitivity. Brock and Hansen (2017) distinguish three forms of uncertainty:

(i) risk, which is the traditional case studied in economics in which objective

or subjective probabilities are assigned to stochastic events; (ii) ambiguity,

which is the case where the decision maker has concerns and is uncertain

about how to weight alternative models for explaining a phenomenon, in a

case where a benchmark model is “surrounded” by these alternative models

or probability measures; and (iii) misspecification, which is associated with

the way in which we use models which are imperfect approximations of the

true model. We will refer to cases (ii) and (iii) as deep uncertainty.

Thus the second contribution of our paper is to introduce deep uncer-

tainty or ambiguity and aversion to ambiguity or concerns about model

misspecification into a multi-regional model of climate and the economy

by using the robust control approach of Hansen and Sargent (e.g., Hansen

and Sargent, 2001, 2008; Hansen et al., 2006).2 Robust control methods

have been applied to the economics of climate change (e.g., Hennlock, 2009;

Athanassoglou and Xepapadeas, 2012; Anderson et al., 2014). In this litera-

ture, ambiguity or deep uncertainty was mainly associated with uncertainty

of temperature dynamics or, equivalently, carbon stock dynamics. This type

of deep uncertainty indirectly affects damages since the damage function de-

pends on temperature or, equivalently, on carbon stock in the atmosphere.

In the present paper we allow for deep uncertainty and aversion to ambigu-

2Note that since the case of risk can be analyzed as a limiting case of ambiguity, this
approach encompasses risk analysis.
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ity, from the regulator’s point of view, with regard to damage uncertainty

and uncertainty in temperature dynamics.

However climate and damage uncertainty is not the only source of un-

certainty that we study in this paper. Recently, policy makers have pointed

out that climate change policy introduces transition risks, which are risks

that firms will face as climate policy is introduced (e.g., Carney, 2015), as

well as physical risks, which in principle are captured by the introduction

of uncertainty in temperature dynamics and the damage function. These

transition risks which are associated with changes in policy and technology

are not faced by the regulator who designs climate policy but by firms which

are the subject of climate policy. In this context we also allow for policy un-

certainty and study the decisions of a robust firm which has concerns about

the actual climate policy.

To summarize, the present paper contributes to climate change eco-

nomics by studying climate change policies in a multi-regional model based

on the novel pattern scaling approach of RTCREs under conditions of deep

uncertainty associated with temperature dynamics, regional climate change

damages, and policy in the form of carbon taxes. Since our model is regional,

we analyze both cooperative solutions in which a social planner chooses

carbon emission policies to maximize global regional welfare and noncoop-

erative solutions in which each region decides carbon emission policy by

maximizing own welfare.

Our results suggest that in general under deep uncertainty robust con-

trol policies are more conservative regarding emissions, the higher aversion

to ambiguity is, while damage uncertainty seems to produce more conserva-

tive behavior than climate dynamics uncertainty. Cooperative policies tend

to be more conservative than noncooperative policies for similar concerns

about uncertainty, but as concerns about uncertainty increase, policies tend

to move closer to each other. Asymmetries in concerns about uncertainty

tend to produce large deviations in regional emissions policy at the non-

cooperative solution. Cooperative solutions produce a global carbon tax,

provided that the regulator equally weights regional welfares; noncooper-

ative solutions on the other hand produce different regional carbon taxes.

This could be an obstacle for global policy cooperation and could provide

incentives for carbon leakage. We also show that robust climate change

policies are more costly in terms of welfare relative to deterministic pol-
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icy. Thus regulation when there are concerns about model misspecification

and ambiguity aversion is costly. This brings forward the issue of learning.

Thus, in the final section we consider the possibility of diverting resources

to learning, which will reduce concerns about model misspecification.

Finally, a result which is important for policy design, and which does not

emerge from traditional IAMs, is that if concerns about deep uncertainty

in a region are sufficiently high and an increase in temperature in one re-

gion – such as Polar amplification – might affect damages in another region,

optimal regulation might not be possible. This means that optimal policy

aiming to attain a cooperative steady state or a steady state that satisfies

conditions for a Nash equilibrium might not be possible. The result is as-

sociated with the existence of regional hot spots in which deep uncertainty

about the impacts of climate change makes robust regulation infeasible. Re-

cent reports suggesting that the Greenland Ice Sheet (GIS) might be getting

close to a tipping point,3 or the Francis and Vavrus (2014) jet stream insta-

bility research, are good examples of the existence of hot spots and make

clear why our robustness formulation which emphasizes emergent hot spots

and spillovers across regions is important for policy analysis. It is impor-

tant to note that our results suggest that learning, which reduces model

misspecification concerns, could make optimal robust regulation feasible

2 Modeling multiple-source deep uncertainty in

multi-regional climate change economics

It is clearly understood that the climate modules used in the coupled mod-

els of climate and economy, whether they are embedded in high- or low-

dimensional IAMs, represent an approximation of more complex models.

Therefore, in order to obtain tractability and better understanding of the

basic mechanisms driving the results, we will adopt the modeling approach

which is based on the approximate linear relation between cumulative emis-

sions and regional temperatures and which is quantified by the RTCREs.

Having chosen an approximate model, we concentrate on deep uncertainty

and concerns about model misspecification.

3See https://gracefo.jpl.nasa.gov/resources/33/greenland-ice-loss-2002-2016/,
https://news.osu.edu/greenland-ice-melting-rapidly-study-finds/, and Bevis et al.
(2018).
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In the context of robust control methodology, ambiguity is introduced by

allowing for a family of stochastic perturbations to a Brownian motion char-

acterizing stochastic dynamics. The perturbations are defined in terms of

measurable drift distortions. The misspecification error which expresses the

decisions maker’s concerns regarding departures from a benchmark model is

reflected in an entropic constraint (Hansen et al., 2006; Hansen and Sargent,

2008). Ambiguity and concerns about the possibility that “an adversarial

agent” often referred to as “Nature” will choose not the benchmark model

but another one within an entropy ball, which will harm the decision maker’s

objective, are reflected in a quadratic penalty term which is added to the reg-

ulator’s objective. This type of ambiguity has also been referred to as model

uncertainty and Hansen and Sargent call the decision maker’s optimization

problem with a quadratic penalty the multiplier robust control problem. A

crucial parameter of the problem is the robustness parameter, which reflects

the decision maker’s concerns about model uncertainty or his/her aversion

to ambiguity. It has been shown that as the robustness parameter, which

is positive, tends to to the limiting value of zero or infinity,4 the decision

problem is reduced to the standard optimization problem under risk – that

is, a problem with no ambiguity aversion. When the robustness parameter

increases from zero, then concerns about model uncertainty increase.5

If the distortion of the dynamics benchmark model at time t is denoted

by hit, then the drift distortion of the stochastic dynamics is expressed by

√
εσ (ht + dWt) , (1)

where σ is the volatility of the stochastic dynamics,Wt is a Brownian motion,

and ε is a small noise parameter. If the term ht = 0, then the problem is

reduced to the case of risk. In the multiplier problem, the penalty associated

with the distortion is expressed by

1

2θ (ε)
h2
t , (2)

where θ (ε) is the robustness parameter. It has been shown by Anderson et

al. (2012, 2014) that if θ (ε) = θ0ε, then if ε→ 0 the stochastic robust control

4The limiting value depends on the way in which the problem is formulated.
5If ambiguity vanishes when the robustness parameter tends to infinity, then increased

ambiguity is associated with reduction in the robustness parameter.

8



problem is reduced to a simpler “deterministic robust control problem”. To

simplify and increase tractability, we adopt the assumption leading to a

deterministic robust control problem.

To develop the climate model we assume that the globe is divided into i =

1, ..., N regions. Note that Leduc et al. (2016) divide the globe into 21 land

regions. Following the RTCRE approach, regional temperature dynamics,

Ṫit, under model uncertainty can be written as

Ṫit = λiEt −BiTit + σihit, i = 1, ..., N , (3)

where Et =
∑N

i=1Eit is aggregate global carbon emissions from all regions.

Taking into account that a fraction of the heat stored in the atmosphere es-

capes, we assume that this is captured by the term BiTit, where Bi > 0 is the

heat dissipation parameter in region i (see Naevdal and Oppenheimer, 2007;

Lemoine and Rudik, 2014; and Heutel et al., 2016). In (3), the parameter

σi represents volatility of regional temperature dynamics, and hit the cor-

responding drift distortion reflecting deep uncertainty and concerns about

misspecification of temperature dynamics. We assume that concerns about

regional temperature dynamics are global for the region and, therefore, em-

body concerns about the RTCRE, which is also an uncertain parameter.6

To construct the economic part of the model, we follow Brock and Xepa-

padeas (2017, 2018) and consider a simple welfare maximization problem

with logarithmic utility, where global world welfare is expressed by the sum

of welfare in each region and is given by:

∫ ∞
t=0

e−ρt
N∑
i=1

viLit ln(yitE
α
ite
−ψi(T ))dt, T = (T1, ..., TN ) , (4)

where yitE
α
it, 0 < α < 1, Eit, T = (T1, ..., TN ) , and Lit are regional output

per capita, fossil fuel input or carbon emissions, temperatures in each region

i at date t, and fully employed population, respectively. We assume expo-

nential damages (see also Golosov et al., 2014)7 and a quadratic ψ, to allow

for the possibility of increasing regional marginal damages. Thus,

6For a thorough discussion of uncertainties associated with climate change and ap-
proaches which do not rely on expected utility, see for example Heal and Millner (2014).

7A large body of research in climate change economics assumes that damages are not
exponential (e.g., Weitzman, 2010; Nordhaus and Sztorc, 2013). We use exponential
damages for the same tractability reasons as in Golosov et al. (2014).
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ψi (T ) =

N∑
j=1

(
dijTj +

1

2
vijT

2
ij + kitTj

)
, dij , vij ≥ 0, i = 1, ..., N , (5)

where ki represents ambiguity about damages in region i. Thus the damage

function in region i embodies geographical damage spillovers, or cross effects,

which are damages caused by temperature increases in other regions. For

example, Arctic amplification may generate damages in terms of sea level rise

or greenhouse gasses emitted by permafrost melting in southern regions. It is

assumed that yit and Lit are exogenously given. That is, we are abstracting

away from the problem of optimally accumulating capital inputs and other

inputs in order to focus on optimal emissions paths and fossil fuel taxes. In

this context, yit could be interpreted as the component of a Cobb-Douglas

production function that embodies all other inputs along with technical

change that evolves exogenously. We assume autarky for the multi-region

model and no world market for loans (see also Hassler and Krusell (2012)

for this approximation). Finally, vi represents welfare weights associated

with region i. To increase tractability, we assume that regional populations

are immobile and normalize them to one and write ωi = viLi,
∑

i ωi = 1.

Furthermore, to simplify the exposition even more, we assume that fossil

fuels are abundant in both regions and provided at zero cost. The use of

fossil fuels is, however, costly in terms of climate.

Under these assumptions, the part which is relevant for the optimiza-

tion of the world’s welfare that corresponds to the cooperative solution for

designing climate policies can be written as

W c =

∫ ∞
t=0

e−ρt
N∑
i=1

ωi[α lnEit.−

 N∑
j=1

dijTjt +
1

2
vijT

2
jt

]dt, (6)

where ωi > 0,
∑

i ωi = 1 are welfare weights associated with each region. If

we impose ambiguity concerns regarding damages and temperature dynam-

ics in region i, the cooperative solution will be the outcome of the following
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deterministic multiplier robust control problem:

max
{Eit}

min
{kit,hi}

(7)

∫ ∞
t=0

e−ρt
N∑
i=1

ωi

α lnEit −

 N∑
j=1

dijTjt +
1

2
vijT

2
jt + kitTit

+
k2
it

2ηi
+
h2
it

2θi

 dt
subject to (3) .

The noncooperative solution will be the outcome of regional welfare maxi-

mization under temperature dynamics, or

max
{Eit}

min
{kit,hi}

(8)

∫ ∞
t=0

e−ρt[α lnEit −

 N∑
j=1

dijTjt +
1

2
vijT

2
jt + kitTit

+
k2
it

2η
+
h2
it

2θi
]dt

subject to (3) .

3 Cooperative regional climate change policies

The cooperative regional climate policy emerges from the solution of problem

(7). For this problem, the current value Hamiltonian is:

HC = {
N∑
i=1

ωi

α lnEit −

 N∑
j=1

dijTjt +
1

2
vijT

2
jt + kitTit

+
k2
it

2ηi
+
h2
it

2θi


N∑
i=1

µi[.λiEt −BiTit + σihit]}. (9)

In this robust control problem, the social planner chooses emissions Eit

to maximize the Hamiltonian but the adversarial agent chooses distortions

(kit, hit) to minimize the Hamiltonian. The optimality conditions for the
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control choices are:

αωi
Eit

+

N∑
i=1

µitλi = 0⇒ E∗it =
−αωi∑
i µit λi

(10)

hit = −(θi/ωi)σiµit, kit = ηiTit, i = 1, ..., N (11)

µ̇it = ρµit −
∂HC

∂Ti
⇒ (12)

µ̇it = (ρ+Bi)µit +
N∑
j=1

ωj (dji + vjiTit) + ωiηiTit (13)

Ṫit = λiE∗t −BiTit − σ2
i (θi/ωi)µit. (14)

From (58), it follows that if the social planner weights all regions equally, or

ωi = ω for all i, then both regions should have the same emission paths,

Eit = Ejt =
−αω
Xt

≡ E∗t , Xt =
∑
i

µitλi, i, j = 1, ..., N . (15)

System (61)-(62) with Et,hit, kit substituted by their optimal values from

(58)-(60) is the dynamic Hamiltonian system for the social planner. Since

the robustness parameters {ηi, θi} reflect the “intensity” of the social plan-

ner’s ambiguity, the impact of deep uncertainty on optimal policy can be

studied by performing comparative analysis with respect to the robustness

parameters.

Another characteristic of the solution is that Xt =
∑

i µitλi is the cost of

the climate externality which consists of the sum of regional shadow temper-

ature costs weighted by RTCREs. Thus the solution of the regional problem

provides information about the contribution of each region to the global cost

of the climate externality. The issue of regional contributions, which has

been examined recently at the empirical level by Ricke et al. (2018), could

help characterize the heterogeneity of climate impacts across the globe and

provide information which could help policy design.

We examine the steady state of the cooperative solution. From (61), we

obtain at a steady state:

µ = − 1

(ρ+Bi)

 N∑
j=1

ωj (dij + vijTi) + ηiTi

 . (16)
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Substituting into (62) we obtain that the steady-state regional temper-

atures are solutions of the system:

(ωiα) /

(∑
i

[
λi

(ρ+Bi)
(Γi + (∆i + ηi)Ti)

])
−BiTi

+
θi
ωi

σ2
i

(ρi +Bi)
[Γi + (∆i + ηi)Ti] = 0, (17)

where

Γi =
N∑
j=1

ωjdij , v̄i = Ti

N∑
j=1

ωjvij . (18)

Proposition 1 If Bi 6= 0 for all i, then in an open neighborhood of the point

o = (v11, ...v1N , ..., vN1, ..., vNN , η1, ...ηN ) = 0, a steady state for the regional

temperature anomalies which is determined by the the system (61)-(62) for

µ̇it = 0, Ṫit = 0 exists.

For the proof see Appendix 1.

Thus it is expected that for small second-order parameters in the damage

function and small robustness parameters for damages, a steady state will

exist. Furthermore at point o, the Jacobian determinant of the linearized

Hamiltonian system (61)-(62) has N negative eigenvalues {−B1, ...,−BN}
andN positive eigenvalues {(ρ1 +B1) , ..., (ρN +BN} and therefore the steady

state at o has the saddle point property.

The saddle point property implies that the social planner can choose

initial values and a path for regional emissions, determined by (58), so that

the world economy will converge along a two-dimensional manifold to the

socially optimal steady state. The paths of the costate variables µit will

determine the optimal carbon tax. The steady-state distortions (h̄i, k̄i) are

obtained directly from (60) by substituting the corresponding steady states

for regional temperatures and their shadow costs.

To get a clearer picture of robustness on the steady state associated with

the regulator’s global optimum, we consider a two-region problem and we

derive the following result.

Proposition 2 Sufficiently high aversion to ambiguity reflected in the ro-

bustness parameters ηi, θi, i = 1, 2 or damage spillovers may result in the

loss of saddle point stability of the cooperative steady state.
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For the proof see Appendix 1.

The meaning of this is that if the Hamiltonian system characterizing

the steady state has less than two negative eigenvalues, then the regulator

cannot choose appropriate initial values for regional robust emissions in

order to determine the robust policy which will steer the system toward

the cooperative steady state. As shown in the proof of proposition 2, this

loss of saddle point stability could be caused by high robustness parameters

in either region, or strong damage spillovers. In this case, the region in

which concerns about model misspecification prevent robust policies toward

a cooperative steady state can be regarded as a hot spot. Given that such

hot spots have been identified in reality,8 this result could be important for

policy purposes.

The inability to design optimal robust policies under ambiguity could

become more profound if the robustness parameters, η, θ, are parametrized

as increasing functions of the temperature vector (T1 (t) , T2 (t)) . The ratio-

nale for such a parameterization comes from climate scientists who worry

that as the stock of carbon in the atmosphere rises and regional temper-

atures rise, the climate system is being pushed into unknown realms, e.g.,

the ppm atmospheric carbon is beyond levels seen for the last 800,000 years.

Thus damage concerns are presumably being pushed beyond past experi-

ences documented in data.9

The trace of the the linearization matrix in this case will be

traceJ = [−B1−
(
σ2

1µ1

ω1

)
∂θ1

∂T1
]+[−B2−

(
σ2

2µ2

ω2

)
∂θ2

∂T2
]+(ρ+B1)+(ρ+B2) .

(19)

Since µi > 0, the terms on the principal diagonal of K could be positive,

making the possibility of having a positiveK even stronger. This strengthens

the argument that high ambiguity could make robust control infeasible.

8See for example https://gracefo.jpl.nasa.gov/resources/33/greenland-ice-loss-2002-
2016/, https://news.osu.edu/greenland-ice-melting-rapidly-study-finds/, or Francis and
Vavrus (2015).

9Diffenbaugh et al. (2017) study the impact of global warming on unprecedented
extreme climate events and provide results indicating that global warming has increased
the severity and probability of the hottest monthly and daily events in more than 80%
of the observed area and has increased the probability of the driest and wettest events in
approximately half of the observed area.
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The possibility that a large robustness parameter which indicates high

ambiguity and concerns regarding the estimation of regional damages or

temperature dynamics might prevent convergence to a steady state can be

associated with the emergence of spatial hot spots in stochastic robust con-

trol problems in which high ambiguity may impede optimal regulation for

the whole spatial domain (see Brock et al., 2014b; Xepapadeas and Yanna-

copoulos, 2017).10

Although it is clear from (17) and (16) that ambiguity affects steady

states, emission policies and carbon taxes, the nonlinearities and the dimen-

sionality of the problem do not allow the derivation of tractable comparative

static results. To obtain some insights into the impacts of ambiguity, we re-

sort to simulations.

3.1 Cooperation under ambiguity: simulation results

In designing our simulations, we chose to concentrate on a two-region model.

More specifically, we used the two-box geographical structure of Langen and

Alexeev (2007) and Alexeev and Jackson (2013), which consists of a single

hemisphere, the Northern hemisphere, with two regions divided by the 30th

latitude, which yields a similar surface area for the two regions.11 Using

Leduc et al. (2016), we associated approximate RTCREs with each region.

The next step was to calibrate regional damage functions.

Using data from Berkeley Earth Surface Temperatures (BEST),12 we set

approximate average annual mean land temperature for 1951-1980 at

average temperature: 0◦- 33◦N ≈ 26◦C, 33◦N-90◦N ≈ 12◦C.

Then, adding temperature anomalies from NASA data,13 we calculated

2017 average temperatures. We used these temperatures as inputs in the

10In this case, the breakdown of robust control was associated with the nonexistence of
a solution for the corresponding Hamilton-Jacobi-Bellman equation of the robust control
multiplier problem.

11This specific two-region model provides results which can be seen in terms of economic
development between North and South. It also facilitates numerical calculations. We
focus on the Northern Hemisphere because the geography is very different from that of
the Southern Hemisphere, and most of the world’s economic activity takes place north of
the Equator. Evidence indicates that 88% of the global population lives in the Northern
Hemisphere (http://www.radicalcartography.net/index.html?histpop).

12See https://climatedataguide.ucar.edu/climate-data/global-surface-temperatures-
best-berkeley-earth-surface-temperatures).

13See https://data.giss.nasa.gov/gistemp/tabledata v3/ZonAnn.Ts+dSST.csv) with a
base period 1951-1980.
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regression reported by Tol (2018) for estimating climate damages as a pro-

portion of GDP. For the 0◦- 33◦N we used the World Bank’s GDP per

capita for “low and middle income countries”, which for 2017 is 4,494.8 in

2010 $US, while for the 33◦N- 90◦N we used the World Bank’s GDP per

capita for “high income countries”, which for 2017 is 41,538.6 in 2010 $US.

The losses from climate change as a proportion of GDP were calculated as:

loss as % of GDP (0◦- 33◦N) = 11.52%,

loss as % of GDP (33◦N- 90◦N) = 1.58%.

Then, the parameters of the value functions were calibrated using the

relations:

(1− γ1) = exp

[
d11∆T1 + d12∆T2 +

1

2
v11 (∆T1)2 +

1

2
v12 (∆T2)2

]
(20)

(1− γ2) = exp

[
d21∆T1 + d22∆T2 +

1

2
v21 (∆T1)2 +

1

2
v22 (∆T2)2

]
,

(21)

where γi, i = 1, 2 are the damages as a proportion of GDP, and ∆Ti the

temperature anomalies in each region. We consider two scenarios. In the

first – which we call “No cross effects (NCE)” – it is assumed that the

temperature anomaly in one region does not affect damages in the other

region, or dij = vij = 0, i, j = 1, 2, i 6= j.

In the second, “Cross effects (CE)”, we assume that the temperature

anomaly in the North increases damages in the South by 1% of GDP. This

implies that (d12, v12) 6= (0, 0, but (d21, v21) = (0, 0) . This assumption re-

flects Polar amplification effects which could cause additional damages to

the South.14 The parameters of the damage function, along with the rest of

the parameters used in the simulation, are shown in table A1 of Appendix 2.

In the simulations, we first obtain numerical solutions for the steady state

of the nonlinear system (61)-(62). This corresponds to a steady state for the

temperature anomalies and the corresponding shadow cost for the anomaly

– that is, the costate variable – in each region. Then the Hamiltonian sys-

tem (61)-(62) is linearized at the steady state and its Jacobian matrix is

14In Liu et al. (2017), exposure to climate change refers to damages from climate change
and it is pointed out that for the high IPCC emissions scenario 8.5, the average exposure
for Africa is over 118 times greater than it has been historically, while the exposure for
Europe increases by only a factor of four.
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calculated. It is verified that this matrix has two negative and two positive

eigenvalues; therefore the steady state is a saddle point, and transversality

conditions at infinity are satisfied. The system of the four linear ordinary

differential equations (ODEs) resulting from the linearization of (61)-(62) is

solved with initial values for the temperature anomalies and terminal val-

ues for the steady state vector, by setting the constants corresponding to

positive eigenvalues equal to zero. This allows us to obtain the optimal

transition paths toward the steady state in the neighborhood of the steady

state. The results regarding the steady state and the transition paths are

shown below.

Table 1: Cooperative steady state – no ambiguity and misspecification

concerns, ηi = θi = 0 , i = 1, 2

• NCE: T̄1 = 2.67 T̄2 = 4.10 µ̄1 = −4.37 µ̄2 = −0.20

• CE: T̄1 = 1.01 T̄2 = 1.55 µ̄1 = −4.37 µ̄2 = −5.24

The results suggest that cross effects increase global damages by increas-

ing damages in the South and therefore reduce the optimal steady-state

anomalies. In Figure 1 the paths are shown without cross effects.

In Figure 2 we present the cooperative temperature anomaly paths for a

robust problem with robustness parameters (η1, η2, θ1, θ2) = (0.1, 0, 0.05, 0.05)
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and cross effects. This parametrization corresponds to a situation in which

there is ambiguity about damages in the South, but in the North these am-

biguities vanish. A possible justification is that since damages in the South

are much higher as a proportion of regional GDP than in the North, and

per capita GDP in the South is relatively smaller, the planner should be

more concerned about misspecification in the damage function of the South

when optimal policy is calculated. In this simulation it is assumed that the

planner’s concerns about regional temperature dynamics are the same for

both regions.

In the linear approximation of Figure 2, the optimal robust emission

policy means that for given initial values of the temperature anomaly, (0,

0.5) degrees Celsius, there are initial values for the costate variables paths,

shown in Figure 2, such that if emissions are determined according to (58),

the whole system will converge to the steady state along the stable manifold.

Given the paths for the costate variables, the optimal robust emission path

is a hyperbola which converges to the steady-state emissions. The cost of

externality Xt = −
∑

i µitλi, which determines the optimal robust carbon

tax, is concave increasing and converges to the steady state.
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3.2 The impact of ambiguity and preferences for robustness

To understand the impact of ambiguity and robust control we need to ob-

serve that the “choices” of distortions by the fictitious adversarial agent de-

termined by (60) will provide guidelines for the regulator in order to design

robust policies. These policies will be optimal if the “optimal distortions”

which correspond to the worst scenario are realized. Since these distortions

may not emerge, the steady states for the temperature anomalies implied by

the solution of (17) and (16) can be interpreted as the steady states which

will be attained under optimal robust control if the worst scenario emerges.

On the other hand, since the regulator is trying to design regulation appro-

priate for the worst scenario, the emission policy and the tax policy realized

will depend on ambiguity and preferences for robustness, i.e., parameters

η, θ.

3.2.1 Impact on steady-state temperature anomalies

To provide a better picture of the mechanisms governing steady-state tem-

peratures when the robustness parameters change, we consider two polar

cases of the model. In the first, the regulator is concerned about misspec-

ification in temperature dynamics but not in damages (i.e., ηi = 0, θi > 0,

i = 1, 2 ), while in the second, the regulator is concerned only about damage-

related ambiguity (i.e., ηi > 0, θi = 0 ). To make things simple, we assume

a linear damage function and thus constant marginal damages, and no cross

effects.

Substituting ηi = 0, θi > 0 into (16), (17), solving for the steady state

and taking the derivative with respect to θ, we obtain

∂T1

∂θ1
=

σ1d11

B1 (B1 + ρ)
> 0,

∂T2

∂θ2
=

σ2d22

B2(B2 + ρ)
. (22)

We do the same, by substituting ηi > 0, θi = 0 into (16), (17). However,

due to nonlinearities, the result is not tractable, so we provide a graph of

the functions Ti (η1, η2) , i = 1, 2, in Figure 3.

Figure 3: The impact of η − ambiguity
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The results indicate that, under robust control and provided that the worst

scenario emerges, increasing the θ − ambiguity with no η − ambiguity leads

to higher steady-state emissions, because the choice of the adversarial agent

is equivalent to increasing the impact of emissions on the change in temper-

ature. In this case, the regulator’s policy is to reduce emissions and increase

the carbon tax, but the distortion which increases the temperature rate of

growth eventually leads to a relatively higher steady-state anomaly relative

to the no ambiguity case. On the other hand, increasing η− ambiguity with

no θ−ambiguity leads to lower steady-state temperatures under robust con-

trol. When both types of ambiguity exist, there are two opposite impacts

on steady-state anomalies and the final outcome will depend on the relative

strength of the effects.

To examine the impact of simultaneous changes in both robustness pa-

rameters, we calculate optimal cooperative steady states and paths for the

values of (η, θ) ∈ {0, 0.05, 0.1, 0.125} . In Figures 4 and 5 we depict the co-

operative steady states when η takes the values {0, 0.05, 0.1, 0.125} and θ

is kept constant at 0 in panel (a), at 0.05 in panel (b), at 0.1 in panel (c),

and at 0.125 in panel (d).15 In Figure 4, “symmetric” refers to the case in

which the robustness parameters are the same in both regions. In Figure 5,

15The way in which the robust control problem is set up means that an increase in the
robustness parameters indicates an increase in concern about model misspecification and
ambiguity.
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“asymmetric” refers to the case in which the damage robustness parameter

η2 associated with the North is zero, while η1 = {0, 0.05, 0.1, 0.125}.

Figure 4: Robust cooperative steady states, symmetric, no cross effects

Figure 5: Robust cooperative steady states, asymmetric, no cross effects

The graphs support the previous results. The steady-state anomalies are

declining with η when θ is low but become increasing in η for larger values

of θ.
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3.2.2 Impact on policy

The impact of ambiguity and preference for robustness on the steady state

will emerge if the worst scenario emerges. The emergence of this scenario

is by no means certain since this case serves the purpose of helping the

regulator design an emission policy which will be optimal even if the worst

scenario is realized. Thus the best way to study the impact of changes in

the strength of ambiguity is through its impact on emission policy.

In Figures 6 and 7 we present steady-state optimal robust emissions as

functions of the robustness parameters η, θ. In Figure 6 we depict changes in

emissions as a function of η for given θ, while in Figure 7 we depict changes

in emissions as a function of θ for given η. It is clear that increased ambiguity

causes the robust regulator to reduce emissions in each region.16 The slope

in Figure 6 relative to Figure 7, and the shifts in Figure 7 relative to Figure

6, suggest that ambiguity regarding damages has a relatively stronger effect

on optimal robust emissions than temperature dynamics ambiguity. The

pattern is similar for the case without cross effects. If we allow asymmetry,

in the sense that the regulator is more concerned about deep uncertainty

in the damage function of the South relative to the North, emissions are

slightly higher relative to the symmetric case but the qualitative pattern is

still the same.

Figure 6: Steady-state robust emissions as a function of η

16The specific solution is symmetric and thus emissions are the same in each region.
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Figure 7: Steady-state robust emissions as a function of θ

The emission paths toward the steady state are the usual hyperbolas, with

the same qualitative behavior. An increase in η or θ will shift the robust

emission paths downwards.

3.3 Policy uncertainty and decentralized implementation

In a global market economy, the representative “small” consumer takes ev-

erything regarding climate change as fixed, beyond his/her control, and has

no decision to make. The representative firm, however, does have decisions

to make regarding emissions. We assume that the representative firm is

subject to an emission or carbon tax, and to simplify things we assume that

energy has no private costs. The problem for the firm in each region is:

max
Eit

[α lnEit − τiEit] , (23)

with optimality conditions

α

Eit
= τit ⇒ Eit =

α

τit
. (24)

Combining (24) with (58), it follows that the optimal emission tax will be:

α

τit
=
−ωiα∑
i λiµit

⇒ τ∗it = − 1

ωi

(∑
i

λiµit

)
> 0. (25)
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It is clear that unless the regulator attaches different welfare weights to

different regions, the optimal carbon tax will be the same across regions.

The higher the welfare weight is, the lower the optimal carbon tax. Since

in all numerical simulations the costates µit are negative and declining with

time, the optimal carbon tax increases through time until it reaches a steady

state. The time paths of the costate variable suggest that the optimal tax

will be increasing and concave. This tax, however, is expressed in terms of

utils. To express it in terms of consumption at date t, it should be divided by

the marginal utility of consumption, which is 1/yitE
a
it exp (−Di (Tt)) . Since

yit is expected to increase over time like exp (git), this would give a convex

increasing tax ramp in date t consumption units. This implies that our tax

ramp is compatible in consumption units with results obtained by Nordhaus

or Golosov et al. Furthermore, in all numerical simulations the steady-state

costate values increase as the ambiguities in terms of ηi and θi increase.

Thus, the optimal tax increases with ambiguity from the regulator’s point

of view.

Optimal taxation of the form discussed above captures mainly physical

risks and uncertainty associated with climate change as seen from the regu-

lator’s point of view. To capture policy risks and ambiguity associated with

firms’ responses to climate policy, we need to introduce ambiguity aversion

and preferences for robustness in the problem of the firm which maximizes

profits by taking environmental policy as exogenous to the firm but uncer-

tain. Thus we introduce policy uncertainty or ambiguity by considering the

profit maximization of a firm with preference for robustness and concerns

about the size of the carbon tax which will apply to the firm’s emissions

under two types of robustness: (i) additive policy uncertainty, and (ii) mul-

tiplicative policy uncertainty.

Under additive policy uncertainty, the firm solves:

max
Eit

min
fit

[
α lnEit − (τit + fit)Eit +

1

2ξi
f2
it

]
, (26)

with optimality conditions

fit = ξiEit (27)
α

Eit
= τit + fit = τit + ξiEit ⇒ α = τitEit + ξiE

2
it. (28)
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Taking the total differential of (28), we obtain

dEit
dξ

= −Eit/(τit + 2ξiEit) < 0. (29)

Thus an increase in policy uncertainty will reduce emissions for a given

carbon tax.

Taking the positive root of the quadratic (28), the emissions of the robust

representative firm are

Eit =
1

2ξi

[
−τit +

(
τ2
it + 4αξi

)1/2]
. (30)

Combining (30) with (58), it follows that the optimal emission tax, if the

regulator takes into account the firms concerns about policy uncertainty, is

the solution of:[
−τit +

(
τ2
it + 4αξi

)1/2]
=
−2ξiωiα∑

i λiµit
. (31)

Under multiplicative policy uncertainty, the firm solves

max
Eit

min
fit

[
α lnEit − (τit(1 + fit))Eit +

1

2ζi
f2
it

]
, (32)

with optimality conditions

fit = ζiτitEit (33)
α

Eit
= τit(1 + fit) = τit (1 + ζiτitEit)⇒ α = τitEit + ζiτ

2
itE

2
it. (34)

Solving for Eit, we obtain

Eit =
1

2τitζi

[
−1 + (1 + 4aζi)

1/2
]
, (35)

and the optimal tax, if the regulator takes into account the firm’s concerns

about policy uncertainty, is the solution of

1

2τitζi

[
−1 + (1 + 4aζi)

1/2
]

=
−ωiα∑
i λiµit

. (36)

25



Taking the total differential of (34), we obtain

dEit
dζ

= −τ2
itE

2
it/(τit + 2ζiτ

2
it) < 0. (37)

Thus, as in the case of additive uncertainty, an increase in policy uncertainty

will reduce emissions for a given carbon tax.

If the regulator does not consider the possibility that the firm is con-

cerned about policy uncertainty and sets the optimal carbon tax in the way

described in the previous section, then conditions (28) or (34) suggest that

the robust equilibrium for the decentralized firm is more “conservative” in

emissions than the robust planner. Thus, because of policy uncertainty, it

may be optimal to set the tax rate a bit below the optimal “Pigouvian” rate.

4 Noncooperative regional climate policies

We move now from the situation in which a global social planner exists and

we consider the case in which there is a social planner in each region that

decides the optimal emission path by taking into account damages in own

region. Thus each region determines its own desired emission path. This

behavior leads to a Nash equilibrium outcome, either open loop or feedback.

We find it reasonable to assume that since each regional planner knows

that the total amount of emissions drives temperature dynamics in both

regions, each planner must take into account the influence of its own energy

policy on the temperature dynamics of the other region. Thus we provide

the following definition for a robust open loop Nash equilibrium (ROLNE)

for the two-region world.

Definition: A robust OLNE (ROLNE) {E∗it, h∗it, k∗it} satisfies the fol-
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lowing conditions: {E∗1t, h∗1t, k∗1t} solves the zero-sum game problem

max
{E1t}

min
{k1t,h1t}∫ ∞

t=0
e−ρt[α lnE1t −

 2∑
j=1

d1jTjt +
1

2
v1jT

2
jt + k1tT1t

+
k2

1t

2η1
+
h2

1t

2θ1
]dt

(38)

subject to

Ṫ1t = −B1T1t + λ1 (E1t + E∗2t) + σ1h1t, T10 given (39)

Ṫ2t = −B2T2t + λ2 (E1t + E∗2t) + σ2h2t, T20 given , (40)

while
{
E∗2t, h

∗
2t, k

2
1t

}
solves the zero-sum game problem

max
{E2t}

min
{k2t,h2t}∫ ∞

t=0
e−ρt[α lnE2t −

 2∑
j=1

d2jTjt +
1

2
v2jT

2
jt + k2tT1t

+
k2

2t

2η2
+
h2

2t

2θ2
]dt

(41)

subject to

Ṫ1t = −B1T1t + λ1 (E∗1t + E2t) + σ1h1t, T10 given (42)

Ṫ2t = −B2T2t + λ2 (E∗1t + E2t) + σ2h2t, T20 given. (43)

In this definition of ROLNE, the planner in region 1 (South) takes the

choices of the planner in region 2 (North) as given, including the planner

in region 2’s choice of robustness distortions and choice of fossil fuel usage.

Note that the planner in the South still has a bit of control over the evolu-

tion of temperature in the North because its choice of fossil fuel use in its

own region (the South) goes into the atmospheric pool which influences the

temperature in both regions. But only the contribution of region 1 to the

atmospheric CO2 path which governs temperature in both regions is taken

into account by region 1, since all other variables have already been path

chosen by region 2 and are, hence, fixed over time. Here fossil fuel reserves

are infinite in both regions, so the only state variables are the temperature

state variables. Since coal reserves are so large in the real world, assuming

infinite reserves is probably a reasonable approximation to reality for a first
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cut.

Denote by µ11t, µ12t, µ21t, µ22t the costate variables for region 1 and re-

gion 2 associated with the state equations (39),(40),(42),(43), respectively.

The optimality conditions for regional emissions and regional robust distor-

tions are:

E∗1t =
−α

λ1µ11 + λ2µ12
, E∗2t =

−α
λ1µ21 + λ2µ22

(44)

h∗1t = −θ1σ1µ11t, h
∗
2t = −θ2σ2µ22t (45)

k∗it = ηiTit, i = 1, 2. (46)

Let {T ∗,12t }, {T
∗,2
1t } be the best reply paths of temperatures in region 2

“chosen” by region 1, and temperatures in region 1 “chosen” by region 2,

respectively. We assume that {T ∗,12t } = {T ∗2t} , and {T ∗,21t } = {T ∗1t} where

{T ∗it} is the temperature path in each region. If the equalities do not hold,

then there is a nonexistence problem for Nash equilibrium. If a Nash equi-

librium exists, the state and costate equations satisfy the following system

of ODEs:

Ṫ1t = −B1T1t + λ1 (E∗1t + E∗2t) + σ1h
∗
1t, T10 given (47)

Ṫ2t = −B2T2t + λ2 (E∗1t + E∗2t) + σ2h
∗
2t, T20 given (48)

µ̇11t = (ρ+B1)µ11t + (d11 + v11T1t + k∗1t) (49)

µ̇12t = (ρ+B2)µ12t + (d12 + v12T2t) (50)

µ̇21t. = (ρ+B1)µ21t + (d21 + v21T1t) (51)

µ̇22t = (ρ+B2)µ22t + (d22 + v22T2t + k∗2t) . (52)

The existence of a steady state satisfying the conditions of OLNE can

be verified by setting the η, θ, v parameters equal to zero in the system (47)-

(52). The linearization matrix of this system is diagonal with two negative

real eigenvalues {−B1,−B2} and four positive eigenvalues {ρ+B1, ρ+B2}
with multiplicity 2 for each one. Then, using the implicit function theorem

as in proposition 1, the existence of a ROLNE steady state can be shown

for small robustness parameters.

To compare the cooperative steady-state solution with the correspond-

ing noncooperative OLNE, we first start by comparing the deterministic
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solutions for which ηi = θi = 0, i = 1, 2.

Table 2: Noncooperative steady state – no ambiguity and misspecifica-

tion concerns*, ηi = θi = 0 , i = 1, 2.

• NCE: T̄1 = 4.43(61%) T̄2 = 6.81(61%)

• CE: T̄1 = 4.25(421%) T̄2 = 6.54(421%)

(*) Proportional deviations relative to the cooperative solution shown in paren-

theses.

As expected, a noncooperative solution will provide higher anomalies in

equilibrium. By setting the constants associated with positive eigenvalues

equal to zero, there exist initial emissions for each region such that the

system will converge to the steady state which satisfies the conditions for an

OLNE. In Figure 8 we present the approach toward the steady state with

cross effects of the linearized system (47)-(52) at the steady state.

Figure 8: Convergence to the OLNE

4.1 The noncooperative carbon tax

Assume that each region imposes a regional carbon tax. Then (24) implies

that the optimal regional tax will be, assuming no policy uncertainty,

τNC1t =
−1

α
[λ1µ11t + λ2µ12t] , τ

NC
2t =

−1

α
[λ1µ21t + λ2µ22t] . (53)
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Thus regional taxes in the two regions are different, and furthermore

they are different (lower) than the optimal global carbon tax. If a coopera-

tive solution is not feasible, then carbon leakage issues could be avoided by

imposing, for example, tariffs between regions equal to
∣∣τNC1t − τNC2t

∣∣ applied

to the lower tax region, which might attract activities from the higher tax

region.

Policy uncertainty in each region will result in further differentiation of

regional carbon policies. If the representative regional firm is concerned

about policy uncertainty but the regional regulator is not, then the decen-

tralized firm-robust equilibrium is more “conservative” in emissions than

the robust regional planner, which is a result qualitatively similar to the one

obtained for the social planner. This might also generate carbon leakage

issues, since it will introduce regional differences in carbon taxes.

4.2 Noncooperative policies under deep uncertainty

To explore the effects of ambiguity on the ROLNE, we run similar simula-

tions as in the case of the cooperative solution for different values of ηi, θi,

i = 1, 2. Since each region decides about own emissions, it is reasonable to

assume that differences in the robustness parameters might exist. Further-

more, the maximization of own welfare implies that cross effects of temper-

ature in regional damage functions might be important. This is because

without cross effects neither region has an incentive to take into account the

evolution of temperature in the other region.

In this context we run our simulations with and without cross effects

and with asymmetries in the robustness parameters. In particular, we set

η2 = θ2 = 0.5, and allow η1, θ1 to take values {0, 0.05, 0.1, 0.125}. The results

for regional steady-state robust emissions can be summarized as follows:

• The qualitative behavior, when ambiguity increases, is the same as in

the cooperative case. Higher ambiguity implies lower regional emis-

sions. Also, as expected, emissions are higher relative to the cooper-

ative case since the climate externality is not fully internalized at the

OLNE.

If both regions have the same robustness preferences, then:

• When temperature cross effects from the North to the South are not in-

cluded, emissions in the South are higher than emissions in the North.
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This can be explained by the fact that although damages as a pro-

portion of GDP are higher in the South, the temperature anomaly

is lower. This might provide some space for increased emissions. As

ambiguity increases, the gap between emissions in the South and the

North is reduced.

• When temperature cross effects from the North to the South only

are included, the picture is reversed. Since the anomaly in the North

increases damages in the South, this induces the South to reduce emis-

sions in order to slow down anomalies in both regions. Emissions in

the North are relatively higher since the North is affected only by the

North’s regional anomaly. As ambiguity increases, the gap between

emissions in the South and the North is reduced.

When robustness preferences are asymmetric in the way described above,

then:

• As robustness in the South exceeds robustness in North, emissions in

the South are lower than in the North irrespective of whether temper-

ature cross effects exist or not.

• When regional robustness parameters increase sufficiently, there are no

noncooperative emission paths which converge to the steady state sat-

isfying OLNE. This result can be shown by considering the lineariza-

tion matrix (47)-(52) at a steady state. Since this is a 6x6 matrix,

Dockner’s theorem does not apply. However, as shown in Appendix 3,

the application of Routh’s stability theorem suggests that the ROLNE

steady state could lose the saddle point property. This is confirmed by

numerical simulations in which, as the robustness parameters increase,

the eigenvalues of the linearization matrix become positive. These re-

sults suggest that the possible breakdown of regulation under strong

ambiguity emerges both in cooperative and noncooperative solutions.

Having characterized the ROLNE, a question which emerges is whether

the appropriate solution concept is a feedback Nash equilibrium which does

not imply an infinite period of commitment. To see whether this is a realistic

approach, we consider the Paris agreement in which countries agreed to in-

tended nationally determined contributions (NDCs), which can be regarded
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as nationally determined emission paths. These paths will be reviewed every

five years. Since the emission paths have been determined by each individual

country, this might be regarded as a set up in which each country decides

intended emissions by maximizing own welfare, taking the action of other

countries as fixed, and then all countries agree to implement the solution.

The agreement is stable since it implements an OLNE and each country is

committed to the Nash path.

According to the Paris agreement, after five years there will be an eval-

uation.17 If countries do not follow their agreed paths, or temperature has

increased more than expected, there will be adjustments. This could mean

re-optimization with different initial conditions and commitment to different

paths. Thus, given the existing international set up, the OLNE might fit the

real world better than a feedback Nash equilibrium in which each country

conditions current emissions to the current temperature anomaly.

5 The Cost of Robustness

An issue which arises when a robust climate policy is pursued is whether

the policy incurs additional costs relative to the case in which no misspec-

ification concerns are involved. To obtain an approximation of these costs,

we calculate the welfare indicator

Jνi =

∫ ∞
t=0

e−ρt[α lnEνit −

 2∑
j=1

dijT
ν
jt +

1

2
vijT

ν2
jt

]dt, i = 1, 2, ν = D,R,

(54)

where D,R correspond to emissions and temperature paths for no misspeci-

fication concerns (D) and robust control (R) respectively. The indicator cor-

responds to the case in which the global regulator or the regional regulators

are committed to their emissions paths obtained through the relevant opti-

mizations. The indicators were calculated numerically for the deterministic

and robust cooperative solution and OLNE. In tables 1a-1b some numerical

results are presented. Temperature spillover effects from the North to the

South and symmetric/asymmetric robustness parameters have been consid-

ered. In the robust case the welfare penalties imposed by the adversarial

17In the most recent COP24 in Katowice, one of the outcomes was the agreement that
from 2024 on, countries will have to report their emissions every two years.
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agent are not included because they are fictitious. The results are shown in

table 1a-1b, for symmetric and asymmetric robustness parameters between

the two regions.

Table 1a: Welfare indicators for different robustness parameters (RP):

Cooperative Solution

Region RP(0.00,0.00) RP(0.05,0.05) RP(0.10,0.10)

1 -19.11 -19.75 -21.21

2 -14.39 -15.12 -15.92

RP(0.00,0.00) RP(0.05,0.00) RP(0.10,0.05)

1 -19.11 -18.84 -18.89

2 -14.39 -14.93 -15.06

Table 1b: Welfare indicators for different robustness parameters (RP):

OLNE

Region RP(0.00,0.00) RP(0.05,0.05) RP(0.10,0.10)

1 -50.14 -20.79 -19.85

2 -9.52 -12.22 -13.44

RP(0.00,0.00) RP(0.05,0.00) RP(0.10,0.05)

1 -50.14 -44.49 -21.39

2 -9.52 -9.52 -12.13

In the cooperative case, robust control is costly to both regions and an

increase in preferences for robustness reduces welfare. In robust OLNE,

however, region 1 benefits from robustness while for region 2 robustness is

costly both in the symmetric and asymmetric cases. The result suggests

that the more vulnerable region has an incentive to follow robust policies

even if the other region does not follow robust policies.

6 Learning and Robust Control

The numerical results of the previous section indicate that robustness could

be costly, relative to the case of no concerns about model misspecification,

especially in the cooperative solution. This raises the issue of whether it is

possible to avoid this cost by learning. In Anderson et al. (1998, page 2), it

is stated that “Superficially at least, the perspective of the ‘robust’ controller

differs substantially from that of a ‘learner’.” In our dynamic settings, the
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robust decision maker accepts the presence of model misspecification as a

permanent state of affairs, and devotes his thoughts to designing robust

controls, rather than, say, thinking about recursive ways to use data to

improve his model specification over time. The idea here is that the ‘learner’

cannot improve against model misspecification even with a large amount of

data.

However, when dealing with climate change issues the stakes are high,

and learning through scientific research is an ongoing process which might

remove some concerns regarding damages or temperature dynamics. To

model such a process we will consider the case in which part of the labor

force, that in the model without learning is fully employed in the output

producing sector, could be employed in the ‘learning’ sector. Employment

in the learning sector reduces misspecification concerns, since it allows the

regulator to learn about the processes for which there is ambiguity. We

assume that the robustness parameter can be expressed as the function:

φ (Li − lit) , φ′ > 0, i = 1, 2, (55)

where lit is labor input used in region i to produce output at time t, and

Li − lit is labor input allocated to the learning sector for climate damages.

Assume that learning activities take place only with respect to damages from

climate change and that the world is changing rapidly so that no learning

stock is accumulated.18 The regulator’s objective associated with the mul-

tiplier representation of the robust control problem can be written as:

max
{Eit,lit}

min
{kit,hit}

(56)

∫ ∞
t=0

e−ρt
N∑
i=1

ωi

α lnEit −

 N∑
j=1

dijTjt +
1

2
vijT

2
jt + kitTit

+
1

2
φ (Li − lit) k2

it +
h2
it

2θi

 dt
18Both assumptions are simplifying. Accumulation of learning stock requires introduc-

tion of learning dynamics of the form Ṡt = η (Li − lit) − δSt ,S0 given. The introduction
of more dynamic constraints would have complicated the solution even more. However,
the use of a ‘flow concept’ for learning at this stage provides intuition to the problem and
the use of learning dynamics is left for future research.
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subject to (3). For this problem, the current value Hamiltonian is:

HC = {
2∑
i=1

ωi

ln(yitl
β
itE

α
it)−

 N∑
j=1

dijTjt +
1

2
vijT

2
jt + kitTit

+
1

2
φ (Li − lit) k2

it +
h2
it

2θi


N∑
i=1

µi[.λiEt −BiTit + σihit]}. (57)

Optimality conditions for i = 1, 2 imply

αωi
Eit

+
N∑
i=1

µitλi = 0⇒ E∗it =
−αωi∑
i µit λi

(58)

β

lit
=

1

2
φ′ (Li − lit) k2

it (59)

kit =
Tit

φ (Li − lit)
, hit = −(θi/ωi)σiµit (60)

µ̇it = (ρ+Bi)µit +
N∑
j=1

ωj(dji + vjiTit) +
Tit

φ (Li − lit)
(61)

Ṫit = λiEt −BiTit − σ2
i (θi/ωi)µit. (62)

This formulation implies that learning about climate damages from the reg-

ulator’s point of view raises that cost of the ‘adversarial agent’ who tries to

minimize the regulator’s welfare. Since φ′ > 0, an increase in the amount

of labor allocated to learning will reduce the penalty that the adversarial

agent could impose on the regulator. To put it differently, increase in learn-

ing reduces misspecification concerns and ambiguity. Under this setup the

following result can be stated.

Proposition 3 An increase in the regional temperature will always increase

the labor input allocated to the learning sector. If this impact is sufficiently

strong then learning could reduce the possibility of robust regulation break-

down.

For the proof see Appendix 1.

Robust control could be infeasible if the steady state loses its saddle

point property and, because of this, the regulator cannot control the sys-

tem to the optimal steady state. Saddle point stability could be lost, as
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shown in Proposition 2, if the robustness parameters reflecting ambiguity

are sufficiently high. This proposition suggests that learning could act as a

stabilizing force which will make robust regulation feasible and will reduce

the possibility of hot spot emergence.

7 Concluding Remarks

Deep uncertainties are associated with both the natural and the economic

characteristics of climate change. These uncertainties are amplified by the

fact that in reality the temperature anomaly evolves differently across the

globe, with a faster increase in the area of the North Pole relative to the

equator because of natural mechanisms. In this context, we study climate

change policies by using the novel pattern scaling approach of RTCREs and

develop an economy-climate model under conditions of deep uncertainty

associated with temperature dynamics, regional climate change damages

and policy in the form of carbon taxes. The regional structure of the model

allows us to analyze both cooperative outcomes emerging when a social

planner chooses carbon emission policies to maximize global regional welfare,

and noncooperative outcomes where each region decides its carbon emission

policy by maximizing own welfare.

We applied robust control methods to derive optimal emission policies

and the associated price of the climate externality under the different sources

of deep uncertainty. We characterize the cooperative solution and the robust

OLNE. Our results indicate that in general robust policies under deep un-

certainty lead to more conservative emission policies both in cooperative and

noncooperative solutions relative to a deterministic situation. Furthermore,

ambiguity related to the damage function tends to produce more conserva-

tive policies than ambiguity in temperature dynamics, while robust control

with high concerns about model misspecification is relatively more costly in

a cooperative solution, but this could depend on the vulnerability of a re-

gion in noncooperative solutions. The more vulnerable region, in our model

and parametrization, benefits in welfare terms from robust policies. We also

show that competitive firms when facing ambiguity regarding carbon taxes

tend to be more conservative and use smaller amounts of fossil fuels relative

to the case of no policy uncertainty. Policy uncertainty could be impor-

tant in practice because it relates to uncertainties in the transition to a low
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carbon economy.

An important aspect of the regional model is that differences in aver-

sion to ambiguity across regions could produce big deviations in regional

emissions policies in the noncooperative solutions. These deviations are

amplified if damages in a region are affected by changes in temperature in

another region, as in the case of Polar amplification. Finally, we show that

when aversion to ambiguity in a region increases sufficiently, robust control

breaks down in the sense that that there are no robust emission paths which

could drive the climate-economy system to an equilibrium steady state. This

introduces the idea of regional hot spots where uncertainty about damages

and/or temperature dynamics is so severe that robust control is not possible.

Since, as indicated in the introduction, recent studies suggest that hot spots

exist in reality, this result could be important for policy purposes. Regula-

tion breakdown could be regarded as a signal for reducing deep uncertainty.

We show that this could be possible through learning.

8 Appendix

8.1 Appendix 1

Proof of Proposition 1

Proof. The proof follows directly from the application of the implicit func-

tion theorem. The system (61)-(62) has a straightforward solution at point

o,

µ̄i = − 1

(ρ+Bi)

 N∑
j=1

ωj dji

 (63)

T̄i =
1

Bi
[
θi
ωi

σ2
i

(ρi +Bi)
Γi +

ωi
N∑
i=1

λi
(ρi+Bi)

Γi

], (64)

and the Jacobian determinant of (61)-(62) is nonzero at o.

Proof of Proposition 2

Proof. The linearization matrix for the 2-region problem (61)-(62) with
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vij = 0, i, j = 1, 2, j 6= i, is

J =


−B1 0 λ1

∂E
∂µ1
− (σ2

1θ1)/ω1 λ2
∂E
∂µ2

0 −B2 λ2
∂E
∂µ1

λ2
∂E
∂µ2
− (σ2

2θ2)/ω2

ω1v11 + η1 0 ρ+B1 0

0 ω2v22 + η2 0 ρ+B2

 .

(65)

If we set θi = 0, ηi = 0, vii = 0, i = 1, 2, then the linearization matrix

is diagonal and the eigenvalues can be read from the principal diagonal

{−B1,−B2, ρ + B1, ρ + B2}. It is clear that we have saddle point stability.

Assume now that θi > 0, ηi > 0, vii > 0 and note that

∂E
∂µi

=
aλi

(
∑

i λiµi)
2 > 0, i = 1, 2. (66)

Following Dockner (1985), the eigenvalues of the linearization matrix J

are

e1,2,3,4 =
ρ

2
±

√(
ρ

2

)2

− K

2
± 1

2

√
K2 − 4 detJ (67)

where

K =

∣∣∣∣∣ −B1 λ1
∂E
∂µ1
− (σ2

1θ1)/ω1

v11 + η1 ρ+B1

∣∣∣∣∣+

∣∣∣∣∣ −B2 λ2
∂E
∂µ2
− (σ2

2θ2)/ω2

v22 + η2 ρ+B2

∣∣∣∣∣+ 0

(68)

or

K = −B1 (ρ+B1)−
(
λ1

∂E
∂µ1
− (σ2

1θ1)/ω1

)
(v11 + η1)

+[−B2 (ρ+B2)−
(
λ2

∂E
∂µ2
− (σ2

2θ2)/ω2

)
(v22 + η2) . (69)

According to Dockner (1985, Theorem 3), necessary conditions for the eigen-
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values to be real, two being positive and two being negative, are:

(i) K < 0

(ii) 0 < det J <
(
K
2

)2
.

(70)

From the definition of K in (68), it can be seen that for sufficiently large

robustness parameters, K could be positive. Thus the necessary conditions

for saddle point stability with two negative real eigenvalues is violated. For

a numerical example, see Appendix 2.

Proof of Proposition 3

Proof. If we substitute the minimizer for kit from the optimality conditions

above the reduced form Hamiltonian becomes:

HC = max
Ei

,li {
2∑
i=1

ωi

ln(yitl
β
itE

α
it)−

 N∑
j=1

dijTjt +
1

2
vijT

2
jt

− 1

2

T 2
it

φ (Li − lit)
+
h2
it

2θi


N∑
i=1

µi[.λiEt −BiTit + σihit]}. (71)

the optimal choice for the labour input is given by

β

lit
=

1

2

ω2
i φ
′ (Li − lit)

φ (Li − lit)2 T 2
it (72)

Assuming that the learning function can be specified as: φ (l) = (A/q) lq we

obtain

β (Li − lit)1+q =
q2

2A
litT

2
it, lit = hi (Tit) (73)

which implies that the optimal allocation of labor to production and learning

is a function of temperature. Implicit differentiation results in

dlit
dTit

≡ h′it (Tit) = −
(
q2/A

)
Titlit

(1 + q)β (Li − lit)q + (q2/2A)T 2
it

< 0 (74)

Thus an increase in temperature in region i will reduce the labor input

to production and increase the labor input allocated to learning and to

reducing ambiguity about climate change damages. The Hamiltonian system
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associated with (71) is:

Ṫit = λiE∗t −BiTit − (θi/ωi)σ
2
i µit (75)

µ̇it = (ρ+Bi)µit +
N∑
j=1

ωj(dji + vjiTit) +
Tit

φ (Li − hi (Tit))
. (76)

Following the proof of proposition 2 and assuming that a steady state

exists, the linearization matrix for the 2-region problem (75)-(76) with vij =

0, i, j = 1, 2, j 6= i, is

J =


−B1 0 λ1

∂E
∂µ1
− (σ2

1θ1)/ω1 λ2
∂E
∂µ2

0 −B2 λ2
∂E
∂µ1

λ2
∂E
∂µ2
− (σ2

2θ2)/ω2

ω1v11 +G1 0 ρ+B1 0

0 ω2v22 +G2 0 ρ+B2

 .

(77)

where

Gi =
∂

∂Ti

(
Tit

φ (Li − hi (Tit))

)
=
φ (Li − hi (Tit)) + φ′ (Li − hi (Tit))h

′
i (Tit)

[φ (Li − hi (Tit))]
2 , i = 1, 2

(78)

In the definition of Gi the term φ′h′i is negative since h′i < 0. If this term

is sufficiently negative – which means that an increase in temperature in

region i will cause a large diversion of labor to research and learning about

climate change damages – then Gi < 0. If the robustness parameters (i.e.

misspecification concerns) associated with temperature dynamics tend to

destabilize the steady state, in the sense of proposition 2, then a sufficiently

negative Gi could have a stabilizing effect on the steady state.

Again following again Dockner (1985), the quantity K, which should be

negative in order to have saddle point stability, is

K = −B1 (ρ+B1)−
(
λ1

∂E
∂µ1
− (σ2

1θ1)/ω1

)
(v11 +G1)

+[−B2 (ρ+B2)−
(
λ2

∂E
∂µ2
− (σ2

2θ2)/ω2

)
(v22 +G (79)
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If the robustness parameters θi are sufficiently high, so that the terms(
λi

∂E
∂µi
− (σ2

i θi)/ωi

)
are negative, then highly negative Gi terms can make

K < 0.

8.2 Appendix 2

The parameter values used in simulations are shown below.

Table A1: Simulation parameters

ωi, i = 1, 2 0.5

α 0.05

d11 0.05425

d12 0.0(NCE), 0.04613(CE)

d21 0.0

d22 0.04513

v11 0.06995

v12 0.0(NCE), 0.06151(CE)

v21 0.0

v22 0.00381

bi, i = 1, 2 0.008

σi, i = 1, 2 0.1

ρ 0.02

λ1 1.3

λ2 2

8.3 Appendix 3

Let JN be the (6× 6) linearization matrix that satisfies the conditions for a

ROLNE evaluated at a steady state. The characteristic polynomial of this

matrix will be of the form

x6 − traceJNx5 +A4x
4 +A3x

3 +A2x
2 +A1x+ det JN = 0. (80)

The trace of JN is positive, while the A coefficients are determined by the

minors of JN . Since the trace is positive, matrix JN has at least one positive

eigenvalue. Given the size of the matrix, it is not possible to derive closed

form expressions for the A coefficients. However, numerical simulations

consistently show that as robustness parameters increase, the eigenvalues

become positive.
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A similar reasoning applies for the cooperative solution, with lineariza-

tion matrix J and characteristic polynomial:

x4 − traceJx3 +A2x
2 +A1x+ det J = 0. (81)

In numerical simulations:

• For η1 = 0.125; η2 = 0.125; θ1 = 0.05; θ2 = 0.05

the eigenvalues are: 0.0278958, 0.0258818,−0.00789579,−0.00588179

• For η1 = 0.4; η2 = 0.4; θ1 = 0.05; θ2 = 0.05

the eigenvalues are: 0.0212927, 0.0199994,−0.00129273, 6.07519×10−7

• For η1 = 0.5; η2 = 0.5; θ1 = 0.05; θ2 = 0.

the eigenvalues are: 0.0199935, 0.0177531, 0.00224689, 6.52477× 10−6
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