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Abstract

We study climate change policies using the novel pattern scaling

approach of regional transient climate response in order to develop a

regional economy—climate model under conditions of deep uncertainty.

We associate welfare weights with regions and analyze cooperative out-

comes derived by the social planner’s solution at the regional scale.

Recent literature indicates that damages are larger in low latitude

(warmer) areas and are projected to become relatively even larger in

low latitude areas than at temperate latitudes. Under deep uncertainty,

robust control policies are more conservative regarding emissions and,

when regional distributional weights are introduced, carbon taxes are

lower in the relatively poorer region. Mild concerns for robustness

are welfare improving for the poor region, while strong concerns have

welfare cost for all regions. We show that increasing regional temper-

atures will increase resources devoted to learning, in order to reduce

deep uncertainty.
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1 Introduction

The need for regional analysis of the impacts of climate change —in contrast

to the global approach taken by Integrated Assessment Models (IAMs) such

as DICE (Nordhaus and Sztorc, 2013; Nordhaus, 2014) —has been clearly

recognized in the literature (see, for example, Easterling, 1997). In fact,

major IAMs —such as RICE (e.g., Nordhaus, 2011), FUND (e.g., Anthoff

and Tol, 2013) or PAGE (e.g., Hope, 2006) — explicitly include regional
components. The regional aspects have been extended to both regional

temperature effects and regional economic effects (e.g., FUND, PAGE) or

to regional economic effects with predictions about mean global temperature

(e.g., RICE).

Multi-region modeling in climate change economics has been developed

since RICE. Desmet and Rossi-Hansberg (2015) developed a spatial model of

climate change, Krusell and Smith (2017) introduced a 20,000 region spatial

model, and Hassler and Krusell (2018) discuss approaches to multi-region
climate modeling. Regional aspects of climate change and associated policies

have been introduced in low-dimensional IAMs in which regional tempera-

ture dynamics are driven by endogenous mechanisms of heat and precipita-

tion transport from the Equator to the Poles (see Brock et al., 2013, 2014;

Brock and Xepapadeas, 2017, 2019; Cai et al., 2019). The climate science

part of these models is based on one- or two-dimensional dynamic energy

balance models, defined either in continuous space (e.g., North et al., 1981)

or in discrete South-North “two-box” models (e.g., Langen and Alexeev,

2007; Alexeev and Jackson, 2013). Energy balance climate models gener-

ate spatial variability of temperature across regions through the endogenous

mechanism of heat transfer. Another approach which climate science uses to

generate spatial temperature variation across regions is pattern or statistical

downscaling, or statistical emulation methods (see, for example, Castruccio

et al., 2014; Hassler et al., 2016; Krusell and Smith, 2017).

Regional temperature differentiation also emerges from the use of the

transient climate response to cumulative carbon emissions (TCRE) on a

regional basis. The TCRE embodies both the physical effect of CO2 on

climate and the biochemical effect of CO2 on the global carbon cycle (e.g.,

Matthews et al., 2009, 2012; Knutti, 2013; Knutti and Rogelj, 2015; Mac-

Dougall et al., 2017). The TCRE, denoted by λ, is defined as λ = ∆T (t)
CE(t) ,
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where CE(t) denotes cumulative carbon emissions up to time t and ∆T (t)

the change in temperature during the same period. The approximate con-

stancy of λ suggests an approximately linear relationship between a change

in global average temperature and cumulative emissions. This roughly linear

relationship has also been recognized by the IPCC (2013).

In a recent paper, Leduc et al. (2016) identify an approximately linear

relationship between cumulative CO2 emissions and regional temperatures.

This relationship is quantified by regional TCREs (RTCREs). The RTCRE

parameters range from less than 1◦C per TtC for some ocean regions to

5◦C per TtC in the Arctic. Leduc et al. (2016) consider their approach to

be a novel application of pattern scaling. The high RTCRE in the Arctic

is indicative of the larger anomaly at the high northern latitudes. It is

understood that this anomaly could cause serious detrimental environmental

effects which could be diffused to other regions south of the Arctic (IPCC,

2013; Brock and Xepapadeas, 2017). Thus one implication of adopting a

regional representation of climate is that changes in the temperature in one

region could generate damages in another region. It should be noted that the

existence of geographical spillover damage effects across regions is supported

by recent studies1 and that this issue could be important for policy purposes

but, as far as we know, is not addressed by large-scale IAMs.

In models of climate and economy, the use of the RTCRE approach to

model regional differences —rather than the structural approach based on

surface albedo feedback or endogenous heat and precipitation transfer mech-

anisms — could provide a simplified but realistic reduced-form mechanism

for modeling regional temperature dynamics.

The explicit introduction of regional temperature dynamics allows us to

obtain a clearer picture of the impacts of climate change across regions, and

especially across rich and poor regions. Recent literature, such as Burke et

al. (2015), Hsiang et al. (2017) and Diffenbaugh and Burke (2019a), stresses

that damages are larger in low latitude (warmer) areas around the Equator

and are projected to become relatively larger in low latitude (warmer) areas

than at temperate latitudes.

It is well-known that the study of climate change, and more specifically

1See, for example, Francis and Skifik (2012), Francis and Vavrus (2014) and Francis
et al. (2018), who suggest that further Arctic warming may favor persistent weather
patterns that can lead to weather extremes, or Diffenbaugh et al. (2017) and Wu and
Francis (2019).
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the economics of climate change, is characterized by fundamental uncer-

tainties (Heal and Millner, 2014). As Pindyck (2017) points out, we know
very little or nothing about parameters or functions which are fundamen-

tal in climate change economics, such as climate sensitivity or the damage

function. In the same context, Anthoff and Tol (2013) and Gillingham et

al. (2015) characterize parameters of climate—economy modeling which em-

body considerable uncertainties, while Lemoine (2010), Nordhaus and Mof-

fat (2017), Hassler et al. (2018) and Cai and Lontzek (2019) discuss in detail

the impacts of uncertainty on climate sensitivity. Brock and Hansen (2017)

distinguish three forms of uncertainty: (i) risk, which is the traditional

case studied in economics in which objective or subjective probabilities are

assigned to stochastic events; (ii) ambiguity, which is the case where the de-

cision maker has concerns and is uncertain about how to weight alternative

models for explaining a phenomenon, in a case where a benchmark model is

“surrounded”by these alternative models or probability measures; and (iii)

misspecification, which is associated with the way in which we use models

which are imperfect approximations of the true model.

In this paper, we refer to cases (ii) and (iii) as deep uncertainty. Since

damages from climate change are projected to become relatively even larger

in low latitude (warmer) areas than at temperate latitudes, it is reasonable

to expect deep uncertainty to loom larger in poorer regions which tend to

be lower latitude regions.

Thus the contribution of our paper is to introduce deep uncertainty

and aversion to ambiguity (or concerns about model misspecification) into

a multi-regional model of climate and the economy by using the robust

control approach of Hansen and Sargent (e.g., Hansen and Sargent, 2001,

2008; Hansen et al., 2006).2 Robust control methods have been applied to

the economics of climate change (e.g., Hennlock, 2009; Athanassoglou and

Xepapadeas, 2012; Anderson et al., 2014). Barnett et al. (2020) explore

asset pricing implications under risk and types of deep uncertainties when

there are damages induced by climate change to preferences and capital

accumulation. Unlike our analysis, theirs is on the planetary scale. Hence

they do not analyze regional scale issues as we do here. In this literature,

ambiguity or deep uncertainty was mainly associated with uncertainty of

2Note that since the case of risk can be analyzed as a limiting case of ambiguity, this
approach encompasses risk analysis.
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temperature dynamics or, equivalently, carbon stock dynamics. This type

of deep uncertainty indirectly affects damages since the damage function

depends on temperature or, equivalently, on carbon stock in the atmosphere.

In the present paper, we augment the sources of uncertainty by allowing for

deep uncertainty from the regulator’s point of view, with regard to both

regional damages and regional temperature dynamics.

However, climate and damage uncertainty is not the only source of un-

certainty that we study in this paper. Recently policy makers have pointed

out that climate change policy introduces transition risks, which are risks

that firms will face as climate policy is introduced (e.g., Carney, 2015), as

well as physical risks, which in principle are captured by the introduction

of uncertainty in temperature dynamics and the damage function. These

transition risks, which are associated with changes in policy and technology,

are not faced by the regulator who designs climate policy but by firms which

are the subject of climate policy. In this context, we also allow for policy

uncertainty and study the decisions of a robust firm which has concerns

about the actual climate policy.

To summarize, the present paper contributes to climate change eco-

nomics by studying climate change policies in a multi-regional model based

on the novel pattern scaling approach of RTCREs under conditions of deep

uncertainty associated with regional temperature dynamics, regional climate

change damages, and policy in the form of carbon taxes. The paper consists

of a part in which a conceptual model is developed of a social planner or reg-

ulator who maximizes global welfare in a multi-regional model under deep

uncertainty, and an applied part. The applied part is based on a three-region

model —the South, the Tropics and the North —with temperature dynamics

characterized by RTCREs and regional damage functions. To capture the

different development stages of the regions, we introduce welfare weights

based on the regional GDP per capita to global GDP per capita ratio, and

examine weighted and unweighted solutions.

Our results suggest that, in general, under deep uncertainty robust con-

trol policies are more conservative regarding emissions, the higher the aver-

sion to ambiguity is, while damage uncertainty seems to produce more con-

servative behavior than climate dynamics uncertainty. Conservative behav-

ior regarding emissions implies higher carbon taxes.

At the weighted —by distributional weights —solutions, carbon taxes are
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always relatively lower in the Tropics, which is the poorest region and bears

the largest share of the global externality cost. We also show that, with

the exception of the Tropics, robust climate change policies are more costly

in terms of welfare relative to deterministic policy. Thus regulation when

there are concerns about model misspecification and ambiguity aversion is

costly. This raises the issue of learning. Thus in the final section we consider

the possibility of diverting resources to learning, which will reduce concerns

about model misspecification.

2 Modeling climate policy under deep uncertainty

It is clearly understood that the climate modules used in the coupled mod-

els of climate and economy, whether they are embedded in high- or low-

dimensional IAMs, represent an approximation of more complex models.

Therefore, in order to obtain tractability and better understanding of the

basic mechanisms driving the results, we adopt the modeling approach which

is based on the approximate linear relation between cumulative emissions

and regional temperatures and which is quantified by the RTCREs. Hav-

ing chosen an approximate model, we concentrate on deep uncertainty and

concerns about model misspecification.

In the context of robust control methodology, ambiguity is introduced by

allowing for a family of stochastic perturbations to a Brownian motion char-

acterizing stochastic dynamics. The perturbations are defined in terms of

measurable drift distortions. The misspecification error which expresses the

decisions maker’s concerns regarding departures from a benchmark model is

reflected in an entropic constraint (Hansen et al., 2006; Hansen and Sargent,

2008). Ambiguity and concerns about the possibility that “an adversarial

agent” — often referred to as “Nature” — will choose not the benchmark

model but another one within an entropy ball, which will harm the decision

maker’s objective, are reflected in a quadratic penalty term which is added

to the regulator’s objective. This type of ambiguity has also been referred to

as model uncertainty and Hansen and Sargent call the decision maker’s op-

timization problem with a quadratic penalty “the multiplier robust control

problem”. A crucial parameter of the problem is the robustness parame-

ter, which reflects the decision maker’s concerns about model uncertainty

or his/her aversion to ambiguity. It has been shown that as the robustness
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parameter, which is positive, tends to the limiting value of zero or infinity,3

the decision problem is reduced to the standard optimization problem under

risk —that is, a problem with no ambiguity aversion. When the robustness

parameter increases from zero, then concerns about model uncertainty in-

crease.4

If the distortion of the dynamics benchmark model at time t is denoted

by hit, then the drift distortion of the stochastic dynamics is expressed by

√
εσ (hit + dWit) , (1)

where σ is the volatility of the stochastic dynamics,Wit is a Brownian motion

and ε is a small noise parameter. If the term hit = 0, then the problem is

reduced to the case of risk. In the multiplier robust control problem (e.g.,

Hansen et al., 2006), the penalty associated with the distortion is expressed

by

1

2θ (ε)
h2
t , (2)

where θ (ε) is the robustness parameter. It has been shown by Anderson et

al. (2012, 2014) that if θ (ε) = θ0ε, then if ε→ 0, the stochastic robust con-

trol problem is reduced to a simpler “deterministic robust control problem”.

To simplify and increase tractability, we adopt the assumption leading to a

deterministic robust control problem.

To develop the climate model, we assume that the globe is divided into

i = 1, ..., N regions. Note that Leduc et al. (2016) divide the globe into

21 land regions. Following the RTCRE approach, regional temperature dy-

namics, Ṫit, under model uncertainty can be written as

Ṫit = λiEt −BiTit + σihit, Ti0 = TiB ≥ 0, i = 1, ..., N, (3)

where Et =
∑N

i=1Eit is aggregate global carbon emissions from all regions.

Taking into account that a fraction of the heat stored in the atmosphere

escapes, we assume that this is captured by the term BiTit, where Bi > 0 is

the heat dissipation parameter in region i (see Naevdal and Oppenheimer,

3The limiting value depends on the way in which the problem is formulated.
4 If ambiguity vanishes when the robustness parameter tends to infinity, then increased

ambiguity is associated with reduction in the robustness parameter.
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2007; Lemoine and Rudik, 2014; and Heutel et al., 2016). In (3), the pa-

rameter σi represents volatility of regional temperature dynamics, and hit
the corresponding drift distortion reflecting deep uncertainty and concerns

about misspecification of temperature dynamics. The initial conditions re-

flect that Tit represents the temperature anomaly relative to a given base

period Ti0, which is regarded as the initial period. We assume that con-

cerns about regional temperature dynamics are specific for the region and,

therefore, embody concerns about the RTCRE, which is also an uncertain

parameter.5

To construct the economic part of the model, we follow Brock and Xepa-

padeas (2017, 2019) and consider a simple welfare maximization problem

with logarithmic utility, where global welfare is expressed by the sum of

welfare in each region and is given by:

∫ ∞
t=0

e−ρt
N∑
i=1

viLit ln(yitE
α
ite
−ψi(T ))dt, T = (T1, ..., TN ) , (4)

where yitEαit, 0 < α < 1, Eit, T = (T1, ..., TN ) , and Lit are regional output

per capita, fossil fuel input or carbon emissions, temperatures in each region

i at date t, and fully employed population, respectively. We assume expo-

nential damages (see also Golosov et al., 2014)6 and a quadratic ψ, to allow

for the possibility of increasing regional marginal damages. Thus,

ψi (T ) =

N∑
j=1

(
dijTj +

1

2
vijT

2
j + kitTj

)
, dij , vij ≥ 0, i = 1, ..., N , (5)

where ki represents ambiguity about damages in region i. Thus the damage

function in region i embodies geographical damage spillovers, or cross effects,

which are damages caused by temperature increases in other regions. For

example, the larger anomaly at the high northern latitudes may generate

damages in terms of sea level rise or greenhouse gases emitted by permafrost

melting in southern regions. It is assumed that yit and Lit are exogenously

5For a thorough discussion of uncertainties associated with climate change and ap-
proaches which do not rely on expected utility, see for example Heal and Millner (2014).

6A large body of research in climate change economics assumes that damages are not
exponential (e.g., Weitzman, 2010; Nordhaus and Sztorc, 2013). We use exponential
damages for the same tractability reasons as in Golosov et al. (2014).
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given. That is, we are abstracting away from the problem of optimally

accumulating capital inputs and other inputs in order to focus on optimal

emissions paths and fossil fuel taxes. In this context, yit could be interpreted

as the component of a Cobb-Douglas production function that embodies all

other inputs along with technical change which evolves exogenously. We

assume autarky for the multi-region model and no world market for loans

(see also Hassler and Krusell, 2012) for this approximation. Finally, vi
represents welfare weights associated with region i. To increase tractability,

we assume that regional populations are immobile and normalized to one

and define ωi = viLi,
∑

i ωi = 1. Furthermore, to simplify the exposition

even more, we assume that fossil fuels are abundant in both regions and

provided at zero cost. The use of fossil fuels is, however, costly in terms of

climate.

Under these assumptions, the optimization of the world’s welfare which

corresponds to the cooperative solution for designing climate policies can be

written as

W c =

∫ ∞
t=0

e−ρt
N∑
i=1

ωi[ln yit + α lnEit −
N∑
j=1

(
dijTjt +

1

2
vijT

2
jt

)
]dt, (6)

where ωi > 0,
∑

i ωi = 1 are welfare weights associated with each region. If

we impose ambiguity concerns regarding damages and temperature dynam-

ics in region i, the cooperative solution will be the outcome of the following

deterministic multiplier robust control problem:

max
{Eit}

min
{kit,hit}

(7)

∫ ∞
t=0

e−ρt
N∑
i=1

ωi

ln yit + α lnEit −
N∑
j=1

(
dijTjt +

1

2
vijT

2
jt + kitTjt

)
+
k2
it

2ηi
+
h2
it

2θi

 dt
subject to (3) .

3 Robust climate policy

The cooperative regional climate policy emerges from the solution of problem

(7). For this problem, the relevant current value Hamiltonian, after omitting
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the constant ln yit is:

HC = {
N∑
i=1

ωi

α lnEit −
N∑
j=1

(
dijTjt +

1

2
vijT

2
jt + kitTjt

)
+
k2
it

2ηi
+
h2
it

2θi


N∑
i=1

µi[λiEt −BiTit + σihit]},
N∑
i=1

ωi = 1. (8)

In this robust control problem, the social planner chooses regional emission

paths Eit to maximize the Hamiltonian but the adversarial agent chooses

distortions (kit, hit) to minimize the Hamiltonian.

The optimality conditions for the control choices for i = 1, ...N are:

αωi
Eit

+

N∑
i=1

µitλi = 0⇒ E∗it =
−αωi∑
i µitλi

(9)

hit = −(θi/ωi)σiµit, kit = ηiTit (10)

µ̇it = ρµit −
∂HC
∂Tit

⇒ (11)

µ̇it = (ρ+Bi)µit +
N∑
j=1

ωj(dji + vjiTit) + ηiTit (12)

Ṫit = λiE∗t −BiTit − σ2
i (θi/ωi)µit. (13)

From (9), it follows that if the social planner weights all regions equally, or

ωi = ω for all i, then all regions should have the same emission paths,

Eit = Ejt =
−αω
Xt

≡ E∗t , Xt =
∑
i

µitλi, i, j = 1, ..., N . (14)

System (9)-(13), with Et,hit, kit substituted by their optimal values from
(9)-(10), is the dynamic Hamiltonian system for the social planner. Since

the robustness parameters {ηi, θi} reflect the “intensity”of the social plan-
ner’s ambiguity, the impact of deep uncertainty on optimal policy can be

studied by performing comparative analysis with respect to the robustness

parameters.

Another characteristic of the solution is that Xt =
∑

i µitλi is the cost

of the climate externality, which consists of the sum of regional shadow

temperature costs weighted by RTCREs. Thus the solution of the regional

problem provides information about the contribution of each region to the

10



global cost of the climate externality. The issue of regional contributions,

which has been examined recently at the empirical level by Ricke et al.

(2018), could help characterize the heterogeneity of climate impacts across

the globe and provide information which could help policy design.

We examine the steady state of the cooperative solution. From (12), we

obtain at a steady state:

µ = − 1

(ρ+Bi)

 N∑
j=1

ωj (dij + vijTi) + ηiTi

 . (15)

Substituting into (13), we obtain that the steady-state regional temperatures

are solutions of the system:

(ωiα) /

(∑
i

[
λi

(ρ+Bi)
(Γi + (∆i + ηi)Ti)

])
−BiTi+

θi
ωi

σ2
i

(ρi +Bi)
[Γi + (∆i + ηi)Ti] = 0, (16)

where

Γi =

N∑
j=1

ωjdij , v̄i = Ti

N∑
j=1

ωjvij . (17)

Proposition 1 If Bi 6= 0 and θi = 0 for all i, then in an open neighborhood

of the point o = (v11, ...v1N , ..., vN1, ..., vNN , η1, ...ηN ) = 0, a steady state for

the regional temperature anomalies which is determined by the the system

(12)-(13) for µ̇it = 0, Ṫit = 0 exists.

For the proof, see Appendix 1.

Thus it is expected that for small second-order parameters in the damage

function and small robustness parameters for damages, a steady state will

exist. Furthermore, at point o, the Jacobian determinant of the linearized

Hamiltonian system (12)-(13) has N negative eigenvalues {−B1, ...,−BN}
andN positive eigenvalues {(ρ1 +B1) , ..., (ρN +BN} and therefore the steady
state at o has the saddle point property.

The saddle point property implies that the social planner can choose

initial values and a path for regional emissions, determined by (9), so that

the world economy will converge along an N -dimensional manifold to the
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socially-optimal steady state. The paths of the costate variables µit will

determine the optimal carbon tax. The steady-state distortions (h∗i , k
∗
i ) are

obtained directly from (10) by substituting the corresponding steady states

for regional temperatures and their shadow costs.

4 Optimal carbon taxes

In a global market economy, the representative “small” consumer takes

everything regarding climate change as fixed, beyond his/her control, and

has no decision to make. The representative firm, however, does have deci-

sions to make regarding emissions. We assume that the representative firm

is subject to an emission tax or equivalently a carbon tax, and to simplify

things we assume that energy has no private costs. The problem for the firm

in each region is:

max
Eit

[ln yit + α lnEit − τ iEit] , (18)

with optimality conditions

α

Eit
= τ it ⇒ Eit =

α

τ it
. (19)

Combining (19) with (9), it follows that the optimal emission tax will be:

α

τ it
=
−ωiα∑
i λiµit

⇒ τ∗it = − 1

ωi

(∑
i

λiµit

)
> 0. (20)

It is clear that unless the regulator attaches equal welfare weights to different

regions, the optimal carbon tax will be different across regions. The higher

the welfare weight is, the lower the optimal carbon tax for the specific region

will be. If, as expected, the costates µit are negative and declining with time,

the optimal carbon tax increases through time until it reaches a steady state.

Since the robust control problem is concave, the time paths of the costate

variables as they converge to the steady state along the stable manifold are

expected to be concave. This suggests that the optimal carbon tax will be

increasing and concave. This tax, however, is expressed in terms of utils.

To express it in terms of consumption at date t, it should be divided by

the marginal utility of consumption, which is 1/yitE
a
it exp (−Di (Tt)) . Since

12



yit is expected to increase over time like exp (git), this would give a convex

increasing tax ramp in date t consumption units. This implies that our tax

ramp is compatible in consumption units with results obtained by Nordhaus

(2014) or Golosov et al. (2014). Furthermore, in all numerical simulations

the steady-state costate values increase as the ambiguities in terms of ηi
and θi increase. Thus the optimal tax increases with ambiguity from the

regulator’s point of view.

Optimal taxation of the form discussed above captures mainly physical

risks and uncertainty associated with climate change as seen from the regu-

lator’s point of view. To capture policy risks and ambiguity associated with

firms’responses to climate policy, we need to introduce ambiguity aversion

and preferences for robustness into the problem of the firm which maximizes

profits by taking environmental policy as exogenous to the firm but uncer-

tain. Thus we introduce policy uncertainty or ambiguity by considering the

profit maximization of a firm with preferences for robustness and concerns

about the size of the carbon tax which will apply to the firm’s emissions

under two types of robustness: (i) additive policy uncertainty, and (ii) mul-

tiplicative policy uncertainty.

Under additive policy uncertainty, the firm solves:

max
Eit

min
fit

[
ln yit + α lnEit − (τ it + fit)Eit +

1

2ξi
f2
it

]
, (21)

with optimality conditions

fit = ξiEit (22)
α

Eit
= τ it + fit = τ it + ξiEit ⇒ α = τ itEit + ξiE

2
it. (23)

Taking the total differential of (23), we obtain

dEit
dξ

=
−Eit

(τ it + 2ξiEit)
< 0. (24)

Thus an increase in policy uncertainty will reduce emissions for a given

carbon tax.

Taking the positive root of the quadratic (23), the emissions of the robust
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representative firm are

Eit =
1

2ξi

[
−τ it +

(
τ2
it + 4αξi

)1/2]
. (25)

Combining (25) with (9), it follows that the optimal emission tax, if the

regulator takes into account the firm’s concerns about policy uncertainty, is

the solution of:[
−τ it +

(
τ2
it + 4αξi

)1/2]
=
−2ξiωiα∑

i λiµit
. (26)

Under multiplicative policy uncertainty, the firm solves

max
Eit

min
fit

[
ln yit + α lnEit − (τ it(1 + fit))Eit +

1

2ζi
f2
it

]
, (27)

with optimality conditions

fit = ζiτ itEit (28)
α

Eit
= τ it(1 + fit) = τ it (1 + ζiτ itEit)⇒ α = τ itEit + ζiτ

2
itE

2
it. (29)

Solving for Eit, we obtain

Eit =
1

2τ itζi

[
−1 + (1 + 4aζi)

1/2
]
, (30)

and the optimal tax, if the regulator takes into account the firm’s concerns

about policy uncertainty, is the solution of

1

2τ itζi

[
−1 + (1 + 4aζi)

1/2
]

=
−ωiα∑
i λiµit

. (31)

Taking the total differential of (29), we obtain

dEit
dζ

= −τ2
itE

2
it/(τ it + 2ζiτ

2
it) < 0. (32)

Thus, as in the case of additive uncertainty, an increase in policy uncertainty

will reduce emissions for a given carbon tax.

If the regulator does not consider the possibility that the firm is con-

cerned about policy uncertainty and sets the optimal carbon tax in the way

described in the previous section, then conditions (23) or (29) suggest that
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the robust equilibrium for the decentralized firm is more “conservative” in

emissions than the robust planner. Thus, because of policy uncertainty, it

may be optimal to set the tax rate a bit below the optimal Pigouvian rate.

5 Optimal robust climate policy: simulations

Although it is clear from (15) and (16) that ambiguity, misspecification

concerns and regional spillovers affect steady states, emission policies and

carbon taxes, the nonlinearities and the dimensionality of the problem do

not allow for the derivation of tractable comparative static results. To obtain

some insights into the impacts of these effects, we resort to simulations.

It should noted, however, that because of the simplicity of our model, the

values obtained by our simulations should be regarded as quantitative story

telling about the impacts on the optimal policies of the combined effects of

deep uncertainty and misspecification concerns across regions along with re-

gional temperature spillovers on damages. Thus our simulations depict the

direction of changes on the optimal temperature anomaly paths and car-

bon taxes as misspecification concerns change across regions, and spillovers

effects are accounted for, rather than accurate point estimates.

In designing our simulations, we chose to concentrate on a three-region

model. The regions are defined as follows: R1 from 90S to 30S; R2 from

30S to 30N; and R3 from 30N to 90N. R2 contains mainly the developing

world, while R3 is mainly the industrialized North. R1 is mostly ocean with

parts of South America, Australia, South Africa and New Zealand. The

choice of these three regions is motivated by work such as that of Burke et

al. (2015), Hsiang et al. (2017) and Diffenbaugh and Burke (2019a). These

studies argue that since damages are larger in low latitude (warmer) areas

and are projected to become relatively even larger in low latitude areas than

at temperate latitudes, it is reasonable to expect that robustness analysis of

the impact of climate change on development is likely to be relatively more

important for R2 than for R1 and R3. These three regions are also the focus

of articles and reviews, such as Ghil and Lucarini (2020, e.g., figures 7 and

8) or Siler et al. (2018), and represent regions in which climate phenomena

associated with damages are different. For example, hurricanes loom much

larger in [30S, 30N], and droughts and floods loom larger in the two regions

outside the tropics. An additional reason for choosing them and identifying

15



the tropical zone [30S, 30N] as a separate region is that development econo-

mists such as Sachs (2001) have emphasized the problems which the tropical

zone faces in doing as well economically as the temperate zones. This leads

to the surmise that the tropical zone may have less adaptive capacity to

cope with climate change than the temperate zones.

Recent data indicate that the regional distribution of the temperature

anomaly is dominated by the larger anomaly at the high Northern latitudes,

as shown in figure 1.

Figure 1. The temperature anomaly 90◦S-90◦N.

Source: GISTEMP Team, 2019: GISS Surface Temperature Analysis (GIS-

TEMP). NASA Goddard Institute for Space Studies. Dataset accessed 25/10/2019

at data.giss.nasa.gov/gistemp/.

Since we are interested in exploring the impact of the larger anomaly

at the high Northern latitudes, in the regional model we considered only

unidirectional spatial spillovers effects due to the larger anomaly at the high

Northern latitudes, from R3 to R2 and R1. Using Leduc et al. (2016), we

associated approximate RTCREs with each region. We used RTCRE(R1) =

λ1 = 0.75◦C/TtC, RTCRE(R2) = λ2 = 1.3◦C/TtC and RTCRE(R3) =

λ3 = 2◦C/TtC. The next step was to calibrate regional damage functions.

Using data from Berkeley Earth Surface Temperatures (BEST),7 we set

approximate average annual mean land temperature for 1951-1980 at: R1
7See https://climatedataguide.ucar.edu/climate-data/global-surface-temperatures-

best-berkeley-earth-surface-temperatures. We acknowledge that the BEST dataset has
coarse spatial resolution relative to other datasets with finer resolutions such as GLDAS
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≈ 15◦C, R2 ≈ 26◦C, R3 ≈ 13◦C. Then we added approximate anomalies

from the NASA data —0.5◦C for R1, 0.75◦C for R2 and 1.25◦C for R3 —

to obtain approximate regional temperatures for 2018. These temperatures

are regarded as the base temperatures for calculating the optimal coopera-

tive future regional anomalies. To calibrate a damage function of the form

exp[di∆Ti + 1
2vi (∆Ti)

2 + w3i∆T3], for i = 1, 2, 3 with w33 = 0, we consid-

ered an average future anomaly of 3◦C which is distributed across regions

in proportion to the historically-observed anomalies and added these anom-

alies to the average regional level temperatures calculated for 2018 to obtain

regional temperatures under an average 3◦C anomaly. In Diffenbaugh and

Burke (2019a, supplementary information, figure S1), temperature levels are

associated with damages as a proportion of GDP. Using this information,

we associated average regional temperature levels calculated for the average

3◦C anomaly with the corresponding damages from Diffenbaugh and Burke

(2019a). This approach resulted in these approximate regional damages as

proportions of GDP: R1 ≈ −2.5%, R2 ≈ −15%, R3 ≈ −2.0%.

Then the parameters of the value functions were calibrated using the

relations:

(1− γ1 − γ31) = exp

[
d1∆T1 +

1

2
v1 (∆T1)2 + w31∆T3

]
(33)

(1− γ2 − γ32) = exp

[
d2∆T2 +

1

2
v2 (∆T2)2 + w32∆T3

]
(34)

(1− γ3) = exp

[
d3∆T3 +

1

2
v3 (∆T3)2

]
, (35)

γ1 = 2.5%, γ2 = 15%, γ3 = 2%, (36)

where γi, i = 1, 2, 3 are the damages as a proportion of GDP, and ∆Ti the

temperature anomalies in each region. Terms γ31, γ32 are introduced to

correspond to potential impact on GDP of regions R1 and R2 respectively,

due to the the larger anomaly at the high northern latitudes occurring in

v2.1 (https://ldas.gsfc.nasa.gov/gldas), and this may result in unknown biases. However,
our model is stylized and coarse grained, since it has only three regions, which means
that it is low in the hierarchy of climate models as characterized by Ghil and Lucarini
(2020). Using a fine-grained dataset like GLDAS v2.1 to calibrate such a low hierarchy
model is not expected to provide any significant improvement relative to a dataset with a
coarser spatial resolution. Why work with a model so low down in the model hierarchy?
Ghil and Lucarini (2020) quote climate scientists back to Held (2005) on the value of low
hierarchy elements as useful tools to assist in understanding and suggesting what might
happen at the next higher level in the hierarchy.
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region R3. The terms w31, w32 correspond to the parameter of the damage

function reflecting the spatial spillover effects.

Since we have no reliable information on the values γ31, γ32, we consid-

ered two scenarios. In the first —which we call “No spillover effects”— it

is assumed that the temperature anomaly R3 does not affect damages in

the other region, or γ31 = γ32 = w31 = w32 = 0. In the second, “Spillover

effects”, we assume that the larger anomaly at the high Northern latitudes

in R3 increases damages in R2 by 1% of GDP, γ32 = 1%, and in R3 by 0.5%

of GDP, γ31 = 0.5%. Note that these parameters are hypothetical because

of the lack of relevant data. We believe, however, that the “Spillover ef-

fects” scenarios could provide useful qualitative information regarding the

impact of the larger anomaly at the high Northern latitudes, especially in

the developing world.8 ,9

The regional damage functions under the simplification implied by (33)-

(35) become

D1 (T1t, T3t) = exp

(
d1T1t +

1

2
v1T

2
1t + w31T3t + k1T1t

)
(37)

D2 (T2t, T3t) = exp

(
d2T2t +

1

2
v2T

2
2t + w32T3t + k2T2t

)
(38)

D3 (T3t) = exp

(
d3T3t +

1

2
v3T

2
3t + k3T3t

)
. (39)

Then the optimality conditions (9)-(13) become, for i = 1, 2, 3,

8 In Liu et al. (2017), exposure to climate change refers to damages from climate change;
it is pointed out that for the high IPCC emissions scenario 8.5, the average exposure for
Africa is over 118 times greater than it has been historically, while the exposure for Europe
increases by only a factor of four.

9The parameters of the damage function, along with the rest of the parameters used
in the simulation, are shown in table A1 of appendix 2.
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E∗it =
−αωi∑3
i=1 µitλi

(40)

hit = −
(
θi
ωi

)
σiµit, kit = ηiTit, (41)

µ̇1t = (ρ+B1)µ1t + ω1(d1 + v1T1t) + ω1η1T1t (42)

µ̇2t = (ρ+B2)µ2t + ω2(d2 + v2T2t) + ω2η2T2t (43)

µ̇3t = (ρ+B2)µ3t + ω3(d3 + v3T3t) + ω3η3T3t + ω1w31 + ω2w32 (44)

Ṫit = λiE∗t −BiTit − σ2
i

(
θi
ωi

)
µit. (45)

The optimality conditions also depend on the robustness parameters

(θi, ηi) and the welfare weights ωi, i = 1, 2, 3. In (41), the optimality con-

dition for ki indicates the maximum upwards distortion in damages which

could emerge given the value of the robustness parameter ηi which reflects

the planner’s misspecification concerns about regional damages. If there are

no concerns, ηi = 0 and ki = 0, but if there are concerns, then the distortion

is proportional to the temperature anomaly. Therefore, for given concerns,

the higher the anomaly, the higher the potential distortion in damages.

In terms of the calibration, there is no information about the possible

value of the misspecification concerns that a planner might have regarding

regional damage function and temperature dynamics. We know, however,

from studies such as Burke et al. (2015), Hsiang et al. (2017) and Diffen-

baugh and Burke (2019a), that damages are larger in low latitude (warmer)

areas and are projected to become relatively even larger in low latitude areas

than at temperate latitudes. Hsiang et al. (2017) project larger damages for

lower latitudes even for an advanced country like the U.S. This suggests that

it would be reasonable to stratify the planner’s problem with misspecifica-

tion concerns about damages that increase as the latitude gets closer to the

Equator because of lack of understanding of the ineffi ciencies of adaptive

response to climate change which is increasing as the latitude gets closer

to the Equator. This could be attributed to the lack of understanding of

the ineffi ciencies of adaptive response to climate change which is a given

part of “technology”and includes limits on adaptive capacity. The lack of

understanding increases as we move towards the Tropics, along with the

ambiguity associated with the large heterogeneities of the returns to factors
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of production in developing countries (our Tropics region R2) relative to

developed countries.10 This implies that θ2 should be greater than θ1 and

θ3.

Furthermore, given the uncertainties associated with the larger anomaly

at the high Northern latitudes, it might be reasonable to assume that the

planner might have stronger misspecification concerns about temperature

dynamics in region R3, the North. This implies that η3 should be greater

than η1 and η2.

The spatial structure of the models and the associated differences in

the average development stage of each region implies that there should be

differentiation among welfare weights. We followed the cost benefit analysis

literature (e.g., OECD, 2018, chapter 11) in defining distributional weights

as

ω̂i =

(
ȳ

yi

)e
, e = 1, i = 1, 2, 3,

where ȳ is world GDP per capita, yi is GDP per capita in region i, and e is

the elasticity of marginal utility. We use e = 1 to be compatible with our

assumption about logarithmic utility. Using World Bank data for GDP per

capita in 2018, we obtain ω̂i and then we normalize them to ωi :
∑3

i=1 ωi = 1.

By associating R1, R2 and R3 with GDP per capita of upper middle income

countries, low and middle income countries, and high income countries re-

spectively, the values of the welfare weights obtained are:

ω1 = 0.33, ω2 = 0.54, ω3 = 0.13.

10The scientific background material for the 2019 Prize in Economic Sciences in Memory
of Alfred Nobel states that the work of Abhijit Banerjee and Esther Duflo has articulated
how pieces from microeconomic studies can help move us closer to solving the broad de-
velopment puzzle of what explains the enormous difference in per capita income across
countries. According to the Prize Committee (Nobel Prize Org, 2019: 4), Banerjee and
Duflo started by documenting the striking empirical fact that “low- and middle-income
economies encompass enormous heterogeneities in the rates of return to the same fac-
tors of production within countries, which dwarf observed cross-country heterogeneities in
economy-wide (average) returns. In other words, some firms and individuals in develop-
ing countries use the latest technology, while others in the same country and sector use
outdated production methods. In high-income countries, these within-sector differences
in productivity are much smaller.”
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5.1 Simulation results

To study the differentiation of optimal robust policies when misspecification

concerns and welfare weights differ across regions, we consider the following

four simulation scenarios:

1. S1: No spillover effects and equal welfare weights.

2. S2: No spillover effects and unequal welfare weights.

3. S3: Spillover effects and equal welfare weights.

4. S4: Spillover effects and unequal welfare weights.

In each scenario, we consider four cases:

a D: No misspecification concerns, θi = 0, ηi = 0, i = 1, 2, 3. This is the

deterministic case.

b Rb1: Robust control with θ2 = 1, θ1 = θ3 = 0, η3 = 0.5, η1 = η2 = 0.

c Rb2: Robust control with θ2 = 2, θ1 = θ3 = 0, η3 = 0.75, η1 = η2 = 0.

d Rb3: Robust control with θ2 = 3, θ1 = θ3 = 0, η3 = 1.0, η1 = η2 = 0.

Cases Rb1, Rb2 and Rb3 capture the notion of higher concerns about

damages in the Tropics and higher concerns about temperature dynamics in

the North. Misspecification concerns increase as we move from Rb1 to Rb3.

In the simulations, we first obtain numerical solutions for the steady

state of the nonlinear system (40)-(45). This corresponds to a steady state

for the temperature anomalies and the corresponding shadow cost for the

anomaly —that is, the costate variable — in each region. Then the Hamil-

tonian system (42)-(45) is linearized at the steady state and its Jacobian

matrix is calculated. It is verified that this matrix has three negative and

three positive eigenvalues; therefore the steady state is a saddle point, and

transversality conditions at infinity are satisfied. The system of the six lin-

ear ordinary differential equations (ODEs) resulting from the linearization

of (42)-(45) is solved with initial values for the temperature anomalies and

terminal values for the steady-state vector, by setting the constants corre-

sponding to positive eigenvalues equal to zero. This allows us to obtain

the optimal transition paths toward the steady state in the neighborhood
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of the steady state. In figure 2 we present the paths for optimal anomalies

(left panel) and emissions (right panel) resulting from the solution of the

linearized Hamiltonian system, for scenario S4, Rb1. The paths for all the

rest of the cases are similar, with convergence to different steady states.

Figure 2. Paths for optimal temperature anomalies (left panel) and

emissions (right panel) for scenario S4, Rb1.

In tables 1a-1d, we present simulation results regarding optimal steady-

state anomalies, optimal steady-state taxes as defined in (20), for steady-

state values µ∗i , and the proportion of the global cost of climate externality

attributed to each region defined as Xi = (λiµ
∗
i )� (

∑
i λiµ

∗
i ) , i = 1, 2, 3.

The steady-state anomalies ∆Ti are expressed in ◦C, while the taxes are

presented as an index in which the scenario S1, D, which is a deterministic

case without spillover effects and region-specific distributions weights —the

scenario most analyzed in low-dimensional climate models —is regarded as

the base.11

Table 1a. S1: No spillover effects and equal welfare weights
∆T1 ∆T2 ∆T3 τ∗1, X1(%) τ∗2, X2(%) τ∗3, X3(%)

D 0.76 1.31 2.63 1.00, 9 1.00, 78 1.00, 13

Rb1 0.34 0.60 1.65 2.11, 3 2.11,92 2.11, 5

Rb2 0.26 0.46 1.56 2.84, 2 2.84, 95 2.84, 3

Rb3 0.22 0.38 1.66 3.42, 2 3.42, 95 3.42, 3

Table 1b. S2: No spillover effects and region-specific welfare weights

11As mentioned at the beginning of this section, given the simplicity of our model, we
prefer to present the direction of changes in optimal policy as new elements are taken into
account, rather that providing point estimates.
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∆T1 ∆T2 ∆T3 τ∗1, X1(%) τ∗2, X2(%) τ∗3, X3(%)

D 0.61 1.07 2.13 1.16, 6 0.74, 90 3.16, 4

Rb1 0.27 0.47 1.35 2.68, 2 1.68, 97 7.11, 1

Rb2 0.20 0.35 3.26 3.63, 1 2.26, 95 9.58, 4

Rb3 0.17 0.30 4.01 4.37, 1 2.68, 96 11.53, 3

Table 1c. S3: Spillover effects and equal welfare weights
∆T1 ∆T2 ∆T3 τ∗1, X1(%) τ∗2, X2(%) τ∗3, X2(%)

D 0.71 1.24 2.48 1.05, 8 1.05, 71 1.05, 21

Rb1 0.34 0.58 2.12 2.21, 3 2.21, 88 2.21, 9

Rb2 0.25 0.44 2.37 2.89, 2 2.89, 91 2.89, 7

Rb3 0.21 0.37 2.87 3.37, 2 3.37, 91 3.37, 7

Table 1d. S4: Spillover effects and region-specific welfare weights
∆T1 ∆T2 ∆T3 τ∗1, X1(%) τ∗2, X2(%) τ∗3, X3(%)

D 0.57 0.99 1.98 1.32, 6 0.79, 80 3.42, 14

Rb1 0.26 0.46 3.3 2.79, 2 1.74, 91 7.37, 7

Rb2 0.20 0.34 4.6 3.68, 1 2.26, 93 9.68, 6

Rb3 0.17 0.29 6.3 4.37, 1 2.68, 93 11.42, 6

The simulation results suggest the following:

• Increase in preferences for robustness, or misspecification concerns,
reduces emissions in all regions.

• Increase in preferences for robustness reduces temperature anomalies
in the South and the Tropics, but not in the North. This can be justi-

fied in the following way. We run a large number of simulations which

indicated that under robust control, and provided that the worst sce-

nario emerges, increasing the θ—ambiguity with no η—ambiguity leads

to higher steady-state emissions, because the choice of the adversar-

ial agent is equivalent to increasing the impact of emissions on the

change in temperature. In this case, the planner’s policy is to reduce

emissions and increase the carbon tax, but the distortion which in-

creases the temperature rate of growth eventually leads to a relatively

higher steady-state anomaly relative to the no ambiguity case. Since in

our simulations temperature dynamics misspecification affected only

the North, the anomaly increases only there, despite the fact that

the North’s emissions are reduced. On the other hand, increasing
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η—ambiguity with no θ—ambiguity leads to lower steady-state temper-

atures under robust control. When both types of ambiguity exist, as

in the case of table 1, there are two opposite impacts on steady-state

anomalies and the final outcome will depend on the relative strength

of the effects. In the cases reported in table 1, the θ—ambiguity effect

dominates when the θ—ambiguity is more than Rb2 and in some cases

more than Rb1 and, therefore, the temperature anomaly in the North

increases.

• Increase in preferences for robustness uniformly increases the optimal
robust carbon tax relative to the benchmark case of no ambiguity and

equal welfare weights (S1D), when welfare weights are equal.

• Increase in preferences for robustness, with unequal welfare weights,
uniformly increases the optimal robust carbon tax relative to the bench-

mark case of no ambiguity and equal welfare weights (S1D), but the

carbon tax for the Tropics is always lower than the tax for the South

and the North. The tax for the North is always the highest. This

result is in line with the report by the High-Level Commission on Car-

bon Prices (2017), and Stiglitz’s (2019) recommendations of nonuni-

form carbon taxes, with carbon taxes being relatively higher in regions

where consumers are disproportionally rich. Brock et al. (2014), in

a continuous space model with heat transport Polarwards, also show

that optimal carbon taxes are higher in relatively richer regions in

which the marginal utility of consumption is lower.

• The proportion of the global cost of climate externality attributed to
each region (X%) is always the highest in the Tropics and increases

with unequal welfare weights and misspecification concerns.

Regarding the choice of the damage function, we understand that there

are controversies around the empirical papers we use to calibrate our

damage function. For example, Rosen (2019) argues that the tem-

perature estimates in Diffenbaugh and Burke (2019a) are biased up-

ward and their regression analysis is flawed because of omitted variable

bias.12 While it is beyond the scope of this paper to deal with this de-

bate, it is suggestive of a rather large layer of uncertainty surrounding

12See Diffenbaugh and Burke (2019b) for their response to Rosen.
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the three damage functions in our formulation. The extensive discus-

sions and the controversies associated with the damage function (e.g.,

Pindyck, 2017) and, more specifically for our case, the controversy be-

tween Diffenbaugh and Burke (2019a) and Rosen (2019) —since we use

Diffenbaugh and Burke (2019a) for our calibrations —is a good reason

to use alternative damage functions in a robustness analysis.

We thus performed sensitivity analysis by uniformly reducing the co-

effi cients of the quadratic formulations (37)-(39) and by using a linear

version by setting vi = 0, i = 1, 2, 3. In all simulations the qualitative

structure of the results remains the same as our central results pre-

sented in table 1. The linear formulation of the damage function leads

to higher steady-state temperatures for all three regions, but the qual-

itative behavior remains the same as with the quadratic specification.

More specifically, with a linear damage formulation the steady-state

anomalies corresponding to row D of table 1a are (∆T1,∆T2,∆T3) =

(1.62, 2.81, 5.62) , while the steady-state anomalies corresponding to

row D of table 1c are (∆T1,∆T2,∆T3) = (2.04, 3.54, 7.08) , which sug-

gests that the specification of the damage function, and for our case

the existence or not of strict convexity, is important in determining the

socially-optimal steady-state levels and the paths to the steady state.

The debate over specifying a realistic damage function is an open issue

in climate change economics.13

6 The welfare impact of robustness

An issue which arises when a robust climate policy is pursued is whether the

policy incurs additional welfare costs or benefits relative to the case in which

no misspecification concerns are involved.14 To obtain an approximation of

13An interesting exercise (which is beyond the scope of this paper) would be to take
an estimation procedure such as the one that Rosen (2019) suggests for each of the three
regions and use it as the baseline model around which the robustness analysis is centered,
where the set of deviations to robustify against are large enough to include the Diffenbach
and Burke (2019a) estimates. Reverse the procedure and put the Diffenbach and Burke
(2019a) estimates as the baseline, but make the set of deviations to robustify against large
enough to include the estimates using the Rosen procedure. Then report what differences
there are in the results of the robustness analysis. Since we do not know which method
delivers the “truth”, this kind of procedure would hopefully bound the truth in some way.
14There is a conceptual issue as to whether the “welfare”indicator we use for our Pareto

optimal planner in the presence of misspecification concerns is a “true”welfare indicator
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these costs, we calculate the global welfare indicator:

Js,ν =

∫ ∞
t=0

e−ρt
3∑
i=1

ωi[α lnEs,νit −
(
diT

s,ν
it +

1

2
vi (T s,vit )

2
+ w3jT

s,v
3

)
]dt,

j = 1, 2, ν = D,Rb1, Rb2, Rb3, s = S1, S2, S3, S4.

The indicator corresponds to the case in which the global regulator is

committed to the emissions paths obtained through the relevant robust con-

trol optimizations. The indicators were calculated numerically and the re-

sults are shown in figure 3.

Figure 3. Evolution of global welfare indicators (GW) for S1,...,S4 when

preferences for robustness increase.

Note: On the horizontal axis, 1 is D, 2 is Rb1, 3 is Rb2 and 4 is Rb3.

The results indicate that, with the exception of S4, welfare increases as

the planner has mild concerns about misspecification (case Rb1). Then, as

misspecification concerns become stronger, welfare is decreasing. This means

that in Rb1 the global gains from reducing emissions and global warming

since it includes terms from the minimizing agent as well as terms from the maximizing
agent in the intertemporal zero sum dynamic game solution. Under appropriate suffi cient
conditions, Hansen et al. (2006, appendix D) show that one can interchange maxmin with
minmax and interpret the planner as a Bayesian facing a worst case distribution. Hansen
and Sargent (2019: 1) quote I.J. Good who says that a minimax solution is reasonable if the
worst case distribution is reasonable according to the planner’s body of beliefs. Hansen and
Sargent (2019) also quote George Box on when one might get a useful approximation out
of a well-chosen parsimonious model; they also discuss the consistency of their solutions.
While our simple treatment here does not do justice to the subtleties of the Hansen et
al. (2006) and Hansen and Sargent (2019) discussions, we use our welfare indicator as if
we are treating our Pareto optimal planner with its regional weights as a Pareto optimal
Bayesian planner choosing an optimal solution under the worst case distribution. A more
complete treatment requires a full accounting of stochastic shocks and suffi cient conditions
for maximin solutions to be equal to minimax solutions as in, for example, Hansen et al.
(2006).
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counterbalance the loss in terms of output due to the lower emissions. As

misspecification concerns increase, the output effect becomes stronger and

welfare is reduced. Therefore, for a given low level of aversion to ambiguity

by the planner, robust policy could be welfare enhancing at the global level.

For high aversion, our numerical results indicate that robust policies have a

welfare cost.

It will be interesting to examine this global result in terms of the impact

of robust control on individual regional welfare. In this case, the welfare

indicator will be:

Js,νi =

∫ ∞
t=0

e−ρtωi[α lnEs,νit −
(
diT

s,ν
it +

1

2
vi (T s,vit )

2
+ w3jT

s,v
3

)
]dt,

i = 1, 2, 3, j = 1, 2, ν = D,Rb1, Rb2, Rb3, s = S1, S2, S3, S4.

The simulation results are shown in figure 4.

Figure 4. Evolution of regional welfare indicators when preferences for

robustness increase.

Note: On the horizontal axis, 1 is D, 2 is Rb1, 3 is Rb2 and 4 is Rb3.

The results suggest that robust control at the global level is beneficial

for the Tropics only. The reason is that since global emissions are reduced

by robust control, and the Tropics suffer most of the damages, the gain for

this region from the reduction in climate change damages exceeds the losses

from reduced output.
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7 Learning and robust control

The numerical results of the previous section indicate that robustness could

be costly, relative to the case of no concerns about model misspecification,

especially in the cooperative solution. This raises the issue of whether it is

possible to avoid this cost by learning. In Anderson et al. (1998: 2), it is

stated that “Superficially at least, the perspective of the ‘robust’controller

differs substantially from that of a ‘learner’.” In our dynamic settings, the

robust decision maker accepts the presence of model misspecification as a

permanent state of affairs, and devotes his/her thoughts to designing robust

controls, rather than, say, thinking about recursive ways to use data to

improve the model specification over time. The idea here is that the ‘learner’

cannot improve against model misspecification even with a large amount of

data.

However, when dealing with climate change issues, the stakes are high

and learning through scientific research is an ongoing process which might

remove some concerns regarding damages or temperature dynamics. To

model such a process, we consider the case in which part of the labor force,

which in the model without learning is fully employed in the output produc-

ing sector, could be employed in the ‘learning’sector. Employment in the

learning sector reduces misspecification concerns, since it allows the regula-

tor to learn about the processes for which there is ambiguity. We assume

that the robustness parameter can be expressed as the function:

φ (Li − lit) , φ′ > 0, i = 1, 2, (46)

where lit is labor input used in region i to produce output at time t, and

Li − lit is labor input allocated to the learning sector for climate damages.
Assume that learning activities take place only with respect to damages from

climate change and that the world is changing rapidly so that no learning

stock is accumulated.15 The regulator’s objective associated with the mul-

15Both assumptions are simplifying. Accumulation of learning stock requires introduc-
tion of learning dynamics of the form Ṡt = η (Li − lit)− δSt , S0 given. The introduction
of more dynamic constraints would have complicated the solution even more. However,
the use of a ‘flow concept’for learning at this stage provides intuition to the problem and
the use of learning dynamics is left for future research.
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tiplier representation of the robust control problem can be written as:

max
{Eit,lit}

min
{kit,hit}

(47)

∫ ∞
t=0

e−ρt
N∑
i=1

ωi

ln yit + β ln lit + α lnEit −
N∑
j=1

(
dijTjt +

1

2
vijT

2
jt + kitTjt

)

+
1

2
φ (Li − lit) k2

it +
h2
it

2θi

]
dt, (48)

subject to (3). For this problem, the current value Hamiltonian is:

HC =
N∑
i=1

ωi

ln(yitl
β
itE

α
it)−

N∑
j=1

(
dijTjt +

1

2
vijT

2
jt + kitTjt

)
+

1

2
φ (Li − lit) k2

it +
h2
it

2θi

+

N∑
i=1

µi[λiEt −BiTit + σihit]. (49)

Optimality conditions for i = 1, ..., N imply:

αωi
Eit

+

N∑
i=1

µitλi = 0⇒ E∗it =
−αωi∑
i µit λi

(50)

β

lit
=

1

2
φ′ (Li − lit) k2

it (51)

kit =
Tit

φ (Li − lit)
, hit = −(θi/ωi)σiµit (52)

µ̇it = (ρ+Bi)µit +

N∑
j=1

ωj(dji + vjiTjt) +
Tit

φ (Li − lit)
(53)

Ṫit = λiEt −BiTit − σ2
i (θi/ωi)µit. (54)

This formulation implies that learning about climate damages from the reg-

ulator’s point of view raises the cost of the ‘adversarial agent’who tries to

minimize the regulator’s welfare. Since φ′ > 0, an increase in the amount

of labor allocated to learning will reduce the penalty that the adversarial

agent could impose on the regulator. To put it differently, an increase in

learning reduces misspecification concerns and ambiguity. Under this setup,

the following result can be stated.

Proposition 2 An increase in the regional temperature will always increase
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the labor input allocated to the learning sector.

For the proof, see Appendix 1.

Similar to condition (41), condition (52) shows that the maximum dis-

tortion of damages due to misspecification concerns is proportional to the

temperature anomaly with proportionality coeffi cient 1/φ (Li − lit) . This
proportionality coeffi cient depends on labor allocation. Our proposition in-

dicates that if the temperature anomaly increases, the planner has an incen-

tive to increase labor input allocated to learning. By doing so, the regulator

can reduce his/her concerns about misspecification, which means that the

maximum damage distortion according to which the regulator has to de-

sign emission policy is lower. This implies more emissions along the optimal

path. Allowing more emissions, because of the lower damage distortion,

will increase output. Of course there is a trade-off here since, by allocating

more labor to the learning sector, there will be a negative impact on output.

These trade-offs are captured by the optimal solution.

Other generalizations are also possible. One approach could be to con-

sider allocation of labor across three activities: production of goods; miti-

gation of damages, that is, adaptation to climate change; and our type of

“learning”. In the optimal allocation of labor across these three activities

by a Pareto optimal planner, it could be possible to locate plausible suffi -

cient conditions for a positive amount of labor to be allocated to all three

activities, e.g., Inada type conditions. Furthermore, in a competitive model

the wage rate of labor in each region could increase as the demand for labor

increases due to increased labor demand for adaptation. A possible way of

generalizing to a model with three labor activities is to make the damage

parameters in equations (4) and (5) a function of labor allocated to damage

mitigation. This means defining the damage parameters as dij(lij) where

lij is labor allocated to damage mitigation. As this type of labor increases,

dij decreases. If we assume that dij(0) > 0, d′ij(0) � 0 and d′ij(∞) = 0

while d′ij (lij) < 0 for all lij , along with d
′′
ij (lij) > 0 and d′ij(0) = −∞ for

an Inada condition, the maximizing agent’s problem (the social planner’s

problem) is concave and the minimizing agent’s problem is convex; there-

fore some labor should be allocated to mitigating damages. The full analysis

of such a problem is outside the objective of the current paper, but it repre-

sents an interesting area of further research, since much attention has been

given recently to the mitigation of damages from climate change, that is,
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adaptation.

8 Concluding remarks

Deep uncertainties are associated with both the natural and the economic

characteristics of climate change. These uncertainties are amplified by the

fact that in reality the temperature anomaly evolves differently across the

globe, with a faster increase in the area of the North Pole relative to the

Equator, because of natural mechanisms. In this context, we study climate

change policies by using the novel pattern scaling approach of RTCREs and

develop an economy—climate model under conditions of deep uncertainty

associated with temperature dynamics, regional climate change damages,

and policy in the form of carbon taxes. The regional structure of the model

allows us to analyze the distributional effects of climate change on regional

carbon taxes.

We applied robust control methods to derive optimal emission policies

and the associated price of the climate externality and carbon taxes under

the different sources of deep uncertainty. Our results indicate that in general

robust policies under deep uncertainty lead to more conservative emission

policies relative to a deterministic situation. Furthermore, ambiguity related

to the damage function tends to produce more conservative policies than am-

biguity in temperature dynamics, while robust control with high concerns

about model misspecification is relatively more costly, but this could depend

on the vulnerability of a region in noncooperative solutions. The most vul-

nerable region in our parametrization benefits in welfare terms from robust

policies when misspecification concerns are mild. Furthermore, the most

vulnerable/poorest region pays a lower carbon tax when distribution across

regions is taken into account. We also show that competitive firms, when

facing ambiguity regarding carbon taxes, tend to be more conservative and

use smaller amounts of fossil fuels relative to the case of no policy uncer-

tainty. Policy uncertainty could be important in practice because it relates

to uncertainties in the transition to a low carbon economy.

Our results suggest that in the context of the Paris accord (COP 21)

and the further development of the “Paris rulebook”, it will be important to

address the need to differentiate policy instruments, either as carbon taxes

or tradable permits, among rich and poor countries and the potential issues
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associated with the emergence of carbon leakage.

Future research is needed that focuses on impacts of climate change on

the pricing of regional assets and the pricing of uncertainties impacting such

assets. At the global scale, Barnett et al. (2020) have made progress on

pricing a trinity of uncertainties, i.e., risk, ambiguity aversion and misspec-

ification uncertainties. At latitude-specific regional scales, based upon the

work of Burke et al. (2015), Hsiang et al. (2017) and Diffenbaugh and

Burke (2019a), it is plausible to speculate that all three of the trinity of

uncertainties are likely to grow relatively larger at lower latitudes compared

to higher temperate latitudes in future projections of climate impacts. Such

impacts on assets plus the concern about “stranded assets” (e.g., Barnett,

2019) and potential impacts of climate change on monetary policy (Econo-

mides and Xepapadeas, 2018; San Francisco Federal Reserve Bank, 2019)

suggest that research on pricing latitude-specific regional asset uncertainties

is an important area for future research.

Another line of research could focus on strategic interactions among re-

gions, in a set-up in which a cooperative solution cannot be attained and, as a

result, each regional planner maximizes own welfare by taking into account

own misspecification concerns and takes the emission paths and the mis-

specification concerns of the other regions as given. Brock and Xepapadeas

(2019) studied this problem in a deterministic set-up. It would undoubtedly

be interesting to study how differences in misspecification concerns would af-

fect the open loop or feedback Nash equilibrium.16 Although the solution of

this problem is beyond the objectives of this paper, its solution would reveal

the impact of the interactions between regions exhibiting strategic behavior

under deep uncertainty which has a spatial structure, since misspecification

concerns are expected to be different across regions.

16 In such a case, the problem would be:

max
{Eit}

min
{kit,hi}∫ ∞

t=0

e−ρt
[
ln yit + α lnEit −

N∑
j=1

(
dijTjt +

1

2
vijT

2
jt + kitTjt

)
+
k2it
2ηi

+
h2it
2θi

]
dt

subject to (3) for i = 1, ...N.

If regions follow time stationary feedback emission strategies, then the restriction Ei =
hi (T1, ..., TN ) should be added.
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Appendix

Appendix 1
Proof of Proposition 1

Proof. The proof follows directly from the application of the implicit func-

tion theorem. The system (12)-(13) has a straightforward solution at point

o,

µ̄i = − 1

(ρ+Bi)

 N∑
j=1

ωjdji

 (55)

T̄i =
1

Bi

[
N∑
i=1

−αωiλi∑N
i=1 µ̄iλi

]
, (56)

and the Jacobian determinant of (12)-(13) is nonzero at o.

Proof of Proposition 2
Proof. If we substitute the minimizer for kit from the optimality conditions
(50)-(54), the reduced form Hamiltonian becomes:

HC = max
Ei,lt
{
n∑
i=1

ωi

ln(yitl
β
itE

α
it)−

N∑
j=1

(
dijTjt +

1

2
vijT

2
jt + kitTjt

)
+

1

2
φ (Li − lit) k2

it +
h2
it

2θi


N∑
i=1

µi[λiEt −BiTit + σihit]}. (57)

The optimal choice for the labor input is given by

β

lit
=

1

2

φ′ (Li − lit)
φ (Li − lit)2T

2
it. (58)

Assuming that the learning function can be specified as φ (l) = (A/q) lq, we

obtain

β (Li − lit)1+q =
q2

2A
litT

2
it, lit = hi (Tit) , (59)

which implies that the optimal allocation of labor to production and learning
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is a function of temperature. Implicit differentiation results in

dlit
dTit

≡ h′it (Tit) = −
(
q2/A

)
Titlit

(1 + q)β (Li − lit)q + (q2/2A)T 2
it

< 0. (60)

Thus an increase in temperature in region i will reduce the labor input to

production and increase the labor input allocated to learning and to reducing

ambiguity about climate change damages.

Appendix 2
The parameter values used in simulations are shown in Table A1.

Table A1. Simulation parameters
ω1 0.33

ω2 0.54

ω3 0.13

α 0.05

d1 0.0301

v1 0.0402

d2 0.11286

v2 0.15048

d3 0.00898

v3 0.00674

γ31 0.01

γ32 0.05

bi, i = 1, 2, 3 0.008

σi, i = 1, 2, 3 0.1

ρ 0.02

λ1 0.75◦C/TtC

λ2 1.30◦C/TtC

λ3 2.00◦C/TtC

34



References
Alexeev VA and Jackson CH (2013) Polar amplification: is at-

mospheric heat transport important? Climate Dynamics 41, 533—554.
Anderson E, Brock W, Hansen L and Sanstad A (2014) Ro-

bust analytical and computational explorations of coupled economic-climate

models with carbon-climate response. RDCEP Working paper No. 13-05.

Anderson E, Hansen L and Sargent T (1998) Risk and robustness

in general equilibrium. Preprint, University of Chicago.

Anderson E, Hansen L and Sargent T (2012) Small noise meth-

ods for risk sensitive/robust economics. Journal of Economic Dynamics and

Control 36, 468—500.
Anthoff D and Tol R (2013) The uncertainty about the social cost

of carbon: a decomposition analysis using FUND. Climatic Change 117,
515—530.

Athanassoglou S and Xepapadeas A (2012) Pollution control with

uncertain stock dynamics: when, and how, to be precautious. Journal of

Environmental Economics and Management 63, 3, 304—320.
Barnett M (2019) A run on oil: climate policy, stranded assets, and

asset prices. Mimeo, Arizona State University W.P. Carey School of Busi-

ness.

Barnett M, Brock W and Hansen LP (2020) Pricing uncertainty

induced by climate change. Review of Financial Studies 33, 1024—1066.
Brock WA, Engström G, Grass D and Xepapadeas A (2013)

Energy balance climate models and general equilibrium optimal mitigation

policies. Journal of Economic Dynamics and Control 37, 12, 2371—2396.
BrockWA, Engström G and Xepapadeas A (2014) Spatial climate—

economic models in the design of optimal climate policies across locations.

European Economic Review 69, 78—103.
Brock WA and Hansen LP (2017) Wrestling with uncertainty in cli-

mate economic models. Working Paper, Available at SSRN,

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3008833. Forthcom-

ing in Chari VV and Litterman R (eds.) Climate Change Economics: the

Role of Uncertainty and Risk.

Brock WA and Xepapadeas A (2017) Climate change policy under

polar amplification. European Economic Review 94, 263—282.
Brock WA and Xepapadeas A (2019) Regional climate change pol-

35



icy under positive feedbacks and strategic interactions. Environmental and

Resource Economics 72, 1, 51—75.
Burke M, Hsiang SM and Miguel E (2015) Global non-linear effect

of temperature on economic production. Nature 527, 235—239.
Cai Y, Brock W, Xepapadeas A and Judd K (2019) Climate policy

under spatial heat transport: cooperative and noncooperative regional out-

comes. arXiv preprint 1909.04009, 2019. Available at https://arxiv.org/abs/1909.04009.

Cai Y and Lontzek TS (2019) The social cost of carbon with economic
and climate risks. Journal of Political Economy 127, 6, 2684—2734.

Carney M (2015) Breaking the tragedy of the horizon —climate change

and financial stability. Speech at Lloyd’s of London.

Castruccio S, McInerney DJ, Stein ML, Liu Crouch F, Jacob
RL and Moyer EJ (2014) Statistical emulation of climate model projec-
tions based on precomputed GCM runs. Journal of Climate 27, 5, 1829—
1844.

Desmet K and Rossi-Hansberg E (2015) On the spatial economic

impact of global warming. Journal of Urban Economics 88, 16—27.
Diffenbaugh N and Burke M (2019a) Global warming has increased

global economic inequality. Proceedings of the National Academy of Sciences

116, 20, 9808—9813.
Diffenbaugh N and Burke M (2019b) Reply to Rosen: Temperature—

growth relationship is robust. Proceedings of the National Academy of Sci-

ences 116, 33, 16171—16172.
Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL,

Touma D, Charland A, Liu Y, Haugen M, Tsiang M and Rajarat-
nam B (2017) Quantifying the influence of global warming on unprece-

dented extreme climate events. Proceedings of the National Academy of

Sciences 114, 4881—4886.
Easterling WE (1997) Why regional studies are needed in the develop-

ment of full scale integrated assessment modelling of global change processes.

Global Environmental Change 1, 4, 337—356.
Economides G and Xepapadeas A (2018) Monetary policy under

climate change. Working Paper #247, Bank of Greece.

Francis JA and Skific N (2012) Evidence linking rapid Arctic warming

to mid-latitude weather patterns. Philosophical Transactions of the Royal

Society A, doi.org/10.1098/rsta.2014.0170.

36



Francis JA, Skific N and Vavrus SJ (2018) North American weather
regimes are becoming more persistent: is Arctic amplification a factor? Geo-

physical Research Letters 45, doi.org/10.1029/2018GL080252.
Francis JA and Vavrus S (2014) Evidence for a wavier jet stream

in response to rapid Arctic warming. Environmental Research Letters 10,
1—12.

Ghil M and Lucarini V (2020) The physics of climate variability and

climate change. Review of Modern Physics. Available at https://arxiv.org/pdf/1910.00583.pdf.

Gillingham K, Nordhaus W, AnthoffD, Blanford G, Bosetti V,
Christensen P, McJeon H, Reilly J and Sztorc P (2015) Modeling

uncertainty in climate change: a multi-model comparison. NBER Working

Paper 21637. National Bureau of Economic Research, Cambridge, MA.

Golosov M, Hassler J, Krusell P and Tsyvinski A (2014) Optimal

taxes on fossil fuel in general equilibrium, Econometrica 82, 1, 41—88.
Hansen LP and Sargent TJ (2001) Acknowledging misspecification

in macroeconomic theory. Review of Economic Dynamics 4, 3, 519—535.
Hansen LP and Sargent TJ (2008) Robustness in Economic Dynam-

ics. Princeton, NJ: Princeton University Press.

Hansen LP and Sargent TJ (2019) Structured uncertainty and model
misspecification. Available at http://larspeterhansen.org/wp-content/uploads/2019/04/decision_2019_latest-

2.pd.

Hansen LP, Sargent TJ, Turmuhambetova G and Williams N
(2006) Robust control and model misspecification. Journal of Economic

Theory 128, 1, 45—90.
Hassler J and Krusell P (2012) Economics and climate change: in-

tegrated assessment in a multi-region world. Journal of the European Eco-

nomic Association 10, 5, 974—1000.
Hassler J and Krusell P (2018) Environmental macroeconomics: the

case of climate change. Available at http://hassler-j.iies.su.se/PAPERS/Handbookenvironment.pdf.

Hassler J, Krusell P and Olovsson C (2018) The consequences of

uncertainty: climate sensitivity and economic sensitivity to the climate.

Annual Review of Economics 10, 1, 189—205.
Hassler J, Krusell P and Smith T (2016) Environmental macroeco-

nomics. In Taylor J and Uhlig H (eds), Handbook of Macroeconomics, Vol.

2b. Amsterdam: North-Holland, pp. 1893—2008.

Heal G and Millner A (2014) Uncertainty and decision making in

37



climate change economics. Review of Environmental Economics and Policy

8, 1, 120—137.
Held IM (2005) The gap between simulation and understanding in cli-

mate modeling. Bulletin of the American Meteorological Society 86, 1609—
1614.

Hennlock M (2009) Robust control in global warming management:

an analytical dynamic integrated assessment. RFF Discussion Paper No.

09-19. Resources for the Future, Washington, DC.

Heutel G, Moreno-Cruz J and Shayegh S (2016) Climate tipping
points and solar geoengineering. Journal of Economic Behavior and Orga-

nization 132, 19—45.
High-Level Commission on Carbon Prices (2017) Report of the

High-Level Commission on Carbon Prices. Washington, DC: World Bank.

Hope C (2006) The marginal impact of CO2 from PAGE2002: an inte-

grated assessment model incorporating the IPCC’s five reasons for concern.

The Integrated Assessment Journal, Bridging Science & Policy 6, 1, 19—56.
Hsiang S, Kopp R, Jina A, Rising J, Delgado M, Mohan S,

Rasmussen DJ, Muir-Wood R, Wilson P, Oppenheimer M, Larsen
K and Houser T (2017) Estimating economic damage from climate change
in the United States. Science 356, 1362—1369.

IPCC (2013) Climate Change 2013: The Physical Science Basis, Work-

ing Group I’s Contribution to the Fifth Assessment Report of the Intergov-

ernmental Panel on Climate Change. Stocker TF, Qin D, Plattner G-K,

Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM

(eds). Cambridge, UK and New York: Cambridge University Press.

Knutti R (2013) Relationship between global emissions and global tem-

perature rise. Available at https://https://unfccc.int/sites/default/files/7_knutti.reto.3sed2.pdf.

Knutti R and Rogelj J (2015) The legacy of our CO2 emissions: a

clash of scientific facts, politics and ethics. Climatic Change 133, 3, 361—
373.

Krusell P and Smith A (2017) Climate change around the world.

Paper presented at the conference, The Macro and Micro Economics of

Climate Change, University of California, Santa Barbara, May 22-23, 2017.

Langen PL and Alexeev VA (2007) Polar amplification as a preferred
response in an idealized aquaplanet GCM. Climate Dynamics 29, 305—317.

Leduc M, Matthews HD and de Elía R (2016) Regional estimates of

38



the transient climate response to cumulative CO2 emissions. Nature Climate

Change 6, 474—478.
Lemoine DM (2010) Climate sensitivity distributions depend on the

possibility that models share biases. Journal of Climate 23, 4395—4415.
Lemoine DM and Rudik I (2017) Steering the climate system: using

inertia to lower the cost of policy. American Economic Review 107, 10,
2947—2957.

Liu Z, Anderson B, Yan K, Dong W, Liao H and Shi P (2017)

Global and regional changes in exposure to extreme heat and the relative

contributions of climate and population change. Scientific Reports 7, article
43909, DOI: 10.1038/srep43909.

MacDougall AH, Swart NC and Knutti R (2017) The uncertainty

in the transient climate response to cumulative CO2 emissions arising from

the uncertainty in physical climate parameters. American Meteorological

Society, DOI:10.1175/JCLI-D-16-0205.1.

Matthews HD, Gillett NP, Stott PA and Zickfield K (2009) The

proportionality of global warming to cumulative carbon emissions. Nature

459, 829—833.
Matthews HD, Solomon S and Pierrehumbert R (2012) Cumula-

tive carbon as a policy framework for achieving climate stabilization. Philo-

sophical Transactions of the Royal Society A, 370, 4365—4379.
Nævdal E and Oppenheimer M (2007) The economics of the ther-

mohaline circulation —a problem with multiple thresholds of unknown loca-

tions. Resource and Energy Economics 29, 4, 262—283.
Nobel Prize Org (2019) Available at https://www.nobelprize.org/uploads/2019/10/advanced-

economicsciencesprize2019.pdf.

Nordhaus WD (2011) Estimates of the social cost of carbon: back-

ground and results from the RICE-2011 model. Cowles Foundation Discus-

sion paper No. 1826. Yale University, New Haven, CT.

Nordhaus WD (2014) Estimates of the social cost of carbon: concepts

and results from the DICE-2013R model and alternative approaches. Jour-

nal of the Association of Environmental and Resource Economists 1, 1/2,
273—312.

Nordhaus W and Moffat A (2017) A survey of global impacts of cli-

mate change: replication, survey methods, and a statistical analysis. Cowles

Foundation Discussion Paper no. 2096. Yale University, New Haven, CT.

39



Nordhaus WD and Sztorc P (2013) DICE 2013-R: Introduction and
User’s Manual. Yale University, New Haven, CT.

North GR, Cahalan R and Coakely J (1981) Energy balance climate
models. Reviews of Geophysics and Space Physics 19, 1, 91—121.

OECD (2018) Cost-Benefit Analysis and the Environment: Further De-

velopments and Policy Use. Paris: OECD Publishing.

Pindyck RS (2017) The use and misuse of models for climate policy.
Review of Environmental Economics and Policy 11, 1, 100—114.

Ricke K, Grouet L, Caldeira K and Tavoni M (2018) Country-level

social cost of carbon. Nature Climate Change 8, 895—900.
Rosen R (2019) Temperature impact on GDP growth is overestimated.

Proceedings of the National Academy of Sciences 116, 33, 16170.
Sachs JD (2001) Tropical underdevelopment. NBER Working Paper

8119. National Bureau of Economic Research, Cambridge, MA.

San Francisco Federal Reserve Bank (2019) The economics of cli-
mate change. November 8, 2019 AGENDA. Available at https://www.frbsf.org/economic-

research/files/2019-economics-of-climate-change-agenda.pdf.

Siler N, Roe G and Armour K (2018) Insights into the zonal-mean

response of the hydrologic cycle to global warming from a diffusive energy

balance model. Journal of Climate 31, 7481—7493.
Stiglitz JE (2019) Addressing climate change through price and non-

price interventions. European Economic Review, doi:https://doi.org/10.1016/j.euroecorev.2019.05.007.

Weitzman ML (2010) What is the ‘damages function’for global warm-
ing —and what difference might it make? Climate Change Economics 1, 1,
57—69.

Wu B and Francis JA (2019) Summer Arctic cold anomaly dynami-

cally linked to East Asian heat waves. Journal of Climate, doi: 10.1175/JCLI-

D-18-0370.1.

40


	PAPER TITLE 3(1)
	BX_EDE_Regional_Robust_Revision(15March2020)

