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W. A. Brock, A. Xepapadeas and A. N. Yannacopoulos

Abstract We consider a robust control model for a spatially distributed commer-
cial fishery under uncertainty, and in particular a tracking problem, i.e. the problem
of robust stabilization of a chosen deterministic benchmark state in the presence
of model uncertainty. The problem is expressed in the form of a stochastic linear
quadratic robust optimal control problem, which is solved analytically. We focus on
the emergence of breakdown from the robust stabilization policy, called hot spots,
and comment upon their significance concerning the spatiotemporal behaviour of
the system.

1 Introduction

An important issue in understanding ecosystems and designing efficient manage-
ment rules with the purpose of preventing collapse and secure long-term sustainable
productivity, is their spatial and temporal structure. The study of the emergence and
the properties of regular spatial or spatiotemporal patterns which can be found in
abundance in nature, such as for example stripes or spots on animal coats, ripples in
sandy desserts, vegetation patterns in arid grazing systems or spatial patterns of fish
species, has drawn much attention in natural sciences (e.g. Murray (2003)).
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Thus, in the management of natural resources and the regulation of pollution it
seems natural to analyze mechanisms causing spatiotemporal patterns to arise, and
to design regulatory policies with spatial characteristics. In renewable resource eco-
nomics, modelling with spatial-dynamic processes Smith et al. (2009) has been used
to study issues such as harvesting in metapopulation models governed by discrete
spatial-dynamic processes, design of optimal policies in a spatiotemporal domain,
marine or terrestial reserve policies, or bioinvasions (see, e.g., Sanchirico and Wilen
(1999), Wilen (2007)). Pattern formation and spatially dependent policies in renew-
able resource management have been also studied in the context of optimal control
of reaction diffusion spatiotemporal systems (Brock and Xepapadeas (2008), Brock
and Xepapadeas (2010)). In spatial pollution regulation the main objective is the
internalization of the pollution externality through spatially dependent taxes (see,
e.g., Goetz and Zilberman (2000), Goetz and Zilberman (2000)), while spatial anal-
ysis has also been used to study water pricing in which the concept of a spatial
distribution is combined with a two-stage optimal control problem (Xabadia et al.
(2004)).

Another issue which is of considerable interest in resource management is de-
cision making when the decision maker is trying to make good choices when she
regards her model not as the correct one but as an approximation of the correct one,
or to put it differently, when the decision maker has concerns about possible mis-
specifications of the correct model and wants to incorporate these concerns into the
decision-making rules (e.g., Salmon (2002), Hansen and Sargent (2001), Hansen
et al. (2006), Hansen and Sargent (2008), JET (2006)).

The purpose of the present paper is to study the regulation of a commercial fish-
ery following the classic model of commercial fishing (Smith (1969)) with explicit
spatial dependence where spatial interconnections in economic and biological vari-
ables are captured by local and non-local spatial effects. In this model the regulator
has concerns about possible misspecifications of the spatiotemporal evolution of the
phenomenon. That is, the regulator regards her model as an approximation of the
correct spatiotemporal dynamics and seeks spatially dependent regulation that per-
forms well under the approximating model. In this context we try to study how a
regulator could design optimal spatiotemporal robust control for this fishery, how
hot spots, which are location where the qualitative properties of the system change
along with the structure of the regulation, may emerge, and what implications they
might have for regulation.

The contribution of this approach is that it allows us to study in a unified model
the optimal regulation of spatially interconnected distributed parameter fishery when
concerns about model misspecification vary across the spatial domain. We follow
Hansen et al. (2006) or Hansen and Sargent (2008), and regard concerns about
model misspecification to imply that the regulator distrusts her model and wants
robust decisions over a set of possible models that surround the regulator’s approx-
imating or benchmark model, and which are difficult to distinguish with finite data
sets. The robust decisions are obtained by introducing Nature, a fictitious “adversar-
ial agent”. Nature promotes robust decision rules by forcing the regulator, who seeks
to maximize profits from the commercial fishery over an entire spatial domain, to
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explore the fragility of decision rules with respect to departures from the benchmark
model. A robust decision rule to model misspecification means that lower bounds to
the rule’s performance are determined by Nature – the adversarial agent – who acts
as a minimizing agent when constructing these lower bounds. Hansen et al. (2006)
show that robust control theory can be interpreted as a recursive version of max-min
expected utility theory (Gilboa and Schmeidler (1989)).

In our model, considering the spatial domain of the fishery as a ring of cells, the
regulator is trying to determine an optimal level of harvesting per vessel in each
spacial cell. This harvesting level can be used, for example, to set up a quota system
in each site of the fishing area. The regulator’s objective could be either the maxi-
mization of discounted profits over the whole ring, or the minimization deviations
(or the cost of deviations) from target harvesting and biomass levels in each ring, by
taking into account biomass diffusion as well as stock, congestion, and productivity
externalities

The regulator is however uncertain regarding the true statistical distribution of the
state of the system. This means that the regulator has concerns regarding the spec-
ification of biomass dynamics in each cell, and depending on her scientific knowl-
edge, she might trust a benchmark model of the fishery more or less depending on
the specific cell. For a large enough ring, this assumption - which implies spatially
differentiated degrees of model uncertainty - seems plausible, and it is related to
a localized in space entropy constraint of the spatially varying interconnected sys-
tems. In this context we derive optimal robust harvesting rules for each site and
identify conditions under which concerns about model misspecification at specific
site(s) could cause regulation to break down or to be very costly. We call sites asso-
ciated with these phenomena hot spots. We are also able to identify spatial hot spots
where the need to apply robust control induces spatial agglomerations and breaks
down spatial symmetry. From the theory point of view this is a new source for gener-
ating spatial patterns as compared to the classic Turing diffusion induced instability
(Turing (1952)) which belongs to the recently identified family of optimal diffusion
or spatial-spillover-induced instabilities (Brock and Xepapadeas (2008), Brock and
Xepapadeas (2010), Brock et al. (2012)).

Distributed parameter models result in optimal control problems in infinite di-
mensional spaces. By using Fourier methods and exploiting the property of spatial
invariance of a class of linear quadratic problems, we are able to obtain closed form
solutions to these infinite dimensional problems which reveal important informa-
tion on the qualitative features of the optimal policy, possible deviations from it or
breakdowns as well as its dependence on the choice of model. Furthermore, by ob-
taining a linear quadratic approximation around a deterministic optimal trajectory
of a nonlinear distributed parameter robust control problem of a commercial fish-
ery, the tracking problem of keeping the controlled trajectory under uncertainty and
concerns about model misspecification close to the optimal deterministic trajectory,
representing the ideal benchmark model of the fishery manager, and comment upon
hot spot formation and their importance.
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2 Modelling a Fishery with Spatial Interactions

2.1 A spatial profit maximization fishery model

We consider a commercial fishery occupying an area that consists of a circular ring
of N cells or sites on a finite lattice, so that space can be considered as the finite
group of integers modulo N, ZN . The state of the system is quantified in terms of
the fish biomass in each cell, xn, and the number of vessels or firms fishing in each
cell Vn, n ∈ ZN (see Figure 1).

Let xn (t) denote biomass at time t > 0 and cell n ∈ ZN . Fish biomass moves
from cell to cell. The movements if there are strictly local can be described by
classic diffusion with diffusion coefficient D > 0, which means that fish move from
cells of high biomass concentration to adjacent cells of low biomass concentration.
In this case the spatial movement can be modelled using the discrete Laplacian
by a term D [xn+1 (t)−2xn (t)+ xn−1 (t)]. More general spatial interactions across
locations can be modelled by an influence “kernel” (or rather a discretized version
of an influence kernel) which can be represented in terms of a matrix A = (αnm) ∈
RN×N . The entry αnm provides a measure of the influence of the biomass of the
system at point m to the biomass concentration of the system at point n. If there is no
movement of biomass across cells then A = αnm = δn,m where δn,m is the Kronecker
delta. If only next neighborhood movements are possible then αnm is non-zero only
if m is a neighbor of n. Such an example is the discrete Laplacian, and matrix A in
this case has a general form

A = D


1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 −2 1

 .

This can be considered as the discretization of the Laplace operator A = D ∂ 2

∂ z2 , in
case the space is considered as continuous e.g. the interval [−π,π].

Let Vn (t) denote the number of identical vessels or firms operating at cell n of the
ring, and hn (t) the harvest rate at cell n per unit time. Thus total harvesting at cell n
is hn (t)Vn (t). The temporal evolution of biomass of the fishery is subject to statis-
tical fluctuations (noise), which is introduced into the model via stochastic factors
(sources)1, modelled in terms of a stochastic process w = {wn}, n ∈ ZN , which is
considered as a vector valued Wiener process on a suitable filtered probability space

1 There is uncertainty concerning the state of the system (i.e. the true figures for the biomass)
which is represented in terms of the vector valued stochastic process w. These common factors
affect the state of the biomass x at the different sites. Each factor has a different effect on the state
of the biomass on each particular site; this will be modelled by a suitable correlation matrix. It is
not of course necessary that the number of factors is the same as the number of sites in the system
however, without loss of generality we will make this assumption and assume that there is one
factor or source of uncertainty related to each site. This assumption can be easily relaxed.
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Fig. 1 The circular fishery and the relevant state variables.
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(Ω ,{Ft}t∈R+ ,F ,P) (see e.g., Karatzas and Shreve (1991)). The introduction of
noise turns the biomass for a fixed time t into an RN-valued random variable, thus
x(·) is an RN-valued stochastic process. We assume that this stochastic process is
the solution of a stochastic differential equation:

dxn (t) =
[

f (xn (t))+∑
m

αnmxm (t)−hn (t)Vn (t)
]

dt +∑
m

snmdwm,

xn (0) = x0,n, n,m ∈ ZN .

(1)

In the above equation f (x) , x > 0, is the recruitment rate or growth function for
the fishery. This function has the properties that there exist three values x, x̄ and
x0 with 0 6 x < x0 < x̄, such that f (x) = f (x̄) = 0, f ′

(
x0
)
= 0, f ′′

(
x0
)
< 0. An

example of such a function is a quadratic function which models logistic growth. It
is assumed that the parameters of model (1) are chosen so that positivity of solutions
is guaranteed (i.e. noise levels are assumed to be small and have a weak effect).
Furthermore, for the rest of the paper ∑m will be used as a shorthand for ∑m∈ZN .

The last term of (1), describing the fluctuations of the biomass due to the stochas-
ticity, is understood in the sense of the Itô theory of stochastic integration. In com-
pact form it can be represented by a finite matrix S =(snm) with elements snm in-
dicating how the uncertainty at site m is affecting the uncertainty concerning the
biomass of the fishery at site n. The matrix S = (snm) can be thought of as the spa-
tial autocorrelation operator for the system. Thus the evolution of the system can be
written in a compact form as:

dx = [F(x)+Ax− y]dt +Sdw (2)

where we have used the vector notation

x = (x1, · · · ,xN)
tr,

w = (w1, · · · ,wn)
tr,

y = (h1V1, · · · ,hNVN)
tr,

F(x) = ( f (x1), . . . , f (xN))
tr,

and A,S : RN → RN are linear operators, representable by finite matrices with ele-
ments {αnm}, {snm}, respectively. We will also use the notation y = h⊗V for the
vector which is defined by componentwise multiplication of the vectors h, V .

The cost per vessel operating at a cell n for harvesting rate h is determined by a
cost function c(hn (t) ,xn (t) ,Cn (t) ,Pn (t)). This is a function of the harvesting rate;
the biomass level at the specific cell, xn (t) which reflects recourse stock external-
ities; and the number of other vessels operating in the neighborhood of the cell n,
which reflect two types of externalities: crowding or congestion externalities and
productivity or knowledge externalities. Crowding externalities, which are negative
(cost increasing), and productivity externalities, which are positive (cost reducing),
are non-local effects, which are modeled by spatial kernels as:



Robust Control of a Spatially Distributed Commercial Fishery 7

Cn (t) = ∑
m

cnmVm (t) =: (CV )n(t),

Pn (t) = ∑
m

γnmhm (t) =: (Γh)n (t)
(3)

where C,Γ : RN → RN are linear operators, representable by finite matrices with
elements cnm, γnm, respectively. We assume that: (i) ∂c

∂h > 0, ∂ 2c
∂h2 > 0; (ii) ∂c

∂x < 0,
which implies resource stock externalities; (iii) ∂c

∂C > 0, which implies crowding
externalities due to congestion effects. We assume that an increase in vessels in a
given cell will always increase costs, that is ∂c

∂C > 0. This kernel formulation in the
cost function means that vessels not only in cell n but also near cell n could create
congestion effects and increase operating costs of the vessels operating in cell n;
and (iv) ∂c

∂P < 0, which implies knowledge or productivity externalities because har-
vesting that takes place near cell n helps the development of harvesting knowledge
in n and reduces operating costs.

Assuming that harvested fish is sold at an exogenous price P , which is homoge-
neous over the whole ring, profit per vessel at n is defined as:

πn (t) = Phn (t)− c(hn (t) ,xn (t) ,(CV )n(t),(Γh)n(t)) . (4)

Vessels are attracted to cell n if profits per vessel at this site are higher than the
average profit over the whole spatial domain. Vessels can be attracted to the ring
from locations outside the ring if profits are positive in cells of the ring, so the
number of vessels in the ring does not need to be conserved2. Assuming that the
rate of growth of vessels in each cite is proportional to the difference between the
profit per vessel at n with the average profit per vessel over the whole lattice, the
evolution of vessels in each site is described by:

d
dt

Vn (t) = φ

(
πn(t)−

1
N ∑

m
πm(t)

)
Vn (t) ,

Vn (0) =V0,n,

(5)

where φ > 0 measures the speed of adjustment and is set equal to one without loss of
generality. Note that equation (5), though not an Itô stochastic differential equation,
is now a random differential equation since x is a stochastic process.

A regulator is trying to determine in each cell an optimal level of harvesting per
vessel, hn. This harvesting level can be used, for example, to set up a quota system
in each cell of the ring. The regulator’s objective is the maximization of discounted
profits over the whole ring by taking into account biomass diffusion as well as stock,
congestion and knowledge externalities3. The regulator’s objective is therefore

2 To simplify we ignore transportation costs.
3 To simplify the interpretation of results and the analysis, we do not include existence values for
the biomass.
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max
{hn(t)}

E
[∫

∞

0
e−rt

(
∑
n

Vn(t)πn(t)
)

dt
]
,

subject to (2) and (5),
(6)

where the per vessel profit πn is given by (4). It is clear that the state of the system
is characterized by the biomass x and the vessel distribution V , and we will use the
notation X = (x,V )tr where X ∈ R2N×1.

2.2 Misspecification concerns

We now assume that the regulator has concerns regarding the specification of
biomass dynamics in each cell, which can be modelled as follows: Assume that
there is some uncertainty concerning the “true” statistical distribution of the state of
the system. This corresponds to a family of probability measures Q such that each
Q∈Q corresponds to an alternative stochastic model (scenario) concerning the state
of the system. From Girsanov’s theorem w̄n(t) =wn(t)−

∫ t
0 vn(s)ds is a Q-Brownian

motion for all n ∈ Z, where the drift term vn may be considered as a measure of the
model misspecification at lattice site n, where v = (v1, · · · ,vN)

tr is an RN-valued
stochastic process which is measurable with respect to the filtration {Ft} satisfying
the Novikov condition E

[
exp(

∫ T
0 ∑n v2

n(t)dt)
]
< ∞. Thus, Girsanov’s theorem (see

e.g. Karatzas and Shreve (1991)) shows that the adoption of the family Q of alter-
native measures concerning the state of the system, leads to a family of differential
equations for the biomass

dxn (t) =
[

f (xn (t))+∑
m

αnmxm (t)−hn (t)Vn (t)+∑
m

snmvm

]
dt

+∑
m

snmdw̄m, n,m ∈ ZN , (7)

xn (0) = x0,n,

parameterized by the information drift v. In (7) x indicates the state of the system
when the measure4 Q corresponding to the information drift v and the control proce-
dure h = (h1, · · · ,hN)

tr, which will be denoted by Qv, is adopted. This is an Ornstein
Uhlenbeck equation which in compact form can be expressed as

dx = [F(x)+Ax−h⊗V +Sv]dt +Sdw̄. (8)

The regulator’s problem when there are concerns about model misspecification is
solved under the adoption of the measure Q, related to the drift v, i.e. it is solved
under the dynamic constraints (7) and (5). This will provide a solution leading to a
value function V (X ;v); corresponding to the maximum discounted profits over the

4 We will identify a model by a probability measure.
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whole spatial domain obtained for the model Qv under the optimal harvesting effort,
given that the system had initial state X = (x(0),V (0)) = (x,V ). Being uncertain
about the true model, the decision maker will opt to choose the strategy that will
work in the worst case scenario; this being the one that minimizes V (X ;v) - the
maximum over all h having chosen v - over all possible choices for v. Therefore, the
robust control problem to be solved is of the general form

V (X) = max
h

min
v

J(h,v),

subject to (7) and (5),
(9)

where

J (h,v) = EQv

{∫
∞

0
e−rt

[
∑
n

Vn (t)πn (t)+∑
n

θn(vn(t))2
]

dt
}
.

The vector θ =(θ1, · · · ,θN)
tr corresponds to the weight assigned to concerns related

to model misspecification in a local sense (differentially in space). To clarify this
point, we refer to Brock et al. (2012), as by a simple modification of the arguments
in this work it can be shown that robust optimization problems of the form

sup
h

inf
Q∈Q

EQ

[∫
∞

0
e−rt

∑
n

Vn(t)πn(t)dt
]
,

subject to H (Pn | Qn)< Hn, n ∈ ZN ,

(10)

and the dynamic constraints (7) and (5), can be written as equivalent to (9) where
now the vector θ ∈ RN

+ plays the role of a Lagrange multiplier associated with the
constraints in (10). In (10) by H (Pn | Qn) we denote the Kullback-Leibler entropy
of the marginal probability measures Pn and Qn (i.e. the probability measures P
and Q respectively, averaged over all possible states of the noise over the remaining
sites). The localized entropic constraints mean that the regulator is only considering
models in each cell (i.e., measures Qn) whose deviation in terms of the relative
entropy from the “true” model in the cell (i.e., the measure Pn) is less than Hn.

The introduction of the local entropic constraints means that the concern of the
policy maker about uncertainty on site n is quantified by Hn, the smaller Hn is the
less model uncertainty she is willing to accept for site n, given her information about
this site. This assumption is not unreasonable as certain cells may be considered as
more crucial than others therefore specific care should be taken for them.

In the robust control problem the minimizing adversarial agent - Nature - chooses
a {vn (t)} while θn ∈ (θ n,+∞], θ n > 0, is a penalty parameter restraining the maxi-
mizing choice of Nature. As noted above θn is associated with the Lagrange multi-
plier of the entropy constraint at each site. In the entropy constraint Hn is the maxi-
mum misspecification error that the decision maker is willing to consider given the
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existing information about the system at site n5. The lower bound θ n is a so-called
breakdown point beyond which it is fruitless to seek more robustness because the
adversarial (i.e. the minimizing) agent is sufficiently unconstrained so that she/he
can push the criterion function to −∞ despite the best response of the minimizing
agent. Thus when θn < θ n for a specific site robust control rules cannot be attained.
In our terminology this site is a candidate for a “nucleus” of a hot spot since mis-
specification concerns for this site will break down robust control for the whole
spatial domain. On the other hand when θm→ ∞ or equivalently Hm = 0 there are
no misspecification concerns for this site and the benchmark model can be used.
The effects of spatial connectivity can be seen in this extreme example. The spatial
relation of site m with site n could break down regulation for both sites. If site m
was spatially isolated from n there would have been no problem with regulation at
m.

2.3 Robust stabilization of a desired optimal state

Problem (9) is a non linear robust control problem. The full nonlinear problem,
eventhough accessible to either abstract analysis or numerical treatment, will not
allow an analysis in terms of closed form expressions and as such will obscure our
main interest in this paper, which is to show the existence of hot spots and spatial
pattern formation. To illustrate these points we will instead choose to work in terms
of a linear quadratic approximation of the full nonlinear problem, which allows a
rather detailed analytical treatment. However, rather than taking a linear quadratic
local approximation of the full problem (9) we choose an alternative approach. This
alternative approach is related to a tracking problem, which allows the decision
maker to ”correct” her benchmark policy in such a way as to optimally make up for
possible mispecifications of the model. Tracking problems have been addressed by
the control theory community and find important applications in a variety of prob-
lem in mathematical, environmental and financial economics (see e.g., Leizarowitz
(1985), Artstein and Leizarowitz (1985), Leizarowitz (1986)).

In this section we formulate a related linear quadratic robust control problem
which is associated with a stabilization policy, under the effect of noise and uncer-
tainty with respect to the nature of this noise, which allows the decision maker to
keep the system as close as possible to a desired optimal state of (9). We assume
that the desired optimal state is the one that corresponds to the deterministic ver-
sion of the model, i.e. the case where there is no noise present. Let us call this state
(x(0),V (0)) and assume that it is supported by the optimal control procedure h(0).
The triple (x(0),V (0),h(0)) is thus the solution of the deterministic optimal control
problem

5 If the decision maker can use physical principles and statistical analysis to formulate bounds
on the relative entropy of plausible probabilistic deviations from her/his benchmark model, these
bounds can be used to calibrate the parameters Hn (Athanassoglou and Xepapadeas (2012)).
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max
h

∫
∞

0
e−rt

∑
n

Vn(t)πn(t)dt,

subject to

ẋn = ∑
m

anmxm− f (xn)−Vnhn, n ∈ ZN

V̇n = φ

(
πn−

1
N ∑

m
πm

)
Vn, n ∈ ZN .

(11)

This is the idealized problem that the fishery manager wants to solve. The solution
of that, furnishes the “best” she can do to optimize her profit, given the capabilities
of the fishery, in the absence of unforeseen event (i.e. noise).

The solution x(0) is determined by the deterministic Pontryagin principle, associ-
ated with the Hamiltonian function

H(x,V,p, p̄;h) = ∑
n

Vnπn + ∑
n
pn

(
∑
m

anmxm− f (xn)−Vnhn

)
+ ∑

n
p̄n

[
φ

(
πn−

1
N ∑

m
πm

)
Vn

]
where p= (p1, · · · ,pN)

tr, p̄= (p̄1, · · · , p̄N)
tr are the adjoint variables associated with

the state variables x= (x1, · · · ,xN)
tr and V =V1, · · · ,VN)

tr respectively. The solution
of the benchmark optimal control problem is reduced to the solution of the system
of differential equations

∂H
∂xn

(x,V,p, p̄;h)− ṗn− rpn = 0, n ∈ ZN

∂H
∂Vn

(x,V,p, p̄;h)− ˙̄pn− rp̄n = 0, n ∈ ZN

∂H
∂pn

(x,V,p, p̄;h)− ẋn = 0, n ∈ ZN

∂H
∂ p̄n

(x,V,p, p̄;h)−V̇n = 0, n ∈ ZN

∂H
∂hn

(x,V,p, p̄;h) = 0, n ∈ ZN

(12)

where the last set of equations is an optimality condition. The solution (x(0),V (0),h(0))
of this system gives the optimal benchmark path. In general this system has a so-
lution which is spatially dependent, i.e., xn(t) 6= xm(t) for n 6= m. However, it may
also have solutions which are uniform in space. For example in the case of diffusive
coupling, ∑m anm = 0, ∑m βnm = 0 and ∑m γnm = 0 the system (12) may admit a solu-
tion which is uniform in space, i.e. a solution {x0

n(t),V
0
n (t)} such that x0

n(t) = x0(t),
V 0

n (t) =V 0 (t) for all n ∈ Z. Similarly for the optimal control h(0). Furthermore, we
may assume that these equations have a stationary uniform in space solution, i.e., a
solution that is time independent. While this assumption is not necessary for the de-
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velopment of the proposed model, it simplifies the exposition and will be adopted.
It should be stressed though that a general theory for time dependent as spatially
nonhomogeneous x(0),V (0),h(0) can be formulated and the necessary modifications
are technical.

However, true life is often far from the idealized model, that the manager has in
mind. This means that the manager should be adept to sidetrack from the idealized
optimal control procedure h(0) as an effect of unforeseen circumstances, modeled
here by noise. An important question is the following: Can we design optimally a
corrective policy h(1) which will take into account the effects of noise so that the
true system keeps as close as possible to the idealized optimal state (x(0),V (0)) as
provided by the solution of the optimal control problem (11)?

Assume that we have the nonlinear problem (1), subject to weak additive noise.
The problem is subject to model uncertainty (with respect to the nature of the noise
term) which may be modelled in terms of a drift v so that applying Girsanov’s the-
orem we obtain the family of models

dxn =

[
f (xn)+∑

m
αnmxn−hnVn + ε ∑

m
snmvn

]
dt + ε ∑

m
snmdwm,

dVn = φ

(
πn−

1
N ∑

m
πm

)
Vndt, n ∈ ZN .

(13)

This family of models will give the “observed” state of the system (x,V ). The system
is still subject to a control procedure h, and it is our aim to choose h so that the actual
state of the system (x,V ) is kept as close as possible to the ideal profit maximizing
state (x(0),V (0)) with h as close as possible to h(0).

Since the noise is assumed to be weak we may consider as a zeroth order ap-
proximation to (13) (i.e., the solution setting ε = 0) the deterministic optimal path
(x0),V 0)). Let us consider perturbations of {x,V,h,v} around this reference solution,
i.e. let us consider solutions of the above problem of the form

{x,V,h,v}= {x0,V 0,h0,0}+ ε{x1,V 1,h1,v1}

where now {x,V,h,v} are subject to uncertainty and are solutions of the stochastic
biomass equation (13) with ε a small parameter. The terms (x(1),V (1)) quantify the
divergence of the actual state of the system from the ideal profit maximizing op-
timal state (x(0),V (0)), the fishery manager would like to follow. This deviation is
in general going to be spatially dependent; this spatial dependence will depend on
the interaction between the dynamics of the system and noise. We still allow the
manager a control procedure (h(1),v(1)), this is considered as the correction proce-
dure on top of the pre-planned ideal optimal control procedure h(0) where v(1) takes
care of model uncertainty which will be chosen so as to minimize deviation from
the ideal plan of action (x(0),V (0),h(0)). As we shall see this correction procedure
can be chosen in terms of a feedback control procedure, whereby the corrections are
determined upon observation of the deviation from the ideal desired state.



Robust Control of a Spatially Distributed Commercial Fishery 13

We linearize the state equations around the state s(0) := {x(0),V (0),h(0),v(0)} to
obtain to first order in ε that

dx(1) = [A(1)x(1)+A(2)V (1)+B(1)h(1)+Sv(0)]dt +Sdw̄

dV (1) = [A(3)x(1)+A(4)V (1)+B(2)h(1)]dt

where x(1),V (1),h(1),v ∈ RN and A(i),B( j), i = 1, · · · ,4, j = 1,2 are RN×N matrices
with elements

A(1)
nm = f ′(x(0)n )δnm +anm

A(2)
nm =−h(0)n δnm

A(3)
nm =−φV (0)

n

(
∂c0

∂x

)
n

δnm +
1
N

φV (0)
n

(
∂c0

∂x

)
m

A(4)
nm = φ

(
π
(0)
n −

1
N ∑

k
π
(0)
k

)
δnm−φV (0

n

(
∂c0

∂C

)
n

βnm +
1
N

φV (0)
n

(
∑
k

βkm

(
∂c0

∂C

)
k

)
,

B(1)
nm =−V (0)

n δnm,

B(2)
nm = φV (0)

n

(
P−

(
∂c0

∂h

)
n

)
δnm−φV (0)

n γnm

(
∂c0

∂P

)
n
− 1

N
φPV (0)

n +
1
N

φV (0)
n

(
∂c0

∂h

)
m

+
1
N

φV (0)
n

(
∑
k

γkm

(
∂c0

∂P

)
k

)

where by
(

∂c0
∂ z

)
n
, z = h,x,C,P, in the above we mean that the respective partial

derivatives are calculated at the state s(0) and at site n. Assuming that the zeroth
order state is spatially uniform, and assuming also that the interaction kernels have
the property that ∑m βnm = 0, ∑m γnm = 0 (diffusive coupling) the above expressions
can simplify considerably to

A(1)
nm = f ′(x(0)n )δnm +anm

A(2)
nm =−h(0)n δnm

A(3)
nm =−φV (0)

n

(
∂c0

∂x

)
δnm +

1
N

φV (0)
n

(
∂c0

∂x

)
A(4)

nm = φ

(
π
(0)
n −

1
N ∑

k
π
(0)
k

)
δnm−φV (0

n

(
∂c0

∂C

)
βnm,

B(1)
nm =−V (0)

n δnm,

B(2)
nm = φV (0)

n

(
P−

(
∂c0

∂h

)
n

)
δnm−φV (0)

n γnm

(
∂c0

∂P

)
− 1

N
φPV (0)

n +
1
N

φV (0)
n

(
∂c0

∂h

)
.

We may now express the linearized system in compact form as the stochastic
control system

dX = [AX +Bu+Sv]dt +Sdw̄, (14)

where

A :=
(

A(1) A(2)

A(3) A(4)

)
, B :=

(
B(1)

B(2)

)
, S :=

(
S
0

)
,
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where 0 is the N×N zero matrix and X = (x(1),V (1))tr, u = h(1), v = v(1). It is clear
that X ∈ R2N×1, u,v,w ∈ RN×1, A ∈ R2N×2N , B,S ∈ R2N×N . It should be noted that
matrices A and B incorporate stock, congestion and productivity externalities in the
linearized dynamics

We now consider the problem of controlling the linearized system by proper
choice of the control procedure u so that the system is kept as close as possible and
at the minimum possible cost at the zeroth order desired steady state s(0). Ideally,
we would like to choose u = 0 and keep X = 0 at all times, as this would correspond
to keeping the system to the profit maximizing state (x(0),V (0),h(0)). However, this
is not possible and we choose the less ambitious task of minimizing the deviation
of X from 0 at the minimum possible cost. This is equivalent to the robust optimal
control problem6

min
u

max
v

J̄(u,v),

subject to (14)
(15)

where

J̄(u,v) := E
[

1
2

∫
∞

0
e−rt (X tr(t)PX(t)+utr(t)Qu(t)− vtr(t)Rv(t)

)
dt
]
.

The solution to problem (15) guarantees that we get as close as possible to the de-
sired state, at the worst possible deviation from our ideal model (11). The matrices
P∈R2N×2N , Q∈RN×N and R∈RN×N are positive definite and invertible and with-
out loss of generality can be considered to be copies of the identity matrix, i.e.

P =

(
pI 0
0 p̄I

)
, Q = qI, R = θ I,

where I is the N×N identity matrix. For this particular case the objective functional
becomes

J̄(u,v) = E
[

1
2

∫
∞

0
e−rt

∑
n

(
p(x(1)n (t))2 + p̄(V (1)

n (t))2 +q(h(1)n (t))2 +θ(v(1)n (t))2
)

dt
]
. (16)

In objective (16) the coefficients (p, p̄,q,θ) reflect the relative importance attache
by the regulator to deviations from the optimal deterministic path, with r expressing
the cost or being robust. Without loss of generality and to simplify the expressions
we may choose p = p̄. The parameter θ in (16) should be interpreted as the pa-
rameter associated with the global entropic constraint. If we are dealing with local
entropic constraints matrix R should be defined as:

6 It is obvious that upon setting Ĵ = −J̄ the minu maxv J̄ problem becomes equivalent to the
maxu minv Ĵ problem, which is in a form similar to the robust control problem (9), where now
the profit functional is a replaced by the negative of a loss functional quantifying costs of deviation
from a target.
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R =

θ1 · · · 0

0
. . . 0

0 · · · θn


This a more complicated case which can be dealt with methods appropriate for the
solution of the general linear quadratic robust control problem presented in Brock
et al. (2012). Because of its relative simplicity functional (16) allows us to use the
Fourier space solution of the problem as we will see in the next section.

Note that this problem is different from the problem treated in Magill (1977a),
Magill (1977b) where a linear quadratic approximation of a nonlinear stochastic
optimal control problem is proposed. Here instead, we propose an exact linear
quadratic procedure, which minimizes the tracking error from the optimal solution
of a nonlinear idealized deterministic profit maximization problem. Our approach
differs in spirit, however, correspond to a realistic situation. Most policy is designed
upon ideal and simplified models (as for instance model (11)). It is important for
the policy maker to have guidelines concerning the necessary corrections needed
when the true state of the system deviates from the ideal state (as for instance under
model (13)), so as to correct her policy in order to minimize deviations from the tar-
get. However, the generalization of Magill’s procedure to a robust control problem
is of interest in its own right, and will be treated elsewhere.

3 Robust stabilization of the benchmark solution

Problem (15) can now be treated using the Hamilton-Jacobi-Belman-Isaacs equa-
tion. This is expressed in terms of the generator L of the Ornstein-Uhlenbeck pro-
cess (14), defined through its action on a twice continuously differentiable function
V : R2N → R

LV = (AX +Bu+Sv)DXV +
1
2
SStrD2

XV

where DXV is the gradient of V with respect to the coordinates of the vector X and
D2

XV is the Hessian matrix of the function V with respect to the coordinates of the
vector X . The above are shorthands for the relevant expressions in coordinate form,
e.g.,

DXV =

(
∂V

∂x(1)1

, · · · , ∂V

∂x(1)N

,
∂V

∂V (1)
1

, · · · , ∂V

∂V (1)
N

)tr

,

and similarly for the Hessian. Using the generator we may define the Hamiltonian
function

H(V ;X ,u,v) = LV + 〈PX ,X〉+ 〈Qu,u〉−θ 〈Rv,v〉

where by 〈·, ·〉 we denote the inner product in R2N . The value function V is the
solution of the Hamilton-Jacobi-Belman-Isaacs (HJBI) equation
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rV +min
u

max
v

H(V ;X ,u,v) = 0

(since by the saddle point theorem we may interchange the order of the minu and
maxv operations). The optimal policy is then related to the solution of the optimiza-
tion problem for the Hamiltonian function. The HJBI equation is a fully nonlinear
PDE, but on account of the linear quadratic nature of the system it can be solved
in terms of the matrix Ricatti equation. Adapting the general results of Brock et al.
(2012) to the model under consideration we find that the optimal correction policy
is given by

u =−Q−1BtrHX , (17)

where H ∈ R2N×2N is the symmetric solution of the matrix Ricatti equation

HA+AtrH−HEsH− rH+P = 0

and

Es =
1
2
(E+Etr),

E = BQ−1Btr− 1
θ
SR−1Str.

Once the matrix H computed, in principle numerically, the correction u = h(1)

needed to modify the benchmark control procedure h(0) so as to keep the true state
of the system as close as possible to the benchmark optimal state (x(0),V (0)) is
given by the feedback rule (17). This rule is very easy to apply as it only requires
the manager to monitor the current value of the state X(t), i.e. the current devia-
tions (x(1)(t),V (1)(t)) of the true state of the system from the benchmark optimal
state (x(0),V (0)). We remark that our approach through the Ricatti equation does
not necessarily require the benchmark state to be time independent not spatially
homogeneous. However, even it the benchmark state enjoys both these properties,
the deviations from this state, X(t) will not necessarily satisfy them; it is in general
expected to be both time varying and is expected to display spatial patterns. Fur-
thermore, the optimal state X (i.e. the optimal deviations from the benchmark state
once the optimal correction policy u = h(1) is adopted) is given by the solution of
the Ornstein-Uhlenbeck equation

dX =

(
A−BQ−1BtrH+

1
θ
SR−1StrH

)
Xdt +Sdw.

The matrix Ricatti equation can be treated through a multitude of analytic or nu-
merical methods leading to either interesting qualitative features of its solution, or
to accurate computations, therefore the above analysis provides a general an com-
putationally feasible approach to the problem of correcting the benchmark optimal
strategy in order to lead the realistic system to the desired state. Here, in order to
provide some qualitative results with the less possible technicalities involved, we
treat the simple, yet realistic case where the operators related to the matrices A, B,S
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are translation invariant, the fishery is situated on a ring (i.e. periodic boundary con-
ditions x1(t) = xN(t) and V1(t) =VN(t) for all t are imposed) and the loss functional
related to the deviations of the system from the benchmark model is given in the
form (16). We note that operators such as the discrete Laplacian often employed in
models concerning the transport of biomass enjoy the translation invariant property.
Furthermore, for this particular approach we have to assume that the benchmark
state is spatially invariant, while the analysis is simplified considerably if it is also a
steady state.

When all the above assumptions are satisfied, we may treat the robust control
problem (15) with the choice of objective functional as in (16) by using the discrete
Fourier transform. Importantly, the problem decouples7 in Fourier space, a fact that
allows us to obtain closed form solutions in terms of the Fourier transform of X .

For a vector x = {xn} = (x1, · · · ,xN) defined on the spatial domain ZN , we may
define a vector x̂ = {x̂k}= (x̂1, · · · , x̂N), by

x̂k :=
N

∑
n=1

xn exp
(
−i2πk

n−1
N

)
, k ∈ ZN .

The k coordinates of the vector x̂ are considered as taking values in a dual space,
often called the Pontryagin dual space or simply Fourier space, which in this simple
case coincides with ZN . The discrete Fourier transform of X = (x,V ) where x and V
are vectors defined on the spatial domain ZN is defined by X̂ = (x̂,V̂ ). The discrete
Fourier transform has very interesting properties, one of which is very important in
the simplification of problem (15) with the choice of objective functional as in (16).
The Fourier transform turns a convolution to a product, in the sense that the Fourier
transform of Ax is equal to Âx̂ as long as A is translation invariant, i.e. commutes for
all m with the translation operators Tm defined by (Tmx)n = xn−m where of course
periodicity is taken into account. Matrices such as those corresponding to the dis-
crete Laplacian have this form. This property leads to a decoupled set on equations
for the state variables, where treated in Fourier space. Furthermore, by the special
form of the objective functional (16), the use of the Parceval identity allows us to
rewrite the objective functional in essentially identical form but now interpreted in
Fourier space. This leads to a decoupling of the full problem into N scalar problems
which are amenable to full analytic consideration.

Denoting by X̂ the Fourier transform of X it can be shown (see Brock et al.
(2012)) that the optimal state is the solution of the Ornstein-Uhlenbeck equation

dX̂k = RkX̂k + σ̂kdwk, k ∈ ZN

where σ̂k is a constant whose exact expression is not needed for what follows,

Rk := âk−
b̂2

kM2,k

2q
+

ĉ2
k M2,k

2θ
.

7 Essentially turning the matrix Ricatti equation to a set of scalar, uncoupled Ricatti equations,
amenable to analytic solution.
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and M2,k is the solution of(
ĉ2

k
2θ
−

b̂2
k

2q

)
M2

2,k +(2 âk− r)M2,k +2p = 0. (18)

The terms âk, b̂k and ĉk are related to the Fourier transform of the matrices A, B and
S. Furthermore, the optimal controls are given by the feedback laws

ûk =−
b̂kM2,k

2q
x̂k, v̂k =

ĉk M2,k

2θ
x̂k.

4 Hot spot formation

In this section we study the validity and the qualitative behavior of the controlled
system (15). We will call the qualitative changes of the behavior of the system hot
spots. In the present context, hot spots will correspond to important deviations of
the stabilization procedure presented in the previous section, that will have as conse-
quence important quantitative and qualitative deviations of the true controlled sys-
tem from the desired ideal benchmark model, no matter what the decision maker
does in order to correct her policy by proper adjustment procedures. We may thus
consider hot spots as possible important failures of the adjustment procedure, which
may have important consequences on the true state of the controlled fishery.

We will define three types of hot spots:

� Hot spot of type I: This is a breakdown of the solution procedure, i.e., a set of
parameters where a solution to the above problem does not exist.

� Hot spot of type II: This corresponds to the case where the solution exists but
may lead to spatial pattern formation, i.e., to spatial instability similar to the
Turing instability.

� Hot spot of type III: This corresponds to the case where the cost of robustness
becomes more that what is offering us, i.e., where the relative cost of robustness
may become very large.

In what follows, for simplicity, we discuss the formation of hot spots under the
assumption that the tracking problem (15) with the choice of objective functional
as in (16) is translation invariant (which requires certain symmetry conditions). The
results are stated in terms of a number of propositions, providing relevant parameter
values for the formation of the different types of hotspots, the proofs of which may
be found in Brock et al. (2012). However, similar results hold for the general case of
non-translation invariant systems, by the full treatment of the matrix Ricatti equation
(see Brock et al. (2012)).
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4.1 Hot spots of type I

The breakdown of the solution procedure can be seen quite easily by the following
simple argument. The value function assumes a simple quadratic form, as long as
the algebraic quadratic equation(

ĉ2
k

2θ
−

b̂2
k

2q

)
M2

2,k +(2 âk− r)M2,k +2p = 0. (19)

admits real valued solutions, at least one of which is positive. The positivity of the
real root is needed since, by general considerations in optimal control, the value
function must be convex. If the above algebraic quadratic equation does not admit
at least one positive real valued solution this is an indication of breakdown of the
existence of a solution to the robust control problem which will be called a hot spot
of Type I.

Proposition 1 (Type I hot spot creation:). Hot spots of Type I may be created in
one of the following two cases:

(IA)Either,

(2âk− r)2 < 8 p

(
ĉ2

k
2θ
−

b̂2
k

2q

)
, (20)

(IB)Or,

(2âk− r)2 > 8 p

(
ĉ2

k
2θ
−

b̂2
k

2q

)
,

(
ĉ2

k
2θ
−

b̂2
k

2q

)
> 0, 2âk− r > 0. (21)

Hot spots of this type may arise either due to low values of θ , or due to high
values of q or low values of r. For example, they may arise either if

θ <
pĉ2

k(
âk− r

2

)2
+ p

q b̂2
k

, k ∈ ZN .

or if

θ >
pĉ2

k(
âk− r

2

)2
+ p

q b̂2
k

,
q
θ
>

b̂2
k

ĉ2
k
, r < 2âk, k ∈ ZN .

In particular hot spots are expected to occur in the limit as θ → 0 while they are not
expected to occur in the limit as θ → ∞.

As mentioned above, a hot spot of Type I represents breakdown of the solvability
of the optimal control problem. We argue that this represents some sort of loss of
convexity of the problem thus leading to non existence of solution. To illustrate this
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point more clearly let us take the limit as θ → 0 which corresponds to hot spot
formation. For such values of θ , the particular ansatz employed for the solution
breaks down and in fact as θ → 0 we expect M2,k → 0 so that the quadratic term
in the value function will disappear. This leads to loss of strict concavity of the
functional, which may be seen as follows: The functional contains a contribution
from v̂k through the dependence of x̂k on v̂k which contributes a quadratic term of
positive sign in v̂k. The robustness term, which is proportional to −θ contributes a
quadratic term of negative sign in v̂k. For large enough values of θ the latter term
dominates in the functional and guarantees the strict concavity, therefore, leading
to a well defined maximization problem. In the limit of small θ the former term
dominates and thus turn the functional into a convex functional leading to problems
with respect to the maximization problem over {v̂k}. We call this breakdown of
concavity in v, which lead to loss of convexity of the value function in x, for small
values of θ a hot spot of type I. When this happens, there is a duality gap, since the
assumptions of the min-max theorem do not hold. In terms or regulatory objectives
this means that concerns about model misspecification make regulation impossible.

The effect of the parameters of the fishery model employed on the formation of
hot spots, can quantified by the results of Proposition 1 through the dependence of
the Fourier transformed operators A,B, S on the model parameters. For instance,
if prices P increase, whereas the rest of the parameters remain fixed, then b̂k will
increase with respect to the other parameters âk and ĉk. This will result to a decrease
of the right hand side of e.g., equation (20) thus leading to a suppression of such a
hot spot. Due to the large number of parameters of the model, extreme care should
be taken when interpreting qualitatively the above conditions. However, having cho-
sen a particular model and having estimated some of the parameters, the decision
maker may investigate numerically the above analytic conditions and provide pa-
rameter regimes for creation or suppression of the various type of hot spots. Since
our major interest here is the formulation of a general methodology, rather than a
detailed treatment of a particular model, we provide two simplified examples that
allow us to provide a qualitative understanding of hot spot formation as a result of
the various interacting “forces” that influence the system and comment upon their
relative importance. These examples are porivided here, for lack of space, to hot
spots of type I only, but they can be extended to the study of the other hot spots as
well.

The following examples show some interesting limiting situations, in terms of
simplifications of the operators A, B and S:

Example 1. Assume that A is the discrete Laplacian whereas B and S are copies of
the identity operator. This corresponds to the case that there is diffusive coupling
in the state equation but controls as well as the uncertainty have purely localized
effects. A quick calculation shows that in this case ak = α

(
1+2cos

( 2πk
N

))
where

α is the diffusion coefficient whereas bk = β and ck = γ for every k ∈ ZN where β

and γ is a measure for the control and the uncertainty respectively. In this particular
case, the quadratic equation becomes
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γ2

2θ
− β 2

2q

)
M2

2,k +

(
2α

(
1+2cos

(
2πk
N

))
− r
)

M2,k +2p = 0.

which must have a real valued solution for every k. There will not exist real valued
solutions if

∆ :=
(

2α

(
1+2cos

(
2πk
N

))
− r
)2

−8 p
(

γ2

2θ
− β 2

2q

)
< 0

or equivalently after some algebra((
1+2cos

(
2πk
N

))2

− r
2α

)
<

p
α2

(
γ2

θ
− β 2

q

)
.

This is the condition for generation of a hot spot of Type I in this particular example.
If this condition holds for some k ∈ ZN , this particular k is a candidate for such a
hot spot. We may spot directly that this cannot hold for any k ∈ ZN if the right hand
side of this inequality is negative, i.e., when θ > θcr := q γ2

β 2 , therefore hot spots of
this type will never occur for large enough values of θ . The critical value of θ for
the formation of such hot spots will depend on the relative magnitude of uncertainty
over control . For θ < θcr then a hot spot of Type I may occur for the modes k such
that (

1+2cos
(

2πk
N

))2

6
r

2α
+ρ

or equivalently for k such that(
1+2cos

(
2πk
N

))2

6
( r

2α
+ρ

) 1
2

where ρ2 = p
α2

(
γ2

θ
− β 2

q

)
.

Example 2. The opposite case is when A is again the discrete Laplacian while B
and S are multiples of matrices containing 1 in the diagonal and the same entry ν

in every other position. This means that the controls as well as the uncertainty has
a globalized effect to all lattice points, in the sense that the controls even at remote
lattice sites have an effect at each lattice point. Then b̂k = β δk,0, ĉk = γ δk,0, i.e.,
the Fourier transform is fully localized and is a delta function. Then, for k = 0 the
quadratic equation becomes(

γ2

2θ
− β 2

2q

)
M2

2,0− (6α− r)M2,0 +2p = 0

while for k 6= 0 the quadratic term vanishes yielding
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−
(

2α

(
1+2cos

(
2πk
N

))
− r
)

M2,0 +2p = 0

4.2 Hot spots of type II

We now consider the spatial behavior of the optimal path, as given by the Itō stochas-
tic differential equation

dx̂∗k = Rkx̂∗kdt + ĉkdŵk

The optimal path is a random field, thus leading to random patterns in space, some
of which may be short lived and generated simply by the fluctuations of the Wiener
process. We thus look for the spatial behavior of the mean field as describable by
the expectation X̂k := EQ[x̂∗k ]. By standard linear theory X̂k(t) = X̂k(0)exp(Rkt) and
this means that for the modes k ∈ZN such that Rk > 0 we have temporal growth and
these modes will dominate the long term temporal behavior. On the contrary modes
k such that Rk < 0 decay as t→ ∞ therefore such modes correspond to (short term)
transient temporal behavior, not likely to be observable in the long term temporal
behavior. The above discussion implies that the long time asymptotic of the solution
in Fourier space will be given by

X̂k(t)'
{

x̂k(0) exp(Rkt), k ∈P := {k ∈ ZN : Rk > 0}
0 otherwise

To see what this pattern will look like in real space, we simply need to invert the
Fourier transform, thus obtaining a spatial pattern of the form

Xn(t) := EQ[xn(t)] = ∑
k∈P

x̂k(0) exp(Rkt) cos
(

2π
k
N

n
)
. (22)

The above discussion therefore leads us to a very important conclusion, which is of
importance to economic theory of spatially interconnected systems:

If as an effect of the robust optimal control procedure exerted on the system there exist
modes k ∈ ZN such that Rk > 0, then this will lead to spatial pattern formation which will
create spatial patterns of the form (22). As we will see there are cases what such patterns will
not exist in the uncontrolled system and will appear as an effect of the control procedure.
We will call such patterns an optimal robustness induced spatial instability or hot spot of
Type II.

The economic significance of this result should be stressed. We show the emer-
gence of a spatial pattern formation instability, which can be triggered by the optimal
control procedures exerted on the system; in other words emergence of spatial clus-
tering and agglomerations in the fishery (as observed in the spatial distribution of
the biomass and the number of vessels) caused by uncertainty aversion and robust
control. This observation can further be extended in the case of nonlinear dynam-
ics, in the weakly nonlinear case. When the dynamics are nonlinear in the state the
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emergence of hot spots of Type II and optimal robustness induced spatial instability
should be linked to the spatial instability of a spatially uniform steady state corre-
sponding to the linear quadratic approximation of a nonlinear system. This instabil-
ity which can be thought as pattern formation precursor will induce the emergence
of spatial clustering. As time progresses and the linearized solution (22) grows be-
yond a certain critical value (in terms of a relevant norm) then the deviation from
the homogeneous steady state is so large that the linearized dynamics are no longer
a valid approximation. Then the nonlinear dynamics will take over and as an effect
of that some of the exponentially growing modes could be balanced thus leading to
more complicated stable patterns. At any rate even in the nonlinear case the mecha-
nism described here will be a Turing type pattern formation mechanism explaining
the onset of spatial patterns in the fishery.

The next proposition identifies which modes can lead to hot spot of Type II for-
mation (optimal robustness induced spatial instability) and in this way through equa-
tion (22) identifies possible spatial patterns that can emerge in the fishery.

Proposition 2 (Pattern formation for the primal problem). There exist pattern
formation behavior for the primal problem if there exist modes k such that Rk > 0,
i.e., if there exist modes k such that

1
2

r−

√√√√r2 +8 p

(
ĉ2

k
2θ
−

b̂2
k

2q

)6 âk 6
1
2

r+

√√√√r2 +8 p

(
ĉ2

k
2θ
−

b̂2
k

2q

) ,

r2 +8 p

(
ĉ2

k
2θ
−

b̂2
k

2q

)
> 0. (23)

It is interesting to see what is the behavior of the system as a function of param-
eters with respect to pattern formation and the qualitative behavior of the optimal
path.

Note that this pattern formation behavior is in full accordance with the fact that
our state equation is the optimal path for the linear quadratic control problem. Since
it solves this problem it is guaranteed that I := EQ[

∫
∞

0 e−rt x̂2
k(t)dt] is finite8 there-

fore x̂k(t) can at most grow as e
r
2 t , otherwise the quantity I would be infinite. This

is verified explicitly by the observation that Rk 6
r
2 for every k ∈ ZN . Therefore,

all possible patterns may at most exhibit growth rates less or equal to r/2. In the
limit as r→ 0 i.e. in the limit of small discount rates pattern formation is becoming
increasingly difficult in the linear quadratic model since growing patterns will be
suppressed by the control procedures.

Proposition 3 (Stabilizing or destabilizing effects of control). The robust control
procedure may either have a stabilizing or destabilizing effect with respect to pat-
tern formation. in the sense that it may either stabilize an unstable mode of the
uncontrolled system or on the contrary facilitate the onset of instabilities.

8 This is in fact equivalent to the assertion that the optimal path satisfies temporal transversality
conditions at infinity.
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In particular,

(i) If q
θ
<

b̂2
k

ĉ2
k

then the robust control procedure has a stabilizing effect

(ii)If q
θ
>

b̂2
k

ĉ2
k

then the robust control procedure has a destabilizing effect

Case (ii) suggests robust control caused pattern formation, in the sense that we
obtain a growing mode leading to a pattern which would not have appeared in the
uncontrolled system.

As seen by Proposition 3 in the θ→∞ limit, the control has a stabilizing effect on
unstable modes of the uncontrolled system. Similarly, by Proposition 3 in the θ → 0
limit, the robust control has a destabilizing effect on modes of the uncontrolled
system which are “marginal” to be stable i.e. with α̂k negative but close to zero.

In closing this discussion we wish to ponder upon some similarities and differ-
ences of Type II hot spots with the occurence of the celebrated Turing instability;
Formation of hot spots of type II is similar to Turing instability leading to pattern for-
mation but with a very important difference! In contrast to Turing instability which
is observed in an uncontrolled forward Cauchy problem, this instability is created
in an optimally controlled problem in the infinite horizon. This has important con-
sequences and repercussions both from the conceptual as well as from the practical
point of view. On the conceptual level, a controlled system is related to a system that
somehow its final state (at t→ ∞ in our case) is predescribed. Therefore, our result
is an “extension” of Turing instability in a forward-backward system and not just to
a forward Cauchy problem, as is the case for the Turing instability. On the practical
point of view, the optimal control nature of the problem we study here induces se-
rious constraints on the growth rate of the allowed patterns which has a strict upper
bound is related only to the discount factor of the model and not on the operator A.
This is not the case for the standard Turing pattern formation mechanism, in which
the growth rate upper bound is simply related to the spectrum of the operator A.

4.3 Hot spots of type III: The cost of robustness

The value function is of the form Vk =
M2,k

2 x̂2
k +

ĉ2
kM2,k
2r . This gives us the total cost

of the minimum possible deviation from the desired goal and it is made up from
contributions by three terms:

• the term proportional to p in the cost functional which corresponds to the cost
related to the deviation from the desired target,

• the term proportional to q in the cost functional which corresponds to the cost
related to the cost of the control u needed to drive the system to the desired target
and

• the term proportional to θ in the cost functional which corresponds to the cost of
robustness (which is the cost incurred by the regulator because she wants to be
robust when she has concerns about the misspecification of the model).
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The value functions depends on all these three contributions and this may be
clearly seen since M2,k is in fact a function of the parameters p, q, θ .

An interesting question is which is the relevant importance of each of these con-
tributions in the overall value function. Does one term dominates over the others or
not?

A simple answer to this question will be given by the elasticity of the value
function with respect to these parameters, i.e., by the calculation of the quantities
1
V

∂V
∂ p , 1

V
∂V
∂q and 1

V
∂V
∂θ

. It is easily seen that these elasticities are independent of x̂k

and reduce to 1
M2,k

∂M2,k
∂ p , 1

M2,k

∂M2,k
∂q and 1

M2,k

∂M2,k
∂θ

, respectively. Whenever one of
these quantities tends to infinity, that means that the contribution of the relevant
procedure dominates the control problem9

In particular whenever 1
M2,k

∂M2,k
∂θ
→ ∞, then we say that the cost of robustness

becomes more expensive than what it offers, and we will call that a hot spot of
type III. This quantity can be calculated directly from the solution of the quadratic
equation (18) through straightforward but tedious algebraic manipulations, which
we choose not to reproduce here.

However, an illustrative partial case, which allows some insight on the nature of
hot spots of type III is the following:

Differentiating (18) with respect to θ yields

−
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2θ 2 M2
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2q

)
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= 0.

Dividing by M2
2,k we obtain
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ĉ2

k
2θ
−

b̂2
k

2q

)
1

M2,k

∂M2,k

∂θ
+(2 âk− r)
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Let us now take the particular case where 2âk = r, so that

1
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∂M2,k

∂θ
=

ĉ2
k

4θ

(
ĉ2

k
2θ
− b̂2

k
2q

)

which becomes infinite for values of θ such that θ → qĉ2
k

b̂2
k

. The general case 2âk 6= r

may present similar phenomena.

9 This interpretation arises from observation that close to a point (p0,q0,θ0) the value function
behaves as

Vk '
∂Vk
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(θ −θ0).
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5 Concluding Remarks

In this paper we studied the optimal management of a commercial fishery which is
distributed over a finite spatial domain, is characterized by stock, congestion and
productivity externalities, and the fishery manager has concerns about model mis-
specification.

We solve this problem as a robust control linear quadratic distributed parame-
ter model. The linear quadratic approximation is formulated as a tracking problem
where stochastic dynamics indicating model uncertainty are linearized around a de-
terministic optimal path, and the control process aims at keeping the system close to
the optimal path. Harvesting rules are obtained as robust tracking rules which can be
used by the manager to set policy such as quotas on each site of the spatial domain.

An important result of our paper is the identification of spatial hot spots, which
are sites of special interest emerging from the interactions between concerns about
model uncertainty, spatial interactions and the structure of the fishery. In such hot
spots optimal robust regulation may be impossible and the inability to regulate is
extended to the whole domain (type I hot spot); regulation may lead to spatial non-
homogeneity in the harvesting rules, implying spatially differentiated quotas (type
II hot spots); or misspecification concerns may lead to very costly regulation, indi-
cating excessive cost of robust regulation (type III hot spot).

These results although qualitative in nature provide insights to regulation of a
commercial fishery under model uncertainty and under explicit spatial interactions.
Future research may include solution of a linear quadratic approximation in the
sense of Magill approximations, instead of solution of the optimal tracking problem,
or attempts to characterize the solution of the full nonlinear problem.
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