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Abstract

Although the spatial dimension is embedded in the vast majority of is-

sues studied by environmental and resource economics, its incorporation

into economic models —especially in the form of explicit introduction of a

spatial transport mechanism — is not widespread. As a result, important

aspects of these issues may not be accounted for, which could lead to regu-

latory ineffi ciencies. In this paper, the major spatial transport mechanisms

are discussed, along with the way in which they can be incorporated into

forward-looking optimizing economic models. Furthermore, an extension of

Pontryagin’s maximum principle under spatial dynamics is provided and the

emergence of spatial pattern formation through optimal Turing instability

is explained. A number of examples of the use of spatial dynamics illustrate

why space matters in environmental and resource economics. Moreover, the

differentiation of policy when spatial transport mechanisms are taken into

account is presented. The tools presented in the paper, along with their ap-

plications, provide a path for future research in environmental and resource

economics in which the underlying spatial dimension —which is very real —

is fully taken into account.



1 Introduction

Space is a central feature in the study of the environment and natural re-

sources: air pollutants are transported in the atmosphere from the source

of their emissions via turbulent eddy motion and winds; heat is transported

from the Equator toward the Poles; and resources diffuse in space, usually

moving from high to low concentration locations. In terms of the natural

sciences, the spatial dimension relates mainly to the study of mechanisms

that explain the emergence of spatial patterns in nature, such as Polar am-

plification (i.e., the spatial pattern of the temperature anomaly1), stripes or

spots on animal coats, the spatial distribution of the brown cloud in South

Asia and the Indian Ocean, and many others (e.g., Ramanathan et al. 2002;

Cantrell and Cosner 2003; Murray 2003; Hoyle 2006; Bekryaev, Polyakov,

and Alexeev 2010).

In economics, the spatial dimension has been extensively analyzed in

the context of new economic geography. There is a large body of literature

studying agglomerations and clusters in various spatial scales, as a result

of interactions between scale economies and spatial spillovers.2 Moreover, a

strand of literature on spatial growth theory has emerged which studies the

spatiotemporal characteristics of economic growth under spatial knowledge

spillovers or capital diffusion.3

When the spatial features characterizing the environment and natural

resources are combined with the activities of economic agents who —acting

as forward-looking optimizing producers or consumers — interact with the

environment, a number of new issues emerge. These issues are not captured

by the standard approach of environmental and resource economics which —

with a number of significant exceptions which are discussed in this paper4 —

1This is the change in temperature relative to a given benchmark temperature.
2See, for example, Krugman (1996, 1998); Fujita, Krugman, and Venables (1999);

Lucas and Rossi-Hansberg (2002); Quah (2002); Baldwin et al. (2003); Baldwin and
Martin (2004); Fujita and Mori (2005); Ioannides and Overman (2007); Desmet and
Rossi-Hansberg (2010); Fujita and Thisse (2013); Brock, Xepapadeas, and Yannacopoulos
(2014d); and Redding and Rossi-Hansberg (2017).

3See, for example, Quah (1996, 1997); Boucekkine, Camacho, and Zou (2009); Desmet
and Rossi-Hansberg (2009); Boucekkine, Camacho, and Fabbri (2013); and Brock, Xepa-
padeas, and Yannacopoulos (2014a).

4See, for example, Kaitala, Pohjola, and Tahvonen (1992); Mäler and de Zeeuw (1998);
Sanchirico and Wilen (1999, 2005); Goetz and Zilberman (2000, 2007); Smith and Wilen
(2003); Xabadia, Goetz, and Zilberman (2004); Brock and Xepapadeas (2005, 2008, 2010);
Sanchirico (2005); Wilen (2007); Smith, Sanchirico, and Wilen (2009); and Brock, Xepa-
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does not account for the underlying spatial dimension.

Pigouvian taxes which internalize the environmental externality, or cap-

and-trade policies and tradable emissions permits which try to substitute for

the missing markets for environmental goods such as clean air, are the stan-

dard instruments of environmental policy. In resource management, landing

taxes are used to control commercial fisheries. When space is not taken

into account, the optimal price instrument (tax) or the optimal quantity

instrument (permits) is derived as a solution of a social welfare maximiza-

tion problem with the underlying assumption that the spatial diffusion of

the externality is infinite and therefore the externality is uniform in space.

This in turn implies that spatially-uniform policy instruments will be used

to correct for the externality.

In reality, however, the diffusion of the environmental externalities is

not infinite. This could generate spatial patterns for the externality which

range from local scales such as differences in local ambient pollution, to

global scales related to problems such as acid rain (with different acid depo-

sitions in different locations) or Polar amplification which induces different

magnitudes of the temperature anomaly across the globe. Furthermore, the

interaction of diffusive environmental externalities with mechanisms gen-

erating economic agglomerations and clustering introduces new elements

which should be accounted for in policy design. In a similar way, renewable

resources move in space and generate spatial patterns or clusters as their

movement is taken into account in harvesting decisions.

When diffusive externalities are present, then spatially-uniform Pigou-

vian taxes might not be optimal. That is, instruments under the assumption

of perfect mixing and spatial homogeneity might be different from the opti-

mal instruments which take into account spatial diffusion. This could lead

to the need for localized Pigouvian taxes or cap-and-trade policies. More-

over, when the diffusive externalities interact with economic centipedal or

centrifugal forces, more instruments in addition to Pigouvian taxes or cap-

and-trade policies might be necessary. Acemoglu et al. (2016) have shown

the need for additional instruments in the context of climate change. When

dirty and green technologies compete in production, a carbon tax is not

suffi cient to correct for the climate externality; subsidies to encourage pro-

duction and innovation in green technologies are also required.

padeas, and Yannacopoulos (2013, 2014b).
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An important characteristic of diffusive externalities relates to the in-

teraction between the spatial dimension and the temporal dimension. En-

vironmental and resource management problems are analyzed mostly in a

dynamic context. When spatial diffusion is introduced, novel issues emerge.

Does spatial diffusion of the environmental externality induce the evolution

of spatial patterns? Is it optimal to support spatial patterns or is it optimal

to suppress them and seek convergence to spatially-homogeneous outcomes?

What is the appropriate policy instrument or menu of policy instruments

for attaining these objectives?

Ambiguity and model misspecification concerns, along with aversion to

ambiguity, are emerging as important issues in both theory and policy de-

sign (Hansen and Sargent 2001, 2008; Hansen et al. 2006). These issues

are especially important in the context of climate change where large am-

biguities regarding process and impacts exist and model misspecification

raises issues regarding the reliability of policies derived from such models

(Pindyck 2007, 2011, 2012, 2013; Brock and Hansen 2019). With a diffu-

sive externality such as heat transport toward the Poles, ambiguity acquires

a spatial structure because aversion to ambiguity could be different across

locations, while misspecification concerns could be very important for high

impact locations (hot spots). In this case, policy design under ambiguity

and misspecification concerns, using methods such as robust control, needs

to account for the spatial dimension.

The arguments presented above suggest that the study of diffusive envi-

ronmental externalities and spatial spillovers is important in order to under-

stand their interactions with the economy and the mechanisms generating

endogenously spatial patterns in coupled systems of the economy and the

environment, and to design the appropriate regulatory instruments to con-

trol them. The purpose of this paper is, therefore, to present ways to model

spatial transport mechanisms and the emerging spatial (or diffusive) exter-

nalities and to incorporate them into dynamic, forward-looking optimizing

economic models, to explore the potential endogenous emergence of optimal

spatial patterns under diffusive externalities, and to present policy instru-

ments for controlling them.

The study of diffusive externalities or resources in a dynamic optimiza-

tion framework with continuous space requires the extension of standard

optimal control methods in which dynamic constraints are represented by

3



ordinary differential equations (ODEs) to the case in which the dynamic

constraints are partial differential equations (PDEs) or integrodifferential

equations (IDEs). We present a heuristic extension of Pontryagin’s princi-

ple for solving these problems which could be a useful tool for economists

studying these issues.5

When the analysis is extended to spatiotemporal domains, a central is-

sue in the natural sciences is the way in which reaction-diffusion systems

could generate patterns in space. Alan Turing, in his seminal paper (Turing

1952), showed how diffusion could generate spatial patterns. The Turing

mechanism requires a system of at least two interacting state variables and

its applications in the context of new economic geography (Krugman 1996,

1998)6 were not directly linked to explicit dynamic optimization. The Turing

mechanism has been extended to optimizing spatiotemporal systems with

diffusive externalities by Brock and Xepapadeas (2008), with results sug-

gesting that diffusion can generate spatial patterns in the quantity-shadow

value space (or state-costate space), which is equivalent to pattern genera-

tion in the state-control space. This result raises issues related to optimal

pattern formation, differences in spatial patterning between socially-optimal

and market solutions, and the design of optimal spatially-dependent policy

instruments.

In this context, our paper has three main parts. The first (sections 2

and 3) presents models of spatial transport methods and methods of spa-

tiotemporal optimization. The second (section 4) analyzes the emergence

of spatial patterns in optimizing systems with diffusive externalities. In the

third (sections 5, 6 and 7), we present examples of optimal management and

policy design under diffusive externalities and spatial spillovers which refer

to fishery management, groundwater management, pollution control, urban

economics, climate policy, and the management of spatially-structured un-

5 It should be noted that when the space is discrete (i.e., we have patches with dispersion
of populations, or pollutants across patches), then dynamic optimization involves a set of
ODEs, one for each patch (see, for example, Smith, Sanchirico, and Wilen (2009) as
well as section 5.1 in this paper). In continuous space the dimensionality is drastically
reduced, although the diffi culty of solving a dynamic optimization problem with PDEs as
constraints is added. Furthermore, as will be shown in section 4, the mechanism generating
spatial patterns and agglomerations is better exposed, and it is possible to incorporate
more complex mechanisms for modeling spatial transport which emerge in the context of
climate change.

6Krugman used Turing’s method to explain the generation of agglomerations in the
12-region racetrack model.
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certainty.

2 Modeling Spatial Transport

The spatial dimension and the transport of all kinds of things across loca-

tions —whether they are environmental variables such as pollutants, water,

animals and vegetation, or economic variables such as capital, labor and

knowledge —can be incorporated into models in various ways. Implicit rep-

resentations could assign weights associated with a spatial scale or describe

the part of the spatial domain occupied by a certain type of population.

Explicit representations treat space either as a continuum or as a collection

of discrete patches and define a mechanism which characterizes the move-

ments across patches. We describe some of the more important mechanisms

below.7

2.1 Diffusion

A central concept in any attempt to model the movement of variables as-

sociated with environmental and natural resources in continuous space is

the concept of diffusion. A diffusion process describes a situation in which

movements of individual objects such as pollutants or animals result in a

regular macroscopic flow. Diffusion models can be derived from dispersal

models of random walks, from Fick’s law, or from stochastic differential

equations. Fick’s law states that in one-dimensional space (that is, a line),

diffusion moves objects from locations of high concentration to locations of

low concentration. If the concentration of a material at time t ≥ 0 and spa-

tial point x ∈ O ⊆ R, where O is the spatial domain, is denoted by y (t, x) ,

then Fick’s law states that the flux J of the material is proportional to the

gradient (that is, the derivative with respect to space ∂y(t,x)∂x ) of the material,

or J ∝ −∂y(t,x)
∂x , J = −D ∂y(t,x)

∂x . If the material’s net growth in a spatial

location is determined by f (y (t, x) , u (t, x)) , then concentration dynamics

7For a more detailed description of these mechanisms, see Murray (2003) and Cantrell
and Cosner (2003). See also Smith, Sanchirico, and Wilen (2009) who present linear
diffusion processes and dispersion processes in discrete space and discuss applications to
renewable resource management.
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under diffusion is given by the PDE8

∂y (t, x)

∂t
= f (y (t, x) , u (t, x)) +D

∂y2 (t, x)

∂x2
, y (0, x) = y0 (x) . (1)

In (1), D is called diffusivity and is a constant indicating that the diffu-

sion is linear. Diffusivity, as we will see later on in this section, could depend

on the location or the concentration itself in the context of nonlinear diffu-

sion. This is important in the context of one- and two-dimensional models of

heat diffusion toward the Poles (e.g., North 1975a, 1975b; Ghil 1976; North,

Cahalan, and Coakley 1981; North and Kim 2017). The function u (t, x)

represents a control, such as harvesting, emissions or abatement. Equation

(1), apart from the temporal initial condition, should be supplemented with

spatial boundary conditions which provide information about what the con-

centration is expected to be at the boundary of the spatial domain O at all
times.9

If we consider a vector y = (y1, ..., yn) of concentrations at time t and

location x, which diffuse with diffusivities D = (D1, ..., Dn) and interact

among themselves, and a vector of controls u = (u1, ..., un) , then (1) will

represent a reaction-diffusion system. The Fickian diffusion framework can

be further extended to include an advection term which represents a drift

in the process caused by external forcing such as wind or currents (Murray

2003; Wilen 2007). In this case the advection term −V (∂y (t, x) /∂x) is

added to the right-hand side of (1).

Figure 1 presents the spatiotemporal evolution of resource biomass under

linear diffusion.10

8For the derivation and for extensions to higher dimension spatial domains, see Brock,
Xepapadeas, and Yannacopoulos (2014b).

9Possible boundary conditions are: (a) periodic boundary conditions which imply that
the spatial domain is a circle; (b) Dirichlet-type boundary conditions which specify the
concentration y on the boundary; and (c) Neumann-type boundary conditions which spec-
ify the flux at the boundary. In one-dimensional domain O = [−L,L] , these conditions
imply for all t: (a) y(t,−L) = y(t, L); (b) hostile boundaries y(t,−L) = y(t, L) = 0; and
(c) zero flux at the boundaries or ∂y(t,−L)

∂x
= ∂y(t,L)

∂x
= 0.

10The evolution equations are shown in Appendix 1.
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(a) (b)

(c) (d)

Figure 1: (a) Biomass evolution in time and space (t, x) of a population with

logistic growth under linear diffusion. (b) Contours of the evolution surface. (c)

Biomass evolution in time and space (t, x) of two interacting populations with

logistic growth under linear diffusion (reaction-diffusion system). (d) Case (a)

with advection.

Figure 1 indicates that the role of diffusion is to generate a spatially-

heterogeneous pattern of concentration. In our example, this spatial pattern

seems to persist over time. Persistent spatial heterogeneity raises policy

questions regarding the need to design spatially-heterogeneous policies if

the emerging spatial pattern is not the desired one.

When diffusivity D depends on the concentration or the spatial location,

diffusion is nonlinear. Nonlinear diffusion in spatial models of climate change

is modeled by the term D ∂
∂x

[
(1− x2)∂T (t,x)∂x

]
, where x ∈ [−1, 1] is the sine

of latitude and T (t, x) is surface temperature at the latitude with sine x.

More details will be presented in section 6.2.4.

2.2 Long-Range Transport

Spatial diffusion captures local or short-range spatial interactions (Murray

2003). In economics as well as in environmental and resource management,

spatial interactions and spatial effects could be long range. This means that

7



the rate of change of the concentration at a specific location x is affected by

the concentrations of all other locations x′ ∈ O. These long-range interac-
tions can be expressed by the model

∂y (t, x)

∂t
= f (y (t, x) , u (t, x) , Y (t, x)) , y (0, x) = y0 (x) (2)

Y (t, x) = Ky (t, x) :=

∫
O
w
(
x− x′

)
y
(
t, x′

)
dx′, (3)

and appropriate boundary conditions. In (3), K =
∫
O w (x− x′) dx′ is a lin-

ear integral operator acting on a function y (t, x) and w (x− x′) is a kernel
function which models the effect that location x′ has on location x.11 Since

one of the basic premises of spatial economics is that what happens near

us matters more than what happens far from us, it is reasonable to assume

that the kernel is declining with the distance |x− x′|, and that the influ-
ence tends to zero when this distance becomes suffi ciently large. Another

usual assumption is that the effects are spatially symmetric. Spatial kernels

could reflect positive effects such as knowledge or productivity spillovers,

or negative effects such as congestion effects. Kernels are usually modeled

by exponential functions. Figure 2 depicts the spatiotemporal evolution of

biomass under long-range effects.12

(a) (b)
Figure 2. (a) Exponential kernel with positive and negative spatial effects. (b)

Biomass evolution in time and space (t, x) of a population with logistic growth

and nonlinear predation effects under long-range transport.

Figures 1 and 2 show an interesting qualitative characteristic of the trans-

port mechanisms in continuous time and space. In figure 1 spatial hetero-
11 Integrable kernel functions have been used in economics to model geographic spillovers

(e.g., Krugman 1996; Lucas 2001; Lucas and Rossi-Hansberg 2002; Chincarini and Asherie
2008; Kyriakopoulou and Xepapadeas 2013, 2017;.Brock, Xepapadeas, and Yannacopoulos
2014a, 2014d).
12The kernel and the evolution equation are shown in Appendix 1.
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geneity of the concentration is preserved with the passage of time, while

in figure 2 the initial spatial heterogeneity vanishes and the concentration

becomes spatially homogeneous, or returns to a “flat earth”situation. The

emergence of spatial heterogeneity —or spatial pattern formation —from an

initial state of flat earth, or the convergence to flat from an initial state of

spatial heterogeneity, is an important issue when the system is controlled

optimally and is related to the design of effi cient spatial policies. These

issues are examined in sections 4 and 4.1.

2.3 Discrete Space: Metapopulation Models and Dispersion

A class of spatial models —metapopulation models13 —most often encoun-

tered in environmental and resource economics treats space as discrete, con-

sisting of patches, and describes how populations or other objects move

across patches. In bioeconomics based on metapopulation models, harvest-

ing takes place in a patchy spatial domain and populations on different

patches are connected by the dispersal process. Dispersion is modeled by a

system of ODEs which, for a spatial domain with i = 1, ..., n patches, can

be written as:

dyi (t)

dt
= fi (yi (t) , ui (t))+

n∑
j=1,j 6=i

dijyj (t)−Diyi (t) , yi (0) = yi0,

n∑
j=1,j 6=i

dij ≤ Di,

(4)

where fi (yi (t) , ui (t)) represent population dynamics, and individuals dis-

perse from patch i at a rate Di ≥ 0 and arrive from patch j at a rate

dij ≥ 0 (Cantrell and Cosner 2003). Models like (4) can be extended to in-

clude density-dependent dispersal, multi-species interactions, bioinvasions,

or pollution transportation across patches.

There is a considerable amount of literature that analyzes environmental

and resource management issues using patchy environments and metapop-

ulation models with dispersion across patches.14

Dispersion models have been used to study the so-called “acid rain game”

(e.g., Mäler 1989; Kaitala, Pohjola, and Tahvonen 1992; Mäler and de Zeeuw

1998, Nagase and Silva 2007) in which acid deposits damage regions due to

13For the analysis of metapulation models, see Levin (1974, 1976), Hastings (1982) and
Hastings and Harrison (1994).
14See, for example, Wilen (2007) or Smith, Sanchirico, and Wilen (2009) and the refer-

ences therein, and section 5.1 for further analysis.

9



acid rain generated by sulphur emissions in other regions. In Mäler and de

Zeeuw (1998), acid depositions in each of the i = 1, ..., n countries are given

by Ae, where A = [aij ] , i, j = 1, ..n is a transportation matrix in which the

element aij denotes the fraction of country j’s emissions ej of sulphur or

nitrogen oxides that is deposited in country i, so Ae is the vector of acid

depositions in each country. The accumulation of depositions, di, in each

country is given by the system of ODEs

ḋ (t) = Ae (t)−c,d(0) = d0,

where d is the vector of depletion of each country’s acid buffer stock and c

is the vector of critical loads. An increase in depletion means damage to the

country’s soil. The objective is to choose emission paths to minimize the

cost of reducing emissions plus damages from depletion.

Metapopulation models have also been used in the study of biological

invasions. Albers, Fischer, and Sanchirico (2010) study the spread of in-

vasive species over heterogeneous regions and compare optimal spatially-

heterogeneous policy to spatially-uniform policy. Epanchin-Nieli and Wilen

(2012) study optimal spatial control of biological invasions in spatiotem-

poral models in which the spatial domain is two-dimensional. Bioinvasion

spreads from the invaded cell to adjacent cells in the absence of regulation.

Epanchin-Nieli and Wilen develop optimal policy with a spatially-explicit

characterization.

Brock and Xepapadeas (2002) analyze a species competition for a lim-

ited resource in a patchy environment. They show that three different equi-

librium species specialization patterns emerge — undisturbed Nature with

harvesting, and private optimal and social optimal with harvesting — and

show that policy rules are spatially dependent.

Dispersion type of modeling has been used to study heat transport from

the equator to the North Pole in the economics of climate change. This

includes “two-box”models in which heat moves from the Equatorial region

to the North and causes Arctic amplification.15

Spatial kernels can also be incorporated into spatial domains consisting

15See, for example, Alexeev, Langen, and Bates (2005); Alexeev and Jackson (2013);
and Brock and Xepapadeas (2017, 2019, 2020).
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of patches. In this case, (4) can be written as

dyi (t)

dt
= f

yi (t) , ui (t) ,
n∑

j=1, j 6=i
wijyj

 , yi (0) = yi0,

where the wij element of the kernel provides a measure of the influence of

the state of the system at patch j on the state of the system at patch i.

In section 5, it will be shown how the transport mechanisms presented in

this section have been used to analyze specific issues in environmental and

resource economics.

3 Dynamic Optimization in Space-Time: A Spa-

tial MaximumPrinciple under Diffusion and Long-

Range Transport

In environmental and resource economics, transition dynamics modeled by

(1), (2) or (4) are typically used as constraints in optimization problems

in which the objective is to maximize the present discounted value of an

objective depending on state y and control u, which are defined over the

entire spatial domain. In the context of continuous time and space, this can

be regarded as the problem of a social planner or environmental regulator

defined as:16

max
u∈U

∫
x∈O

∫ ∞
0

e−ρtU(y(t, x), u(t, x))dtdx (5)

subject to (1) or (2),

where U (·, ·) is a standard utility or net benefit function. Problem (5) is not
the typical dynamic optimization problem encountered in economics, since

the constraints are either PDEs or IDEs.

Necessary optimality conditions can, however, be stated in terms of a

spatial maximum principle17 as follows. If the path u∗ (t, x) , y∗(t, x) solves

problem (5) subject to (1), then there exists a costate p (t, x) such that u∗

16To simplify, we assume that transition dynamics are time autonomous and that the
utility function U (y, u) does not explicitly depend on time t.
17We present only the conditions here; for details and derivations see, for example,

Derzko, Sethi, and Thompson (1984); Brock and Xepapadeas (2008); and Brock, Xepa-
padeas, and Yannacopoulos (2014b).
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maximizes the current value Hamiltonian function18

H (y, p, u) = U(y, u) + p

(
f (y, u) +D

∂y2

∂x2

)
, or (6)

u∗ (y, p) = arg max
u
H (y, p, u) , (7)

y∗ and p satisfy the system of PDEs

∂y∗

∂t
= f (y∗, u∗) +D

∂2y

∂x2
(8)

∂p

∂t
= ρp− ∂H (y∗, p, u∗)

∂y
−D∂2p

∂x2
, (9)

and a transversality condition at infinity is satisfied,

lim
t→∞

∫
O
e−ρ ty∗(t, x)p (t, x) dx = 0.19 (10)

In Appendix 2 we present a sketch of a heuristic proof of result (8)-(9),

while in Appendix 3 we present a method for solving a linear quadratic

problem (see (14)-(15) below). It is important to note that in (9) diffusivity

has a negative sign as opposed to the positive diffusivity of (8). Since y can

be interpreted as quantity at spatial point x, while p can be interpreted as

as the shadow value (i.e., price of a useful resource, or cost in the case of

a pollutant) of this quantity at x, the opposite signs imply that quantities

and prices move in opposite directions in the spatial domain.

With long-range spatial effects modeled by kernels, the extension of

the maximum principle provides the following necessary conditions (Brock,

Xepapadeas, and Yannacopoulos 2014a, 2014d):

u∗ (y, p) = arg max
u
H (y, p, u, Y ) (11)

H (y, p, u) = U(y, u) + pf (y, u, Y ) ,

where y∗ and p satisfy the system of IDEs with appropriate spatial boundary

18We drop (t, x) to ease notation.
19A solution procedure for this problem is described in Appendix 2. Problems in finite

terminal time can be handled by adding appropriate terminal and transversality condi-
tions.
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conditions

∂y∗

∂t
= f (y∗, u∗, Y ∗) , Y ∗ = Ky∗ (t, x) (12)

∂p

∂t
= ρp− ∂H (y∗, p, u∗, Y ∗)

∂y
−K∂H (y∗, p, u∗, Y ∗)

∂Y
, (13)

along with the intertemporal transversality condition. Appendix 2 presents

a sketch of a heuristic proof of this result.

4 Spatial Pattern Formation

Patterns in space refer to spatial or spatiotemporal forms or regularities

which are observable as different concentrations of a quantity of interest,

such as biomass, pollutants, temperature, stock of capital or knowledge at

different spatial points. If there is no spatial transport, the system will

remain at its initial spatial state and no new patterns will emerge. A fun-

damental question in this context is whether spatial transport can create

the endogenous emergence of patterns from a spatially-homogeneous or flat

earth state. In biology the issue of pattern formation is referred to as mor-

phogenesis and pattern formation mechanisms try to explain classic ques-

tions such as “how the leopard got its spots.”

A fundamental pattern formation mechanism under spatial diffusion is

the Turing mechanism (Turing 1952). In general, a diffusion process in a

system of interacting populations or materials tends to produce a spatially-

uniform population density, that is, spatial homogeneity. Thus it might

be expected that diffusion acts as a homogenizing force or a stabilizer in

case of spatial perturbations. There is however one exception, known as

diffusion-induced instability or diffusive instability. Turing suggested that

under certain conditions, diffusion acting on reaction-diffusion systems can

generate spatially-heterogeneous patterns.

This is the so-called Turing mechanism20 for generating diffusion insta-

bility or just Turing instability, which means that a flat-earth state is desta-

bilized by diffusion and this destabilization is a precursor to the emergence

of persistent spatial patterns. The Turing mechanism requires a system

of at least two interacting state variables, and its applications are not di-

rectly linked to explicit dynamic optimization. Thus a question which is
20See also Levin and Segel (1985) and Murray (2003).

13



relevant for environmental and resource economics is whether a system in

which an environmental variable is transported across space through natural

mechanisms, and a forward-looking agent —e.g., a regulator —is seeking to

control the system optimally, can exhibit pattern formation in the space of

quantities-shadow values. If the optimal control of a system with a diffusive

externality like problem (5) generates an optimal spatial pattern, the im-

portant policy question then is what kind of policy can support this optimal

spatial pattern.

Brock and Xepapadeas (2008) were the first to show that diffusion can

destabilize a flat-earth steady state in the quantities-shadow values (state-

costate) space, or equivalently in the state-control space, in a way which

is similar to the Turing mechanism. The reasoning behind the optimal

diffusion instability can be explained in the following way. From standard

optimal control theory we know that, without diffusion (i.e., D = 0 in (1)),

and under appropriate concavity assumptions, if a steady state defined as

(y∗, p∗) : (ẏ = 0, ṗ = 0) exists, then this steady state will have the local

saddle point property or it will be unstable (e.g., Kurz 1968).

The steady state with the saddle point property is spatially homoge-

neous, or a flat optimal steady state (FOSS). This means that a stable

manifold exists —which is globally stable under appropriate assumptions —

such that for any initial value for the state (e.g., stock of greenhouse gases,

or biomass) there is an initial value for the costate (the shadow value of the

externality) and the control, such that the system will stay on the stable

manifold and converge to the FOSS. If a temporal perturbation moves the

system away from the steady state but the system is optimally controlled,

then on the stable manifold the perturbation will die out with the passage

of time and the system will return to the FOSS.

In the context of a flat-earth system without diffusion which evolves

in time and space, a FOSS can be interpreted as a state (y∗ (x) , p∗ (x)) :(
∂y(t,x)
∂t = 0, ∂p(t,x)∂t = 0

)
, with (y∗ (x) , p∗ (x)) = (y∗ (x′) , p∗ (x′)) , for all

x, x′ ∈ O. The stable manifold for this FOSS indicates that for any spatially-
homogeneous (flat) initial value for the state y (0, x) , there are flat initial

values for the costate and the control such that the system will converge to

the FOSS.

Suppose now that spatial diffusion occurs and that the FOSS is perturbed

in the spatiotemporal domain. The optimality conditions from the extended
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Pontryagin’s principle suggest that spatial sinusoidal wave-like patterns will

emerge at the stable manifold in the neighborhood of the FOSS. If, with

the passage of time, these patterns die out, then the FOSS is stable and the

system will return to this FOSS. If, however, the patterns keep growing over

time, then diffusion destabilizes the stable manifold in the neighborhood of

the FOSS.

We call the emergence of spatial patterns in the optimally-controlled

system optimal Turing instability, which induces optimal spatial patterns.

To obtain a better picture of optimal Turing instability, consider the linear

quadratic optimal control problem

max
u(t,x)

∫ L

0

∫ ∞
0

e−ρt
[
−A

2
y (t, x)2 − B

2
u (t, x)2 +Nx (t, x)u (t, x)

]
dtdx (14)

A,B, ρ > 0, AB −N2 > 0

s.t.
∂y (t, x)

∂t
= Fy (t, z)−Gu (t, x) +D

∂2y (t, x)

∂x2
F,G > 0, (15)

with the solution analyzed in detail in Appendix 3. Setting α ≡
(
F − GN

B

)
,

β ≡
(
A− N2

B

)(
G2

B

)
, we show in Appendix 4 (Theorem 1) that optimal

Turing instability will emerge for parameter values in the non-empty set

T ≡ R ∩ S,
{

(α, β) : α >
ρ

2

}
∩
{

(α, β) : β <
ρ2

4

}
.

The Turing set T for different values of the discount rate ρ is shown as the

shaded areas of figure 3. When the set is non-empty, then a D > 0 can be

found that destabilizes the FOSS. The Turing set is empty for ρ = 0.
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Legend: 1:ρ = 0.05;2:ρ = 0.1;3:ρ = 0.15;4:ρ = 0.2;5:ρ = 0.3

α ∈ [0, 0.25] , β ∈ [0, 0.03]
Figure 3. The Turing Set for the Optimal Turing Instability for Different Values

of ρ

Since in a system with diffusive externality the costate is the price of the

externality, this result suggests that due to diffusion the externality should

be priced differently at different spatial points or, equivalently, the optimal

control should be different at different locations. If the diffusive externality

has wider impacts such as productivity effects, then additional spatially-

dependent instruments might be required to support the optimal spatial

pattern.

The optimal diffusive instability can be regarded as a precursor to the

emergence of agglomerations and clustering in optimally-controlled systems.

Diffusion may, however, have stabilizing effects. Consider for example an

optimal control problem such as (14), with a steady state (y∗, p∗) which

is completely unstable for D = 0. Then, as shown in Appendix 4, there

exists a Turing space T− for the parameters of the problem and a diffusivity

D > 0 such that the optimized system will converge to a FOSS along a stable

manifold. In terms of policy, this result suggests that allowing transport of

the material or resource associated with the state variable in the case of a

diffusive externality will make possible regulation with a spatially-uniform

policy instrument.

The analysis above focused on optimal Turing instability as a precur-
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sor to persistent spatial patterns under diffusion. A similar approach can

be used to study pattern formation induced by long-range spatial effects

represented by kernels. A FOSS with the saddle point property could be

destabilized by spatiotemporal perturbations induced by a spatial kernel as

defined in (3). Destabilization refers to the stable manifold associated with

the FOSS (see Brock, Xepapadeas, and Yannacopoulos 2014a, 2014d).21

4.1 Optimal Pattern Formation and Policy Implications

In the case of optimized systems, the important differences between the “op-

timal spatial instability”—whether it is diffusion-driven or kernel-driven —

and the celebrated Turing instability which explains pattern formation in

biological and chemical systems are that: (a) contrary to the spirit of the

Turing model, here the instability is driven by optimizing behavior, so it

is the outcome of forward-looking optimizing behavior by economic agents

and not the result of reaction-diffusion in chemical or biological agents; (b)

the spatial patterns do not emerge between two state variables which in

general reflect quantities, but with a state variable and its shadow price,

thus the spatial pattern occurs in the price-quantity space; and (c) contrary

again to the Turing approach, there is no need to have two or more diffus-

ing/interacting state variables to general patterns, but only one diffusing

state. Optimization induces diffusion to the price system (the costate) and

the interaction of the price-quantity system generates patterns.

The optimal Turing instability is quashed when the discount rate ρ be-

comes zero (see also figure 3). This relation of the discount rate with Turing

instability can be linked with general results from the turnpike literature and

the role of the utility discount rate. In the classical turnpike theory of mul-

tisectoral capital theory (Cass and Shell 1976; McKenzie 1976), a discount

rate close to zero is associated with unique steady-state equilibria and global

asymptotic stability. When the discount rate is close to zero, the optimal

Turing instability is expected to vanish as well. Thus the optimal Turing

instability can be regarded as a new form of instability which may emerge if

diffusion is present. The role of the discount rate should also be important

in a potential integration of optimal Turing theory with Pareto optima in

general equilibrium theory, which could be an area of future research in ex-

21See Appendix 5 for a sketch of the procedure.
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tending the work of Bewley (1982) in the integration of equilibrium theory

and turnpike theory to spatial settings with diffusion.

Optimal spatial patterns or agglomeration as persistent outcomes im-

plies that the value of the spatially-heterogeneous system exceeds the value

of the flat earth system. In terms of policy design, an interesting distinction

could be made between privately optimal solutions which ignore the diffu-

sive or the long-range externality, and the socially-optimal solution which

internalizes the spatial externality. If spatial transport phenomena produce

different outcomes between the social and the private optimum —e.g., the

equilibrium outcome at the private optimum implies spatial heterogeneity

while the social optimum implies different spatial patterns or even flat earth

—then policy instruments which will promote socially-optimal patterns or

suppress spatial heterogeneity should be designed. In the remainder of this

paper, we use the analytical tools presented earlier to study the issue of

characterizing and designing policies under spatial transport for typical en-

vironmental and resource problems.

5 Environmental and Resource Management Pol-

icy under Spatial Dynamics

The spatial characteristics of environmental policy emerge naturally when

there is spatial differentiation with respect to a specific characteristic (e.g.,

land quality) or a flow of a pollutant or biomass across regions or spatial

locations. This transportation process is often referred to as cross-border or

transboundary. When pollution —that is, the externality —crosses borders,22

there are two major types of issues related to policy design. The first type

is the case in which pollution is a local “public bad”or, to put it differently,

environmental quality is a local public good. This means that damages

emerge from the local pollution level after local emissions and spatial dis-

persion of pollutants takes place. In this case, environmental policy has to

correct the local externality. A typical example is upstream-downstream

water pollution problems. The second type is the case of a global external-

ity, or global public bad, in which damages in each region are associated

with global pollution and are independent of the spatial point from which

pollution originates. A typical example is the case of climate change.
22The borders could refer to nations or to subnational jurisdictions.
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The flow of the pollutants or the resources implies the existence of a

transportation mechanism and is the specific transportation mechanism de-

scribed in section 2, which provides the link between the forward-looking

optimization of economics and the natural laws governing the flow of pol-

lutants or resources. It is this link that we are studying as the driver of

spatiotemporal patterns and location specific policies which can internalize

externalities, including spatial externalities.

The largest part of the existing literature on pollution control or bioe-

conomic analysis which considers space focuses on discrete space with a

static or dynamic temporal dimension. However, aside from some notable

exceptions in the literature related to fishery management —and, to a lesser

extent, the literature regarding groundwater management, pollution control,

bioinvasions or acid rain issues —the main body of the environmental and

resource management literature does not include explicit spatial transport

mechanisms across locations.

An important strand of this literature, developed mainly in the 1990s,

studies the link between environmental quality and international trade. Two

seminal papers by Copeland and Taylor (1994, 1995) analyze pollution and

trade. In the first, pollution does not disperse across countries. In this case,

free trade shifts pollution-intensive production to the country where hu-

man capital is scarce and world pollution increases. In the second, pollution

crosses boundaries and is a global public bad such as climate change or ozone

depletion. One of the results is that if countries are different, trade creates

“pollution havens,”which are countries in which pollution-intensive indus-

tries locate due to lax environmental policies. This is a result suggesting

that under global pollution, spatial patterns related to the pollution inten-

sity of production emerge. Spatial patterns are induced by international

trade. In the same analytical framework, Silva and Caplan (1997) study en-

vironmental policy for a global public bad in the context of a federal system.

Copeland (1996), in a two-country, static model with unidirectional cross-

border pollution23 and international trade, derives optimal tariff policy for a

country which imports goods and is harmed by cross-border pollution gener-

ated in the neighboring country, while Hatzipanayotou, Lahiri, and Michael

23Pollution transportation in a two-region model is a special case of the general disper-
sion model (4) with i = 2. Unidirectional transportation, for example, means that d12 = D
and d21 = 0.
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(2002, 2005) study multilateral policy reforms under cross-border pollution,

international trade and foreign aid.24

There is extensive literature on dynamic models of global pollution which

is accumulated in the ambient environment. The growth of global pollutants

depends on aggregate emissions per unit time originating from different

agents. In these models the spatial dimension is implicit, since it is nat-

ural to assume that agents emit from different spatial locations. However,

since there is no transport mechanism, it is diffi cult to value the spillover

externality. The analysis of these problems focuses on two types of solution

concepts: a cooperative solution, in which a regulator maximizes aggregate

welfare net of damages; and noncooperative solutions, in which each location

is treated as a forward-looking agent that maximizes own welfare net of own

damages by taking into account the behavior of the other forward-looking

agents. Two types of behavior are in general examined: the open loop Nash

equilibrium in which each agent takes the emission paths of the other agents

as given, and the feedback Nash equilibrium in which the emissions of each

agent depend on the current stock of pollution accumulation (Başar and Ols-

der 1995). The feedback solution is Markov perfect by construction. Typical

examples of this modeling are the cases of transboundary pollution games

(e.g., van der Ploeg and de Zeeuw 1992; Dockner and van Long 1993)25 and

the lake games (e.g., Brock and Starrett 2003; Mäler, Xepapadeas, and de

Zeeuw 2003; Wagener 2003; Kossioris et al. 2008, 2011)

This discussion suggests that the spatial dimension is implicit in a large

number of issues which are central to environmental and resource economics.

However, the absence of explicit transport mechanisms, such as those re-

viewed earlier in this paper, does not allow for full exploration of the im-

pact of spatial dynamics on environmental and resource management. In

this section we present specific applications in spatially-structured environ-

ments in which flows are explicitly driven by spatial transport mechanisms.

Our aim is to show how this analytical framework could be helpful in bet-

ter understanding spatial heterogeneity and spatial patterns as outcomes

of optimizing behavior, and also in the design of effi cient space-dependent

policies.

24For a survey on environmental policy and international trade, see Ulph (1997).
25For surveys, see for example Jorgensen, Martin-Herrán, and Zaccour (2010) and Calvo

and Rubio (2012).
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5.1 Fishery Management in Patchy Environments

In fishery management, the explicit introduction of space is implemented

in the context of metapopulation models with sub-populations in patches

and population dispersal among them due to natural forces (e.g., winds or

currents).

Smith, Sanchirico, and Wilen (2009) present spatial dynamic processes

and their applications to renewable resource management. Sanchirico and

Wilen (1999) use the modeling approach in (4) to describe the evolution of

fish biomass in patch i = 1, ..., n under harvesting modeled by the catch

function hi (Ei (t) , yi (t)) with Ei (t) being the level of fishing effort. In an

open access patchy system, fishing effort and biomass in each patch could

evolve as

dEi (t)

dt
= siRi (yi (t) , Ei (t)) +

n∑
j=1,j 6=i

sij [Ri (yi (t) , Ei (t))−Rj (yj (t) , Ej (t))]

dyi (t)

dt
= fi (yi (t)) yi (t) +NDi (y1 (t) , ..., yn (t))− hi (Ei (t) , yi (t)) ,

where fi (yi) is per capita growth function; NDi is the net dispersal func-

tion in patch i; Ri (yi, Ei) denote rents in patch i; si is entry exit rates; and

sij (Ri (yi, Ei)−Rj (yj , Ej)) is fleet dispersal because of revenue differentials

across patches. The biomass-effort steady state of the system is determined

as (E∗i , y
∗
i ) : (dEi/dt = 0, dyi/dt = 0) . Sanchirico and Wilen find the equilib-

rium patterns of biomass and effort across the system to be dependent upon

bioeconomic conditions within each patch, and the nature of the biological

dispersal mechanism between patches. In terms of policy, they conclude

that optimal instruments should reflect the interplay between the spatial

gradient of rents and the spatial gradient of biological dispersal.

Sanchirico and Wilen (2001) study the creation of marine reserves in

a patchy environment and show that, under certain conditions, creating a

reserve by closing a patch for harvesting could increase aggregate biomass

and harvest.26

In a continuous space fishery model, Behringer and Upmann (2014) find

that in atomistic equilibrium, each agent exploits one location only and

26For further analysis of bioeconomic models in patchy environments and issues related
to marine reserves, see for example Smith and Wilen (2003); Costello and Polasky (2004,
2008); Sanchirico and Wilen (2005); and Smith, Sanchirico, and Wilen (2009).
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tends to harvest the resource to extinction in this location. This result also

points to spatially-structured policy interventions.

5.2 Groundwater Management

In groundwater management, the early literature such as Gisser and Sanchez

(1980), Negri (1989) and Provencher and Burt (1993) considered the under-

ground aquifer as a homogeneous single-cell “bathtub” in which abstrac-

tion by one user caused an instantaneous impact on others. More recent

literature recognizes the fact that hydrological factors such as seepage or

aquifer transmissivity introduce a spatial pumping externality. In this case,

pumping by a farmer affects and is affected by the pumping behavior of

the neighbors through the emergence of overlapping cones of depression in

the aquifer. Thus optimization problems which seek to maximize benefits

from the underground aquifer acquire an explicit spatial structure (see, for

example, Saak and Peterson 2007; Brozovic, Sunding, and Zilberman 2010).

Pfeiffer and Lin (2012) model a “patchy”groundwater aquifer with water

flowing across patches according to hydrological rules. The dynamics of

water stock yi (t) in each patch are given by

dyi (t)

dt
= −ui (t) + gi (ui) +

n∑
j=1,j 6=i

θijyj (t) , (16)

where ui is water pumping, gi (ui) is recharge to patch i and flow parameters

θij are determined by Darcy’s law or θij = (yi − yj) /xij where xij is the
distance between patches. Groundwater dynamics (16) act as a constraint

to the problem of a social planner seeking to maximize discounted aquifer

benefits, or

max
ui(t)

∫ ∞
0

e−ρt

[
n∑
i=1

[Ri (ui)− C (yi)ui]

]
dt.

Results suggest that the spatial externality results in overpumping rel-

ative to the social optimum (Pfeiffer and Lin 2012), and that the spatial

externality is important for large, unconfined groundwater aquifers (e.g.,

Brozovic, Sunding, and Zilberman 2010). Kuwayama and Brozovic (2013)

consider the adoption of a spatially-differentiated groundwater permit sys-

tem to effi ciently regulate when groundwater pumping affects the flow of

surface water.
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Brock and Xepapadeas (2010) studied a semi-arid system with reaction-

diffusion characteristics in which plant biomass and soil water interact and

diffuse in a continuous space with linear (Fickian) diffusion. The plant-soil

water dynamics are given by27:

∂tP (t, x) = g (W (t, x) , P (t, x))− bP (t, x)− h (t, x) +Dp∂xxP (t, x)

∂tW (t, x) = f (P (t, x) , R)− υ (W (t, x) , P (t, x))− rWW (t, x) +Dw∂xxW (t, x)

P (0, x) ,W (0, x) given,

P (t, 0) = P (t, L),W (t, 0) = W (t, L) ∀t,

where P (t, x) is plant density (biomass); W (t, x) is soil water at time t ∈
[0,∞) and location x ∈ [0, L]; R is fixed rainfall; h is harvesting of plant

biomass through grazing; g(W,P ) is plant growth, increasing in soil wa-

ter and plant density; bP is plant senescence; f(P,R) is water infiltration;

υ(W,P ) is water uptake by plants; rW is specific rate of water loss due to

evaporation and percolation; and DP and DW are diffusion coeffi cients for

plant biomass (plant dispersal) and soil water, respectively. The authors

consider the problem of a myopic agent who optimizes profits by ignoring

spatiotemporal dynamics, and the problem of a social planner who internal-

izes the spatial externality. They find that at the myopic solution, spatial

patterns in plant-soil water are generated through the Turing mechanism but

the socially-optimal solution is spatially homogeneous. Spatially-dependent

instruments are required in order to internalize the spatial externality.28

5.3 Pollution Control

Goetz and Zilberman (2000) consider pollution accumulation in a lake as-

sociated with the run-off from mineral fertilizers and animal manure. They

employ a two-stage optimization, optimizing first across the spatial and then

across the temporal dimension. The social optimum can be implemented

with site-specific taxes on mineral fertilizers, manure and large animal units.

Sigman (2005) considers transboundary river pollution and examines

27We use ∂z instead of ∂/∂z and similar for second derivatives to simplify notation.
28For a detailed numerical analysis of optimal harvesting in the semi-arid system, see

Uecker (2016). For the application of this methodology in invasive species control, see Liu
and Sims (2016).
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whether states which, under decentralized policies, control their Clean Water

Act programs, free ride on downstream states. Sigman does not include an

explicit pollution transport mechanism along the river and defines water

quality, WQit, in location i and time t, as

WQit =
H∑
h=1

Pht
Fht

δh−i,

where Pht is pollution at upstream locations h, Fht is flow that dilutes pol-

lution and δ < 1 is a spatial discount term that diminishes pollution effects

with distance. Using econometric estimation, Sigman concludes that there

is free riding whose costs need however to be compensated with benefits

derived from the flexibility introduced by decentralization.

Xabadia, Goetz, and Zilberman (2006, 2008) study policies for control-

ling agricultural stock pollution in a framework in which the spatial dif-

ferentiation is related to the heterogeneity in the land quality of producers

located at different sites. Pollution generated by the heterogeneous produc-

ers is accumulated in the environment and the optimal emission policy is

site specific. Although there is no explicit spatial transportation mechanism,

this research studies a spatially-distributed parameter problem in the space

of qualities which are distributed in space and presents another approach to

spatial issues.

Explicit pollution diffusion across space was introduced by Brock and

Xepapadeas (2008) into the so-called shallow lake problem. In this case,

pollution (phosphorous) accumulates in time and space according to the

PDE

∂tP (t, x) = E (t, x)−mP (t, x) + f (P (t, x)) +D∂xxP (t, x) , (17)

with appropriate initial and spatial boundary conditions. In this set-up,

P (t, x) denotes the stock of the pollutant at t and x; E is emissions by

location x; m is the pollution decay rate; and f (P (t, x)) is in general a

convex-concave function indicating nonlinear feedbacks which underlie the

lake dynamics. Using (17) as a constraint in the planner’s problem for maxi-

mizing benefits over the whole spatial domain, and realistic parametrization

for the lake, it is shown that a steady state can be destabilized in the con-
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text of optimal Turing instability, and spatial patterns in the accumulation

of the pollutant start emerging due to pollution diffusion. Since the spatial

patterns for the pollutant imply spatial patterns for its shadow cost, this

result suggests spatially-differentiated emissions taxes.29

Camacho and Pérez-Barahona (2015) use the model of Gaussian plume

to describe the spatial dynamics of pollution and consider a pollution accu-

mulation equation at location x of the form

∂tP (t, x) = E (x, t) + ∂xxP (t, x) ,

in a model of optimal land use in which the interaction between land use and

the environment generates a spatially-heterogeneous solution and abatement

technology is central in pollution stabilization.

De Frutos and Martín-Herran (2019) consider a spatiotemporal-pollution

dynamics problem of the form shown in (17) without the nonlinear feedback

to study optimal regulation in a transboundary pollution problem. By mak-

ing a linear quadratic approximation and discretizing the space, they derive

regional cooperative and noncooperative emission paths.

5.4 Urban Economics and Spatial Effects

Environmental externalities are prominent in the area of urban economics.

Pollution from transportation or industrial activities affects the location de-

cisions of both individuals and firms and significantly affects the spatial

structure of a city. In this context, environmental policy is an important

factor in the development of residential and industrial clusters, since strict

environmental measures can discourage firms from polluting urban areas,

while reduced pollution levels can encourage people to locate closer to in-

dustrial areas, thus reducing commuting costs.

Henderson (1977) studied a problem in which industrial pollution dif-

fuses towards the residential/central business district boundary. The op-

timal policy consists of Pigouvian taxes along with regulations controlling

the allocation of land between polluting firms and individuals, and potential

redistribution of tax receipts between heavily-taxed and lightly-taxed com-

munities. The combination of optimal taxes with zoning policies will pre-

vent polluting firms from locating in residential areas. Verhoef and Nijkamp

29For a detailed numerical analysis of this problem, see Grass and Uecker (2017).
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(2002) use a monocentric city model and study first- and second-best poli-

cies in order to control the effect of industrial pollution on residential areas.

They show that environmental goals can be promoted either at the expense

of or in favor of agglomeration economies.

Arnott, Hochman, and Rausser (2008) study a circular city in which firms

generate pollution and households commute at a cost and receive disutility

from pollution. Pollution disperses according to a function D (e (x) , x− x′) ,
where e (x) denotes emissions at x and x− x′ is the distance between loca-
tion x and x′. The kernels introduced in section 2.2 could be a reasonable

specification of such a function. In this set-up, the optimal allocation can be

decentralized by imposing a tax per unit of area of industrial land at a par-

ticular location equal to the total damage caused by the pollution from that

unit area, evaluated at the optimum. Location-specific Pigouvian taxes that

do not fully internalize the total damage caused by this site are ineffi cient.

Rossi-Hansberg, Sarte, and Owens (2010) and Rossi-Hansberg and Sarte

(2012) study housing externalities, defined as the effect that impacts of a

house’s characteristics have on neighbors. They find that these externalities

decay fast with distance, with the impact on location x from housing services

H (x′) in nearby location x′ ∈ [−L,L] defined as:

δ

∫ L

−L
e−δ|x−x

′|H
(
x′
)
dx′.

They conclude that residents in a neighborhood depend on the quality of

nearby housing and propose, as policy measures, minimum maintenance

requirements or zoning policies.

Kyriakopoulou and Xepapadeas (2013, 2017) consider a linear city with:

(i) productivity spillovers which decline with distance, or

z (x) = δ

∫ L

0
e−δ(x−x

′)2λ
(
x′
)

lnL
(
x′
)
dx′,

where e−δ(x−x
′)2 is a normal dispersal kernel, λ (x′) is the proportion of land

occupied by firms at the spatial point x′, and L (x′) is labor input; and

(ii) pollution, P, which diffuses across the city and concentrates in specific

locations according to

lnP (x) =

∫ L

0
e−ζ(x−x

′)2λ
(
x′
)

lnE
(
x′
)
dx′,
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where E (x′) denotes industrial pollution. In this set-up, equilibrium and

optimal solutions regarding the spatial structure of the city are compared

and optimal policy is derived. In Kyriakopoulou and Xepapadeas (2013),

where a first-nature advantage assumption is made, it is shown that the

equilibrium outcome leads to either a monocentric city or a polycentric city

with the first-nature advantage site attracting the majority of economic ac-

tivity. On the contrary, the socially-optimal solution leads to a duocentric

city, where neither of the two centers is formed around the natural advan-

tage site. The authors show that sites with inherent advantages can lose

their comparative advantage when the social cost of pollution is taken into

account.

Kyriakopoulou and Xepapadeas (2017) consider a general equilibrium

set-up where there is competition for land between industries and house-

holds, polluting industrial activity, production externalities and costly com-

muting. In equilibrium the center of the city is mixed residential/industrial,

while at the social optimum there are distinct residential and industrial

clusters across the city. The presence of spatial productivity spillovers and

spatial pollution spillovers requires that the optimal policy be site-specific

and consist of two instruments: pollution taxes to internalize the negative

pollution externality and labor subsidies to internalize the productivity ex-

ternality. Uniform instruments are suboptimal.

Regnier and Legras (2018) use a model à la Fujita and Ogawa (1982)

to study the urban patterns derived in the presence of industrial pollution,

which decreases the environmental quality E at the spatial point x, accord-

ing to:

E(x) = Ē −
∫
X

[e− η |x− y|]b(y)dy,

where Ē denotes environmental quality without pollution, e is the quantity

of pollution emitted by one firm, η shows how pollution disperses in space,

x − y is the distance between firm and household, and b(y) is the density

of firms at y. The authors show that the internalization of pollution forms

more specialized areas in the city, which has a negative impact on greenhouse

gases from commuting.

There is also a growing literature on the internal structure of cities when

pollution comes from commuting. Verhoef and Nijkamp (2003) point out the

importance of space in the analysis of urban air pollution which is affected
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by aggregate commuting and not by the number of commuters. Schindler,

Caruso, and Picard (2017) study how traffi c-induced pollution affects resi-

dential choices and find that higher pollution levels reduce the size and the

population of the city. Pollution (P ), in that framework, increases with the

traffi c volume passing by r, as

P (r) = 1 + a+ b

∫ rf

r
n(r)dr,

where a and b measure the impacts of regional and traffi c-induced pollution

in the city and n(r) is the number of people crossing location r. Finally,

Denant-Boemont, Gaigné, and Gaté (2018) show that polycentric cities im-

ply higher welfare and lower pollution levels.

6 Spatially-Differentiated Regulation for Transbound-

ary and Global Externalities

In this section we focus more on the regulation of transboundary local and

global externalities. We use the modeling of local transboundary external-

ities as a natural introduction to the explicit spatial modeling of climate

change.

6.1 Regulating a Transboundary Externality

We consider a simple transboundary (or cross-border) — but not global —

externality with local damages in a two-region model, which is a special case

of the general dispersion models described above with d12 = D > 0 and d21 =

0. We consider a very simple model of transboundary pollution because we

want to stress the fact that optimal policies should have a spatial structure

even when regions are symmetric in their fundamentals. Our approach,

despite its simplicity, makes clear the impact of spatial transport on optimal

environmental policies, and the core model presented below can be extended

along many different lines.

Let ui (ci) = ln
(
yiE

α
i e−υi(Pi)

)
, i = 1, 2, denote utility in region i from us-

ing emissions or energy, Ei, in production net of pollution damages, where yi
is an exogenous process incorporating the impact of other factors of produc-

tion. Capital accumulation is not considered in order to simplify dynamics.

28



The use of E accumulates a pollutant Pi in each region. Some of the pollu-

tant accumulated in region 1 is transported to region 2 through natural forces

(e.g., river flows, winds). The accumulated pollutant in each region gener-

ates damages according to a convex damage function υi (Pi) , υ
′
i > 0, υ′′i ≥ 0.

Pollution dynamics, with the explicit dependence on t omitted to ease no-

tation, can be written as:

Ṗ1 = −BP1 −DP1 + E1 , P1 (0) = P10 given (18)

Ṗ2 = −BP2 +DP1 + E2 , P2 (0) = P20 given, (19)

where D > 0 is the pollution transportation coeffi cient, or diffusivity, and

B > 0 is a pollution depreciation rate. A regulator or a social planner

will determine emission paths and emission taxes by maximizing the sum of

discounted regional utilities subject to pollution dynamics.

The Hamiltonian representation of the regulator’s problem with a quadratic

damage function, υi (Pi) = c1iPi + (c2i/2)P 2i , i = 1, 2, can then be written

as:

max
Ei
H = max

Ei

∑
i=1,2

wi [α lnEi − υi (Pi)] + (20)

µ1 (−BP1 −DP1 + E1) + µ2 (−BP2 +DP1 + E2) },

where wi,
∑

iwi = 1 are regional welfare weights.

Assume that each region is populated by identical atomistic agents which

we represent by a representative agent in each region. Each such agent

maximizes their own utility ignoring climate impacts on their own region

as well as the other region. Thus they only optimize over energy use. The

socially-optimal solution resulting from problem (20) can be implemented

with regional emission taxes solving the consumer’s problem with Hamil-

tonian representation

max
Ei
Hi= max

Ei
{ln (ci)} = max

Ei
{ln (yiE

α
i − τ iEi + Tri)} , (21)

where Tri denotes lump sum transfers to the representative agent in region

i. By combining the optimality conditions of problems (20) and (21), the
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optimal regional emission tax and transfers are

τ i = yiα

(
−wiα
µi

)α−1
, T ri = yiα

(
−wiα
µi

)α−1(−wiα
µi

)
. (22)

As usual, regional emission taxes, τ = (τ1, τ2) , are determined by the

costate variables of the current value Hamiltonian, (µ1, µ2), which are neg-

ative since these variables express the marginal cost of the accumulated

pollution, i.e., the cost of the externality. The optimality conditions are

shown in Appendix 6. For the general case in which regions are asymmetric,

regional taxes will be different. However, unidirectional pollution trans-

port induces regionally-differentiated optimal emission taxes even under full

symmetry with respect to pollution damages, pollution dynamics, welfare

weights and exogenous endowments yi across regions. As shown in Appendix

6, the following results can be obtained.

Proposition 1.

1. With constant marginal damages, c2 = 0, optimal emissions and emis-

sion taxes at a steady state are the same in both regions.

2. With linear and increasing marginal damages, c2 > 0, emission taxes

are different between regions. If D ≥ B, then µ1 > µ2, which implies

0 < τ1 < τ2. When D < B, then 0 < τ1 S τ2.

Result 1 follows from the fact that the amount of social cost “saved”in

region 1 because pollution is transported to region 2 is equal to the amount

of social cost increase in region 2 because of the transported pollution.

Result 2 implies that when the pollution flux from region 1 to region 2 is

stronger than pollution depreciation, then a regulator who weights regional

welfare equally and maximizes global welfare will tax emissions in region 2

relatively more than in region 1. Region 2 is a high pollution accumulation

region due to the unidirectional transport, so by taxing region 2 more the

regulator seeks to reduce pollution accumulation in region 2 by restricting

emissions generated in 2. This is a rather unexpected result, since relatively

higher taxation in region 1 —which generates the transported pollution —

might have been expected. However, since the marginal social cost of pol-

lution is now increasing in the amount of pollution, the “Coase”type argu-

ment suggesting that the reduction in social cost in region 1 from transport
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of some of its pollution to region 2 exactly cancels out and the social cost

increase in region 2 no longer applies. With increasing marginal cost from

the added pollution from transport, it is possible that at a certain point

marginal cost will increase in region 2 more than the reduction in marginal

cost in region 1. In this case, it is optimal to tax emissions generated in

region 2 relatively more.30

To express the optimal taxes in consumption terms, the taxes should be

divided by the marginal utility of consumption in each region. If consump-

tion levels are different, there will be a further differentiation of the optimal

pollution taxes. Thus, even in this simple two-region symmetric model, spa-

tial transport of pollution implies that optimal taxes could, under reasonable

assumptions, be spatially dependent.

In a symmetric two-region model with constant marginal damages, the

steady state for the regional pollution accumulation and the corresponding

social pollution cost is a global saddle point.31 This means that for any two

initial states of regional pollution accumulation, the regulator can calculate

initial values for the social pollution cost, and therefore initial values and

time paths for the optimal regional pollution taxes so that the regulated

system will converge to the optimal steady-state regional pollution accumu-

lation. For the proof, see Appendix 6.

The same results can be obtained under the assumption that each region

can borrow and lend, bi, at rate r. In this case the Hamiltonian representation

of the representative consumer’s problem in each region will be

max
Ei
Hi= max

Ei

{
ln (ci) + µbi (rbi + yiE

α
i − τ iEi + Tri − ci)

}
.

Combining the optimality conditions with the planner’s problem will provide

the same regional taxes and transfers as in (22).

30For an early analysis of uniform versus differentiated regulation in a static context,
see for example Kolstad (1987).
31Under saddle point stability, the regulator can choose initial values µi(0) =

φi(P10;P20); i = 1, 2, so that the trajectories ((P1(t));P2(t);µ1(t);µ2(t)); t ≥ 0 converge
on a two-dimensional stable manifold generated by the eigenspace of the two negative
eigenvalues of the Hamiltonian system, to the socially-optimal steady state. Since −µi(0)
determine the initial emission taxes, the regulator can calculate the optimal paths for
emission taxes and emissions.
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6.1.1 A Hybrid Model of Transboundary Pollution with Spatial
Diffusion and Spillovers

The discussion about transboundary pollution can be combined in a model

with the concepts of diffusion and spatial spillovers discussed above. Con-

sider that in the optimization problem represented in (20), space is continu-

ous, finite and linear x ∈ [0, L] , and that: (i) positive productivity spillovers

of the type introduced by Lucas (2001) from the use of emissions or energy

exist, modeled as

ez(x) with z (x) = δ

∫ L

0
e−δ(x−x

′)E
(
x′
)
dx′,

and (ii) pollution diffuses following a Fickian diffusion process modeled by

D∂xxP (x) . The social planner maximizes benefits over the whole spatial

domain and the Hamiltonian for this problem, omitting t to ease notation,

is

H =

∫ L

0

{
w (x)

[
ln
(
y (x)E (x)a e−υ(x)P (x)ez(x)

)]
+

µ (x) [E (x)−mP (x) +D∂xxP (x)]} dx.

Applying the maximum principle of section 3, we obtain:

E∗ (x) =
aw (x)

−µ (x)− δSE (x)
, S (x)E =

∫ L

0
e−δ(x−x

′)2dx′ (23)

∂tµ (x) = (ρ+m)µ (x) + υ (x)−D∂xxµ (x) (24)

∂tP (x) = E∗ (x)−mP (x) +D∂xxP (x) . (25)

When atomistic representative agents in each site do not take into account

the pollution and the productivity externality, the optimal site-specific pol-

lution tax is

τ∗ (x) = y (x)α

(
w (x)α

−µ (x)− δSE (x)

)α−1
. (26)

In this case, even with flat earth y (x) = y and equal weights w (x) =

w, the pollution tax is site specific because pollution diffusion and spatial

spillovers induce spatial structure in µ (x) and SE (x) . A steady-state spatial

distribution for P (x) , µ (x) obtained from the system (23)-(25) for ∂tµ (x) =
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0, ∂tP (x) = 0 is shown in figure 4.32 At the center of the spatial domain, the

stock of pollution is high and its shadow cost is also high, indicating higher

emissions taxes. The size of the emission tax is reduced by the spillover effect

as indicated by (26), which reveals the trade-off between the productivity

benefits from clustering emissions and the environmental cost of clustering

pollution.

(a) (b)

Figure 4: (a) The Shadow Cost of Pollution µ (x) , (b) The Stock of Pollution

P (x)

L = 2π, ρ = 0.01, a = 0.3,m = 0.05, D = 1, υ = 0.1, δ = 0.01

This hybrid model can be extended in many directions to become more

realistic, but this example clearly indicates how different transport mecha-

nisms which act on real spatial phenomena could be combined in modeling

and provide insights for policy design.

6.2 Regulating a Global Externality and Designing Global
Climate Policy

The need for regional analysis of the impacts of climate change, in contrast to

the global approach taken by Integrated Assessment Models (IAMs) such as

DICE (Nordhaus and Sztorc 2013; Nordhaus 2014), has been clearly recog-

nized in the literature (see, for example, Easterling 1997). In fact, major

IAMs such as RICE (e.g., Nordhaus 2011), FUND (e.g., Anthoff and Tol

2013), or PAGE (e.g., Hope 2006) explicitly include regional components.

The regional aspects have been extended to both regional temperature ef-

fects and regional economic effects (e.g., FUND, PAGE), or to regional eco-

32The simulation is provided for illustration purposes only. It does nor refer to a real
example.
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nomic effects with predictions about mean global temperature (e.g., RICE).

Multi-region modeling in climate change economics has been developed since

RICE. Desmet and Rossi-Hansberg (2015) developed a spatial model of cli-

mate change, Krusell and Smith (2017) introduced a 20,000-region spatial

model, and Hassler and Krusell (2018) discuss approaches to multi-region

climate modeling.

6.2.1 Pattern Scaling

An approach which climate science uses to generate spatial temperature

variation across regions is pattern or statistical downscaling, or statisti-

cal emulation methods (see, for example, Castruccio et al. 2014; Hassler,

Krusell, and Smith 2016; Krusell and Smith 2017). Pattern scaling assumes

that all regional temperature anomalies relative to the preindustrial tem-

perature in region i, Ti0 defined as Ti(t)−Ti0, are proportional to the global
mean temperature anomaly TGM (t)− TGM,0. That is,

Ti(t)− Ti0 = αi [TGM (t)− TGM,0] .

Castruccio et al. (2014) fit the equation

Tt = β0 + β1
1

2

[
ln
CO2,t
CO2,0

+ ln
CO2,t−1
CO2,0

]
+ β2

k=t∑
k=2

ρk ln
CO2,t−k
CO2,0

+ εt

εt = ϕεt−1 + σzt , {zt} IIDN (0, 1)

—where T0 is given, CO2,t is concentration of CO2 at t, and CO2,0 is prein-

dustrial concentration —to regional yearly temperature data generated by

their atmosphere—ocean general circulation model (AOGCM) for one sce-

nario to “train”their emulator. They then use their estimated equation for

that scenario to mimic the output of their AOGCM for another scenario.

They do this procedure for 47 regions (for estimates, see Castruccio et al.

(2014), table S1 in the supplementary material). They estimate regressions

of the form

T ((L, l) , t)− T0 (L, l) = α(L,l) [Ti(t)− Ti,0] + ε(L,l),

where (L, l) denote longitude and latitude respectively. Performance mea-
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sures suggest that the emulator does a fairly good job of mimicking the out-

put of the much more complicated AOGCM. Figure 6 in Castruccio et al.

(2014) displays the emulated temperatures with the top of the display cor-

responding to the northern latitude regions and the bottom to the southern

latitude regions. The pattern of higher temperatures as one moves toward

the northern regions is clear.

6.2.2 Heat and Precipitation Transport: Two-Box Models

Regional aspects of climate change and associated policies have been intro-

duced in low-dimensional IAMs in which regional temperature dynamics are

driven by endogenous mechanisms of heat and precipitation transport from

the Equator to the Poles (see Brock et al. 2013; Brock and Xepapadeas

2017, 2019; Cai et al. 2019). The climate science part of these models is

based on one- or two-dimensional dynamic energy balance climate models

(EBCMs), defined either in discrete space in the context of South-North

“two-box”models (e.g., Langen and Alexeev 2007), or in continuous space

(e.g., North, Cahalan, and Coakley 1981). EBCMs generate spatial vari-

ability of temperature across regions through the endogenous mechanism of

heat transfer.

Regional temperature differentiation also emerges from the use of the

transient climate response to cumulative carbon emissions (TCRE) on a

regional basis. The TCRE embodies both the physical effect of CO2 on

climate and the biochemical effect of CO2 on the global carbon cycle (e.g.,

Matthews et al. 2009; Matthews, Solomon, and Pierrehumbert 2012; Knutti

2013; Knutti and Rogelj 2015; MacDougall, Swart, and Knutti 2017). The

TCRE, denoted by Λ, is defined as Λ = ∆T (t)/CE(t), where CE(t) de-

notes cumulative carbon emissions up to time t and ∆T (t) the change in

temperature during the same period with Λ = 1.7± 0.4◦C per TtC (Leduc,

Matthews, and de Elía 2016). The approximate constancy of TCRE sug-

gests an approximately linear relationship between a change in global aver-

age temperature and cumulative emissions. This roughly linear relationship

has also been recognized by the IPCC (2013).

Leduc, Matthews, and de Elía (2016) identify an approximately linear

relationship between cumulative CO2 emissions and regional temperatures.

This relationship is quantified by regional TCREs, or RTCREs. The RTCRE

parameters range from less than 1◦C per TtC for some ocean regions to 5◦C
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per TtC in the Arctic. The authors consider their approach to be a novel

application of pattern scaling.

Heat and moisture transport from the Equator to the Poles, when com-

bined with the surface-albedo feedback, results in the observed phenomenon

of Polar or Arctic amplification (IPCC 2013, p. 396).33 Arctic amplifi-

cation could cause serious detrimental environmental effects which could

be diffused to other regions south of the Arctic. Thus one implication of

adopting a regional representation of climate is that changes in the temper-

ature in one region could generate damages in another region. The existence

of geographical spillover damage effects across regions is supported by re-

cent studies.34 If the stronger anomaly growth in the Arctic relative to the

Equator could cause damages in the South due to sea level rise or extreme

weather phenomena, then local damages should depend on the local temper-

ature anomalies in both regions. At the same time, heat transfer from the

South to the North might benefit the South by reducing temperature levels

in the relatively more vulnerable areas around the Equator. For example,

if heat transfer from the Equator to the Poles did not exist, then damages

from extreme heat documented by Hsiang et al. (2017) in the low latitudes

might be even larger and mortalities from both extreme heat in the low

latitudes and extreme cold in the high latitudes documented by Gasparrini

et al. (2015) might be even larger.

Detailed work on estimating marginal temperature and damage impacts

due to spatial temperature differentials is an area for further research, since

it will be needed in order to compute the impacts on optimal policy. Thus

the issue of explicit consideration of heat transfer mechanisms in coupled

models of climate and the economy could be important for policy purposes

but, as far as we know, has not been explicitly addressed by large-scale

IAMs.

The two-box framework with meridional heat and moisture transport35

33Bekryaev, Polyakov, and Alexeev (2010), using an extensive data set of monthly sur-
face air temperature, document a high-latitude (> 60◦N) warming rate of 1.36◦C/century
for 1875—2008, with the trend being almost two times stronger than the Northern Hemi-
sphere trend of 0.79◦C/century. The high RTCRE in the Arctic reported by Leduc,
Matthews, and de Elía (2016) is indicative of Arctic amplification.
34See, for example, Francis and Vavrus (2014), Francis and Skific (2015), Francis (2017),

Francis, Skific, and Vavrus (2018) and Wu and Francis (2019). The main message is that
further Arctic warming may favor persistent weather patterns that can lead to weather
extremes.
35For details, see Alexeev, Langen, and Bates (2005), Langen and Alexeev (2007) and
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with box i = 1 which is the South (0◦, 30◦N) and box i = 2 which is the North

(30◦N, 90◦N), combined with the RTCRE approach, implies the following

regional dynamics for the temperature anomalies:

Ṫ1 =
1
H

[(−B1 − γ1 − γ2)T1 + γ1T2 + Λ1E] , T1 (0) = 0 (27)

Ṫ2 =
1
H

[(γ1 + γ2)T1 + (−B − γ1)T2 + Λ2E] , T2 (0) = 0 (28)

E = E1 + E2, (29)

where (E1, E2) are regional carbon emissions, H is heat capacity, and (Λ1,

Λ2) are the local TCRE in the South and North respectively.36 Note that

with γ1 = γ2 = 0, the temperature dynamics model (27)-(29) is reduced to

the Leduc, Matthews, and de Elía (2016) model, while for Λ1 = Λ2 = Λ it

is reduced to the Langen and Alexeev (2007) model.

If a social planner seeks to maximize global welfare by choosing the paths

of regional carbon emissions Ei(t), the planner’s objective, considering a log-

utility function similar to the transboundary problem, is:

max
E1,E2

∫ ∞
0

e−ρt

∑
i=1,2

wi [ln yi + α lnEi − υi (T1, T2)]

 dt (30)

subject to (27)-(29),

where wi represent as before welfare weights. Damages in each region depend

on the temperature anomaly in the other region. This modeling seeks to

capture effects such as damages in the South for the faster temperature

increase in the Arctic which may increase the frequency or/and the severity

of extreme weather phenomena.

In a world with frictionless transfer of resources across regions and un-

limited fossil fuels, the solution of the global externality problem (30) can

be implemented, following the approach of the previous section, by carbon

taxes and transfers defined as:

τ i = yiα

(
wiαH

µ1Λ1 + µ2Λ2

)α−1
, T ri =

[
yiα

(
wiαH

µ1Λ1 + µ2Λ2

)α−1]( wiαH

µ1Λ1 + µ2Λ2

)
.

Alexeev and Jackson (2013).
36The parameter values for the climate model can be obtained from calibrations of

climate science models (e.g., Langen and Alexeev 2007; Leduc, Matthews, and de Elía
2016).
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The following result can easily be seen. When welfare weights are equal,

regional emissions are equal, therefore τ1 < τ2 if y1 < y2, and in this case

the poorer region should pay a lower carbon tax. The size of carbon taxes

depends on the shadow cost of regional temperature anomalies (µ1, µ2) . In

Appendix 6, the Hamiltonian system for problem (30) with quadratic dam-

age functions is presented. The impact of heat and precipitation transport

can be analyzed by comparative analysis of parameters (γ1, γ2) . Since in

the poorer region C1 < C2, the poorer region will pay a lower carbon tax in

consumption terms since

τC1 =
τ1

u′ (C1)
< τC2 =

τ2
u′ (C2)

.

In climate change policy a uniform carbon tax, or carbon price, across

locations is a common result stemming from the global nature of the cli-

mate externality. This attitude seems to change, however, as more aspects

of the climate and the economy are taken into account. The High-Level

Commission on Carbon Prices (2017) report and Stiglitz (2019) recommend

non-uniform carbon taxes, with carbon taxes being relatively higher in re-

gions where consumers are disproportionately rich. Brock, Engström, and

Xepapadeas (2014), in a continuous space model with heat transport polar-

ward, show that optimal carbon taxes are higher in relatively richer regions

in which the marginal utility of consumption is lower.

Recently Cai et al. (2019) developed a novel stochastic North-South large

scale IAM, based on the DICE/RICE framework for the climate module,

with meridional heat and moisture transport, sea level rise, permafrost thaw

and stochastic tipping points. Cai et al. introduce adjustments costs in the

economic interactions across regions and show that if these adjustment costs

are zero, then the regional carbon tax is the same across regions since the

marginal return of capital is equated across regions. However, with nonzero

adjustment costs between regions, the regional carbon tax is different across

regions.

Another issue emerging in regional models of climate change with heat

and moisture transport is whether ignoring such a phenomenon introduces

bias in optimal climate policies. Brock and Xepapadeas (2017, 2019) and

Cai et al. (2019) show that ignoring heat and moisture transport could

introduce serious bias in the optimal carbon taxes. The direction of the
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bias depends crucially on whether the costs to the South —from the faster

increase in temperature in the North caused by the surface albedo feedback

and heat flux —exceed the benefits in the South from the reduction in the

regional temperature due to heat transfer.

6.2.3 Strategic Behavior

In major IAMs which involve optimization at the global or regional level,

such as DICE or RICE, the objective is the maximization of a global welfare

criterion (as with DICE) or the sum of welfare criteria across regions (as

with RICE). In the case of RICE, the solution for the given objective corre-

sponds to a cooperative solution in which a social planner chooses emissions

paths to maximize aggregate regional welfare subject to economic and cli-

mate constraints. This assumption implies that regions or countries have

agreed, through some kind of an international agreement, to follow cooper-

ative emission paths.37

This approach is useful in identifying optimal cooperative emission paths

and indicating policy instruments such as carbon taxes to attain these paths.

However, when it comes to the real world, countries or regions might not

be willing to follow a cooperative solution. Although they may recognize

the impact of climate change on global welfare, a specific region or country

might be willing to choose emission paths which will maximize own wel-

fare, which will in general be gross benefits from using fossil fuels net of

own climate damages. In this case the appropriate solution concept is the

solution of a noncooperative dynamic game. The explicit introduction of

regional temperature dynamics makes the noncooperative solution concept

more realistic since each country or region will try to design optimal poli-

cies by considering own temperature dynamics and not global temperature

dynamics.

A noncooperative solution in the context of climate change is an equilib-

rium outcome in which countries maximize own welfare subject to economic

and climatic constraints and assumptions about the climate policies of other

37Relevant examples are the outcomes of the Conferences of the Parties, such as the
Kyoto Protocol or the Paris Accord, which provide an idea of such a cooperative solution
in the real world.
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countries. In terms of the objective (30), this means

max
Ei

∫ ∞
0

e−ρt [ln yi + α lnEi − υi (T1, T2)] dt , i = 1, 2, (31)

subject to (27)-(29),

and assumptions about the paths of Ej(t); i 6= j.

Nordhaus and Yang (1996), in the context of the RICE model, were the

first to study noncooperative outcomes using the solution concept of the

open loop Nash equilibrium in which each country sets its climate policy to

maximize its own economic welfare, assuming that other countries’policies

are invariant to its policies. Dutta and Radner (2006), in a game-theoretic

approach to global warming, consider models with multiplicity of equilibria

which allow the identification of “Pareto-improving” equilibria. Bosetti et

al. (2006) also derive open loop Nash equilibrium solutions in the context

of the regional WITCH model.38

Noncooperative solutions in general indicate that emissions will be higher

and carbon taxes lower relative to the cooperative solutions. The earlier

literature, although dealing with regional models, did not explicitly include

heat transfer. Brock and Xepapadeas (2019) consider strategic interactions

in a simple two-box model with heat transfer and damages in one region

affected by the temperature in the other region, to capture impacts of Arctic

amplification in the South. In addition to the open loop equilibrium, they

also examine the feedback Nash equilibrium.39 Cai et al. (2019) use a novel

algorithm to determine the feedback Nash equilibrium in the stochastic two-

region model described above, which contains eleven state variables and

eight decision variables.

The main message from the two-region climate models with heat and

moisture transfer is that in both cooperative and noncooperative solutions,

ignoring the transport mechanism, which is a well-established mechanism,

38For a detailed exposition of cooperative and noncooperative solutions in the context
of integrated assessment modeling, see Yang (2008).
39 It is well-known that the open loop equilibrium does not possess the Markov perfect

property and is not robust against unexpected changes in the state of the system. Thus a
feedback equilibrium is considered to be a more satisfactory solution. With an open loop
information structure, each region takes the emission path of the other region as given.
In a feedback structure, each region assumes that the emissions of the other region are a
function of the current temperature anomalies or Ei(t) = hi(T1(t), T2(t); t).
The feedback Nash equilibrium is derived in a dynamic programming framework (e.g.,

Başar and Olsder 1995) and by construction is Markov perfect.
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could introduce serious biases in climate policy.

6.2.4 Heat and Precipitation Transport: One-Dimensional Con-
tinuous Space Models

Two-region climate models provide important insights into the role of trans-

port mechanisms in the design of climate policy. Similar insights can also

be provided by more detailed EBCMs in continuous space. EBCMs are dis-

tinguished into wet models in which temperature diffusion is replaced by

moist static energy diffusion (e.g., Flannery 1984), and dry models in which

the basic thermodynamic variable used to determine energy transport is

temperature (e.g., Sellers 1969; North 1975a, 1975b; Ghil 1976; North, Ca-

halan, and Coakley 1981; Ghil and Lucarini 2019). In both models, energy

transports generate Polar amplification under different assumptions.

Following Merlis and Henry (2018), and dropping t to ease notation, a

wet EBCM is written as

C∂tT (φ) =
1

4
QS (φ) a (φ)− [A+BT (φ)]−∇ · Fa (φ) + F , (32)

where C is heat capacity; T surface temperature; φ latitude;40 Q the so-

lar constant; S(φ) the insolation structure function; a(φ) coalbedo; [A +

BT (φ)] outgoing long-wave radiation; F radiative forcing; and ∇ · Fa =

−∂x
[
D
(
1− x2

)
∂xh (x)

]
with x = sinφ is the divergence of the atmospheric

energy flux which is governed by the diffusion of the moist static energy h

measured in units of temperature, with diffusivity D.
In dry EBCMs, the term ∇ ·Fa is replaced by −∂x

[
D
(
1− x2

)
∂xT (x)

]
with φ replaced by x in the rest of the functions. The temperature spa-

tiotemporal dynamics described by (32) can be incorporated into an eco-

nomic model of climate change by an appropriate specification of radiative

forcing F . Brock et al. (2013) and Brock, Engström, and Xepapadeas (2014,
2015) use (32) in a coupled model of the economy and the environment and

define forcing using the standard relationship F = (λ/ ln 2)(ln(St/S0) where

λ is climate sensitivity and St/S0 is the ratio of the concentration of carbon

dioxide in the atmosphere between period t and the preindustrial concentra-

40When the spatial dimension is one, that is, latitude only, the EBCMs are called
one-dimensional. In contrast, models without spatial transport mechanisms are called
zero-dimensional.
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tion S0. They show that if welfare weights across locations are equal, then

in cooperative solutions the location with the lower per capita consumption

should pay lower carbon taxes, a result which is in line with Stiglitz (2019).

In the context of the approximate proportional relationship between

changes in temperature and emissions, the optimization of a welfare ob-

jective subject to (32) can be simplified by using instead of F the term

Λ
∫ x=1
x=−1E (x, t) dx where Λ is the TCRE and the integral term corresponds

to global emissions at time t.41

Using an objective similar to (30), the planner’s problem when a contin-

uous space one-dimensional dry EBCM with local TCRE is used to model

climate can be written as:

max
E1E2

∫ ∞
0

e−ρt
[∫ 1

−1
w (x)

[
ln y (x) + α lnE (x)− υ [T (x)]2

]
dx

]
dt,(33)

subject to

C∂tT (x) =
1

4
QS (x) a (x)− [A+BT (x)]− (34)

∂x
[
D
(
1− x2

)
∂xT (x)

]
+ Λ

∫ 1

−1
E (x) dx.

Optimal local emissions are determined as

E (x, t) =
−αw (x)

Λ
∫ 1
−1 µ (x) dx

. (35)

Using the heuristic proof for the derivation of the maximum principle,

the Hamiltonian system of (33) implies that the local shadow cost of changes

in temperature, which determines optimal emissions, evolves according to:

∂tµ (x) = (ρ+B)µ (x) + υ (x) + ∂x
[
D
(
1− x2

)
∂xµ (x)

]
,

along with (34) in which E (x) is replaced by (35).

If we assume again that each location x is populated by an identical

representative agent who maximizes own utility ignoring climate impacts

on own location as well as on the other locations, the socially-optimal solu-

41 In the linear approximation of local temperature change,

T (t, x)− T (t, 0) =

∫ t

0

[
Λ

∫ 1

−1
E (x, t) dx

]
dt,

therefore ∂tT (t, x) = Λ
∫ 1
−1E (x, t) dx.
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tion resulting from problem (33) can be implemented with latitude-specific

carbon taxes of the form

τ (x) = αy (x)

(
αw (x)C

Λ
∫ 1
−1 µ (x) dx

)α−1
.

The problem which involves a Hamiltonian system in nonlinear PDEs can

in principle be solved numerically. An approximation approach for solving

this problem in terms of ODEs is presented in Appendix 7.

7 Uncertainty and Space

An issue that acquires importance in a spatial context is uncertainty. In

recent papers, Barnett, Brock, and Hansen (2019), Brock and Hansen (2019)

and Hansen and Sargent (2019) distinguish three forms of uncertainty.

• Risk: The probabilities (objective or subjective) of uncertain outcomes
are known, and the decision maker is confident about the model used.

Uncertainty exists within the model.

• Ambiguity: There are a large number of potential models which could
be used by the decision maker. There is a question regarding the level

of confidence of the decision maker on each model.

• Misspecification: The question here is how the decision maker uses

models that are not perfect and may have unknown flaws.

Sometimes the last two forms are referred to as “deep uncertainty.”Un-

certainty could have a profound spatial structure, i.e., different forms of

uncertainty or combinations of forms with spatially-heterogeneous charac-

teristics could prevail across locations. For a regulator seeking to derive

optimal policies for the whole spatial domain, the spatial structure of un-

certainty presents an additional challenge, since the policy should take into

account spatial heterogeneities induced by transport mechanisms and un-

certainty.

The robust control approach to uncertainty introduced to economics by

Hansen and Sargent (e.g., 2001, 2008) is very convenient for extensions to

situations in which the regulator faces uncertainty with different regional
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characteristics or, to put it in terms of robust control methods, the regula-

tor has different misspecification concerns about different locations. These

concerns could refer to local damages, pollution or resource dynamics, or

diffusivity.

Brock, Xepapadeas, and Yannacopoulos (2014c) study a robust control

problem with site-specific misspecification concerns. Their main finding is

the identification of specific sites which they call “hot spots” in which se-

rious concerns about misspecification could lead to the inability to define

effi cient regulation for the whole spatial domain. The emergence of “regula-

tory hot spots”acquires a high level of importance in the analysis of climate

change because of the existence of tipping points (Lenton et al. 2008), which

are locations associated with the triggering of big damages and which are

surrounded by large uncertainties.

A brief exposition of modeling a spatial robust control problem can be

presented in the following way. Brock and Xepapadeas (2018) use robust

control to construct a regional policy that works uniformly well over a set of

alternative models surrounding a “baseline”model. Intuitively the robust

control method leads to the regulator maximizing against a “worst case”

model in the set of alternative models. The worst case model is chosen

by an adversarial agent who is trying to minimize the regulator’s objec-

tive. Following Anderson, Hansen, and Sargent (2012) and Anderson et al.

(2014), the stochastic robust control model can, under appropriate scaling,

be transformed into a simpler deterministic robust control model.

Consider a multi-regional version of problem (30) and assume the regu-

lator has concerns about misspecification in regional temperature dynamics,

damages and diffusivity. This can be interpreted as the regulator having a

benchmark model describing dynamics, spatial transport and damages, but

he/she is not confident about the model and wants to regulate by taking into

account the possibility that alternative models which represent distortions

of the benchmark model could be realized as the actual model. To discipline

the sensitivity analysis underlying the distortion of the parameters, the al-

ternative models are contained in a bounded set and the adversarial agent

chooses models/distortions to minimize the regulator’s objective.

The spatial deterministic robust control problem can be defined as:
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max
{Eit}

min
{kit,hit}

(36)∫ ∞
t=0

e−ρt
N∑
i=1

wi

[
ln yi + α lnEit − υi (T1, ..., Tn, ki) +

k2it
2ηi

+
h2it
2θi

]
dt,

subject to

Ṫit = Λi

N∑
i=1

Eit −BiTit + σihit, Ti0 ≥ 0. (37)

In (37), the parameter σi represents volatility of regional temperature dy-

namics, hit the corresponding drift distortion reflecting deep uncertainty,

and θi the concerns about misspecification of temperature dynamics. The

initial conditions reflect that Tit represents the temperature anomaly relative

to a given base period. We assume that concerns about regional temper-

ature dynamics are specific to the region, and therefore embody concerns

about the RTCRE, which could also be an uncertain parameter. The ki
represents ambiguity about damages in region i, and ηi the concerns about

misspecification of the damage function. Note that misspecification concerns

are site specific and thus embody the different degree of uncertainty that

the regulator faces across locations. Note also that the damage function in

region i embodies geographical damage spillovers, or cross effects, which are

damages caused by temperature increases in other regions. For example,

the larger anomaly in the high northern latitudes may generate damages in

terms of sea level rise or greenhouse gases emitted by permafrost melting in

southern regions.

Optimal emissions are given by

E∗it =
−αwi∑
i Λiµit

.

The regional temperature shadow costs and the optimal emissions in this

case are determined —through the Hamiltonian system —by the local mis-

specification concerns (ηi, θi) . The same holds for the optimal site-specific

taxes.

Spatial robust control methods can be extended to stochastic control

problems, continuous spatial domain and noncooperative solutions. Given
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the spatial differentiation of uncertainty across locations, this is a very in-

teresting area of further research.

8 Concluding Remarks

Although the spatial dimension is embedded in the vast majority of issues

studied by environmental and resource economics, its incorporation into eco-

nomic models —especially in the form of explicit introduction of a spatial

transport mechanism —is not widespread. There are a number of important

exceptions, many of which are discussed in this article. Failure to explicitly

incorporate the spatial dimension means that important aspects of the prob-

lem may not be accounted for, which could result in regulatory ineffi ciencies.

Furthermore, when it comes to policy design, accounting for the spatial

dimension implies spatially-dependent instruments and possibly the need for

menus of instruments to deal with the potential emergence of various spatial

externalities. Again, the lack of such instruments may result in ineffi cient

policies.

The purpose of this paper, therefore, is threefold: to present the evo-

lution of spatial methods in environmental and resource economics; to em-

phasize that space matters in the design of effi cient policies; and to indicate

research areas where spatial methods could provide new and useful insights.

In this context, we presented the major spatial transport mechanisms

and the way in which they can be incorporated into forward-looking opti-

mizing economic models. We provided an extension of Pontryagin’s max-

imum principle under spatial dynamics and explained how optimal Turing

instability may emerge in this set-up. Optimal Turing instability is a pre-

cursor of spatial pattern formation in the quantity-shadow price domain and

provides the basis for introducing spatially-dependent policies.

Moreover, we presented examples of the use of the framework of spa-

tial dynamics, which illustrate why space matters in environmental and re-

source economics, and how policy is differentiated when spatial transport

mechanisms are taken into account. These examples include topics related

to fishery management, groundwater management, pollution control, urban

economics, climate policy, and the management of spatially-structured un-

certainty.

The tools presented in the paper, along with some examples of their
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application, provide a path for future research in spatial environmental and

resource economics in which the underlying spatial dimension — which is

very real —is fully taken into account.

47



9 Appendix

9.1 Appendix 1

The PDE whose solution is shown in figure 1a is:

∂y (x, t)

∂t
= ry(t, x)

(
1− y(t, x)

K

)
− uy(t, x) +D

∂2y (t, x)

∂x2

t ∈ [0, 5000] , x ∈ [0, π] , y (0, x) = sin (x)

y (t, 0) = y (t, π) = 0, hostile boundary

r = 0.3,K = 10, u = 0.1, D = 0.03.

The reaction-diffusion system whose solution is shown in figure 1c is:

∂y1 (x, t)

∂t
= r1y1(t, x)

(
1− y(t, x)

K1

)
− β1y2(t, x)

y1(t, x) +K2
− u1y1(t, x) +D1

∂2y1 (x, t)

∂x2

∂y2 (x, t)

∂t
= r2y2(t, x)

(
1− β2y2(t, x)

y1(t, x)

)
− u2y2(t, x) +D2

∂2y2 (x, t)

∂x2

t ∈ [0, 5000] , x ∈ [0, π] , y1 (0, x) = 1 + 2 sin (x) , y2 (0, x) = 1.2 + sin (x)

y1 (t, 0) = y1 (t, π) = 1, y2 (t, 0) = y2 (t, π) = 1.5

r1 = 0.3, r2 = 0.35,K1 = 10,K2 = 1, β1 = β2 = 1, u1 = u2 = 1, D1 = 0.03, D2 = 0.02.

The composite kernel shown in figure 2a is

w
(
x− x′

)
= exp

(
α
(
x− x′

)2)− γ exp
(
β
(
x− x′

)2)
, x, x′ ∈ [−6π, 6π]

α = −0.05, γ = 0.5, β = −0.02.

The integrodifferential equation whose solution is shown in figure 2b is:

∂y (x, t)

∂t
= ry(t, x)

(
1− y(t, x)

K

)
− uy(t, x)− δy(t, x)2

1 + y(t, x)2
+ φ

∫ 6π

−6π
w
(
x− x′

)
y
(
x− x′

)
dx′

t ∈ [0, 5000] , x ∈ [−6π, 6π] , y (0, x) = 5 + sin (x)

y (t,−6π) = y (t, 6π) , periodic boundary conditions (circle)

r = 0.475,K = 10, u = 2, δ = 0.1, φ = 1.1.

All numerical solutions and their plots were obtained using the solver

NDSolve of Mathematica 11.
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9.2 Appendix 2

A sketch of a heuristic proof of the maximum principle under diffusion can

be presented by using a variational argument along the lines of Kamien and

Schwartz (1991, pp. 124—127). Considering a finite time horizon t ∈ [t0, t1] ,

problem (5) subject to (1) with appropriate spatial boundary conditions can

be written as:

J =

∫
O

∫ ∞
0

e−ρtU (y (t, x) , u (t, x)) dtdx =

∫
O

∫ ∞
0

e−ρt {U (y (t, x) , u (t, x))

p (t, x)

[
f (x (t, x) , u (t, x)) +D

∂2y

∂x2
− ∂y

∂t

]}
dtdx. (38)

Integrate by parts the last two terms of (38) to express the terms e−ρtp (t, x) ∂y∂t
and e−ρtp (t, x)D ∂2y

∂x2
in terms of y ∂p∂t and

∂y
∂x

∂p
∂t , integrate by parts once more

to express the last term in terms of y (t, x) ∂
2p
∂x2
, and use spatial boundary

and limiting intertemporal transversality conditions to eliminate constants.

Introduce a one parameter family of comparison controls u∗ (t, x)+ εη (t, x) ,

where u∗ (t, x) is the optimal control, η (t, x) is a fixed function and ε is a

small parameter. Let y (t, x, ε) , t ∈ [t0, t1] , x ∈ O be the smooth state vari-
able generated by the diffusion process with control u∗ (t, z)+εη (t, z) .Write

J (ε) in terms of y (t, x, ε) and u∗ (t, x) + εη (t, x), and note that since u∗ is a

maximizing control the function J (ε) assumes the maximum when ε = 0 or
dJ(ε)
dε

∣∣∣
ε=0

= 0. Performing the maximization and using transversality and

spatial boundary conditions, we obtain the maximum principle.

For a sketch of a heuristic proof of the maximum principle under spatial

kernels, write (5) subject to (2) as:

J =

∫
O

∫ ∞
0

e−ρtU (y (t, x) , u (t, x)) dtdx =

∫
O

∫ ∞
0

e−ρt {U (y (t, x) , u (t, x))

p (t, x)

[
f (x (t, x) , u (t, x) ,Ky (t, x))− ∂y

∂t

]}
dtdx. (39)

Integrate by parts the term e−ρtp∂y∂t and use spatial boundary and limiting

intertemporal transversality conditions to eliminate constants. Introduce

comparison controls u∗ (t, x) + εη (t, x) , as before, with Y (t, x, ε) = Ky (ε) ,

define J (ε), calculate dJ(ε)
dε

∣∣∣
ε=0

= 0 and then use the linearity of the kernel

operator to obtain the necessary conditions.
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9.3 Appendix 3

Solution of a linear quadratic problem (LQP) under spatial diffu-
sion.

Consider the following LQP with O = [0, L]:

max
u(t,x)

∫ L

0

∫ ∞
0

e−ρt
[
−A

2
y (t, x)2 − B

2
u (t, x)2 +Ny (t, x)u (t, x)

]
dtdx (40)

A,B, ρ > 0, AB −N2 > 0

s.t.
∂y (t, x)

∂t
= Fy (t, z)−Gu (t, x) +D

∂2y (t, x)

∂z2
F,G > 0 (41)

y (0, x) = y0 (z) given, x in a circle z ∈ [0, L] (42)

y in a circle x ∈ [0, L], y (t, 0) = x (y, L) for all t. (43)

For the control problem (40)-(43), consider a set of controls U which
have Fourier series expansions with piecewise continuous coeffi cients in t for

nodes n = 0, 1, 2, ..., or

U =

{
u (t, x) : u (t, z) =

∑
n

[
u1n (t) cos

(
2πnx

L

)
+ u2n (t) sin

(
2πnx

L

)]}
.

(44)

In this case the solution of (41), under appropriate regularity assumptions,

for any u (t, z) ∈ U will have a Fourier series expansion with piecewise

continuously differentiable coeffi cients in t, or

y (t, x) =
∑
n

[
y1n (t) cos

(
2πnx

L

)
+ y2n (t) sin

(
2πnx

L

)]
(45)

p (t, x) =
∑
n

[
p1n (t) cos

(
2πnx

L

)
+ p2n (t) sin

(
2πnx

L

)]
. (46)

Substituting the y (t, x) and u (t, x) in (41), we obtain a set of transition

equations parametrized by n = 0, 1, 2, .

As shown in Brock and Xepapadeas (2008), using the fact that the set

of functions
{

cos
(
2πnz
L

)
, sin

(
2πnz
L

)}
, n = 0, 1, 2, ... is a complete orthogonal

set over [0, L], the following countable set of spatially-independent optimal
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control problems for each n = 0, 1, 2, .... can be obtained:

max
u0(t)

∫ ∞
0

e−ρt
[
−A

2
y20 −

B

2
u20 +Ny0u0

]
dt (47)

subject to ẏ0 = Fy0 −Gu0 , n = 0 (48)

max
u1n(t)

L

2

∫ ∞
0

e−ρt
∑
n

[
−
(
A

2
y21n +

B

2
u21n

)
+Ny1nu1n

]
dt (49)

subject to ẏ1n = S (k) y1n −Gu1n , n = 1, 2, ... (50)

max
u2n(t)

L

2

∫ ∞
0

e−ρt
∑
n

[
−
(
A

2
y22n +

B

2
u22n

)
+Ny2nu2n

]
dt (51)

subject to ẏ2n = S (k) y2n −Gu2n , n = 1, 2, ... (52)

S (k) = F −D
(

2πn

L

)2
= F −Dk2 , k =

2πn

L
. (53)

The solutions {y∗in, pin} , i = 1, 2 and finite number of nodes n should be

substituted back into (44) (45), (46) to obtain the optimal spatiotemporal

paths for y (t, x),p (t, x) and u (t, x) .

Nonlinear quadratic problems require numerical solutions. For a solution

of the LQP using dynamic programming, see Boucekkine et al. (2019).

9.4 Appendix 4

Emergence of the optimal diffusion instability.
The maximized current value Hamiltonian or pre-Hamiltonian for the flat

LQ system (D = 0), where we drop subscripts and superscripts to simplify

notation, is

H0 (y, p) = max
u

{
−A

2
y2 − B

2
u2 +Nyu+ p [Fy −Gu]

}
. (54)

The Jacobian of the Hamiltonian system at the flat optimal steady state

(y∗, p∗) is defined as:42

J0 (y∗, p∗) =

[
H0
yp (y∗, p∗) H0

pp (y∗, p∗)

−H0
yy (y∗, p∗) ρ−H0

py (y∗, p∗)

]
=

[
F − GN

B
G2

B

A− N2

B ρ− F + GN
B

]
.

(55)

The theorem below gives one set of suffi cient conditions for diffusion-

42Subscripts associated with functions denote partial derivatives.
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induced instability of optimal control.

Theorem 1 (Optimal Turing Instability) Assume that in the LQP with
D = 0, the optimal flat steady state (y∗, p∗) associated with the Jacobian ma-

trix J0 (y∗, p∗) has the local saddle point property. Then, if

α ≡
(
F − GN

B

)
>
ρ

2
(56)

ρ2

4
>

(
A− N2

B

)(
G2

B

)
≡ β, (57)

there is a D > 0 such that the negative eigenvalue of the linearization

wt = J0w+D̃wzz , D̃ =

(
D 0

0 −D

)
, (58)

where w = (y (t, x)− y∗, p (t, x)− p∗), becomes positive. That is, both eigen-
values of the Jacobian matrix in (58) have positive real parts. Thus diffusion

locally destabilizes the optimal flat steady state, and optimal dynamics are

unstable in the spatiotemporal domain.

For the proof, see Brock and Xepapadeas (2008, Theorem 1).

The eigenvalues of the Jacobian matrix in (58) are given by

λ1,2
(
k2
)

=
1

2

(
ρ±

√
ρ2 − 4h (k2)

)
, k =

2nπ

L
(59)

h
(
k2
)

= −D2k4 +D
(
2H0

yp − ρ
)
k2 + det J0. (60)

The conditions of the theorem state that in the parameter space —the Turing

space — in which these conditions are satisfied, there exists a diffusivity

D > 0 and a node n such that both λ1,2
(
k2
)
are positive, while for D = 0,

the eigenvalues have opposite signs, since det J0 < 0. The emergence of

optimal Turing instability requires that h
(
k2
)
> 0 for some k.

From (59)-(60), diffusion will act as a stabilizer if det J0 = α (ρ− α) −
β > 0 and

h
(
z2
)

= −z2 + (2a− ρ) z + det J0 < 0.

D is chosen such that z = D (2π/L) . This choice will stabilize all nodes

n > 1.
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9.5 Appendix 5

Consider a LQP like (40)-(43) with the following structure:

max
u(t,x)

∫ L

0

∫ ∞
0

e−ρt
[
−A

2
y (t, x)2 − B

2
u (t, x)2 +Ny (t, x)u (t, x) + γKy (t, x)

]
dtdx

(61)

A,B, ρ > 0, AB −N2 > 0, Ky (t, x) :=

∫
O
w
(
x− x′

)
y
(
t, x′

)
dx′

s.t.
∂y (t, x)

∂t
= Fy (t, z)−Gu (t, x) , F,G > 0 (62)

y (0, x) = y0 (z) given, x ∈ [0, L] (63)

y in a circle x ∈ [0, L], y (t, 0) = y (x, L) for all t. (64)

When γ = 0, the problem is spatially homogeneous and admits a FOSS.

Assume that, as in (40)-(43), the FOSS has the saddle point property. When

the spatial effect is introduced by allowing for γ 6= 0, the Jacobian matrix

for the linearization of the Hamiltonian system becomes:

J0 (y∗, p∗) =

[
F − GN

B
G2

B

A− N2

B ρ− F + GN
B − γK

]
,K =

∫
O
w
(
x− x′

)
dx′.

(65)

The saddle point property for the FOSS implies that det J0 (y∗, p∗ |γ = 0) <

0. If, forK > 0,γ 6= 0, trace J0 (y∗, p∗ |γ 6= 0) > 0 and det J0 (y∗, p∗ |γ 6= 0) >

0, then this spatial effect —realized though the kernel —will destabilize the

stable manifold of the flat earth and patterns will emerge.

9.6 Appendix 6

Given problem (20), the maximum principle under the symmetry assump-

tions implies the following first-order necessary conditions for i = 1, 2:
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Ei =
−αwi
µi

, i = 1, 2 (66)

Ṗ1 = −BP1 −DP1 −
αw1
µ1

(67)

Ṗ2 = −BP2 +DP1 −
αw2
µ2

(68)

µ̇1 = (ρ+B +D)µ1 + c1 + c2P1 −Dµ2 (69)

µ̇2 = (ρ+B)µ2 + c2 + c2P2. (70)

Proof of Proposition 1.
A steady state (P ∗1 , P

∗
2 , µ

∗
1, µ
∗
2), if it exists, will satisfy the nonlinear

system (67)-(70) for Ṗ1 = Ṗ2 = µ̇1 = µ̇2 = 0. Solving at a steady state for

µ∗1, µ
∗
2 from (69), (70), replacing P1, P2 from (67),(68), and subtracting, we

obtain:

(µ∗1 − µ∗2) =
αc2

(ρ+B +D)µ1B

[
−w2
µ2
− w1 (D −B)

µ1 (D +B)

]
. (71)

If c2 = 0, then µ∗1 = µ∗2 and τ1 = τ2 for w1 = w2. If D ≥ B, c2 > 0 and

w1 = w2, then µ1 > µ2, which implies 0 < τ1 < τ2�
Proof of saddle point stability.
The Jacobian matrix of the linearization of the Hamiltonian system (67)-

(70) is

J =


−B −D 0 aw

µ21
0

D −B 0 aw
µ22

0 0 B +D + ρ −D
0 0 0 B + ρ

 .

The trace is trJ = 2ρ. Following Dockner (1985), the quantity K is

defined as:

K =

∣∣∣∣∣ ∂Ṗ1
∂P1

∂Ṗ1
∂µ1

∂µ̇1
∂P1

∂µ̇1
∂µ1

∣∣∣∣∣+

∣∣∣∣∣ ∂Ṗ2
∂P2

∂Ṗ2
∂µ2

∂µ̇2
∂P2

∂µ̇2
∂µ2

∣∣∣∣∣+ 2

∣∣∣∣∣ ∂Ṗ1
∂P2

∂Ṗ1
∂µ2

∂µ̇1
∂P2

∂µ̇1
∂µ2

∣∣∣∣∣ =

=

∣∣∣∣∣ − (B +D) αw
µ21

0 B +D + ρ

∣∣∣∣∣+

∣∣∣∣∣ −B αw
µ22

0 (ρ+B)

∣∣∣∣∣+ 2

∣∣∣∣∣ 0 0

0 −D

∣∣∣∣∣ =

= − (B +D))(ρ+B +D)−B (ρ+B) < 0. (72)

54



From Dockner’s theorem 3, under the assumption ρ ≥ 0, the conditions

(i) K < 0 and (ii) 0 < det J ≤
(
K
2

)2
are necessary and suffi cient for the

eigenvalues of the Hamiltonian (67)-(70) system to be real, with two being

positive and two being negative. Since

(
K

2

)2
− det J =

1

4
[(B +D))(ρ+B +D)−B (ρ+B)]2 > 0,

both conditions are satisfied and the steady state is a saddle point. The

result can be extended to increasing marginal damages.�
The Hamiltonian system for problem (30).
Consider a quadratic damage function for each region with spillover tem-

perature effects

D1 (T1, T2) = c11T1 +
1

2
c12T

2
1 + ζ11T2 +

1

2
ζ12T

2
2 ,

D2 (T1, T2) = c21T2 +
1

2
c22T

2
2 + ζ21T1 +

1

2
ζ22T

2
1 .

Then

Ei =
−αwi

µ1Λ1 + µ2Λ2
, i = 1, 2, (73)

and

µ̇1 = (ρ+B + γ1 + γ2)µ1 − (γ1 + γ2)µ2 + c11 + c12T1 + ζ21 + ζ22T1

µ̇2 = (ρ+B + γ1)µ2 − γ1µ1 + c21 + c22T2 + ζ11 + ζ12T2.

The temperature dynamics of the Hamiltonian system are obtained by

replacing Ei in (27)-(29) with (73). This is a dynamical system which can

be analyzed using standard methods.

9.7 Appendix 7

An approximate two-mode solution of problem (33).
Following North (1975a), we consider the two-mode approximation of

the temperature function in terms of even-numbered Legendre polynomials

T̂ (x, t) = T0 (t) + T2 (t)P2 (x) , P0 (x) = 1, P2 (x) =

(
3x2 − 1

)
2

.
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Note that∫ 1

−1
Pn (x)Pm (x) dx = 〈Pn (x) , Pm (x)〉 =

δnm
2n+ 1

, δnm =

{
0 for n 6= m

1 for n = m

〈P0 (x) , P0 (x)〉 = 2, 〈P0 (x) , P2 (x)〉 = 0,∫ 1

−1
P2 (x) dx = 0, 〈P2 (x) , P2 (x)〉 =

2

5
.

In the temperature dynamics (34), make the substitutions

∂tT̂ (x, t) = Ṫ0 (t) + Ṫ2 (t)P2 (x)

∂xT̂ (x, t) = T2 (t)
dP2 (x)

dt
= T2 (t) 3x,

then set C = 1 to simplify notation and multiply first by P0 (x) and then

by P2 (x) and integrate both sides from −1 to 1, to obtain the two-mode

temperature dynamics

Ṫ0 = Z0 − (A+BT0) +
1

2
Λ

∫ 1

−1
E (x) dx , Z0 =

∫ 1

−1

1

4
QS (x) a (x) dx

Ṫ2 =
5

2
Z2 − (B + 6D)T2 , Z2 =

∫ 1

−1

1

4
QS (x) a (x)P2 (x) dx.

The current value Hamiltonian for the transformed problem will be∫ x=1

x=−1

{
w (x)

[
ln y (x) + α lnE (x)− υ [T0 + T2P2 (x)]2

]
+µ0

[
Z0 − (A+BT0) +

1

2
Λ

∫ 1

−1
E (x) dx

]
+ µ2

[
5

2
Z2 − (B + 6D)T2

]}
dx.

From the optimality conditions, we obtain

E (x) =
−w (x) a

µ0
µ̇0 = (ρ+B)µ0 + υT0

µ̇2 = (ρ+B + 6D)µ2 +
2

5
υT2

Ṫ0 = Z0 − (A+BT0) + Λ
α

µ0

Ṫ2 =
5

2
Z2 − (B + 6D)T2.

Solution of this system will provide the temperature and its shadow cost
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function across locations as

T̂ (x, t) = T0 (t) + T2 (t)P2 (x) , µ̂ (x, t) = µ0 (t) + µ2 (t)P2 (x) .
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