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Abstract

Economic growth has traditionally been analyzed in the temporal
domain, while the spatial dimension is captured by cross-country in-
come differences. Data suggest great inequality in income per capita
across countries, with a slight but noticeable increase over time (Ace-
moglu 2009). Seeking to explore the mechanism underlying the tem-
poral evolution of the cross sectional distribution of economies, we
develop a spatial growth model where saving rates are exogenous. Cap-
ital movements across locations are governed by having capital moving
towards locations of relatively higher marginal productivity, with a
velocity determined by the existing stock of capital and its marginal
productivity. This mechanism leads to a capital accumulation equation
augmented by a nonlinear diffusion term, which characterizes spatial
movements. Our results suggest that under diminishing returns, the
growth process leads to a stable spatially non-homogenous distribu-
tion for per capita capital and income in the long run. AK production
functions and increasing returns lead to strong persistent and increas-
ing concentration of capital in a very few locations. Insuffi cient savings
may lead to the emergence of poverty cores where capital stock is de-
pleted in some locations.
Keywords: Economic growth, space, capital flows, nonlinear dif-

fusion, Solow model, steady-state distributions, stability.
JEL Classification: O4, R1, C6
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1 Introduction

In formal growth models, economic growth has traditionally been analyzed
in the temporal domain with the main focus of analysis being the develop-
ment of models capable of explaining stylized facts, expressed in terms of
the temporal evolution of key variables such as output or capital per capita
or the capital-labor ratio. A central issue, however, is cross-country income
differences which exemplify the spatial dimension of the problem. Acemoglu
[1], Chapter 1, using data on GDP per capita and per worker since 1960,
points out that there is great inequality in income per capita and income per
worker across countries, which has been slowly but noticeably increasing over
time. The geographical or spatial dimension is also taken into account in the
context of convergence. Data suggest that there is no unconditional conver-
gence during the post-war period (e.g. Acemoglu [1]). However, the results
from Barro and Sala-i-Martin [2] suggest that conditional convergence takes
place with poor countries growing faster than rich ones in terms of per capita
GDP within a group that shares similar characteristics. Conditional conver-
gence even at different steady states may not, however, adequately describe
the evolution of the spatial distribution of per capita GDP across countries.
Quah [3, 4, 5] points out that convergence concerns poor economies catch-
ing up with rich ones and that what one wants to know is what happens
to the entire cross sectional distribution of economies, not whether a single
economy is tending towards its own, individual steady state.

A cross sectional distribution of real GDP per capita in eleven regions
of the world from 1980 to 2011 is presented in Figure 1.1

[Figure 1. Spatial distribution of GDP per capita, by world regions]

Figure 1 suggests that in the thirty year period covered by the data, the
distribution of per capita GDP seems to be becoming less uniform and that
the evolution of the spatial distribution could be regarded as an approxi-
mately symmetric distribution around an increasing peak that corresponds
to North America. Figure 2 depicts a similar distribution for high income
countries.2

1The World Bank data base was used for GDP per capita (PPP constant 2005 inter-
national $). The regions, according to the World Bank classification, are: Arab World,
ARB; Caribbean small states, CSS; East Asia & Pacific (developing only), EAP; Euro-
pean Union, EUU; Europe & Central Asia (developing only), ECA; Latin America &
Caribbean (developing only), LAC; Middle East & North Africa (developing only), MNA;
North America, NAC; Pacific Island Small states, PSS; South Asia, SAS; Sub-Saharan
Africa (developing only), SSA.
For better visualization, in Figures 1 and 2 the region or country with the highest

average GDP per capita for the sample period was placed in the middle and the rest of
the regions on either side in order of descending average GDP per capita.

2The group of high income countries includes Australia, Austria, Belgium, Canada,
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
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[Figure 2. Spatial distribution of GDP per capita, developed countries]

As a measure of the evolution of the regional or spatial inhomogeneity
of GDP per capita, the quantity

Dt =
∑
i6=j

(
yit − yjt

ȳ

)2

, j = 1, . . . N, t = 1950, . . . 2007

can be used, where yit, yjt denotes per capita GDP in countries i, j at time
t for a sample of countries i, j = 1, ..., N , and ȳ denotes the overall aver-
age (over all countries) per capita GDP. This quantity can be regarded as
a measure of spatial inhomogeneity of GDP per capita, in the sense that
an increasing Dt over time means that the spatial distribution of GDP be-
comes more spatially heterogenous or “less flat” relative to space.3 Thus
an increasing Dt over time indicates that the dispersal of per capita GDP
across the countries of the sample increased during the sample period. The
inhomogeneity measure Dt, along with the corresponding linear trend, is
presented in Figures 3 and 4 for the regions shown in Figures 1 and 2.

[Figure 3. Regional inhomogeneity measure]
[Figure 4. Inhomogeneity measure, developed countries]

The evolution of the inhomogeneity measure and the associated linear
trend suggest that the overall dispersal is increasing somewhat both at the
world regional level and within the group of high income countries.

These empirical observations, although broad in nature, indicate that
the spatial distribution of GDP per capita does not tend to become more
uniform with the passage of time. The spatial distribution is characterized
by a sharp peak which increases with time and is located in North America
and Norway/USA in Figures 1 and 2 respectively, which are the regions or
countries with the highest GDP per capita within the group. These "stylized
facts" seem therefore to support the idea that in a geographical context, the
growth process induces an approximately bell-shaped distribution with a
rather sharp peak. This distribution does not seem to become flatter with
the passage of time or, to put it differently, does not seem to converge to
a geographical homogeneous state for countries grouped in the traditional
way according to their level of economic development. Countries that start
with lower per capita income in the region may grow faster than high income
counties, which is consistent with β convergence arguments, but this growth
does not seem to result in a spatially flatter distribution in the long run.

Ireland, Israel, Italy, Japan, Korean Rep., Luxembourg, Netherlands, New Zealand, Nor-
way, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, United
Kingdom, United States. The World Bank classification is used. Some outliers countries
have been omitted from the graph.

3This measure can be related to a discretized version of a Sobolev norm.
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In this context the purpose of this paper is to develop a spatial model of
economic growth and by doing so to explore mechanisms that could gener-
ate, through economic forces, persistent nonuniform spatial distributions of
per capita capital and GDP across locations, and determine the temporal
evolution of the spatial distributions. To put it differently, we explore how
traditional neoclassical growth theory can be extended to a spatial growth
theory which would provide models capable of approximating the spatial
distributions observed in Figures 1 or 2.

Economic geography and economic growth has been discussed in the so-
called second generation of new economic geography models, but not in a
formal growth context (e.g., Martin and Ottaviano [6], Baldwin et al. [7], [8],
Baldwin and Martin [9], Fujita and Mori [10], Desmet and Rossi-Hansberg
[11], [12]). Models of optimal development over space and time, which could
be regarded as a suitable vehicle for studying economic growth in a geo-
graphical context, were developed in the 1970s by Isard and Liossatos (e.g.,
[13], [14], [15]) and Carlson et al. [16]. Dynamic spatial economic models
were developed in the context of economic growth and resource management
mainly during the 2000s (e.g., Brito [17], Camacho and Zou [18], Boucekkine
et al. [19], [20] [21], Brock and Xepapadeas [22], [23], Brock et al. [24], [25]).
The main feature of current spatial growth models is that the spatial move-
ments of the stock of capital across locations are modeled through a trade
balance approach with respect to a closed region where capital flows are such
that capital is received from the left of the region and flows away to the right
of the region. This leads to a model of classic local diffusion with a constant
diffusion coeffi cient. Modeling capital movements in this way means that
capital stock moves from locations of high concentration to locations of low
concentration. This property, although consistent with diminishing returns
to capital (since high concentration implies low marginal productivity and
vice versa), seems not to be compatible with empirical findings. As indi-
cated in the context of the Lucas paradox ([26], [27]), although diminishing
returns suggest that capital will flow from locations of high concentration
to locations of low concentration, this does not happen in reality.

In the present paper we contribute to the ongoing research on spatiotem-
poral dynamics and spatial growth by developing a model in which the basic
mechanism underlying the movements of capital across space is the quest
for locations where the marginal productivity of capital is relatively higher
than the productivity at the location of origin, without imposing the con-
straint that capital moves from locations of high concentration to locations
of low concentration. By assuming that capital flows towards locations of
high returns, which is a plausible assumption underlying capital flows, with
velocity depending on endogenous factors such as the existing stock of cap-
ital or the size of profitability, our model implies that the spatiotemporal
evolution of capital is governed by a nonlinear diffusion equation. In this
case the “diffusion coeffi cient” is not constant but depends on the capital
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stock and the rate of change of marginal productivity of capital (the sec-
ond derivative of the production function). This approach for modeling
capital flows essentially differs from the classic diffusion models used in the
existing literature which are based on the trade balance (e.g., Carlson et
al. [16], Brito [17], Camacho and Zou [18], Boucekkine et al. [19], [20],
[21]), and describe the spatiotemporal evolution of capital by a parabolic
partial differential equation (PDE). Our contribution is that by using the
plausible mechanism that capital moves towards locations of higher produc-
tivity, and not a mechanism where capital moves necessarily from higher
to lower concentration locations, we obtain - using standard neoclassical
growth assumptions - spatial distributions which are characterized by large
and persistent concentration gradients that can be compatible with existing
observations. Furthermore, we are not confronted with the Lucas paradox
which appears in models with the trade balance mechanism which essentially
imposes the constraint that capital moves from locations of high concentra-
tion to locations of low concentration even though such behavior seems not
to be supported by empirical findings. Our approach, which is based on
the notion that capital moves to locations of relatively higher productivity,
but not necessarily from locations of high concentration to locations of low
concentration, and leads to nonlinear diffusion, does not face this diffi culty.

By considering a distance metric concept based on economic distance, we
develop local models of capital diffusion, where the spatiotemporal evolution
of capital in pursuit of higher returns is governed by a nonlinear PDE which
incorporates the velocity by which capital flows across regions. We use this
analytical framework to extend the standard Solow model in a geographi-
cal context. The spatial Solow model with a mechanism underlying capital
flows which leads to nonlinear diffusion, generates solutions in which spa-
tially nonhomogeneous distributions of per capita capital and income across
locations persist over time. In certain cases locations may end up at a steady
state in poverty cores with capital stock approaching zero. Our results about
persistent spatial heterogeneity and non-smoothing of spatial differences do
not require increasing returns and are obtained under standard diminishing
returns to capital.

2 Capital Flows and Distance Metrics

The existing literature in spatial growth models the spatiotemporal evolution
of capital by a parabolic PDE with a constant diffusion coeffi cient.4 This
implies that capital should flow from rich countries to poor countries given
diminishing returns, which is not, however, what is observed in reality.

Lucas ([26], [27]) explains the paradox in terms of misspecification of
the production technology where important factors such as human capital,

4See for example, [16], [17], [18], [19], [20], [21].
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and capital market imperfections including costs of international trade (e.g.
transportation costs, capital controls, tariffs and other trade costs), infor-
mation asymmetries or sovereign risk are omitted.5 These factors are closely
related to spatial heterogeneities across the spatial domain of interest. The
importance of the Lucas paradox for models of economic geography and
growth, which are modeled using classic diffusion and are essentially based
on the heat equation, is that it suggests that these models might not be an
adequate representation of reality, since they are based on the assumption
that capital moves for high abundance to low abundance locations. In the
present paper we model capital flows in space based on the notion that cap-
ital moves to location of relatively higher productivity, but not necessarily
from locations of high concentration to locations of low concentration. The
notion of capital which we employ is a "mechanistic" kind that cannot move
very fast, like financial capital can, to areas of high marginal productivity
because of adjustment costs and other potential institutional barriers.

A second issue that a spatial growth model should address is the topol-
ogy of the space where capital flows take place and the definition of an
appropriate distance metric. The most common metric of the distance be-
tween two spatial points (say countries) where capital flows take place is
geographical distance, as measured for example by the distance between
capital cities. Conley and Ligon [30] suggest that a more appropriate metric
for measuring distances associated with economic activities is that of the
economic distance - the economic metric - reflected by transportation costs.
They use United Parcel Service (UPS) distance as a proxy for transporta-
tion cost associated with physical capital, while airfare distance is used as
a proxy for transportation cost associated with human capital. It turns out
that the distance between countries might be very different depending on
whether the geographic or the economic metric is used. For example while
the geographical distance between Australia and Egypt is smaller than the
distance between Australia-UK and Australia-USA, the corresponding eco-
nomic distance both in terms of UPS and airfare distance between Australia
and Egypt is larger than the distance between Australia-UK and Australia-
USA.

The choice of the distance metric is important for modeling purposes
since it provides a basis for choosing between a local model of capital diffu-
sion, or non-local model of capital flows which will incorporate long range
effects. If an economic metric is adopted, a local model might be regarded
as adequate. This is because it is reasonable to assume that capital, given
the restrictions imposed by technology and institutions, will flow among
sites which are close in terms of the economic metric, since this would imply
less frictions, with the flow directed towards sites where returns grow faster.
On the other hand if the geographic metric is used, then a non-local model

5See also Razin and Sadka [28], Alfaro et al.[29].
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seems to be the most appropriate, since in this case the geographical dis-
tance might not be a good proxy for frictions associated with capital flows.
In this case capital will flow again towards sites where returns grow faster,
but these locations might not be close to each other in terms of the geo-
graphical metric, which means that a non-local model of spatial interactions
is required.

3 Modeling the Spatiotemporal Evolution of Cap-
ital

Following the previous discussion, we develop a local model that enables us
to study the spatiotemporal evolution of capital in the context of an eco-
nomic metric. Since each element of the economic space can be mapped to
one and only one element of the geographical space, any spatial distribution
defined in economic space can be transformed to a corresponding distrib-
ution in the geographical space. This equivalence allows us to work with
local models defined in economic space. In these models the movement of
capital to sites where returns are higher can be defined in a more tractable
way through local transport operators, an approach which is not appropriate
when capital flows are defined in geographical space.

In what follows, the “spatial”variable z can be considered as describing
a point in a generalized notion of space. To avoid unnecessary complica-
tions we assume that economic (or physical) space may be embedded in a
suffi ciently high dimensional Euclidean space.6 We will thus allow z to take
values in U ⊂ Rd where d is the dimension of space.

Following standard neoclassical growth theory, we assume that the ag-
gregate output is produced at a location (site or spatial point) z and time t
according to a production function Y (t, z) = F (K (t, z) , L (t, z) , A (t, z))) ,
where K,L represent capital stock and labor input respectively and A rep-
resents technology. We assume, unless stated differently, that with respect
to K and L, for fixed A, the production function is twice continuously dif-
ferentiable, strictly concave, and homogeneous of degree one. Furthermore,
in order to simplify, we assume that there is no population growth, i.e.,
L (t, z) = L (z) , and no technical change, i.e., A(t, z) = A (z) . Thus L (z)
and A (z) reflect spatial heterogeneities related to population and a produc-
tivity factor that may reflect positive spatial externalities associated with
location z. Under these assumptions, the production function can be written
in per worker terms as

y (t, z) = f (k (t, z) , A (z)) , y (t, z) =
Y (t, z)

L (z)
, k (t, z) =

K (t, z)

L (z)
. (1)

6This does not mean that the space itself is Euclidean. For example a circle is a one-
dimensional nonlinear manifold which is embedded in a plane, which is a two-dimensional
Euclidean space.
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Given the production function (1), the state of the system is described
by the per worker capital stock function k : [0,∞) × U → R. The state of
the system can also be described by a vector valued function ǩ : [0, T ]→ X,
where X is a function space which accounts for the spatial behavior of the
state variable. Then ǩ(t) = ω ∈ X, where ω : U → R is a function of z such
that (ǩ(t))(z) = ω(x) = k(t, z).7

The law of motion of per capita capital at site z and time t, (t, z) ∈
[0,∞)× U is determined by two fundamental terms:

• A term characterizing capital mobility across space, i.e., the net flow
of capital in site z from all possible points in U which will be denoted
abstractly as T (t, z).

• A term characterizing the local net accumulation of capital at site z.

3.1 A simple discrete model of capital flows

To make the derivation of the spatiotemporal evolution clear, we start with
a family of discrete space models defined in the economic space and go to
the continuous limit. We assume that space is a discrete lattice, which
without loss of generality is assumed to be one dimensional. Therefore
U = Z is the integer lattice and we may consider the function ǩ as a function
ǩ : [0, T ] → RZ, i.e., for every t the state of the system ǩ(t) = (ki(t))i∈Z,
which means that it is expressed by a real valued sequence. We will then
use ki(t) in lieu of k(t, z) at z = i, i ∈ Z, to denote the capital stock
and f (ki (t) , Ai) and the production function at site i at time t. A similar
notation mi(t) := f ′ = df

dki
is used for the marginal productivity of capital.

We assume in the context of the economic space that each site i is connected
only with two neighboring - from an economic point of view - sites, i − 1
and i + 1, and that capital may flow from i to either one of these sites, or
vice versa.

Our basic assumption is that capital may flow from i to j (where j = i±1)
at time t only if mi(t) < mj(t). Then, a fraction of capital stock φ(t, i→ j)
will move from site i to j, so that the total capital stock that moves from i
to j is φ(t, i→ j)k(t, i). We assume that

φ(t, i→ j) =

{
ψ(m(t, j)−m(t, i)) , m(t, j) ≥ m(t, i),

0 , m(t, j) < m(t, i)
(2)

where ψ : R → R+ is a positive function. We assume here for simplicity
that ψ(ω) = λω where λ > 0 is assumed small enough so that ψ(m(t, j) −

7The choice of function space X depends on the spatial behavior of capital, for instance
we may consider X = C(U), the space of continuous functions on U , if the spatial behavior
of the capital distribution can be modeled by a continuous function, or X = Lp(U) if the
spatial behavior of the capital distribution can be modeled in terms of the element of a
Lebesgue space. When working in terms of ǩ, the capital flow is modeled in terms of a
(typically) infinite-dimensional dynamical system on the function space X.
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m(t, i)) ∈ [0, 1]. In terms of the production function, the same relation can
be written as:

φ(t, i→ j) =

{
ψ (f ′(k(t, j))− f ′(k(t, i))) , f ′(k(t, j)) ≥ f ′(k(t, i)),

0 , f ′(k(t, j)) < f ′(k(t, i)),
(3)

where to simplify notation we omit the term A (z) from the production
function.

In a similar fashion, capital may migrate from site j to site i (where in
the present simple model j = i±1). The fraction of capital stock φ(t, j → i)
that moves from j to i depends on the difference m(t, i) − m(t, j), and
the total capital stock which is transported from j to i will be equal to
φ(t, j → i)k(t, j). The fraction φ(t, j → i) is given by expression (2) or (3)
with the roles of i and j interchanged.

The net capital flow at time t and site i is given by

T (t, i) = φ(t, i− 1→ i)k(t, i− 1) + φ(t, i+ 1→ i)k(t, i+ 1)︸ ︷︷ ︸
Inflow

− (φ(t, i→ i− 1) + φ(t, i→ i+ 1)) k(t, i)︸ ︷︷ ︸
Outflow

.

Let c(t, z) denote consumption per unit of labor at time t and site z,
where consumption is modelled by a vector valued function č : [0,∞)→ Y,
and let δ denote the time invariant exponential depreciation rate of cap-
ital; then local capital formation is determined by Φ(t, z) = f(k(t, z) −
c (t, z) − δk(t, z). If we assume that in each site a constant fraction s (z) of
income is saved, then Φ(t, z) = s (z) f(k(t, z), A (z))− δk(t, z) with c(t, z) =
(1− s (z)) f (k (t, z) , A (z)), and the local net accumulation is defined in the
context of the Solow model. Denoting by Φ(ki) net capital formation at site
i, in terms of the discrete lattice, the total balance equation at site i will be

dki (t)

dt
= k

′
i(t) = Φ(ki(t)) + T (t, i), i ∈ Z. (4)

This is a set of differential equations, the solution of which will provide
the spatiotemporal evolution of capital on the lattice. It is useful for the
purpose of modeling to investigate the continuous space limit of this discrete
model. This is the limit when z = iδz and we allow δz → 0. Furthermore,
to ease notation we abandon the notation ǩ and use k invariably. The next
proposition provides the continuous limit of the discrete model proposed
above.

Proposition 1 Assume that capital flows to locations of relatively higher
marginal productivity, according to the transport law (2). The continuous
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limit of the lattice transport equation (4) describing the spatiotemporal evo-
lution of capital stock is given by the nonlinear parabolic PDE,

∂k

∂t
= Φ(k)− α ∂

∂z

(
kf
′′
(k)

∂k

∂z

)
, (5)

and the transport operator determining capital flows across locations is given
by:

Tk (t, z) = T (t, k (t, z)) =

− ∂

∂z

(
k(f

′′
(k)

∂k

∂z

)
= − ∂

∂z

(
D(k)

∂k

∂z

)
.

For proof, see Appendix 1.
The transport operator T is a nonlinear diffusion operator, with a state

dependent diffusion coeffi cient D(k) = f
′′
(k)k, meaning that the flow of

capital from or to a location depends on the spatial rate of change of the
marginal productivity of capital and the stock of capital in the location.8

The growth equation (5) is thus a nonlinear diffusion equation, the solution
of which will provide the spatiotemporal evolution of the capital stock in U .

Thus, and in contrast to the existing spatial growth models, (e.g., [17],
[18] [19], [20], [21]) where the transport operator is characterized by a con-
stant diffusion coeffi cient, our assumption about capital flows leads to a
diffusion operator with a diffusion coeffi cient D which is no longer constant,
but depends on the capital stock k.9 The behavior implied by the con-
stant diffusion model is contradicted by the Lucas paradox. In terms of the
present model, the basic assumption is that capital flows seek higher values
of marginal productivity m. Thus capital will only move from a site z to
a site z∗ if m(t, z∗) > m(t, z), independent of the relative concentration of
capital between z∗ and z. This property seems to overcome issues related
to the Lucas paradox.

Another point of interest is the negative sign in front of the second order
derivatives term. If D(k) > 0, this negative sign will correspond to “anti-
diffusion,”that is, the dynamics of the equation encourage concentration of
capital in very few locations. D(k) > 0 can be associated with increasing
returns to capital from a social point of view, due to Lucas-Romer-type
positive spatial externalities in the production function, while D(k) < 0 can
be associated with the standard case of diminishing returns to capital.

A final comment is that in the absence of net capital formation, i.e., if
Φ(k, c) = 0, then equation (5) is in divergence form, so that the total capital

8This transport operator is acceptable, since it is in divergence form and it can be
easily seen that, using appropriate boundary conditions, the conservation property holds.

9To obtain the constant diffusion model as the continuous limit of the above discrete
space capital stock transport scheme, we would need to assume that φ(t, i → i ± 1) =
φ(t, i± 1→ i) = 1

2
, i.e. constant and equal irrespective of the state of capital stock at the

corresponding sites.
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over the whole spatial domain is conserved. This is a desirable feature of the
equation since, in the absence of net capital formation, total capital must
be conserved at its initial value.

3.2 A generalized spatial model of capital flows

Using the previous analysis as a basis, we develop a general class of local
continuous space models that enable us to characterize the spatiotemporal
evolution of capital in an economic space. In what follows the spatial variable
z will be considered as describing a point in a generalized notion of economic
space, thus z takes values in U ⊂ Rd where d is the dimension of the economic
space. We model capital flows, using the basic assumption that capital flows
towards locations of relatively higher marginal productivity in combination
with Gauss’divergence theorem, which is briefly described in the Appendix.

In this context, consider a domain U ⊂ Rd and let U0 be any subset of
U . Denote by k(t, z) the stock of capital in this domain at time t and at
spatial point z. Then the total amount of capital in U0 at time t is given
by the volume integral

∫
U0
k(t, z) dz. Capital flows everywhere within U0, so

it is natural to consider a vector field v = (v1, · · · , vd), v : U0 → Rd which
gives us the velocity of capital flow (flux) at every point of U0. Then the
following proposition can be stated:

Proposition 2 The spatiotemporal evolution capital in the setting described
above is given by:

∂

∂t
k(t, z) = −∇z · (v k(t, z)) + Φ(t, z). (6)

The vector field v points in the direction towards which capital is flowing
and its magnitude at point z shows how fast capital located at z is likely to
migrate in the direction in which v is pointing. In the context of a spatial
growth model, the vector field v must be specified by economic considera-
tions.10 Once the forms of v and Φ are determined, equation (6) serves as
a PDE which, if solved with the proper initial and/or boundary conditions,
can fully determine the capital distribution k(t, z) at all times t and at all
points z in space.

We now consider the specification of the term v. The term v is a vec-
tor field whose direction should point towards the direction where capital
stock will have the tendency to flow under the influence of economic factors.
Our basic economic assumption is that capital flows towards regions where
its marginal productivity is relatively higher, but the movement is not very
fast, as for example it is with financial capital, due to adjustment costs and

10Based on the intuition gained by our discrete spatial model, we may interpret v in
terms of the probability of capital to migrate. For example the component vi is related
to the probability of capital to migrate from z to the direction z + ei.
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institutional barriers. Furthermore, due to positive spatial spillover exter-
nalities, capital existing at location z may increase the value of the marginal
product of capital arriving at z. The direction of the flow is locally (in z
and t) determined in terms of the gradient of the scalar field that provides
the marginal productivity of capital, i.e. it flows towards regions where
∇zm(t, z) = gradm(t, z) is large.11 The velocity of the flow (interpreted as
the propensity of capital to relocate) may also depend on economic factors.
One of them could be the size of the accumulated stock of capital at a given
site. For example it may be easier for capital to flow to sites of high returns
if the site from which the capital originates is characterized by high capital
stock. This would mean that if returns to capital is high in a given site, then
it will be easier for capital from mature economies with large capital stock
to move to this site, compared to capital originating from smaller economies.
These assumptions imply that the drift depends on the capital stock and
the gradient of the marginal productivity, i.e. that it will be reasonable to
specify v as v = v(t, z, k,m)∇zm, where v is a scalar function taking pos-
itive values. The vector field v is therefore a vector field which points in
the direction of ∇zm(t, z) = gradm(t, z). The explicit dependence of the
scalar function v on t may reflect time dependencies such as business cycles,
whereas the explicit dependence of v on z may model geographical effects
or effects related to local conditions, economic, cultural or legal, which may
encourage or hamper capital mobility.

The gradient of m is defined in terms of the production function as

∇zm(t, z) =
∂2

∂k2
f(k(t, z), A(z))∇zk(t, z) +

∂2

∂k∂A
f(k(t, z), A(z))∇zA(z).

Using the shorthand notation fk for the partial derivative of f with respect
to k (and similarly for the other or the higher partial derivatives), we may
express v in terms of the production function and the capital stock as

v = v(t, z, k, fk(k,A)) (fkk(k,A)∇zk + fkA(k,A)∇zA(z)) ,

where A is a known function of z.
Therefore, equation (6) becomes

∂

∂t
k = −∇z·

(
kv(t, z, k, fk(k,A)) (fkk(k,A)∇zk + fkA(k,A)∇zA)

)
+Φ(t, z),

(7)
which is a quasilinear parabolic PDE for the unknown function k, which
provided the capital stock distribution in space and time. This equation
simplifies if A is a constant (independent of space).

11Note the difference between the operator ∇z· = div which is the divergence operator
and the operator ∇z = grad which is the gradient operator. The first one acts on a vector
field and yields a scalar field, while the second one acts on a scalar field and yields a vector
field.
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Note the difference between our model as expressed in equation (7) and
the spatial growth models proposed so far in the literature. These models
are in the general form

∂

∂t
k = ∇z · (D∇zk) + Φ(t, z), (8)

where D is independent of k (but possibly depending on z). This is a
semilinear parabolic equation. The fundamental difference between the gen-
eral class of models expressed by equation (8) and our model expressed by
equation (7) is that in our model, even if A is a constant, the diffusion co-
effi cient depends on the actual state of the system, i.e., the capital stock
concentration at point (t, z). In this case D is no longer independent of
k but rather D = D(k) = −kv(t, z, k, fk(k,A))fkk(k,A). This difference
arises from the fact that our capital mobility assumption is associated with
productivity differentials rather than with an application of Fick’s law of
thermal diffusion to capital flows. That is, our nonlinear diffusion model re-
sults from the economic assumption that capital migrates, striving to locate
to regions where its marginal productivity is higher, and not simply from
the (physically based) assumption that capital moves from regions of high
concentrations to regions of low concentrations akin to what is observed for
heat flow, chemical concentrations or population densities. As a result, we
derive a modified Fick’s law with a nonlinear diffusion coeffi cient (i.e., a
local diffusion coeffi cient depending on the capital stock at each point) and
this dependence is characterized by the production function and its deriva-
tives. Furthermore, there are important qualitative differences between the
solutions of the stock dependent diffusion (quasilinear capital flow equation)
(7) and the constant diffusion model (semilinear capital flow equation) (8)
which have implications for the economic interpretation of outcomes. Such
differences are related, among other things, to (a) the possibility of exis-
tence of a compact support solution (corresponding to regions where capital
is depleted) for (7) while this is impossible for (8), and (b) the possibility
of formation of sharp spatial gradients of k (corresponding to the formation
of well defined spatial patterns) for (7), while the general tendency is for
spatial gradients to be smoothed out for solutions of equation (8). Note
finally that the sign of the diffusion coeffi cient depends on the sign of the
term fkk. If fkk < 0, then we have a positive diffusion coeffi cient (leading
to a tendency for spatial gradients to smoothen) while if fkk > 0, possibly
due to Romer-Lucas externalities, we have a negative diffusion coeffi cient
(so that the system has a tendency to develop sharp gradients). Therefore,
as a general rule of thumb, in our model decreasing returns lead to a positive
diffusion coeffi cient while increasing returns lead to negative diffusion.

In order to make the implications of our modelling for growth theory
more transparent, we will focus on a particular special case of the general
class of quasilinear models stemming from equation (7), which are related to
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the Cobb-Douglas type production function and the Solow growth model.

4 A Spatial Solow Model

In this section we consider the general class of quasilinear models proposed
in equation (7) for production functions of the general form f(k,A) = Aϕ(k)
where A = A(z) is a known function and ϕ(k) is a standard Cobb-Douglas
production function ϕ(k) = kα for α ∈ (0, 1).

We further assume that the capital transport velocity can be defined as:

v(t, z) = B(z)(k(t, z))ρ1(m(t, z))ρ2∇zm(t, z). (9)

According to this velocity law, capital flows towards regions of increasing
marginal productivity of capital (this is the effect of the ∇zm(t, z) contri-
bution) but the magnitude of the velocity of motion towards this direction
depends on (a) the actual location through the term B(z) (this captures lo-
cal effects, legal structure, cultural traits, etc. that may facilitate or hamper
capital mobility), (b) the concentration of capital k(t, z) at time t at point z
through the term (k(t, z))ρ1 , where ρ1 plays the role of the elasticity of the
capital velocity with respect to capital concentration (a positive ρ1 implies
that an increase in the capital stock in location z will cause the velocity of
capital movement towards locations with marginal productivity higher than
z to increase), and (c) the actual marginal productivity of capital m(t, z) at
time t on the current point of location z through the term (m(t, z))ρ2 where
the coeffi cient ρ2 corresponds to the elasticity of the capital velocity with
respect to capital concentration. A positive ρ2 implies that an increase in
the capital stock in location z will cause the velocity of capital movement
towards locations with marginal productivity higher than z to increase. The
above considerations suggest the choice ρ1 ≥ 0 and ρ2 ≤ 0 in the capital
velocity model (9).

Using the neoclassical production function, the velocity law becomes

v(t, z) = B(z)(k(t, z))ρ1(A(z)ϕ′ρ2
{
A(z)ϕ′′(k(t, z))∇zk(t, z) + ϕ′(k(t, z))∇zA(z)

}
,

where ϕ′(k) = dϕ
dk (k) and ϕ′′(k) = d2ϕ

dk2
(k). Omitting the explicit dependence

of k on (t, z) for notational simplicity, this leads to the expression

kv = B(z)(A(z))ρ2+1kρ1+1(ϕ′ρ2ϕ′′(k)

{
∇zk +

ϕ′(k)

ϕ′′(k)

∇zA(z)

A(z)

}
. (10)

Exogenous saving rates s and constant depreciation of capital δ across loca-
tions implies that Φ(t, z) = f(k,A) − δk = sA(z)ϕ(k) − δk, where s could
be dependent on z. Substituting into the continuity equation (7) yields

∂k

∂t
+∇z·

(
B(z)(A(z))ρ2+1kρ1+1(ϕ′ρ2ϕ′′(k)

{
∇zk +

ϕ′(k)

ϕ′′(k)
∇z lnA(z)

})
= sA(z)ϕ(k)−δk.

(11)
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This is a quasilinear parabolic PDE in terms of k, the solution of which yields
the spatiotemporal evolution of capital stock in a spatial Solow model where
capital moves towards the location with the higher return. This equation
simplifies even further under the assumption that the drift due to the A term
in the production function (modelled by the ∇z lnA(z) term in the evolution
equation) is negligible with respect to the drift occurring from the spatial
variability of capital ∇zk. Therefore, if A(z) is such that ∇z lnA(z) <<
ϕ′′(k)
ϕ′(k)∇zk,

12 the quasilinear model (11) simplifies to

∂k

∂t
+∇z ·

(
B(z)(A(z))ρ2+1kρ1+1(ϕ′ρ2ϕ′′(k)∇zk

)
= sA(z)ϕ(k)− δk, (12)

or in more compact form

∂k

∂t
+∇z · (D(z, k)∇zk) = sA(z)ϕ(k)− δk, (13)

where

D(z, k) = D0(z)ψ(k),

D0(z) = B(z)(A(z))ρ2+1,

ψ(k) = kρ1+1(ϕ′ρ2ϕ′′(k).

If ρ1 = ρ2 = 0 then v(t, z) = ∇zm(t, z), and the diffusion coeffi cient of
the spatial Solow model is reduced to the diffusion coeffi cient of the model
derived in section 3.1 which is, therefore, a special case of the more general
model (12).

An equivalent way to express model (13) is in the form

∂k

∂t
+∇z · (D0(z)∇z	(k)) = sA(z)ϕ(k)− δk, (14)

where Ψ′(k) = ψ(k). In the special case where D0 is independent of z or
presents slow variations in z (in which case we may use an approximation
analogous to the one we used for A), we may express (14) as

∂k

∂t
+D0(z)∆Ψ(k) = sA(z)ϕ(k)− δk, (15)

where ∆ = ∇z · ∇z is the Laplace-Beltrami operator, ∆ =
∑d

i=1
∂2

∂z2i
, with

∆ = ∂2

∂z2
for the one-dimensional case. Note that Ψ(k) may take negative

values since for a neoclassical production function f ′′(k) < 0.
We proceed now to derive the explicit form of the model for the Cobb-

Douglas case.

12Equivalently ∇z lnAz << ∇zR(k), where R(k) =
∫ k ϕ′′(u)

ϕ′(u) du then the drift effect due
to spatial variability of A can be neglected. This assumption may hold if lnA is a slowly
varying function of z, i.e. if lnA(z) = Ā(εz) where ε > 0 is a small parameter. Obviously,
this assumption always holds for constant A.
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Proposition 3 Let the production function by of the Cobb-Douglas type
f(k,A) = Akα, α ∈ (0, 1), with A constant or slowly varying with z. If the
velocity law for the motion of capital is of the form v = B(z)kρ1mρ2∇zm,
then the spatiotemporal evolution of the capital stock is given by the quasi-
linear degenerate PDE

∂

∂t
k = D̄∇z · (D0(z)kβ∇zk) + sA(z)kα − δk, (16)

or the equivalent form,

∂

∂t
k =

D̄

1 + β
∇z · (D0(z)∇zkβ+1) + sA(z)kα − δk, (17)

where D̄ = αρ2α(1−α), β = ρ1−(1+ρ2)(1−α) and D0(z) = B(z)(A(z))1+ρ2.
The diffusion mechanism reduces to the linear diffusion mechanism in the

special case where β = 0 or equivalently in the case where the parameters of
the model are such that ρ1 = (1 + ρ2)(1 − α). Two particularly interesting
special cases are (a) the case where ρ1 = 0 and ρ2 = −1, and (b) the case
where α = 1, ρ1 = 0 (the AK model).

The proof is straightforward and is omitted; however, the following re-
marks are important. Except for the special case where β = 0, our model is
a nonlinear diffusion model with diffusion coeffi cient D(z, k) depending on
the state of the system as D(z, k) = D̄0(z)kβ, where D̄0 is a known function
of space. Therefore in our model, capital mobility across space, reflected
in the diffusion coeffi cient D (z, k) , is determined endogenously, while in
models of linear diffusion the fixed diffusion coeffi cient D is determined ex-
ogenously. A fixed diffusion coeffi cient in terms of our model emerges as a
special case when ρ1 = ρ2 = 0 and the production function is Ak. We think
that, although the degree of dependency of the diffusion coeffi cient on the
stock of capital and the structure of capital velocity are empirical issues,
our approach - by relating these factors to capital flows - provides a richer
environment for studying the spatiotemporal evolution of capital stock.

Remark 1 Capital k is interpreted as per capita capital without population
growth or technical change. Assuming population growth at a rate L̇(z,t)

L(z,t) =

n (z) and exogenous spatially uniform technical change at a rate Ȧ(z,t)
A(z,t) = g,

A (t, z) = A (z) egt, the local capital accumulation equation can be defined in
per effective worker terms with k (t, z) = K(t,z)

A(z,t)A(t,z) . In this case, by abusing
notation δ = δ + n (z) + g. Our models can be reinterpreted in this case by
assuming that capital per effective worker moves towards locations where the
marginal productivity of capital per effective worker is relatively higher.

Equation (16) is a generalization of the well studied porous medium
equation in the sense that it is a porous medium equation with a reaction
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term.13 It is interesting to note that this porous medium equation was not
imposed as a modeling tool, but emerged from the assumption that capital
flows seek locations of high productivity and move with a velocity which
depends on capital stock and marginal productivities.

If the initial condition k0 has support which is a compact subset of the
domain, then the solution presents the finite speed of propagation property.
This means that for any t > 0, there will be regions of the domain for which
the solution is identically equal to 0, i.e., the support has a free boundary
which separates the regions where k > 0 from the regions where k = 0. This
phenomenon never holds for the linear diffusion case β = 0, which presents
infinite speed of propagation, meaning that even if the initial condition k0

is of compact support, the solution for any t > 0 will not have this property.
Technical and abstract as it may sound at first, this qualitative behavior
of the nonlinear diffusion may have implications from the point of view
of economic theory: the compact support property may be interpreted in
terms of the existence of regions where capital is completely and persistently
depleted, which is in fact in economic terms a poverty trap.

Remark 2 (The spatial Solow model under linear diffusion) Proposition
3 elucidates the role of parameter α in the capital concentration dynamics.
To make the argument more transparent consider the case β = 0 and let D0

be independent of z. Equation (16) assumes the semilinear form

∂

∂t
k = D̄(1− α)∆k + sA(z)kα − δα, (18)

similar to the models employed so far in the literature on spatial growth,
but with an important difference: the diffusion coeffi cient is proportional to
1−α. Therefore, if α < 1 (diminishing returns to capital), then the diffusion
coeffi cient is positive which leads to a model similar to the one proposed by
Boucekkine et al. [19], however within a totally different modeling frame-
work. The positive diffusion coeffi cient corresponds to dynamics that tend to
eliminate spatial gradients, thus leading to spatial convergence14 phenomena.
If on the other hand, α > 1 (increasing returns to capital), then the diffusion
coeffi cient is negative and this leads to a linear anti-diffusion model, which
tends to amplify spatial gradients and leads to large capital concentration
phenomena. Finally, if α = 1, the model is reduced to a growth model with
an AK production function which eliminates spatial heterogeneity.

In the relevant literature based on trade balance (e.g. [21]), the diffusion
coeffi cient D = D̄(1−α) is set at the value of one, so that the relevant PDE

13 In the absence of a reaction term, the porous medium equation has been studied
very actively as a paradigm for nonlinear diffusion and has served as a model for various
physical or biological systems (see for example Vasquez [31]).
14The term convergence is used in its economic growth context.

17



is
∂

∂t
k = ∆k + sA(z)kα − δk. (19)

Models (16), (18) or (19) can thus be regarded as candidate specifications
for a spatial growth equation. The determination of the impact of spatial
diffusion on capital accumulation, and therefore the choice of the appropri-
ate model, are empirical issues related to the estimation of coeffi cients in
capital accumulation equations like (16), (18) or (19). Numerical simula-
tions presented later on suggest that the implication of these models for the
long-run spatial distribution of capital, and convergence, in the context of
the spatial Solow model, are not the same. In particular D = 1 combined
with diminishing returns (0 < α < 1), or constant returns (α = 1) tend to
provide spatially homogeneous capital distributions implying spatial con-
vergence. On the other hand models of nonlinear diffusion result, with any
type of returns to capital, in spatially nonhomogeneous capital distributions
of various characteristics, implying that convergence is not attained in the
long run.

5 Qualitative and Quantitative Aspects of the Spa-
tial Solow Model

Following Proposition 3 the main object of this section is the study of the
nonlinear spatial growth PDE characterizing the spatial Solow model under
diminishing returns,

∂

∂t
k = D∆kβ+1 + sAkα − δk, (20)

where D > 0 is a coeffi cient (independent of k), s is the savings ratio, A (z) is
a productivity parameter, δ is the rate of capital depreciation and α ∈ (0, 1)
is the production elasticity. Without loss of generality, by a rescaling of the
variable t, we can express the above equation in the form

∂

∂t
k = ∆kβ+1 + c1k

α − c2k (21)

where

c1 =
sA

D
≥ 0, c2 =

δ

D
> 0,

and
β = ρ1 − (1 + ρ2)(1− α).

It is conceivable that c1 and c2 depend on the spatial location z. Even if
we assume D to be a constant, it is natural to assume that the saving ratio
s depends on z, and the same may hold for A and δ. We further allow
for regions where c1 = 0 (i.e. regions where no saving is possible). The
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possibility of allowing for a set U0 ⊂ U ⊂ Rd with the property c1(z) = 0 if
z ∈ U0 may provide interesting economic implications.

The PDE (21) of the spatial Solow model will be complemented with
an initial condition k(0, z) = k0(z), where k0 : U ⊂ Rd → R+ is an initial
capital stock distribution, and also with boundary conditions related to the
prescribed behavior of the distribution of capital stock at certain parts of
the domain U . We will consider two major types of boundary conditions:
(a) consider U = Rd and assume that k(t, z) → 0 as |z| → ∞; and (b)
Dirichlet boundary conditions, i.e., assume that k(t, z) = 0 for z ∈ ∂U
where ∂U denotes the boundary of U . Clearly, (a) can be taken as a limiting
situation of (b) for large domains. Other types of boundary conditions are
also possible, for example periodic boundary conditions or Neumann type
boundary conditions (corresponding to regions in space where capital stock
is repelled).

5.1 Steady state solutions

The starting point for our analysis will be the steady state solutions of model
(21), that is, solutions which depend only on z and not on t. A steady-state
solution k∗ = k∗ (z) can be regarded as a steady-state distribution of the
capital stock across space. For such solutions, the spatial Solow equation
(21) simplifies to:

−∆kβ+1 = c1k
α − c2k. (22)

To bring it into a more standard form we employ the Kirkhoff transforma-
tion, define the new variable

u = k1+β, β 6= −1,

and express (22) in terms of u as

−∆u = c1u
q − c2u

p (23)

where
q =

α

1 + β
, p =

1

1 + β
.

We consider first the parameter range where 1+β > 1 (slow diffusion case).15

We consider first the case where z ∈ R, i.e. the one-dimensional case.
Then equation (23) reduces to a second order ordinary differential equation
(ODE) of the form

−d
2u

dz2
= c1u

q − c2u
p. (24)

15 In this case we observe that 0 < q < p < 1. In the linear diffusion case q < p = 1.
Therefore, the elliptic equation (23) is always a sublinear equation except in the case of
linear diffusion β = 0, where the nonlinearity is a linear combination of a sublinear and a
linear term.
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Under the simplifying assumption that c1 and c2 are independent of z, we
can multiply this equation by du

dz and integrate once over z to see that, along
any solution of (24), the following equality holds:

1

2

(
du

dz

)2

+
c1

1 + q
uq+1 − c2

1 + p
up+1 = C, (25)

where C is a constant of motion. This allows us to do a complete phase plane
analysis for the steady-state solution, and even find closed form solutions
for u by integration by quadrature. Since all possible solutions of (24) are
characterized on the phase plane (x1, x2) := (u, u′) by the contours of the
function g(x1, x2) = 1

2x
2
2 + c1

1+qx
q+1
1 − c2

1+px
p+1
1 , a phase plane analysis may

provide information about the spatial distribution of the stock of capital at
the steady state. Figure 5 below provides the phase diagram for (25) in
terms of the the capital stock variable for the parameter choice

α = 0.4, A = 1, s = 0.15, δ = 0.03, ρ1 = 1.3, ρ2 = −0.1, β = 0.76, D = 0.1,
(26)

corresponding to (20).The shape of the contours around the horizontal axis
suggest that the steady-state spatial distribution of the capital stock has an
inverted U shape.

[Figure 5. Steady-state phase diagram in the spatial domain]

This is verified by the numerical solution of (24) shown in Figure 6.

[Figure 6. Steady state in the spatial domain]

The following proposition provides an existence and uniqueness result
for the steady-state PDE (22). Clearly this PDE always has the solution
k(z) = 0 for every z ∈ U , which will hereafter be called the trivial solution.

Proposition 4 Let β ≥ 0, α < 1 and assume Hölder continuity proper-
ties16 for the coeffi cients c1, c2. The steady-state equation (22) has a unique
classical (non trivial) positive solution,17 satisfying the a priori bounds

0 ≤ k ≤
(
c̄1

c2

) 1
1−α

,

where
c̄1 = sup

z∈U
c1(z), c2 = inf

z∈U
c2(z).

16A function g : Rd → R is called Hölder continuous when there exists η < 1 and C > 1
such that |g (x)− g (y)| ≤ C |x− y|η for every x, y ∈ Rd. Hölder continuity is a weaker
form of uniform continuity than Lipschitz continuity.
17The regularity of the solution depends on the regularity of the coeffi cients c1, c2. If

c1, c2 ∈ L∞(U), then the solution is a weak solution k ∈ L1(U), whereas if the coeffi cients
c1, c2 enjoy Hölder continuity properties, the solution is classical.
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It should be noted that if c1 and c2 are independent of z, then the upper
bound for the steady state is the steady state of the standard Solow model
without diffusion of capital. Thus the spatial Solow model with nonlinear
diffusion is characterized by a steady state which could either be spatially
homogeneous, i.e. flat, or exhibit spatial heterogeneity.

The spatial model with nonlinear diffusion allows us to explore cases in
which the spatial domain contains locations and regions where savings do not
take place. This might be a realistic situation for extremely impoverished
locations. We will call these regions poverty cores and define them as regions
V0 ⊂ U with the property that c1(z) = 0 if z ∈ V0. The poverty core
corresponds to regions where capital is identically zero at a steady state,
implying that the steady-state distribution of the capital stock contains
regions with no capital and regions with positive capital. This result suggests
that economies where savings are not possible could eventually be trapped
in the poverty core where their capital stock is depleted. The existence of
poverty cores is verified by the existence of compact support solutions for the
steady-state equation (22) and is established in the following proposition.

Proposition 5 Let β > 0. If c1 (z) vanishes at a point z, then any positive
solution of the steady-state equation (22) will develop a poverty core. A
poverty core never develops when β = 0, even if c1 vanishes in subsets of
U . To be more precise, assume that c1, c2 are Hölder continuous functions
and allow c1 to vanish at some point z0 (corresponding to a spatial location
where no savings takes place s = 0). Then, if β > 0, and for some ρ > 0,
the function c1 vanishes inside a ball centered at z0 and of radius ρ, any
non-trivial positive solution of the steady-state equation (22) will develop a
poverty core, i.e. a region of total depletion of capital stock inside a ball
centered at z0 and of radius

ρ
2 , as long as the parameters of the problem

satisfy the condition

c̄
1−α
1+β

1 c
− (1+β)(1+β−α)

β(1−α)
2 ≤ c0(β, d)ρ

2(1+β)
β (27)

where c0(β, d) is a constant, depending only on β and the dimension d of
economic space, given explicitly in the proof of this Proposition.

Poverty cores do not emerge in models of linear diffusion (β = 0) where
capital moves from high to low abundance location. Thus nonlinear diffu-
sion (β > 0) can help model the emergence of poverty cores where capital is
depleted due to zero savings. This is because although capital moves to loca-
tions with low capital stock, since these locations are characterized by high
marginal productivity of capital as capital is depleted, no part of the inflow
is used for capital accumulation since nothing is saved. If model parameters
are such that condition (27) holds, then insuffi cient accumulation will take
place at this location and eventually the capital stock will be depleted.
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As condition (27) shows, simply the vanishing of savings at a point is
not enough to guarantee the existence of a poverty core. Due to the spatial
interactions, a poverty core emerges when relation (27) - which relates the
maximum value of c1 over a wider region (i.e., savings and productivity in
nearby regions) with the minimum value of c2 over a wider region (i.e., rate
of capital depreciation) as well as the characteristic of the velocity of capital
flows (provided by β) within the region where savings vanishes - is satisfied.
Furthermore, the procedure followed in the proof provides information on
the local behavior of capital stock near a point z0 with zero savings. Capital
stock can be identically zero inside a ball of center z0 and radius ρ/2, i.e. well
inside the region where c1 vanishes, but capital may start accumulating (still
inside the region where c1 = 0) on account of spatial effects and capital flow
from nearby regions, since marginal productivity inside this ball is high. An
upper bound for the spatial gradients of capital stock in this accumulation

region can be provided by k ≤ C
(

2
ρ |z − z0| − 1

) 2
β
, as long as z is such that

ρ
2 < |z − z0| < ρ. Therefore, if the savings profile is such that c1(z) =
0 for z ∈ U, with |z − z0| < ρ, then any solution of the steady-state
equation (22), k∗ (z) must be such that k∗(z) = 0 for z ∈ U when|z −
z0| < ρ

2 , while k
∗ (z) may be non-zero for z such that ρ

2 < |z − z0| < ρ.
Note that these z locations are well inside the region where productivity
vanishes, but k is always bounded above by the radially symmetric profile,

k ≤ C
(

2
ρ |z − z0| − 1

) 2
β
, as long as z is such that ρ

2 < |z − z0| < ρ.

5.2 Time and space dependent solutions

Having studied the steady state we now turn our attention to the analy-
sis of the full spatiotemporal Solow model. This means finding the spatial
distribution of capital stock k (t, z) at each point of time t that emerges if
the fundamentals of the economies are determined by the basic assumptions
of the Solow growth model and capital flows towards locations of relatively
higher marginal productivity with velocity determined endogenously by lo-
cal capital stock and the size of marginal productivity. The corresponding
mathematical problem reads as follows: given a function k0 : U → R, find
k : [0, T ) × U → R such that the following initial boundary value problem
is satisfied: 

∂k
∂t = ∆Φ(k) + f(z, k) , 0 6 t 6 T , z ∈ U ,
k(t, z) = 0 , 0 6 t 6 T , z ∈ ∂U ,
k(0, z) = k0(z) , z ∈ U ,

(28)

where Φ : [0,∞) → [0,∞), f : U × [0,∞) → [0,∞) are generic functions.
For our purposes we have

Φ(k) := k1+β , f(z, k) := c1(z)kα − c2(z)k. (29)
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Note that the determination of T , that is to find the maximal time interval
for the solution, is also part of the problem.

5.2.1 Solvability

Problem (28) seems to be very well documented in the literature, see for
example Levine and Sacks [32], Bandle et al. [33], Anderson [34], [35] and
the references therein. The main assumptions made on functions Φ, f are
the following:

A1 Φ is continuously differentiable with Φ(0) = Φ′(0) = 0 and Φ′(k) > 0
for k > 0.

A2 f is continuous with f(z, 0) = 0.

The vanishing of Φ′ at zero makes the problem degenerate and thus the
concept of a classical solution for (28) is not appropriate. For this reason,
and by following the usual procedure, we introduce a weak notion of solution.
We let UT := (0, T )× U , (∂U)T := (0, T )× ∂U and define the space of test
functions as follows:

J :=

{
ψ ∈ C(UT ) : ψ > 0, ψ|(∂U)T = 0 and

∂ψ

∂t
, ∆ψ ∈ L2(UT )

}
.

Definition 1 Let k0 ∈ L∞(U). The function k ∈ L∞(UT ), k > 0, is called
a (weak) solution of (28) if∫

U
k(t, z)ψ(t, z) dz =

∫
U
k0(z)ψ(0, z) dz+∫ t

0

∫
U

[
k(s, z)

∂ψ

∂t
(s, z) + Φ(k(s, z))∆ψ(s, z) + f(k(s, z))ψ(s, z)

]
dz ds,

for 0 6 t < T and every ψ ∈ J .

If we replace the equality above with > or 6, then we obtain the con-
cept of supersolution or subsolution, respectively, of (28). By making two
technical assumptions on Φ, f , which are satisfied by (29), we obtain the
following existence result from Levine and Sacks [32, Theorems 2.1 and 3.1].

Proposition 6 There exists a solution k ∈ C(UT ) of (28), where T > 0
depends on ‖ k0 ‖L∞(UT ) and f . If f(z, k) 6 c(1 + Φ(k)ν) for some constants
c > 0, ν ∈ [0, 1), then the solution is defined for every T > 0. If f is locally
Lipschitz with respect to k, then the solution is unique.

We also have a comparison principle (Anderson [35, Theorem 2.1]).
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Proposition 7 Let k1
0, k

2
0 ∈ L∞(U), k1

0 6 k2
0. Let also k

1 be a subsolution
of (28) with initial datum k1

0 and k
2 be a solution of (28) with initial datum

k2
0. Then k

1 6 k2.

Corollary 1 For the choice (29) and for every k0 ∈ L∞(U), the problem
(28) has a solution defined for t ∈ [0,∞).

However, the above fundamental results do not completely cover the
specific form of equation (28) needed to study our spatiotemporal Solow
model, in the case of a Cobb-Douglas production function, with diminishing
returns. This is because when such a production function is assumed, the
function f (see (29)) is not Lipschitz near 0. Therefore, we can no longer
invoke Proposition 6 to guarantee uniqueness of solutions. In fact, a simple
example of this non-uniqueness can be seen in the case where c1, c2 are
constants and we have the zero initial condition, k0(z) = 0. Then of course
we have the trivial solution k(t, z) = 0, but the function

k(t, z) =

[
c1

c2

(
1− e−(1−α)c2t

)] 1
1−α

is also non-trivial and positive for the t > 0 solution.
It is important to note that this non-uniqueness property, which stems

from the fact that the Cobb-Douglas production function is Holder contin-
uous rather than Lipschitz continuous near 0, also appears in the standard
spatially independent Solow model. In the purely temporal case, however,
this potential complication is bypassed by assuming that the neighborhood
of 0 is avoided and all attention is focused on the neighborhood of the non-
zero steady state. However, this assumption might not be enough in the case
where the spatial allocation of capital in the Solow model is under investi-
gation. For example, as we saw in the previous section, spatially dependent
steady states that exhibit poverty cores are supported by the spatial Solow;
this imposes the need to understand in detail the behavior of the system
near the problematic region where capital stock becomes very small. Fur-
thermore, non-uniqueness is an undesirable property for a model when one
wants to solve the problem numerically. For this reason, we need an un-
ambiguous way to define the solution of (28) that is consistent with the
structure of problem (28) as a problem of economic growth. Thus we adopt
a regularization which consists of considering a family of slightly modified
problems which do not exhibit the pathology of the original system, but the
pathology reappears in a properly defined limit.

In the present context this regularization procedure is as follows: The
Solow model, regardless of whether it is the standard classical temporal
Solow model or a spatiotemporal version, inherits its ill-posed nature from
the non-Lipschitz behavior of the function f when k ' 0. As the model itself
is dynamic, it is not proper to assume a priori that the solution is far from
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0. What is a better strategy is to consider a family of functions fb which are
properly modified versions of the original production function near k = 0, in
the sense that they are Lipschitz, but satisfy the condition that fb(0) = 0,
and coincide with the original Cobb-Douglas production function away from
an infinitesimal neighborhood of k = 0. This neighborhood is chosen to be
(0, b], so that for small b we are arbitrarily close to the original production
function, and in the limit as b→ 0 the production function fb coincides with
the original Cobb-Douglas production function.

A simple choice would be to choose the family f̃b as follows:

f̃b(z, k) :=

{
a1k + a2k

2 + a3k
3 + a4k

4 , 0 6 k 6 b,

f(z, k) , k > b,
(30)

where constants a1, a2, a3, a4 are chosen is such a way that f̃b is two times
continuously differentiable with respect to k. This requirement provides
three equations, so one parameter can be freely chosen. We actually choose

a1 :=
∂f

∂k

∣∣∣∣
k=b

since
∂f̃b
∂k

∣∣∣∣∣
k=0

= a1,

so we mimic exactly the behavior of the derivative with respect to k of the
original f as k → 0+. Clearly, limb→0 f̃b (k) = f (k) for every k ∈ R+.

Following ideas found in Pablo and Vazquez [36, Section 2],18 we consider
the family of problems

∂k
∂t = ∆Φ(k) + f̃b(z, k) , 0 6 t 6 T , z ∈ U ,
k(t, z) = 0 , 0 6 t 6 T , z ∈ ∂U ,
k(0, z) = k0(z) , z ∈ U .

(31)

Since f̃b is k-Lipschitz for every b > 0, (31) has a unique continuous solution
kb. Then, as proven in detail in the aforementioned references, the pointwise
limit

k(t, z) = lim
b→0+

kb(t, z) (32)

exists and provides a continuous solution (called the minimal solution) of
(28). Actually, it is exactly (32) that we understand as the solution of (28).

The above analysis can be generalized in the case of non-homogeneous
Dirichlet boundary conditions, when we consider the problem

∂k
∂t = ∆Φ(k) + f(z, k) , 0 6 t 6 T , z ∈ U ,
k(t, z) = K , 0 6 t 6 T , z ∈ ∂U ,
k(0, z) = k0(z) , z ∈ U ,

(33)

18See also the very recent paper by Bo and Ning [37] where a similar treatment appears.
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where K > 0 is a constant. Actually, with the change of variable k → k−K,
the problem is reduced to the form (28). Observe incidentally, that k0 has
to satisfy the consistency condition k0(z) = K, z ∈ ∂U . If f is independent
of z and k0(z) = K for all z ∈ U , then the constant function k(t, z) = K is
the solution of (33) if and only if f(K) = 0, that is, in the case of (29) with
c1, c2 independent of z,

K = 0 , or K =

(
c1

c2

) 1
1−α
. (34)

Note, however, that the constant function K is always a subsolution of (33);
therefore if k0(z) > K, then Proposition 7 implies that the solution (32)
satisfies k(t, z) > K.19

5.3 Stability of steady states

Section 5.2 provided results related to the existence of solutions for the spa-
tial Solow model, while section 5.1 provided results related to the existence
of the steady state. Combining these results, the next step is to study the
stability properties of a steady state which is reached as the solution of the
spatial Solow model evolves through time. Let k∗ = k∗(z) be a steady-state
solution of (33), that is, k∗ satisfies

∆Φ(k∗(z)) + f(z, k∗(z)) = 0 , z ∈ U .

We study the behavior of solutions of the form k(z, t) = k∗(z) + u(z, t),
where u is understood as a small perturbation (satisfying the homogeneous
Dirichlet boundary condition). This behavior will indicate whether the small
perturbation dies out or not with the passage of time. If the perturbation
dies out as time advances, the steady state is locally stable; otherwise it is
unstable.

Assume that K > 0, then the comparison principle implies that k∗ (z) ≥
K and following stability result can be stated.

Proposition 8 A positive and bounded away from zero steady state k∗ (z)
of the spatial Solow model is stable.

For proof, see Appendix.
This is in line with the non-spatial Solow model where a positive steady

state is stable. The interesting result in this case is that this steady state
need not be spatially homogeneous. Thus a non-flat distribution of per
capita capital and output can be persistent in the long run.

19 It is clear that K = 0 and K =
(
c2
c1

) 1
1−α

in this case are the unstable and stable,

respectively, steady states of the non-spatial Solow model.
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Let us now consider the caseK = 0 and assume without loss of generality
that k∗ (z) vanishes only at the boundary of the spatial domain and that
k∗(z) > 0 for z ∈ U . Then as shown the Appendix (proof of Proposition 8)
this steady state is stable. This implies that a poverty core which can be
regarded as locations at the edge of the economic space where capital stock
is depleted will persist in the long run.

5.4 The case of increasing returns

In this section we make some brief comments on the behavior of the growth
process in the case of increasing returns. As shown in Proposition 3, in the
case of increasing returns (α > 1) our model assumes the form of the PDE

∂

∂t
k =

D̄

1 + β
∇z · (D0(z)∇zkβ+1) + sA(z)kα − δk%

where D̄ = αρ2α(1−α), β = ρ1−(1+ρ2)(1−α) andD0(z) = B(z)(A(z))1+ρ2 ,
with D̄ < 0. This can be brought into the form of equation (20) as

∂

∂t
k = D∆kβ+1 + sAkα − δk (35)

by a redefinition of coeffi cient D̄, but with the important difference that D̄ <
0. Therefore, the important difference in the context of our model, when
passing from the decreasing to the increasing returns case, is the change of
sign of the diffusion coeffi cient from positive to negative. This is, however, an
important qualitative difference, as it changes considerably the qualitative
features of the model, turning diffusion effects into anti-diffusion effects, thus
favouring the formation of large capital concentrations in a few locations.

In the steady state-case, that is, in the case of capital formations which do
not change over time, we can proceed with our analysis in a similar fashion as
in the decreasing returns case and use the Kirkchoff transformation, defining
the new variable as

u = k1+β, β 6= −1,

and express the steady state of (35) in terms of u as

−∆u = C1u
Q − C2u

P , (36)

where now since D̄ < 0 we have that C1 = c2, Q = p and C2 = c1, P = q
(with D̄ replaced by |D̄| in the definitions of c1 and c2). Therefore, we have
an elliptic problem which is formally the same as (23) but with the role of
the exponents in the potential term interchanged. As a result, Proposition
5 for the existence of steady states and Proposition 6 for the existence of
poverty traps are still valid in the increasing returns case, but with the
roles of the coeffi cients c1, c2 and p, q interchanged. This of course reflects
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on the economics as these coeffi cients are related to various parameters in
the primitives of the model, thus showing the important impact that the
assumption of increasing returns has on the findings of the model.

The difference becomes even more pronounced in the time dependent
case. There, the nature of the model changes, as we now have a diffusion
type equation but with a negative diffusion coeffi cient. In simple terms,
this means that this model will behave as a standard diffusion equation
backwards in time; that is, since a diffusion equation tends to flatten out
sharp spatial gradients, our model will have an opposite effect tending to
attenuate spatial gradients. In the context of our model this implies that
when increasing returns are assumed, large spatial capital concentrations
will tend to become even larger. Note that this phenomenon is a novel
aspect of our model, since it does not appear in the standard linear diffusion
models in which the diffusion part is always positive and tends to dissipate
spatial gradients, irrespectively of the nature of the returns.

The negative diffusion case introduces mathematical complications in
the model which definitely merit further study. However, as a first look
at the interesting new aspects it may introduce into the model, we sketch
some new phenomena related to the linear stability of the flat steady state.
Assume a flat steady state k∗.20 Then, linearizing around it, (49) becomes
the constant coeffi cients diffusion PDE

∂u

∂t
= Φ′(k∗)∆u+ f ′∗)u, (37)

where
Φ′(k∗) = D̄(1 + β)(k∗)β, f ′∗) = α(k∗)α−1 − δ, (38)

and D̄ < 0. For simplicity assume that d = 1 (one-dimensional space) and
U = [0, L]. Then, the spectrum of the linearized operator is

λn = −D̄n2(1 + β)(k∗)β + α(k∗)α−1 − δ. (39)

If D̄ > 0 since α(k∗)α−1 < 0, then λn < 0 for every n so we get stability.
However, if D̄ < 0 (increasing returns), then there are n for which λn > 0.
That means that there are perturbations of the type sin(nπx/L) for specific
n that will turn unstable in the case of increasing returns. The unstable
modes will be those corresponding to n > n∗ where

n∗ >

(
α(k∗)α−1 − δ

D̄

)1/2

.

20 In this case, increasing returns can emerge from Romer-Lucas type spatial externali-
ties, by assuming for example that y = kα

(
K̄
)ζ
, K̄ = ξk and α + ζ > 1, where K̄ is the

spatial externality.
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5.5 Numerical simulations

Having established existence of solutions, steady states, and stability prop-
erties for the steady states, we turn now to some simulation results to de-
termine the shape of the spatiotemporal distribution of capital emerging
for the spatial Solow model under plausible parameter choice. Our simula-
tions21 numerically solve model (17), for the one-dimensional case, which in
an extended form can be written as

∂k (t, z)

∂t
=

D̄

1 + β

[
β (β + 1) kβ−1

(
∂k

∂z

)2

+ (β + 1) kβ
(
∂2k

∂z2

)
+ sAkα − δk

]
(40)

D̄ = αρ2α(1− α), β = ρ1 − (1 + ρ2 (1− α)) .

Using the same parameter choice as in section 5.1, Figure 7 depicts the spa-
tiotemporal evolution of the stock of capital with initial condition k (0, z) =
e−z

2/4 +0.01 sin[50πz]−0.0183156, z ∈ [−4, 4] , which is a bell shaped distri-
bution, chosen with the purpose of approximating through the initial con-
ditions the distributions observed in Figures 1 and 2. The productivity

parameter is also taken as A (z) =
(
e−z

2/4
)1+ρ2

by assuming that the spa-

tial distribution of this parameter is similar to the distribution of the capital
stock, that is, more developed locations have a relatively higher productiv-
ity parameter which might reflect positive spatial spillovers associated with
the higher concentration of the capital stock in these locations. Bound-
ary conditions were k (−4, t) = k (4, t) = 0, assuming that at the edges of
the economic space there are locations with no capital. The results do not
change if we use k (−4, t) = k (4, t) = k0 > 0.

[Figure. 7 Spatiotemporal distribution of capital]

Figure 8 depicts the evolution of the Sobolev norm defined as

Sb (t) =

∫ 4

−4

(
∂k̂ (t, z)

∂z

)2

dt

where k̂ (t, z) is the solution of (20) as depicted in Figure 7.

[Figure 8. The time path of the Sobolev norm]

The convergence of the Sobolev norm to a fixed number means that the
spatial gradients remain constant after a certain point in time, implying

21Wolfram Mathematica was used for the numerical simulations. The PDEs were solved
for t ∈ [0, 1000] with the exception of increasing returns to scale where the solution was
exploding in small time due to the development of very sharp spatial gradients.
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that the system converges to a spatially nonhomogeneous distribution of
the stock of capital. Furthermore the peak of the distribution in Figure 7
converges for t > 200 to a fixed positive number. Combining this with the
convergence of the Sobolev norm suggests that the growth model converges
in a spatiotemporal sense to a nonhomogeneous capital stock distribution.
This result is consistent with our theory about the stability of spatially
nonhomogeneous steady states. Since per capita output is given by ŷ (t, z) =(
k̂ (t, z)

)α
, per capita output also converges to a spatially nonhomogeneous

distribution.
It should be noted that a spatially nonhomogeneous bell-shaped pat-

tern persists with circle boundary conditions k (−4, t) = k (4, t) and with
time dependent boundary conditions k (−4, t) = k (4, t) = γt or k (−4, t) =
k (4, t) = eγt, which may reflect the assumption that locations with low cap-
ital stock at the beginning may grow fast. This is shown in Figures 9 and
10.

[Figure 9. Circle boundary conditions]
[Figure 10. Time dependent boundary conditions]

Figure 11 presents the solution for the AK model (α = 1) with spatially
nonhomogeneous initial conditions and productivity parameter.

[Figure 11. A spatiotemporal AK model]

The Sobolev norm of the solution and the peak of the distribution are
monotonically increasing. Since the solution of this problem is proportional
to per capita output, the result indicates sustained growth with the distri-
bution of per capita income becoming less uniform with time. The shape
of this distribution can be regarded as an approximation of the distribution
depicted in Figures 1 and 2.

We also simulate the spatial Solow equation for the case of increasing
returns by assuming α = 1.1, while keeping the rest of the parameters fixed.
Increasing returns lead to anti-diffusion, very sharp spatial gradients and
concentration of the stock of capital in a very small number of locations as
shown in Figure 12. This spatial pattern is verified by the sharp increase of
the Sobolev norm, and the overall behavior is consistent with the theoretical
results of the previous section.

[Figure 12. Spatiotemporal evolution under increasing returns]

The numerical simulations seem to support the theory developed in the
context of a spatial Solow model regarding the spatiotemporal evolution of
the capital stock and the existence of steady states for a plausible set of
parameter values regarding savings rates depreciation and returns to scale.
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Furthermore they seem to suggest that capital flows characterized by capital
seeking locations of high returns and an endogenous flow velocity result in a
persistent spatially nonhomogeneous distribution of capital and per capita
output across locations. This result holds under various types of boundary
conditions. The spatial distribution tends to become flatter the higher the

coeffi cients of
(
∂k
∂z

)2
and

(
∂2k
∂z2

)
are in (40). The model produces a flat

distribution with circle boundary conditions when there is no spatial variety
in the productivity parameter.

Models with capital flows based on the trade balance which result in
linear diffusion and capital accumulation of the form

∂k (t, z)

∂t
=
∂2k

∂z2
+ sAkα − δk (41)

tend to produce a flatter and in many cases spatially homogeneous distrib-
ution for the capital stock.

6 Concluding Remarks

In order to explore mechanisms underlying the temporal evolution of the
cross sectional distribution of per capita capital and output across space, we
develop a spatial growth model where saving rates are exogenous. Capital
movements across locations are governed by having capital moving towards
locations of relatively higher marginal productivity, with a velocity deter-
mined by the existing stock of capital and its marginal productivity. Consid-
ering that the spatial domain corresponds to economic space, we developed a
local model in which the fundamental growth equation of the Solow model is
augmented by a nonlinear diffusion term, which characterizes spatial move-
ments.

We show that the augmented Solow equation has a solution and that
steady states exist. Furthermore, under diminishing returns the growth
process leads to a stable spatially non-homogeneous distribution for per
capita capital and income in the long run. AK production functions and
increasing returns lead to a strong persistent and increasing concentration
of capital in a very few locations. Insuffi cient savings may lead to the emer-
gence of poverty cores where capital stock is depleted in some locations and
stability analysis indicates that a steady state with poverty cores is stable.
This suggests that economies can persistently remain in the poverty core
while economies in other locations will have a positive capital stock. In
the spatial Solow model, zero capital stock in some locations is consistent
with the long-run stability of the entire spatial distribution of the stock of
capital. Numerical simulations confirm our theoretical results and provide
spatial distributions that can be regarded as resembling observed distribu-
tions of per capita GDP. Our approach, by endogenizing the velocity of the
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capital flow, provides a rich environment for studying growth processes in
a spatiotemporal context. Moreover our approach, by linking capital flows
with differences in the marginal productivity of capital across locations and
not with differences in the stock of capital across locations, seems not to suf-
fer from the problems associated with the Lucas paradox. The emergence
of spatial distributions where poverty cores coexist with locations where the
stock of capital is high - that is, the solution of the growth equation results
in a distribution with compact support - is a potentially interesting result
suggesting that the nonlinear diffusion approach could provide a mechanism
explaining observed outcomes.

The study of forces shaping the evolution of the entire cross sectional
distribution of economies is an issue of importance for growth theory. Our
approach, based on the assumption that capital seeks high productivity
locations, leads to a novel growth equation augmented with nonlinear diffu-
sion. Although the mathematical complexity is increased, the benefit is that
we obtain results regarding the dynamics of the cross sectional distribution
of capital and the structure of its steady states that can explain observed
distributions.

Further research could explore the spatiotemporal distribution of capital
by using the mechanism developed in this paper with optimizing consumers,
both in the context of a social planner and a decentralized economy; by
explicitly introducing spatial externalities in the production function; and by
associating capital flows not with current marginal productivity but with the
future discounted values of marginal productivity of capital at a particular
location.

A Proofs

A.1 Proof of Proposition 1

Proof. Assume there exists a smooth enough function k : [0, T ] × U → R,
such that ki(t) ' k(t, i∆z) for small enough∆z = d. For the present context
U ⊆ R. Using this assumption we rewrite the differences mi+1−mi in terms
of the derivatives of the production function. Then,

mi±1 −mi = ±f ′′(k(z))kz d+
1

2
f
′′
(k(z)) kzz d

2 +
1

2
f
′′′

(k(z)) (kz)
2 d2

where the subscript denotes the partial derivative. In the above we have
used the Taylor expansion twice, once on the function k(t, z) and once on
the function f(k). In the limit as d → 0 (the continuous limit) and for
smooth enough production functions, the terms which are quadratic in d
and be neglected as much smaller with respect to the linear terms in d. The
condition mi±1 − mi > 0 which will result to capital migration from i to
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i± 1 then becomes in the limit as d→ 0+, ±f ′′(k(z))kz ≥ 0. Therefore,

φ(t, i→ i± 1) ={
λ
(
±f ′′(k(z))kz d+ 1

2

(
f
′′
(k(z)) kzz + f

′′′
(k(z)) (kz)

2
)
d2
)

, ± f ′′(k(z))kz ≥ 0

0 , ± f ′′(k(z))kz < 0,

with similar expressions holding for φ(t, i± 1→ i).
We now insert these approximations in the balance equation and keep

terms up to d2. We see that no matter what the sign of the term f
′′
(k)kz is

the equation becomes

∂k

∂t
= Φ(k)− α ∂

∂z

(
(f
′′
(k)k)

∂k

∂z
,

)
where α > 0 is a constant depending on the discretization (taken from now
on equal to 1 without loss of generality).

A.2 Gauss divergence and capital flows 3.2

The Gauss divergence theorem provides a convenient mathematical founda-
tion to model capital flows. We will briefly describe the theorem and show
how in can be used to describe in an economic meaningful way capital flows
across locations. Consider any domain S ⊂ Rd with boundary ∂S (of suf-
ficient regularity) and consider a vector field v : S → Rd with components
v = (v1, · · · , vd). Then, the Gauss’divergence theorem connects the total
contributions of the vector field v on ∂S (a surface integral) with the total
contributions of a related scalar field w = divv (or using another common
notation w = ∇z · v) over the whole volume S (a volume integral). In
particular, according to Gauss’s divergence theorem∫

∂S
v(s) · ndσ(s) =

∫
S

divv(z) dz =

∫
S
∇z · v(z) dz (42)

where dσ denotes a surface integral over the d − 1-dimensional surface ∂S
with n being the outward unit normal to the surface ∂S and dz denotes
a volume integral in Rd. The term divv or ∇z · v in the volume integral
is a scalar function w : S → R, called the divergence of the vector field
v. As Gauss’theorem is based on an appropriate integration by parts ar-
gument, the divergence of a function involves the partial derivatives of the
components of v with respect to the coordinates of z = (z1, · · · , zd). It is
important to note that the actual form of the divergence operator involves
the geometry of S, as depicted in the coordinate system used. If Cartesian
coordinates are used, then

divv = ∇z · v =
d∑
i=1

∂vi
∂zi

.
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and in one dimension (d = 1) where v = v, a scalar, the divergence reduces
to divv = ∂v

∂z .
The surface integral in (42) sums up all the contributions of the vector

valued function v on the boundary of S, ∂S, but assigns a positive or a
negative sign to them depending on the angle between v and the outer
normal n on ∂S. Therefore, if v is a vector field related to the direction and
amount of a particular entity which flows in space, then the surface integral
in (42) is a measure of the net amount that has entered or left the volume S
through its boundary ∂S. Gauss’s theorem thus connects this net amount
with the a scalar quantity, the divergence of the vector field v which models
the flux of the entity in question in space. >>

Consider a domain U ⊂ Rd and let U0 be any subset of U . Denote by
k(t, z) the stock of capital in this domain at time t and at spatial point z.
Then the total amount of capital in U0 at time t is given by the volume
integral

∫
U0
k(t, z) dz. Capital flows everywhere within U0, so it is natural

to consider a vector field v = (v1, · · · , vd), v : U0 → Rd which gives us the
velocity of capital flow (flux) at every point of U0. One way to define this
vector field is component-wise by defining

−k(t, z)vi ∆z∆t := Capital that moved from z 7→ z + ∆z ei in time∆t,

where ei = (δ1i, · · · , δdi) is the unit vector in the i-th direction. Note that
vi can take positive or negative values depending on whether capital flows
from z = (z1, · · · , zi, · · · , zd) to z+ ∆z ei = (z1, · · · , zi + ∆z, · · · , zd) or vice
versa. The velocity is a vector field and this models the fact that capital
flow has a direction. The change of total capital in U is due to the outflow
or inflow of capital from the boundary of U , ∂U . At different points on
this boundary there is different rate of inflow and outflow of capital which
is given in terms of a vector valued function v, as k(t, z) v|z∈∂U (where we
take the restriction of the vector field on ∂U). The total inflow and outflow
of capital through ∂U is given by the surface integral

∫
∂U k(t, s) v · ndσ(s)

where n is the outward unit normal of ∂U , and by s we denote that all
functions are restricted on the surface ∂U . Using the divergence theorem.

A.3 Proof of Proposition 2

Proof. Through the use of the divergence theorem we can determine the
total change of capital stock in the domain U0 as:

d

dt

∫
U0

k(t, z)dz = −
∫
∂U0

k(t, s)v · n, dσ(s) = −
∫
U0

∇z · (v k(t, z)) dz

By the first and last terms of this equation, which hold for any U0 ⊆ U ⊂ Rd,
we have that

∂

∂t
k(t, z) = −∇z · (v k(t, z)).

34



This argument suggests that the transport operator T is of the general form

Tǩ = −∇z · (vǩ),

and can only be specified if the vector field v is specified. Adding capital
formation Φ(t, z) we obtain

∂

∂t
k(t, z) = −∇z · (v k(t, z)) + Φ(t, z) (43)

Equation (43) is called a continuity equation and is nothing else but a so-
phisticated (continuous space) book-keeping argument for the capital flow,
based on the use of Gauss’theorem.

A.4 Proof of Proposition 4

Proof. Let φ1 be the eigenfunction which corresponds to the first positive
eigenvalue σ1 of the problem

−∆u = σu, in B(z0, r),

u = 0, in ∂B(z0, r),

where z0 ∈ U be a point such that c1(z) ≥ c > 0 for every z ∈ B(z0, r).
It is easy to show that as long as a ρ > 0 is choosen small enough, then u

−

is a subsolution of (23), while
−
u = M∗ =

(
c̄1
c2

) 1
p−q

is a supersolution such

that u
−
<
−
u. Then, the existense of classical solutions for (23) can be shown

using theorem 1.7 of [38] and a standard bootsrapping argument
Uniqueness is more involved, especially in the case β > 0. For that

we use Theorem 2.1 in [39], according to which the positive (non trivial)
solution is unique if there exists a function g ∈ C1(0,+∞) ∩ C([0,+∞)),
with the properties (a) g(s) > 0 for s > 0, (b) g′(s) non-increasing with 1/g

integrable near 0 and (c) the map u 7→ Φ(z,u)
g(u) is non-increasing in (0,∞) for

a.e. z ∈ U . There are two obvious choices for g, (1) g1(u) = uq and (2)
g2(u) = up. Both, satisfy conditions (a) and (b). For choice (1) condition (c)
holds if c2 ≥ 0 while for choice (2) condition (c) holds if c1 ≥ 0. Therefore,
the solution is unique in any possible case.

A.5 Proof of Proposition 5

Proof. We apply the Kirkhoff transformation and work with the trans-
formed steady state equation (23). Our argument is inspired by [40] who
studied a very similar system.
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Let us start by showing why a poverty core never occurs for the linear
diffusion case β = 0. Consider u to be a solution of the transformed steady
state equation (23), and observe that

0 = −∆u− c1u
q + c2u

p < −∆u+Ku, (44)

for some constant K > 0, as long as the inequality

−c1u
q + c2u

p < Ku, ∀u ∈ [0,M∗]. (45)

holds. If we can find a constant K satisfying inequality (45), then, by
(44) we see that the solution to the transformed steady state equation (23),
u, will satisfy the inequality −∆u + Ku > 0 so by the strong maximum
principle u(z) > 0 for every z in the interior of U , therefore, it cannot
develop a poverty core. We therefore, just need to consider whether there
exists K > 0 such that inequality (45) holds. To do that, consider the

function g : U × [0,M∗] →, where M∗ =
(
c̄1
c2

) 1
p−q
, defined by g(z, x) =

−c1(z)xq + c2(z)xp −Kx. Observe that g(z, 0) = 0 so inequality (45) will
hold if we may find K > 0 so that the function x 7→ g(z, x) is strictly
increasing for any x ∈ [0,M∗] and any z ∈ U . Taking the derivative of g
with respect to x (and denoting that with a prime) we see that our problem
is equivalent to finding K > 0 such that

g′(z, x) = −qc1(z)xq−1 + qc2(z)xp−1 −K < 0, ∀ (z, x) ∈ U × [0,M∗]. (46)

If β = 0 then p = 1 and since q < p = 1 then such a K always exists,
therefore, a poverty core will never occur as a result of the application of
the strong maximum principle. The situation, however, differs dramatically
in the case where β > 0 in which case p < 1. Then, qc2(z)xp−1 → +∞ as
x → 0 and one may clearly find examples of functions c1, c2 such that (46)
can not hold for any K > 0, therefore, there is no reason why a poverty core
will not occur in the case β > 0. However, this on its own is not enough to
guarantee the existence of poverty cores for any non trivial positive solution.

We then go to the next step and actually prove, that in the case β > 0,
any non trivial positive solution will exhibit a poverty core. To this end,
consider z0 ∈ V0. By the Hölder continuity of c1 there exists ε > 0 such
that B(z0, 2ε) ⊂ V0 (that means that c1(z) is zero for every z ∈ U such that
‖z − z0‖ < 2ε and of course ε can be arbitrarily small). Inside this region,
there is no production, so capital simply “decays”with rate −c2k (or −c2u

p

in the transformed equation) therefore, we expect that inside the region V0,
there may be a sub-region, for which the solution of (23) is identically zero.
To show that we will use the following strategy: if u is the maximal solution

of (23) in the interval [0,M∗] where M∗ =
(
c̄1
c2

) 1
p−q
, then we will show that

we may construct a function W with the properties (a) W (z) = 0 for every
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z ∈ V ′0 ⊂ V0 and (b) u(z) ≤W (z) for every z ∈ U . Then, it is clear that the
maximal solution vanishes also identically for every z ∈ V ′0 , i.e., develops a
poverty core within V ′0 . To complete the argument, it remains to construct
a function W with the above properties. As it suffi ces to construct one such
function, let us choose V ′0 = B(z0, ε) and try to construct W in the form
W (z) = CΨ(z) where C is a constant that will be chosen shortly while

Ψ(z) =


0 z ∈ B(z0, ε) Region I

ψ(z) z ∈ B(z0, 2ε) \B(z0, ε), Region II
1 z ∈ U \B(z0, 2ε). Region III

where ψ is a function, the exact form of which will be specified soon, with the
properties ψ(z) = 0 for z ∈ ∂B(z0, ε) and ψ(z) = 1 for z ∈ ∂B(z0, 2ε), while
∂ψ
∂n ≥ 0 for z ∈ ∂B(z0, ε). A convenient choice would be to take ψ(z) = ψ̄(|z|)
and assume that ψ̄(ε) = 0, ψ̄(2ε) = 1. For a W of this form, we see that it
is continuous, and vanishes identically for every z such that |z − z0| < ε, so
that the maximal solution u develops a dead core for z ∈ B(z0, ε).

To show the inequality u ≤W , it is convenient to consider the function
v = max(u−W, 0) = (u−W )+ pointwise defined in z by v(z) = max(u(z)−
W (z), 0). If u(z) ≤W (z) for every z in a region then obviously v(z) = 0 for
every z in the same region and the converse is also true. It is thus enough to
show that v = 0 everywhere. This condition u ≤ W is very easy to satisfy
for z in region III as long as C is large enough: since u ≤ M∗ it suffi ces to
choose

C ≥M∗ =

(
c̄1

c2

) 1
p−q

. (47)

We only have then to consider the cases of regions I and II. Since v = 0 in
region III, if v is a constant we are done, and v is a constant if ∇zv = 0.
So, we must try to show that ∇zv = 0 for z in regions I and II. This is
tricky, as v depends on the solution u itself (which we do not know!) but it
also depends on W which we may choose ad lib. It is our hope then by the
proper choice of W we can make sure that (u−W )+ = 0 even though we do
not have explicit knowledge concerning u. As a final observation note that
it is enough to show that

∫
U |∇zv|

2dz ≤ 0, since that inequality implies that
∇zv = 0 a.e. in U and by standard properties of the weak derivatives this
implies v(z) = c (a constant) a.e. in U . Notice furthermore that∫
U
|∇zv|2 =

∫
U
∇z(u−W )+ ·∇z(u−W )+dz =

∫
U
∇z(u−W )·∇z(u−W )+dz.

Showing the constancy of v through this argument which uses an integral
formulation is quite handy, since as we will see allows us to use the properties
of the Laplacian with respect to integration by parts.
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Let w ∈ W 1,2
0 (B(z0, 2ε)) be any weakly differentiable function which

vanishes for |z − z0|2 = 2ε, and calculate∫
B(z0,2ε)

∇z(u−W ) · ∇zwdz =

= −
∫
B(z0,2ε)

c2u
pwdz + C

∫
B(z0,2ε)\B(z0,ε)

∆Ψwdz − C
∫
∂B(z0,ε)

∂Ψ

∂n
wdz

−
∫
B(z0,2ε)\B(z0,ε)

c2u
pwdz + C

∫
B(z0,2ε)\B(z0,ε)

∆Ψwdz

−
∫
B(z0,ε)

c2u
pwdz − C

∫
∂B(z0,ε)

∂Ψ

∂n
wdz.

Since c2 ≥ 0, u ≥ 0 and w ≥ 0, the penultimate integral in the last line
keeps a positive sign. If Ψ is chosen so that ∂Ψ

∂n ≥ 0 on ∂B(z0, ε) then the
last integral keeps a positive sign therefore we have the inequality,∫

B(z0,2ε)
∇z(u−W ) · ∇zwdz ≤

∫
B(z0,2ε)\B(z0,ε)

(−c2u
p + C∆ψ)wdz,

∀w ∈W 1,2
0 (B(z0, 2ε)), w ≥ 0.

If we now set w = (u−W )+ in this inequality, this yields,∫
B(z0,2ε)

|∇z(u−W )+|2dz ≤
∫
B(z0,2ε)\B(z0,ε)

(−c2u
p + C∆ψ)(u−W )+dz

If we manage to show that the integral on the right hand side is less or equal
to 0, for the right choice of W the proof will be complete. If u ≤ W then
this is true since (u−W )+ = 0 in this case. We only have to consider thus
the case u > W . Since (u −W )+ > 0 in this case, we must choose W so
that −c2u

p+C∆Ψ ≤ 0 for u > W and z ∈ B(z0, 2ε)\B(z0, ε). Since for 0 ≤
W ≤ u we have (by the positivity of c2) that −c2u

p ≤ −c2W
p = −c2C

pψp

(recall the definition of W ), we obtain the estimate

−c2u
p + C∆ψ ≤ −c2C

pψp + C∆ψ = Cp
(
−c2ψ

p + C1−p∆ψ
)
.

It is therefore suffi cient to choose ψ and C so that

−c2ψ
p + C1−p∆ψ ≤ 0

This is still a PDE inequality for the choice of C and ψ which may be further
simplified if we look for special solutions of the form ψ(z) = ψ̄(|z|). The
function ψ̄ is defined for ε < |z − z0| < 2ε and must be of order 1. To this
end define z̄ = z−z0

ε (or else simply set z0 = 0 without loss of generality)
and look for ψ(z) = ψ̄(|z̄|). The Laplacian can be re-expressed in terms of
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the variable z̄ by noting that ∆ψ(z) = ε−2∆z̄ψ̄(|z̄|), so that the required
inequality becomes

−c2ψ̄
p(z̄) + ε−2C1−p∆z̄ψ̄(|z̄) ≤ 0.

A straightforward calculation yields that ∆z̄ψ̄(|z̄|) = ψ̄′′(|z̄|) + d−1
|z̄| ψ̄

′(|z̄|) so
that the required inequality can be expressed in terms of an ODE inequality
as

−c2ψ̄
p(x) + ε−2C1−pd− 1

x
ψ̄′−2C1−pψ̄′′(x) ≤ 0,

for 1 < x < 2 and d is the spatial dimension. This inequality must be solved
with boundary conditions ψ̄(1) = 0, ψ̄(1+) ≥ 0 and ψ̄(2) = 1. A natural
choice for the solution of this inequality will be to look for a solution of the
type ψ̄(x) = (x − 1)ν for some ν > 0. This ansatz satisfies all the required
boundary conditions. Substituting this into the inequality yields

(x−1)pν
(
−c2 + ν(ν − 1)ε−2C1−p(x− 1)ν−2−pν +

d− 1

x
νε−2C1−p(x− 1)ν−1−pν

)
≤ 0,

and this is greatly simplified by choosing ν so that ν − 1 − pν = 0, i.e.,
ν = 2

1−p to

−c2 + ε−2C1−pν

(
(ν − 1) + (d− 1)

x− 1

x

)
≤ 0,

as long as x ∈ (1, 2). Since for this range of x, x−1
x ∈ (0, 1

2) the above
inequality will be valid as long as

−c2 + ε−2C1−pν

(
(ν − 1) + (d− 1)

1

2

)
≤ 0,

which provides an estimate for C of the form,

C ≤
(

2ε2

ν

1

(d− 1) + 2(1− ν)

) 1
1−p

c
1

1−p
2 .

Therefore, recalling (47), C must be chosen so that(
c̄1

c2

) 1
p−q
≤ C ≤

(
2ε2

ν

1

(d− 1) + 2(1− ν)

) 1
1−p

c
1

1−p
2 .

This is feasible, as long as the far left hand side of the above inequality is
indeed smaller than the far right hand side, and this of course depends on
the parameters of the system. A quick calculation shows that for this to be
true the parameters c1, c2, p, q must satisfy the inequality,

c̄
1
p−q
1 c

− 1−q
(1−p)(p−q)

2 ≤
(

2

ν(d− 1) + 2ν(1− ν)

) 1
1−p

ε
2

1−p
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Upon substitution of the expressions for q, p and ν we obtain condition (27)
and the value of the constant c0(β, d) as

c0(β, d) =

(
β2

4(1 + β)(β(d− 1) + 2(β + 2))

) 1+β
β

.

This completes the proof.

A.6 Proof of Proposition 8

Proof. By expanding into a Taylor series around k∗, we obtain

Φ(k) = Φ(k∗ + u) = Φ(k∗) + Φ′(k∗)u+ Φ′′(k∗)
u2

2
+ ...,

f(k, z) = f(k∗ + u, z) = f(k∗, z) +
∂f

∂k
(k∗, z)u+

∂2f

∂k2
(k∗, z)

u2

2
+ ....

We substitute these expansions into

∂k

∂t
= ∆Φ(k) + f(z, k) (48)

and we disregard the terms which contain terms u2 or higher. In this way,
we obtain the linearization of (48) around k∗, as

∂u

∂t
= ∆(κ(z)u) + µ(z)u, (49)

where κ(z) = Φ′(k∗(z)), µ(z) = ∂f
∂k (z, k∗(z)). The right hand side of (49)

involves a formal linear second order operator

L0w := ∆(κw) + µw,

which we formally expand as

L0w = κ(z)∆w + 2∇κ(z) · ∇w + (∆κ(z) + µ(z))w.

However the last term on the right hand side vanishes, since

∆κ(z) + µ(z) = ∆

(
d

dk
Φ(k∗(z))

)
+
∂f

∂k
(z, k∗(z)) = (50)

d

dk
∆Φ(k∗(z)) +

∂f

∂k
(z, k∗(z)) =

∂

∂k
[∆Φ(k∗(z)) + f(z, k∗(z))] = 0. (51)

We are now looking for special solutions of (49) of the form u(z, t) = w(z)eλt

and we are thus led to the eigenvalue problem{
L0w = λw in U ,

w = 0 on ∂U .
(52)
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The formal definition for stability is given below.
Definition: The steady state k∗ = k∗ (z) is asymptotically stable if all

eigenvalues of L0 have negative real parts. If there is an eigenvalue with a
positive real part, then k∗ is unstable.

Assume now that K > 0. The comparison principle implies that k∗(z) >
K, which in turn implies κ(z) = Φ′(κ(z)) > Φ′(K) > 0 and thus L0 can be
realized as a strongly uniformly elliptic operator in L2(U), having H1

0 (U)
as its domain of definition; for the relevant theory we refer to Evans [41,
Chapters 5, 6]. We now consider the operator L = κ(z)L0, that is,

Lw = (κ(z))2∆w + 2κ(z)∇κ(z) · ∇w = ∇ · (p(z)∇w),

where p(z) = (κ(z))2. After that, (52) is equivalent to the weighted eigen-
value problem {

Lw = λκw in U ,

w = 0 on ∂U ,
(53)

and since κ is positive, (53) reads as the usual eigenvalue problem{
1
κLw = λw in U ,

w = 0 on ∂U .
(54)

Then the following result can be stated
Result 1: The eigenvalues of (54) are real and bounded above by − (Φ′)2.

Therefore, they are all negative.
This can be shown as follows:
In L2(U) we consider the usual inner product

< w1, w2 >:=

∫
U
w1w2 dz,

and the equiavalent weighted inner product

< w1, w2 >κ:=< w1, κw2 >=

∫
U
w1w2κ dz.

It is trivial to check that 1
κL is self-adjoint with respect to < ·, · >, so it has

real eigenvalues. Moreover, we have

< 1
κLw,w >κ=< Lw,w >=

∫
U

(∇ · (∇w))w dz = (55)

−
∫
U
p∇w · ∇w dz 6 −Φ′2

∫
U
|∇w|2 dz 6 −Φ′(K)‖w‖κ (56)

If w is a normalized eigenvector with respect to ‖ · ‖κ i.e., ‖w‖κ = 1, corre-
sponding to the eigenvalue λ of 1

κL, inequality (55) becomes λ 6 −Φ′2.
Thus a positive and bounded away from zero steady state is stable
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When the case K = 0 is considered observe that p and κ in problem
(53) vanish smultaneously and therefore this problem has a meaning only in
the interior of the support of p, which coincides with that of κ and k∗. So,
without loss of generality, we assume that k∗ vanishes only at the boundary,
that is k∗(z) > 0 for z ∈ U and the same applies for p. We can generalize the
above analysis under a technical integrability condition for k∗, but now the
mathematics become rather involved and we refer to [42] for further details
and references. Then the following result can be stated

Result 2: Assume that 1
κ ∈ L

t(U) for some t > d/2 (d is the dimension
of the space). Then L−1 exists as a compact self-adjoint operator.

Now problem (53) reads{
κL−1w = 1

λw in U ,

w = 0 on ∂U .
(57)

Again, κL−1 is a compact operator and thus it has a sequence of eigen-
values having 0 as the only limit point. That is to say, eigenvalues of (53)
are calculated as inverses of eigenvalues of κL−1. Since < Lw,w >6 0 and 0
is not an eigenvalue, we find that all eigenvalues of (53) are negative. Thus
under the assumptions leading to Result 2 the steady state k∗ is stable. This
implies that a poverty core which can be regarded as locations at the edge
of the economic space where capital stock is depleted will persist in the long
run.
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Figures

Figure 1. Spatial distribution of GDP per capita, by world regions

Figure 2. Spatial distribution of GDP per capita, developed countries

Figure 3. Regional inhomogeneity measure

Figure 4. Inhomogeneity measure, developed countries
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Figure 5. Steady-state phase diagram in the spatial domain

Figure 6. Steady state in the spatial domain

Figure 7. Spatiotemporal distribution of capital

Figure 8. The time path of the Sobolev norm

47



Figure 9. Circle boundary conditions

Figure 10. Time dependent boundary conditions

Figure 11. A spatiotemporal AK model

Figure 12. Spatiotemporal evolution under increasing returns
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