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Abstract

Spatiotemporal dynamics are introduced in a standard Ramsey model of optimal growth in

which capital moves towards locations where the marginal productivity of capita is relatively higher.

We extend Pontryagin’s maximum principle to account for transition dynamics governed by a

nonlinear partial differential equation emerging for spatial capital flows. The potential spatial

heterogeneity of optimal growth as seen from the point of view of an optimizing social planner is

examined. Our results suggest that for high utility discount rate the spatial capital flows induce

the emergence of optimal spatial patterns while hor low utility discount a flat-earth steady state is

socially optimal. Furthermore, when spatial heterogeneities exist due to total factor productivity

differences across locations, we identify conditions under which the spatial capital flows could

intensify or weaken spatial inequalities.
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1 Introduction

Optimal growth theory both in the context of traditional and new growth theory has been studied in

a temporal domain (e.g. Aghion and Howitt 1998, Baro and Salai Martin 2005, Acemoglu 2008). The

explanation of the temporal evolution of key variables such as output or capital per capita, the capital-

output or the capital-labour ratio, or the evolution of positive externalities with temporal structure

has been central to dynamic optimal growth models.

However, space and geography seems to be important when studying economic growth - Acemoglou

( 2008 in Chapter 1) points out the great inequality in income per capita and income per worker across

countries, and that this inequality across nations increased between 1960 and 2000. Xepapadeas and

Yannacopoulos (2016) provide evidence suggesting that geographical (or spatial) heterogeneity of

per capita GDP increased between 1980 and 2011 across eleven world regions. Despite however the

profound importance of the combined temporal and spatial dimension in the study of economic growth,

little attention has been given in incorporating space in models of optimal growth.1

1Economic geography and economic growth has been discussed in the so-called second generation of new economic
geography models, but not in a formal growth context (e.g. Martin and Ottaviano 2001, 2003; Baldwin et al. 2003;
Baldwin and Krugman 2004; Fujita et al. 2001; Fujita and Mori 2005; Desmet and Rossi-Hansberg 2009, 2010; Breinlich
et al. 2014.
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Spatiotemporal models of economic growth appeared mainly in the 2000s.2 Earlier research in

which has provided the main mechanism for capital flows across space can be found in Issard (1979).

A central reason for introducing spatial aspects in growth could be the question posed by Quah’s

(1996, p. 1053) “what one wants to know is what happens to the entire cross section of economies

not whether a single economy is tending towards its own individual steady state”. Answering such a

question implies that the growth process should be defined in terms of the temporal evolution of the

spatial distribution of capital or output when there are nontrivial interactions across locations.

This papers explores spatial growth by developing a spatial Ramsey optimal growth model in a two

dimensional spatial domain. In this domain capital located in a certain spatial point has the tendency

to move to locations where the marginal productivity of capital is higher relative to the marginal

productivity in the location of origin. The assumption of the marginal-productivity-driven capital

flows, was first introduced by Xepapadeas and Yannacopoulos (2016) and differs from the assumption

underlying capital flows which is used in recent spatial growth model literature (e.g. Brito, Boucekkine

et al., Fabri ). In this literature capital flows across locations are modeled through a trade balance

approach with respect to a closed region. This approach leads to a model of classic local diffusion

with a constant diffusion coeffi cient. Linear local diffusion implies that, with diminishing returns to

capital, capital moves from locations of high capital concentration (i.e. rich countries) to locations of

low capital concentration (i.e. poor countries). This property, however, seems not to be compatible

with empirical findings since —as indicated by Lucas in the context of the Lucas paradox (see, Lucas

1990; 2003, Prasad et al. 2007) capital does not seem to flow from rich countries to poor countries.

The marginal-productivity-driven (MPD) assumption about capital flows adopted in this paper

seems to be intuitive since even with diminishing returns, the marginal productivity of capital in a

rich county could be high relative to a poor country because of total factor productivity effects or

other positive externalities. Thus this approach can be regarded as imune to the Lucas paradox.

The assumption of MPD capital flows leads, however, to a model of nonlinear local diffusion which

introduces new challenges in the solution of the optimization problem which are required in order to

study optimal growth in a spatiotemporal domain.

Thus, the present paper contributes to growth theory by extending the standard optimal growth

Ramsey model with a traditional neoclassical production function exhibiting diminishing returns to

capital, to a two dimensional spatial domain in which capital flows towards locations of high marginal

productivity. In this context our contribution consists in trying to answer questions which emerge when

the spatial dimension is combined with this type of capital flows across locations. More specifically

we are seeking to answer two questions. First, suppose that the economies located within a bounded

spatial domain with symmetric production functions converge in the long run to a “flat earth,” —

using Krugman’s (1998), (see also Fujita et al, 2001) terminology —steady state, in which per capita

output and capital is the same across all locations . Is it possible, when productivity-driven capital

flows across locations take place, for a small perturbation of the flat-earth capital-labor ratio across

locations to induce spatial heterogeneity to capital and output per capita which persists and eventually

drives the economies to a "non flat earth " steady state, or the perturbation will die out with the

2See for example, Brito (2004), Camacho 2004, Bocekkine et al. (2009, 2013a , 2013b, 2016, 2018), Brock et al.
(2014a, 2014b), Fabri (2016), Xepapadeas and Yannacopoulos (2016).

2



passage of time in which case capital flows will be a driver which homogenizes the economies across

locations?

Second, suppose that in a flat earth economy there is a perturbation in total factor productivity

(TFP) which, without productivity-driven capital flows, will eventually drive the economies to a

spatially heterogenous steady state with respect to capital and output per capita. If along with

the TFP perturbation capital starts flowing to locations with higher marginal productivity, will the

economies be driven to a more or less spatially heterogenous steady state relative to the case of no

productivity-driven capital flows?

The first questions explores whether optimal growth with capital seeking locations of high marginal

productivity promotes or not spatial inequalities, while the second explores whether in world with TFP

differences across locations optimal growth with capital seeking locations of high marginal productivity

intensifies or not spatial inequalities.

In the process of answering these questions a second contribution of this paper is the extension

of calculus of variations methods and Pontryagin’s maximum principle to the solution of dynamic

optimization problems, where capital accumulation is described by a partial differential equation with

non linear diffusion.

Our main results, in relation to the questions posed above, is that when production functions are

symmetric across locations optimal growth with MPD capital flows could lead to a growth process,

in which output and capital per worker are different across locations if, the utility discount rate,

the share of capital in a Cobb-Douglas production function and the elasticity of marginal utility

are suffi ciently high. For the conventional low discount rate, low capital share and low elasticity of

marginal utility, MPD capital flows will act as homogenizing factor and reduce inequalities after a

spatial perturbation of the capital labor ratio. On the other hand, under spatial TFP differences

optimal growth under MPD capital flows could intensify or diminish spatial inequalities depending on

the specific characteristics of capital flows.

The rest of the paper is organized as follows. Section 2 models capital flows under the assumption

that the flows are driven by marginal productivity differentials across locations and states the spatial

Ramsey model. Section 3 extends the Pontryagin’s principle under nonlinear diffusion. Section

4 discusses the formation of spatial patterns in the Ramsey model and the relation between spatial

heterogeneity and capital mobility, while section 5 concludes. All proofs are relegated to the Appendix.

2 Marginal Productivity Driven Spatial Capital Flows

Xepapadeas and Yannacopoulos (2016) extended the Solow model to include MPD spatial transport

of capital. We briefly recall the derivation of the fundamental capital accumulation equation, before

we present the related optimal control problem. Consider a spatial domain D ⊂ Rd, d = 1, 23 and let

3Geographical distance is the most common metric of the distance between two spatial points . Conley and Ligon
(2002) suggest, however, that a more appropriate metric for measuring distances associated with economic activities is
that of the economic distance —the economic
metric — reflected in transportation costs. Thus in this paper space should be interpreted in terms of an economic

metric. Since there is a one-to-one correspondence between the elements of the economic and the geographical space,
any spatial distribution defined
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k(t, x) be capital (or the density of capital) at time t and at the spatial location x ∈ D.4 By density
we mean that the total quantity of capital in a subset U ⊂ D at time t is K(t) =

∫
U k(t, x)dx, where

by dx we denote the Lebesgue measure on D.
Locally accumulated capital produces output at time t and at the spatial location x ∈ D according

to a standard neoclassical production function satisfying Inada conditions, f(x, k(t, x)), which exhibits

spatial variability. Output is allocated to net capital formation, consumption c (t, x) , and locally

capital depreciation at rate δ, so that the density of depreciated capital at (t, x) is −δk(t, x). However,

in contrast to nonspatial growth models capital can be transported in space, i.e. it may arrive to (t, x)

from other locations (t, x′) —where we assume for simplicity that capital transport is instantaneous

in time —or it may depart from (t, x) for other locations which are more advantageous in terms of

marginal productivity. We will adopt a local in space model, and define the capital flux vector J

which is a vector field providing information on the direction and intensity of the capital motion. This

vector field points to the direction that net capital transport takes place and its magnitude is related

to the total quantity of transported capital.

To make the transport mechanism clear, consider for the moment no production, then the change

of the total capital in any region U ⊂ D is given in terms of the surface integral
∫
∂U J · ndS, where

∂U is the boundary of U , n is the outward unit vector at any point on ∂U , J is the flux vector field

and dS is the surface volume element. This integral simply “adds” the quantity of capital that has

left or entered U through its boundary; at point x ∈ ∂U the quantity of capital that enters or leaves

—depending on the direction of the vector J(x) —will be J(x) · n(x)dS(x) and the total quantity is

the sum of all these quantities, which in the continuous limit is the surface integral of the scalar field

J · n.
The role of the flux vector in describing capital transport is clarified in terms of the Gauss diver-

gence theorem according to which for any U ⊂ D, with suffi ciently smooth boundary, it holds that∫
∂U J · ndS =

∫
U ∇ · Jdx, where the left hand side is a surface integral on ∂U whereas the right hand

side is a volume integral on U . The quantity ∇· J is a scalar field which motivates the introduction of
an operator which takes a vector field (J) and maps it to a scalar field (∇ · J). This is the divergence

operator ∇·.5 In the Cartesian system the divergence can be expressed as ∇· = ( ∂
∂x1

, ∂
∂x2

) the notation

“·”which means that considering any vector field J = (J1, J2) we have that ∇ · J = ∂
∂x1

J1 + ∂
∂x2

J2. 6

A standard book keeping argument, complemented with the above discussion leads to the result

in economic space can be transformed into a corresponding distribution in the geographical space. Inequalities in
the economic space can be immediately translated to inequalities in geographical space. The use of the economic space
concept allows the meaningful use of local diffusion models.

4To simplify we assume that labour at each location is fixed and immobile across locations. So k (t, x) can be
interpreted as capital per worker or the capital-labor ratio at each location. Capital mobility combined with labor
growth is undoubtedly an area for further research.

5The Gauss divergence theorem is coordinate free i.e., it can work for any coordinate system used to describe the
domain U , such as Cartesian, polar etc., and for any geometry.

6We will keep the notation ∇· in this paper, as it is allows us to present our results in a coordinate free fashion,
allowing for a range of possible geometries, and not only the Cartesian case. However, any one unfamiliar with the ∇·
notation can safely think of ∇ · F for any vector field F , in the Cartesian representation.
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that the net accumulation of capital at (t, x) will be given by

∂

∂t
k(t, x) = −∇ · J(t, x) + f(x, k(t, x)− δk(t, x)− c(t, x), (1)

where the 3 last terms on the right hand side correspond to local output production, local capital

depreciation and local consumption respectively, while the term −∇ · J(t, x) provides information on

the net capital transport from or to other locations than x.

In order to turn (1) into a useful tool that will allow us to monitor the spatiotemporal evolution

of capital density we need to specify the vector field J . In Xepapadeas and Yannacopoulos (2016) it

was assumed that capital tends to be relocated to regions of relatively higher marginal productivity of

capital, which is defined as m (t, x) = ∂
∂kf(x, k (t, x)). Clearly m depends on k and since k is varying

in space it also depends on the location of space that we consider. The marginal productivity of

capital m is thus a scalar field, and a quantity that reflects its spatial variability is its gradient ∇m.
The gradient is a vector field that locally points to the direction of greatest increase of m. As with

the divergence this vector field can be defined in a coordinate free fashion. In Cartesian coordinates

(x1, x2) the gradient vector has a representation as ∇m = ( ∂m∂x1 e1,
∂m
∂x2

e2), ∇ · m = ∂m
∂x1

+ ∂m
∂x2
, where

e1, e2 are the unit vectors in the direction x1, x2 respectively.7

Our basic modeling assumption is that the flux vector field J is proportional to the gradient of

the marginal productivity of capital ∇m, with a proportionality factor which may depend on local
conditions at point x as well as the capital accumulation at this point. This assumption expresses the

intuition that capital located at x will relocate towards locations of higher marginal productivity of

capital, but also that capital at different locations may have different propensity to relocate towards the

higher marginal productivity locations, possibly on account of local regulations, taxes or tariffs). This

propensity is likely to depend on the local concentration of capital, i.e. large capital concentrations

may have different propensity to relocate towards higher returns than smaller capital concentrations.

These considerations are expressed by defining the flux as

J(t, x) = D̄0 (B(x)ψ(k(t, x))) k∇m(t, x) for any (t, x)

where D̄0 is a constant capital transport parameter, the spatial term B(x) could reflect the effect

of regulations or geographical or commercial factors affecting the propensity of capital to relocate,

and the term ψ(k) models the fact that different capital densities could exhibit different propensity

towards relocation. We take J explicitly proportional to k to stress the fact that Bψ represents

propensity, i.e. may be interpreted as probability to relocate. Assuming a production function of the

7 Its representation differs in other coordinate systems, in which the unit vectors may also change direction from point
to point, but the definition of the gradient as providing the direction where a scalar field presents the fastest increase
remains. As with the divergence operator we will use the general notation ∇ to allow for general geometries, but any
one unfamiliar with this notation may use the definition of the gradient in Cartesian coordinates.
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form A(x)f(k(t, x)), where A (x) can be interpreted as local total factor productivity (TFP)8, then

∇m (t, x) = A (x) f ′′ (k (t, x))∇k (t, x) + f ′ (k (t, x))∇A (x)

and the flux J can be expressed as

J(t, x) = D̄0A(x)B(x)ψ(k(t, x))f ′′(k(t, x))k(t, x)∇ k(t, x) + D̄0B(x)ψ(k(t, x)f ′(k(t, x))k(t, x)∇A(x).

From now onwards, to make notation easier we may omit the explicit dependence on (t, x), keeping

in mind that A and B could be functions of x, whereas f is a function of k, while the composite

function f(k(t, x)) will depend on (t, x) through the dependence of k on (t, x). Finally by ′ we denote

the derivative of a function with respect to its argument, hence f ′(k(t, x)) denote the derivative of the

function f : R→ R with respect to its argument, composed with the capital density.
Putting all the above together in (1)we end up with the following partial differential equation for

the spatiotemporal evolution of the capital density

∂

∂t
k = ∇ ·

(
− D̄0ABψ(k)f ′′(k)k∇ k − D̄0Bψ(k)f ′(k)k∇A

)
+Af(k)− δk − c,

where upon defining

w1(k) = −ψ(k)f ′′(k)k and w2 = ψ(k)f ′(k)k, (2)

which are both positive functions because of the properties of standard neoclassical production func-

tions, D0(x) = D̄0A(x)B(x). Noting that ∇ lnA = 1
A∇A, capital accumulation is defined as:

∂

∂t
k = ∇ ·

(
D0w1(k)∇ k −D0w2(k)∇ lnA

)
+Af(k)− δk − c. (3)

This is a nonlinear diffusion equation in divergence form where capital transport is driven by two

factors, the spatial variation of k, which induces the variation of m and the spatial variation of the

local TFP A.

The solution of the PDE (3) will provide the spatiotemporal evolution of capital density when the

consumption density c is given. This task requires an initial condition k0 which corresponds to the

capital density k(0, x) and the determination of the behavior for the capital transport process on the

boundary of the domain D. A natural condition is to assume that capital may not be transported

outside D, a fact that implies that the capital flux J vanishes perpendicular to the boundary i.e.
that J(t, x) · n(x) = 0 for x ∈ ∂D and for every t ∈ [0, T ] where T is an appropriate time horizon

(possibly infinite). Assuming that ∇ lnA = 0 on ∂D this natural boundary condition is equivalent to
a Neumann boundary condition of the form ∇ k · n = 0 on ∂D. 9

8Note that while TFP varies locally it does not grow with time. The main reason for this simplification was to isolate
and make clearer the impact of capital flows towards relatively higher m (t, x) on the spatiotemporal evolution of capital
density. Allowing for TFP growth i.e., A (t, x) is relocated to further research.

9We will keep this equation in divergence form for two reasons (a) it is the natural form of this equation leading to
conservation of the total capital if the terms Af(k)− δk− c are omitted and (b) as written the equation is not dependent
on the choice of geometry and is therefore valid for a general domain D. A more familiar special form for this equation
would be if D := D0w1(k) were a constant, and A was spatially independent in which case the above equation reduces
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It should be noted that in our model the diffusion coeffi cient D = D0w1(k) depends in a nonlinear

fashion on the capital concentration. This dependency is induced by our assumptions concerning the

nature of capital transport. This represents a difference of this model (3 realtive to the model for

capital transport employed by Boucekkine et al. (2013b), in which the diffusion coeffi cient is assumed

to be a constant, hereafter referred to as the linear diffusion model. Eventhough these two models

come from different modelling assumptions concerning capital transport, our model reduces to the

linear diffusion model in the special case where instead of using equation (2) for the definition of

w1, w2 and D0, we set D0 = D̄0, a constant, w1 = 1 and w2 = 0 in (3).

2.1 The spatial Ramsey model

Having defined the capital accumulation equation we use it to study a Ramsey type optimal growth

model, by considering a social planner who chooses optimal spatiotemporal consumption paths c (t, x)

to maximize the total discounted intertemporal utility over the whole domain D subject to spatiotem-
poral dynamics defined by (3).10 The problem then becomes the optimal control problem

max
c

∫ ∞
0

∫
D
e−rtU(c(t, x))dxdt, subject to (3), (4)

where U is a standard utility function for consumption, satisfying Inada conditions and r is the utility

discount rate. Problem (4) has been studied in the case of linear transport (D constant) using the

Hamilton Jacobi equation framework by Boucekkine and coworkers and the Pontryagin maximum

principle in the special case linear transport within the framework of the AK model (e.g. Boucekkine

et al., 2013b). In this paper, we will study the optimal spatial consumption and capital allocation in

the spatial Ramsey model with nonlinear transport mechanisms for capital and a concave neoclassical

production function. While the Hamilton Jacobi equation can be employed, we prefer to use the

Pontryagin maximum principle instead, mainly because this approach is very often used in the analysis

of the temporal Ramsey model, and thus will provide easier access to our results to economists familiar

with the classic temporal Ramsey model.

3 Pontryagin’s principle under nonlinear diffusion

To solve problem (4) we extend Pontryagin’s principle to the case in which the dynamic constraint is

represented by a partial differential equation with nonlinear diffusion. In what follows we will assume

the existence of a solution and an optimal path for problem (4) which admits suffi cient regularity. We

focus on the derivation of a necessary condition, in terms of a Pontryagin principle, for the optimal path

and optimal control policy, with the specific interest of characterizing the long run (time independent)

to ∂
∂t
k = D∇ · ∇ k + Af(k) − δk − c, which using the definition of the Laplacian operator ∆k := ∇ · ∇ k reduces to

∂
∂t
k = D∆k+Af(k)− δk− c. It is a matter of algebra to confirm that in Cartesian coordinates, using the definitions of

∇ , ∇· given above we have that ∆k = ∂2k
∂x21

+ ∂2k
∂x21

(or simply ∂2k
∂x21

for one dimensional domains) therefore reducing the

model to the standard diffusion equation with a linear diffusion term.
10?, assuming that consumption was chosen as a fixed percentage of production, i.e., c = (1−s)Af(k), used (3) studied

a spatial Solow model with nonlinear diffusion.
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optimal state, rather than studying in detail the dynamics of the optimal path.

Proposition 3.1. Under the standing assumptions made earlier, a suffi ciently regular optimal path
(k∗, c∗) for problem (4) such that c∗(t, x) > 0 a.e. can be characterized in terms of the optimality

condition

U ′(c∗(t, x)) = p(t, x), (5)

where (k∗, p∗) satisfy the following coupled forward-backward system of nonlinear PDE

∂k∗

∂t
= ∇ ·

(
D0w1(k∗)∇ k∗ −D0w2(k∗)∇ lnA

)
+Af(k∗)− δk∗ − g(p), (6)

∂p

∂t
= −∇ ·

(
D0w1(k∗)∇ p

)
+G(k∗, x) · ∇ p+ (r + δ −Af ′ (k∗))p, (7)

where g is the inverse function of U ′ and

G(k∗, x) = D0(x)w′1 (k∗))∇ k∗ −D0(x)w′2 (k∗))∇ lnA(x).

The system (6)-(7) is supplemented with the boundary conditions

∇ k∗(t, x) · n(x) = ∇ p(t, x) · n(x) = 0, x ∈ ∂D,

where for simplicity we have assumed that ∇ lnA · n = 0 on ∂D, with the initial condition

k∗(0, x) = k0(x), x ∈ D,

and the transversality condition

lim
T→∞

e−rT
∫
D
k(T, x)p(T, x)dx = 0.

The proof of the proposition is given in Appendix A.

As it is traditional in optimal growth an alternative form for the optimality system (6)-(7), can be

derived in terms of the optimal consumption path, by replacing the adjoint variable p, using the op-

timality condition (5). Since ∂
∂tp(t, x) = U ′′(c∗(t, x)) ∂∂tc

∗(t, x), and ∇ p(t, x) = U ′′(c∗(t, x))∇ c∗(t, x),

given suffi cient regularity of the utility function and the optimal path the following corollary is ob-

tained.

Corollary 3.2. If U is twice continuously differentiable,and U
′′
(c) 6= 0, the optimal path (k∗, c∗)

satisfies the system of PDE’s (the explicit (t, x) dependence dropped for ease of notation)

∂k∗

∂t
= ∇ ·

(
D0w1(k∗)∇ k∗ −D0w2(k∗)∇ lnA

)
+Af(k∗)− δk∗ − c∗, (8)

∂c∗

∂t
= − 1

U ′′(c∗)
∇ ·

(
U ′′(c∗)D0w1(k∗)∇ c∗

)
+G(k∗, x) · ∇ c∗ + (r + δ −Af ′ (k∗))U

′ (c∗)

U ′′(c∗)
, (9)

supplemented with Neumann boundary conditions, for both k∗, c∗ and with the transversality condition

8



appropriately modified.

Note that for traditionally used utility functions of the class U(c) = 1
1−λc

1−λ, λ ≥ 1, the PDE for

the optimal consumption simplifies to

∂c∗

∂t
= − 1

U ′′(c∗)
∇ ·

(
U ′′(c∗)D0w1(k∗)∇ c∗

)
+G(k∗, x) · ∇ c∗ − 1

λ
(r + δ −Af ′ (k∗))c∗.

Note also that when capital is immobile, that isD0 = 0, and the production function does not explicitly

depend on location x, the optimal paths satisfies the classic system of ordinary differential equations

dk∗

dt
= Af(k∗)− δk∗ − c∗ (10)

dc∗

dt
= (r + δ −Af ′(k∗)) U

′(c∗)

U ′′(c∗)

We conclude our study of the Pontryagin principle with an equivalent Hamiltonian formulation.

Proposition 3.3. Define the Hamiltonian density

H̄(t, k, p̄) = max
c∈R+

{
p̄(∇ · (D0w1(k)∇ k −D0w2(k)∇ lnA) +Af(k)− δk − c) + e−rtU(c)

}
.

and consequently the Hamiltonian functional

H̄(t, k, p̄) :=

∫
D
H̄(t, k(t, x), p̄(t, x))dx,

The optimality condition can be brought into Hamiltonian form as

k′ = Dp̄H̄(t, k, p̄),

p̄′ = −DkH̄(t, k, p̄),

where p̄(t, x) = e−rtp(t, x), and by Dp̄, Dk, we denote the Gâteaux derivatives of the functional with

respect to the p̄ and k respectively. The system is autonomous in terms of (k, p).

The proof is sketched in Appendix B.

The spatial structure of the steady state (k∗, c∗) can be obtained either by using Proposition 3.1

directly and setting ∂k∗

∂t = ∂p∗

∂t = 0, along with the optimality condition p(x) = U ′(c(x)), or by using

the Corollary 3.2 and setting ∂k∗

∂t = ∂c∗

∂t = 0. Therefore,

Proposition 3.4. Under suffi cient smoothness on the optimal path and the utility function the optimal
steady state (k∗, c∗) solves the system of nonlinear elliptic equations

0 = ∇ · [D0w1(k∗)∇ k∗ −D0w2(k∗)∇ lnA)] +Af(k∗)− δk∗ − c∗, (11)

0 = −∇ · (U ′′(c∗)D0w1(k∗)∇ c∗) + U ′′(c∗)G(k∗, x) · ∇ c∗ + (r + δ −Af ′ (k∗))U ′ (c∗)),

supplemented with homogeneous Neumann boundary conditions.
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In Appendix C we show that the above system of elliptic equations may in fact be transformed

into a more convenient equivalent form which is more useful for analysis and numerical treatment.

Remark 3.5 (An alternative (equivalent) form for the Pontryagin formula). For the convenience of
the reader we provide an alternative equivalent form for the Pontryagin formula that will be used in

Section 4.5. Using vector calculus identities and the definition of the functions w1, w2 we can express

the state-costate equation Consider the state equation (3) expressed in the equivalent form,

∂k∗

∂t
= −∇ · [D̄0Bψ(k∗)k∗∇(Af ′ (k∗))− δk∗ − c∗,

∂p

∂t
= D̄0Af

′′(k∗)∇ · [Bψ(k∗)k∗∇p]− D̄0B(ψ(k∗)k∗)′∇(Af ′ (k∗)) · ∇p+ (12)

(δ + r −Af ′ (k∗))p.

The system of equations (12) (supplemented with no flux boundary conditions and the transversality

condition of Proposition 3.1) can be used to characterize the optimal path (k∗, c∗), using p = U ′ (c∗).

4 MPD Spatial Capital Flows and Spatial Inequalities

The tools developed in the previous section will help us answer to two main questions posed at the

introduction of this paper. The first relates to whether MPD capital flux could destabilize a flat

earth optimal steady state (FEOSS) of a Ramsey model and induce spatial patterns which in our

case would imply spatial inequalities. It is well known that for the standard Ramsey optimal growth

model without spatial interactions —system (10) —a steady state has the global saddle point property

meaning that for any initial capital stock there is an initial level of consumption such that the system

will converge to the steady state along the stable manifold The system (6)-(8) for D0 = 0 could by

analogy be regarded as the analogue of the saddle point in finite dimensional (temporal only) Ramsey

model. In such a case the optimal policy which determines the optimal path for the state (capital)

and the control (consumption) could be regraded as a "collection" of identical stable manifolds leading

the system to the long run FEOSS.

Suppose now that at the state of the flat earth, D0 > 0 so that MPD flux is introduced and a small

perturbation of the flat earth capital landscape takes place. Can the optimal control of the perturbed

system determine a "collection" of stable manifolds, similar to the D0 = 0 case, along which the

system will return of the FEOSS? If yes, the MPD capital mobility is a spatially homogenizing force

and preserves spatial equality. If however the system does not returns to the flat earth state then

spatial inequalities which are induced by optimal control emerge.

We know from the celebrated Turing (1952) paper that in a reaction-diffusion system, diffusion can

be spatially homogenizing, but under certain conditions it could induce spatial heterogeneity and the

emergence of spatial patterns and form - morphogenesis. Turing analysis has been used by Krugman

(1996), (see also Fujita et al. 2001). to generate patterns from a flat earth-steady-state space with

economies located on a circle.11 Turing’s and Krugman’s analysis did not involve explicit dynamic

11This is the “50 Cadilac diagram" for a race track economy (see Krugman 1998).
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optimization. Dynamic optimization and the emergence of patterns was first analyzed by Brock and

Xepapadeas (2008, 2010) and subsequently by Brock, Xepapadeas and Yannacopoulos (2014c) in the

context of optimal spatial resource management. These models were characterized by linear Fickian

diffusion which is an appropriate assumption for biological resources, since they move from high to

low concentrations. As we discussed however earlier, this assumption is not appropriate for capital

movements in view of the Lucas paradox. So our objective in terms of our first question is to examine

under what conditions nonlinear diffusion, induced by capital seeking higher marginal productivity,

will act as a force of convergence for the economies in the spatial domain, or as force that generates

spatial patterns and inequalities of per capita output and capital across space. In terms of our second

question we need to know whether MPD capital mobility intensifies or weakens already existing,

because of TFP differences, spatial inequality. These two cases are analyzed in the following sections.

4.1 Spatial homogeneity and optimal pattern formation

In the temporal Ramsey model saddle point stability means that the linearization matrix of system

(10) at the steady state has a negative determinant and a small perturbation in the (k, c) or the

equivalent (k, p) space along the stable manifold will die out and the system will return to the optimal

steady state.

The linearized stability of a general steady state displaying arbitrary spatial dependence is not

an easy task, and requires sophisticated techniques from the spectral theory of linear operators, and

typically involves detailed numerical analysis. However, interesting detailed results can be obtained

analytically by a perturbative approach, providing a clear view of the effects of capital mobility on

optimal growth, in the case where a flat optimal steady state is perturbed by the effects of capital

mobility, with the possible generation of optimal spatial patterns which emerge because the MPD

capital mobility destabilizes the stable manifold of the zero MPD mobility system.

Consider the case where the TFP A and capital mobility coeffi cient B are independent of x. In

trying to examine the potential emergence of pattern formation induced by MPD capital mobility

we examine the stability of a flat-earth steady state of the optimizing system after spatiotemporal

perturbations in capital and consumption. The analysis involves linearizing the optimality system (8)

around a flat-earth steady state (k∗0, c
∗
0), which is the solution of the algebraic system

A(f ′ (k∗0)) = r + δ, (13)

c∗0 = Af(k∗0)− δk∗0,

and then consider solutions for capital and consumption in terms of the corresponding linear PDE

system. In doing so we can see that the perturbation z(t, x) := (k(t, x), c(t, x))T around z∗ := (k∗0, c
∗
0)T

evolves according to the constant coeffi cient PDE system

∂z

∂t
= D(z∗)z + LF (z∗)z, (14)
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where

LF (z∗) =

(
A(f ′∗0 )− δ −1

− U ′(c∗0)
U ′′(c∗0)Af

′′(k∗0) 0

)
=

(
r −1

− U ′(c∗0)
U ′′(c∗0)Af

′′(k∗0) 0

)
,

D(z∗) is the matrix differential operator

D(z∗) =

(
D(k∗0)∆ 0

0 −D(k∗0)∆

)
,

∆ is the Laplacian operator with homogeneous Neumann boundary conditions and

D(k∗0) = D0w1(k∗0), D0 = D̄0AB,

is a constant diffusion coeffi cient, which depends on the level of the optimal k∗0.

This is unlike the case of linear diffusion, where the perturbation z will follow the linear evolution

equation (14) with D(z∗) replaced by the operator

D0 =

(
D0∆ 0

0 −D0∆

)
.

Note also that in the limit of vanishing diffusion, this system reduces to the corresponding system for

the Ramsey model in the absence of capital mobility, with the familiar saddle point property in the

relevant phase space which is R2.

In the presence of capital mobility, spatial variability of the perturbation (k(t, x), c(t, x)) is possible,

hence the relevant phase space is a function space, such as for example L2(D) × L2(D), where by

L2(D) we denote the space of square integrable functions on D. Clearly such a dynamical system is

not possible to visualize on the phase plane, eventhough one may still define a saddle point structure

in this case as well, in terms of the spectral behavior of the linear operator D(z∗).

Since (14) is a constant coeffi cient problem in a bounded domain, we may characterize its solu-

tions completely in terms of the eigenvalues of the operator −∆, on D, with homogeneous Neumann
boundary conditions. i.e., in terms of the set of functions {φn : n ∈ N}, which are solutions of the
problem

−∆φn = µnφn, (15)

∇φn · n = 0.

This discrete set is a complete orthonormal basis in L2(D), hence any function u ∈ L2(D) admits a

Fourier expansion u(x) =
∑

n∈N unφn(x), with almost everywhere convergence, and un = 〈u, φn〉 with
〈·, ·〉 denoting the inner product in L2(D) 12. The spectrum has the property µn ≥ 0, with µn →∞ and

importantly for many cases of interest both µn and the eigenfunctions φn are known exactly in analytic

form (see Appendix E). Since any solution of (14) can be expanded as z(t, x) =
∑

n∈N zn(t)φn(x),

with zn(t) = (kn(t), cn(t))T where kn(t) = 〈k(t, ·), φn(·)〉, cn(t) = 〈c(t, ·), φn(·)〉, by substituting this
12Typically, un =

∫
D u(x)φn(x)dx, with the possible introduction of weights depending on the geometry of the domain.
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expansion in (14) and using the orthogonality properties of the basis of eigenfunctions we see that the

system of PDEs (14) reduces to an equivalent countable system of ODEs in the form

z′n = Lnzn, n ∈ N,

zn(0) = zn,0.

where zn = (kn, cn)T , zn,0 = (kn,0, cn,0)T , with kn,0 = 〈k0, φn〉, cn,0 = 〈c0, φn〉, and the matrix

Ln =

(
−D(k∗0)µn 0

0 D(k∗0)µn

)
+ LF . (16)

The general solution of (14) can be expressed as the Fourier series

z(t, x) =
∑
n∈N

zn(t)φn(x) =
∑
n∈N

etLnzn,0φn(x)

with the matrix exponential defined as etLn = I +
∑∞

k=1
1
k! t

kLkn. A detailed analysis of this solution

is presented in Appendix E. This analysis reveals that for certain n ∈ N, the vector etLnzn,0φn grows
in time inducing a contribution to the full solution which has a spatial variability —as prescribed by

the corresponding eigenfunctions φn —whereas for the remaining n the vector etLnzn,0φn decays in

time inducing a transient contribution which dies out in time converging asymptotically to the flat-

earth steady state. The growing in time contribution can be considered as the emergence of a spatial

pattern, compatible with the optimal growth structure, and a destabilization of the flat-earth steady

state leading to possible spatial variability for the optimal capital concentration and consumption.

Proposition 4.1. Let (k∗0, c
∗
0) be the flat-earth steady state, attained for the case where A is constant

and capital is immobile, D̄0 = 0, and define M = A
U ′(c∗0)
U ′′(c∗0)f

′′(k∗0) > 0. Then, the effect of MPD capital

mobility D̄0 6= 0 on the evolution of spatially dependent perturbations of (k∗0, c
∗
0) and the potential

emergence of spatial patterns from the flat-earth steady state can be summarized as follows:

(i) If r
2

4 < M , no spatial pattern can develop.

(ii) If r
2

4 > M , MPD capital mobility leads to the emergence of spatial patterns of the form

zp(t, x) =
∑
n∈N

etLnzn,0φn(x),

consisting of linear combinations of eigenmodes of the Laplacian {φn : n ∈ N} where N is the

set of n ∈ N such that

D(k∗0)µn(r −D(k∗0)µn)−M > 0, where D(k∗0) = D̄0ABw1(k̂∗0).

In particular, mode n will become unstable if D(k∗0) satisfies

1

µn

(
r

2
−
√
r2

4
−M

)
≤ D(k∗0) ≤ 1

µn

(
r

2
+

√
r2

4
−M

)
. (17)
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For the Proof see Appendix E.

It is interesting to note that MPD capital mobility will not destabilize the flat steady state if the

utility discount rate is suffi ciently low and in particular if r2 < 4M . Alternatively, the same condition

can be interpreted as a condition for the utility function. Assuming thatU(c) = c1−λ/ (1− λ) and the

production function is of the Cobb-Douglas type of the form f(k) = Aka , we easily obtain that

M =
δ + r

α

1− α
λ

[(1− α) δ + r]

hence, for the destabilization condition r2/4 > M to hold we need

λ >
4

αr2
(1− α) (δ + r) [(1− α) δ + r] (18)

Figure 1 depicts the surface λ (a, r) corresponding to (18). MPD capital mobility will destabilize

the FEOSS for (α, r, λ) points above the λ (α, r) surface.

Figure 1: The λ (α, r) surface corresponding to (18) (δ = 0.03)

The destabilization of the flat earth through MPD capital mobility is predominantly a high discount

rate effect.13. For typical low utility discount rates optimal growth is not expected to generate spatial

heterogeneities in output and capital per worker, and the optimal policy from the social planners point

of view is to steer the spatial economy to a FEOSS when MPD driven capital mobility take place,

provided of course that TFP is the same across locations. Destabilization requires a combination of

high (r, λ, α)

If destabilization occurs, the result of Proposition 4.1, may be seen as a perturbation result of the

stable manifold of the optimality system for immobile capital, under the effect of capital mobility, so

that the stable manifold acquires some spatial structure. This spatial structure is in principle supported

by the optimal control procedure as long as the growth rate is compatible with the transversality

13The effect of the geometry of the spatial domain is introduced through the dependence of the above formulae on µn.
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condition, a fact which is guaranteed by the condition (17). Note that given the coeffi cients A, B,

not any pattern is allowed to develop. The allowable patterns are those corresponding to linear

combinations of eigenfunctions φn, corresponding to these n ∈ N for which condition (17) holds. Since
µn → ∞ as n → ∞, one may easily see that for given D(k∗) there is a critical n0, so that only

modes with n < n0 may turn unstable. In this sense, the capital mobility mechanism selects the

patterns that will appear. Given D(k∗) one may predict exactly the modes that will turn unstable

using condition (17) and hence the shape of the pattern. This can also be seen more explicitly in terms

of the equivalent formulation of this criterion in terms of (18). In this respect, the effect of nonlinear

diffusion may be to facilitate the emergence of certain patterns as long as the effect of nonlinearity

is to enhance the capital mobility. To see this more clearly one simply has to observe that in the

presence of linear diffusion D0, condition (17) becomes

1

µn

(
r

2
−
√
r2

4
−M

)
≤ D0 ≤

1

µn

(
r

2
+

√
r2

4
−M

)

so that if the effect of nonlinearity is to moderately enhance D0 the pattern corresponding to φn is

easier to develop. On the other hand either a dramatic decrease or dramatic increase of D0 as an

effect of nonlinearity will have an opposite effect, obstructing the appearance of the specific pattern.

The spectrum of the Laplace operator with Neumann boundary conditions as well as the eigen-

functions are known analytically for a number of interesting geometries, a fact that makes checking

condition (17) or (18) feasible. The explicit knowledge of the eigenfunctions also allows for the deter-

mination of the spatial variability of the generated pattern.

The link between the emergence of spatial patterns by destabilization of the FEOSS through spatial

capital flows and the utility discount rate can become clear using the destabilization condition (16).

From this condition destabilization occurs at some mode n if

detLn =

∣∣∣∣∣ r −D(k∗0)µn −1

− U ′(c∗0)
U ′′(c∗0)Af

′′(k∗0) D(k∗0)µn

∣∣∣∣∣ > 0, (19)

where µn ≥ 0, with µn → ∞ as n → ∞, while for µ0 = 0 and (19) is reduced to the Jacobian

determinant of the standard Ramsey model with no spatial flows. Write M = Af ′′(k∗0)
U ′(c∗0)
U ′′(c∗0) > 0 and

D(k∗0)µn = αn ≥ 0, with α0 = 0. Then

detLn = ψn (r) = αn (r − αn)−M (20)

which is linear increasing in r and shifts for different modes with ψ0 = −M. Consider Figure 2 and

the line ψ0 = −M, and the three lines with intercepts −a2
i −M , i = 1, 2, 3. For the zero mode, which

corresponds to the case in which capital is not mobile, detL0 = ψ0 (r) = −M < 0 and the FEOSS

is stable in the saddle point sense. For r < r1 the FEOSS is stable, since for all modes ψn (r) < 0,

and no patterns emerge. For r1 < r < r2 only the first mode is destabilized, while for r2 < r < r3

both modes 1 and 2 are destabilized. In the last two cases spatial patterns emerge. A ψn (r) line, like

the lines shown in figure 2 defines a critical r = r+
n such that ψn (r+

n ) = 0. This critical r+
n can be
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interpreted as a mode-n internal rate of return for which αn (r+
n − αn) = M, for r < r+

n the FEOSS is

stable to spatial perturbations induced by capital flows, while for r > r+
n the FEOSS is destabilized

at mode n and spatial patterns emerge.

Figure 2: Critical r and destabilization of a FEOSS.

To explore the economic intuition behind this result, note that each mode n corresponds to a

distinct optimal growth model. Following Magill (1977, p. 192), the term M is a measure of benefits

generated by the FEOSS, k∗0; M |kn − k∗0| is a measure of value loss induced by a deviation from k∗0
for any mode n; and −1 reflects the cost of controlling the system using c as the control. When

r = 0 then detLn = ψn (0) = −α2
n −M < 0 for all modes n. In this case controlling the system after

the spatial perturbation to the FEOSS enhances that benefits of the FEOSS and thus no patterns

emerge. However if r is suffi ciently high, so that αn (r − αn) > M , then the net benefits of controlling

the system to the FEOSS at this mode become negative. From the social planner’s point of view this

can be interpreted as suggesting that it is preferable to let patterns emerge instead of controlling the

system to the FEOSS.

Example 4.2. Consider the case where D = [0, L] ⊂ R. Then we have that µn = (nπL )2 and

φn(x) = cos
(
nπx
L

)
, n = 1, 2, · · · . In this case the spatial pattern generation condition selects these

spatial patterns which correspond to linear combinations of φn(x) = cos
(
nπx
L

)
with n such that

D(k∗0)
(nπ
L

)2 (
r −D(k∗0)(

nπ

L
)2
)
−M > 0.

It can be seen that only patterns corresponding to relatively small values of n are expected to emerge.

No patterns will emerge if

D(k∗0)
(π
L

)2 (
r −D(k∗0)(

π

L
)2
)
−M < 0.
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Example 4.3. Consider the case where D = [0, L1] × [0, L2] ⊂ R2. Then, setting x = (x1, x2) and

assuming an enumeration of N× N in terms of a multiindex n = (n1, n2) we have for the spectrum

µn1,n2 =

(
n1π

L1

)2

+

(
n2π

L2

)2

, n1 = 1, 2, · · · , n2 = 1, 2, · · · ,

with corresponding eigenfunctions

φn1,n2(x1, x2) = cos

(
n1π

L1
x1

)
cos

(
n2π

L2
x2

)
.

To bring this example in the framework of Proposition 4.1 we may simply enumerate the pairs (n1, n2)

in terms of a single index n ∈ N, chosen so that the eigenvalues µn1,n2 are ordered in ascending order.
For example n = 1 would correspond to the pair (n1, n2) = (1, 1), n = 2 would correspond to the

pair (n1, n2) = (2, 1) etc. Defining ν = L1
L2
, the aspect ratio of the rectangle, the condition for the

generation of patterns now can be expressed as follows: Consider the set of pairs of natural numbers

N :=

{
(n1, n2) ∈ N× N : D(k∗0)

(
π

L1

)2

(n2
1 + νn2

2)

(
r −

(
π

L1

)2

D(k∗0)(n2
1 + νn2

2)2

)
−M > 0

}
.

Then emerging spatial patterns will be given by the double sum

k(t, x1, x2) =
∑

(n1,n2)∈N
C1,n1,n2 cos

(
n1π

L1
x1

)
cos

(
n2π

L2
x2

)
,

c(t, x1, x2) =
∑

(n1,n2)∈N
C2,n1,n2 cos

(
n1π

L1
x1

)
cos

(
n2π

L2
x2

)
.

It can be seen again that only modes corresponding to relatively low values of (n1, n2) can develop

instabilities and no spatial structure will emerge if

D(k∗)µ0

(
r −D(k∗)µ0

)
−M < 0,

where µ0 =
(
π
L1

)2
+
(
π
L2

)2
.

In the context of the two-dimensional spatial domain Figures 3 and 4 depict the cases of and

emerging spatial pattern for high r,λ and α after a spatial perturbation (Fig3) and a return to the

FEOSS (decaying pattern Fig. 4) after the same spatial perturbation as in Figure 3. Each of the four

graphs in each figure correspond to a different point in time starting at t = 0.
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(a) (b)

Figure 3: Emergence of spatial patterns for capital (a) and consumption (b). r = 0.1, λ = 6,

α = 0.6, δ = 0.03.

(a) (b)

Figure 4: Decaying spatial patterns for capital (a) and consumption (b). r = 0.03, λ = 2,

α = 0.3, δ = 0.03.

Example 4.4 (Pattern formation on the sphere). A possible geometric model for the globe would be
that of the surface of a sphere of radius R. Then, a convenient set of coordinates would be spherical

coordinates (ρ, φ, θ), where r corresponds to the radial coordinate (assume ρ = R constant), φ is

the azimuthal angle that corresponds to the longitude and θ is the polar angle that corresponds to

latitude. In particular, θ is the co-latitude ranging from 0 at the North pole to π at the South pole,

and φ is the longitude ranging from 0 to 2π. The connection with Cartesian coordinates is in terms

of the relations

x1 = ρ sin θ cosφ, x2 = ρ sin θ sinφ, x3 = ρ cos θ.

The Laplace operator on the surface of the sphere (Laplace-Beltrami operator) becomes

∆u =
1

R2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

R2 sin2 θ

∂2u

∂φ2
.

The eigenvalue problem (15) for the Laplacian on the sphere (with periodic boundary conditions
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which are the natural boundary conditions for this geometry) has eigenvalues µ = `(`+1)
R2

, ` = 0, 1, · · ·
with corresponding eigenfunctions provided in terms of the spherical harmonic functions φ(θ, φ) =

Y m
` (θ, φ) = eimφPm` (cos θ), m = −`, · · · , ` where Pm` is an associated Legendre polynomial. For each

` the eigenfunction corresponding to µ` = `(`+1)
R2

is a linear combination of the Y m
` for m = −`, · · · , `.

This leads to a complete set of real eigenfunctions as

φ
(1)
` := cos(mφ)Pm` (cos θ), φ

(2)
` := sin(mφ)Pm` (cos θ), ` = 0, 1, · · · , m = 0, · · · , `,

with corresponding eigenvalues µ` = 1
R2
`(` + 1), which are orthogonal in terms of the inner product

〈·, ·〉 defined in terms of the volume element on the surface of the sphere, i.e.,∫ π

0

∫ 2π

0
Y m
` (φ, θ)Y m′

`′ (φ, θ) sin θdφdθ = 0,

unless ` = `′ or m = m′ (they can be normalized but here for simplicity we do not provide the

normalization constants). The associated Legendre polynomials can be provided explicitly, for example

(omitting the explicit dependence on cos θ from the polynomials for convenience and expressing them

as functions of θ directly)

` = 0, m = 0, P 0
0 (θ) = 1,

` = 1, m = 0, P 0
1 (θ) = cos θ, m = ±1 P±1

1 (θ) = sin θ,

` = 2, m = 0, P 0
2 (θ) =

1

2
(3 cos2 θ − 1), m = ±1, P±1

2 (θ) = 3 cos θ sin θ, m = ±2, P±2
2 (θ) = 3 sin2 θ.

In terms of the above, the eigenfunctions φ` can be expressed as

` = 0 : φ0(φ, θ) = c0,0,

` = 1 : φ1(φ, θ) = c1,0P
0
1 (θ) + c1,1 cosφP 1

1 (θ) + s1,1 sinφP 1
1 (θ)

` = 2 : φ2(φ, θ) = c2,0P
0
2 (θ) + c2,1 cosφP 1

2 (θ) + s2,1 sinφP 1
2 (θ)

+ c2,2 cos(2φ)P 2
2 (θ) + s2,2 sin(2φ)P 2

2 (θ)

where c`,m and s`,m are appropriate (real valued) constants.

The eigenmode ` > 0 will become unstable if µ` = 1
R2
`(`+ 1) satisfies

D(k∗0)µ`(r −D(k∗0)µ`)−M > 0.

Again, the spatial structure of the pattern will be given as a linear combination of the unstable

eigenmodes, with the coeffi cients depending on the initial condition. High modes (large values of `)

are unlikely to become unstable as condition (17) will be violated for large values of `. Of course

for large R the corresponding values of ` are expected to be larger, leading to more complex spatial

structures.

Figure 5 presents the emergence of patterns on the sphere. It should be noted that the patterns

presented have not association with actual geographical areas or counties on the earth-like globe, but
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are presented solely for illustrations. Associating the merging spatial patterns with actual location on

earth is an important area for future research.

(a) (b)

Figure 5: Pattern formation on a shere for capital (a) and consumption (b), r = 0.1, λ = 6,

α = 0.6, δ = 0.03.

4.2 Spatial heterogeneity and MPD capital mobility

In the previous section we show that optimal growth under MPD capital mobility will not generate

spatial heterogeneities for a typical Cobb-Douglas and utility parametrization and low discount rate.

This result as derived under the assumption of equal TFP across locations or A independent of location

x. In this section we allow for for TFP differences across locations, that is A = A(x) and we ask the

question of weather MPD capital mobility combined with TFP heterogeneity intensifies or weakens

spatial heterogeneity.

To study this problem we assume that capital is immobile but there is spatial variability on the

TFP parameter A (x). Then, the optimal capital allocation is given by the standard Ramsey model,

parameterized by A = A(x), i.e. the solution of the parametric steady state equation

A(x)f ′(k) = r + δ

which leads to an optimal allocation k0(x) with the x dependence arising from the dependence of A

on x, and to a corresponding optimal consumption c0(x), obtained in terms of

c0 (x) = A(x)f(k0)− δk0.

An interesting question will be how would this non flat steady state (k0, c0) evolve in the presence

of weak capital mobility D̄0, if perturbed by a perturbation (k1, c1). This requires the stability analysis

of the Pontryagin system for such solutions, in the limit of small D̄0.

The following proposition provides some insight towards this.

Proposition 4.5. Assume a spatially varying TFP, A = A(x), and let (k0, c0) be the non flat steady

state corresponding to the optimal steady state in the absence of capital mobility. Assume small capital

mobility D̄0 6= 0.

20



(i) Then, an initial configuration (k0, c0) will evolve under the Pontryagin optimality conditions to

a spatially dependent steady state

k(x) = k0(x) + D̄0
1

U ′(c0(x))
∇ ·
(
Bψ(k0(x))k0(x)U ′′(c0(x))∇c0(x)

)
+O(D̄2

0),

c(x) = c0(x) + D̄0
r

U ′(c0(x))
∇ ·
(
Bψ(k0(x))k0(x)U ′′(c0(x))∇c0(x)) +O(D̄2

0)

)
.

(ii) Assume the Cobb-Douglas case, where f(k) = kα, ψ(k) = kρ and U(c) = 1
1−λc

1−λ with 0 < α <

1, λ > 1, and set B = 1 for simplicity. Then,

k0(x) = M0A(x)
1

1−α , c0(x) =
(1− α)δ + r

α
M0A

1
1−α (x), M0 =

(
δ + r

α

)− 1
1−α

,

and

k(x) = k0(x)

(
1− D̄0Ψ(x) +O(D̄2

0

)
,

c(x) = c0(x)

(
1− D̄0

αr

(1− α)δ + r
Ψ(x) +O(D̄2

0

)
,

Ψ(x) =
λ

1− αM
ρ
0A

λ−1
1−α (x)∇ ·

(
A
ρ−λ+α
1−α ∇A(x)

)
.

For the proof see Appendix F.

Proposition 4.5 allows us to approximate explicitly, analytically, the effect of small capital mobility

on possibly sharp spatial gradients in the capital factor of productivity A.

Example 4.6. Consider the Cobb-Douglas case in Proposition 4.5(ii) and a variation in the TFP A

in the form of a sum of gaussians as

A(x) = C0 +

N∑
i=1

Ci exp

(
− ‖x− xi‖

2

2σi

)
.

This general form can model local increases (Ci > 0) or decreases (Ci < 0) at locations xi, of scale

σi > 0 (small σi corresponding to a localized spatial structure, large σi corresponding to extended

spatial structures).

In this case we can calculate (k(x), c(x)) in terms of the expression in Proposition 4.5(ii), using

the facts that

Ψ(x) =
λ

1− αM
ρ
0

{
A( ρ

1−α )−1Φ1(x) +
ρ− λ+ α

1− α A( ρ
1−α )−2Φ2(x)

}
Φ1(x) =

N∑
i=1

Ci

(
d

σi
− 1

σ2
i

‖x− xi‖2
)

exp

(
− |x− xi|

2

2σi

)

Φ2(x) =

N∑
i=1

N∑
j=1

CiCj
σiσj

exp

(
− |x− xi|

2

2σi

)
exp

(
− |x− xj |

2

2σj

)
(x− xi) · (x− xj),
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where d is the spatial dimension and (x−xi) · (x−xj) denotes the inner product between the position
vectors x− xi and x− xj .

We now consider the following question: Will the effect of capital mobility (D̄0 6= 0) enhance

(sharpen) the spatial gradients induced by the variability of A or act as a mechanism for reducing

them?

To answer this question we will consider the steady state solution of the Ramsey model for a

spatially dependent A and D̄0 = 0, denoted by k0 and its steady state solution for the same A but for

D̄0 6= 0, denoted by k, and compare the Sobolev norms I0 =
∫
D |∇k0|2dx, and I =

∫
D |∇k|

2dx, which

provide a measure for the overall spatial variability of the optimal capital allocation. If I0 ≤ I then

the effect of capital mobility will be an enhancement of the spatial variability while if I0 ≥ I then the
effect of capital mobility will be a smoothing of spatial variability in the optimal capital distribution.

While one may provide a priori estimates for the above quantities, this will require technicalities

which are beyond the scope of the present paper. We prefer to adopt a more direct treatment to this

question, which provides an easy to interpret analytic answer, in the limit of small values of D̄0 and

in the case where A assumes the form of a single Gaussian pulse. We further assume that f(k) = Akα

and ψ(k) = kρ.

Proposition 4.7. Under the additional assumptions that f(k) = Akα, ψ(k) = kρ, U(c) = 1
1−λc

1−λ,

and A(x) = C exp
(
− |x−x0|

2

2σ2

)
, σ > 0, for suffi ciently small D0, it holds that

I0 :=

∫
D
|∇k0|2dx, I :=

∫
D
|∇k|2dx

satisfy the relation

I − I0 = D̄0SE(d) +O(D̄2
0),

where S > 0 (explicitly given in the appendix) and E(d) depends on the spatial dimension and is

E(1) = 3(ρ+ 1) + (ρ− 1)λ, if d = 1,

E(2) = 8(ρ+ 1) + 4λρ, if d = 2.

For proof see Appendix F.

The above calculations show that up to small order corrections in D̄0:

• The Sobolev norm of the solution will increase in an one-dimensional spatial domain (1D) as

long as ρ ≥ 1, and in a two-dimensional spatial domain (2D) for any ρ > 0.

• A decrease in the Sobolev norm in 1D is only feasible if 0 ≥ ρ < 1 and λ > 3(ρ+1)
1−ρ (i.e. for ρ = 0

if λ > 3), while in 2D a decrease in the Sobolev norm is only feasible for ρ < 0.

The change in the Sobolev norm depends on the value of ρ which, given the specification ψ (k) = kρ,

indicates that the propensity of capital to move to a high marginal productivity location is high if the
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capital stock at the location of origin is high (ρ > 0) , or that the propensity of capital to move to a

high marginal productivity location is high if the capital stock at the location of origin is low (ρ < 0).

Since the Sobolev norm can be regarded as a summary measure of spatial heterogeneity within the

spatial domain the above result suggests that MPD capital mobility could intensify or weaken spatial

inequalities depending on the way that the propensity of capital to move depends on the size of the

existing capital stock.

The case of increased or reduced spatial inequalities when MPD capital mobility occurs is depicted

in Figure 6.

(a) (b)

Figure 6: (a) Increasing Sobolev norm, ρ = 1, (b) Decreasing Sobolev norm ρ = −1

5 Concluding Remarks

Spatiotemporal dynamics are introduced in a standard Ramsey model of optimal growth by considering

capital movement towards locations where the marginal productivity of capita is relatively higher. This

induces nonlinear diffusion in the fundamental equation of capital accumulation. To accommodated

this in the optimal control framework of Ramsey model we extend Pontryagin’s maximum principle

to the case in which transition dynamics are governed by a nonlinear partial differential equation.

In this context we examine questions related the potential spatial heterogeneity of optimal growth

as seen from the point of view of a social planner which seeks to maximize discounted utility over a

finite spatial domain by choosing optimal consumption paths for each location. Our results suggest

that for high utility discount rate and appropriate parameters for the production and the utility

function MPD capital flows, optimizing behavior by the social planner could induce the emergence

of spatial patterns. For low utility discount rate the social planner will choose the optimal policy so

that the spatial economy will return to a flat-earth steady state even after a perturbation caused by

MPD capital flows. We also show that when spatial heterogeneities exists due to TFP differences

across locations, MPD capital flows could intensify or weaken spatial inequalities. This depends on

whether the tendency of capital from high capital accumulation locations to move once higher marginal

productivity occurs in a different location is high or low.
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Our results provide insights of the way in which an intuitive plausible mechanism of capital flows

could generate spatial inequalities in the context of traditional Ramsey model of optimal growth.

Further research should be directed towards studying market equilibrium under MPD capital flows.

If market equilibrium outcomes in terms of spatial heterogeneity are not the same as the outcomes

obtained in this paper for a social planner, this will provide the basis for exploring economic policies

for attaining socially optimal spatial structures.
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Appendix

A Derivation of the Pontryagin principle for Problem (4)

In this section we derive the Pontryagin maximum principle for problem (4). We define the functional

J , by c 7→
∫∞

0

∫
D e
−rtU(c(t, x))dxdt, where c : R+ × D → R+, is the consumption function. Let us

denote by (k∗, c∗), the optimal capital path and the optimal consumption, and let us consider any

perturbation of the optimal consumption c∗ + εc, which will in turn lead to a perturbation of the

optimal capital path k∗ + εk. This perturbation will have to be consistent with the spatiotemporal

dynamics of capital accumulation and transport, i.e. will have to satisfy the quasilinear PDE (3).

Under differentiability assumptions, we may linearize (3) in ε, and conclude that small deviations

(k, c) from the optimal path (k∗, c∗) will satisfy the linear PDE

∂k

∂t
(t, x) = ∇ · {D0(x)w1(k∗(t, x))∇ k(t, x) +G(k∗(t, x), x)k(t, x)} (21)

+ f ′∗(t, x))k(t, x)− δk(t, x)− c(t, x),

where

G(k∗(t, x), x) := D0(x)w′∗1 (t, x))∇ k∗(t, x)−D0(x)w′∗2 (t, x))∇ lnA(x),

with the perturbed boundary condition{
D0(x)(k∗(t, x))∇ k(t, x) + k(t, x)G(k∗(t, x), x)k(t, x)

}
· n(x) = 0, x ∈ ∂D,

where ∂D is the boundary of D (assumed suffi ciently smooth) and n is the outward normal at x ∈ ∂D.
Note that G is a vector field.

Consider now an adjoint variable p(t, x) at each point (t, x) ∈ R+ ×D, the evolution law of which
will be determined shortly, and define the temporal quantity

I(t) :=

∫
D
k(t, x)p(t, x)dx.

Assuming enough smoothness in order to be able to differentiate under the integral sign (invoking

Lebesgue’s dominated convergence theorem) we have that

d

dt
I(t) = I1 + I2 :=

∫
D

(
∂k

∂t
(t, x)p(t, x) +

∂p

∂t
(t, x)k(t, x)

)
dx. (22)

By (21) we have

I1 =

∫
D

(
∇ · {D(k∗(t, x))∇ k(t, x) +D′∗(t, x)∇ k∗(t, x)k(t, x)}

)
p(t, x)dx (23)

+

∫
D

(
f ′(k∗(t, x))k(t, x)− δk(t, x)− c(t, x)

)
p(t, x)dx.
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At this point we recall Green’s theorem according to which for a vector field F and a scalar field

g, ∫
D

(F (x) · ∇ g(x) + g∇ · F (x))dx =

∫
∂D

g(x)F (x) · n(x)dS,

where by n(x) we denote the outward normal vector at x ∈ ∂D. Naturally suffi cient smoothness on
∂D must be assumed for the outward normal to be well defined. The boundary term vanishes as long

as either F ·n = 0 or g = 0 on ∂D, i.e. if either F satisfies no flux boundary conditions (e.g. Neumann
or Robin boundary conditions) or g satisfies Dirichlet boundary conditions.

We apply Green’s theorem to the first integral of (23), setting F = D0w1(k∗)∇ k +Gk and g = p

(dropping the explicit (t, x) dependence to facilitate the notation) and we have that∫
D
∇ · (D0w1(k∗)∇ k +Gk)pdx = −

∫
D

(D0w1(k∗)∇ k +Gk) · ∇ pdx,

= −
∫
D
D0w1(k∗)∇ k · ∇ pdx−

∫
D
G · p k dx

where the boundary term vanishes because of the linearized boundary condition (??). We now apply
once more Green’s theorem to the first integral, choosing F = D0w1(k∗)∇ p and g = k, and setting

∇ p · n = 0 on ∂D to eliminate the boundary term we obtain that∫
D
∇ · (D0w1(k∗)∇ k +Gk)pdx =

∫
D
∇ · (D0w1(k∗)∇ p) k dx−

∫
D

(G(k∗, x) · ∇ p) k dx.

Substituting these results in (23) (and re-instated the explicit (t, x) dependence) we obtain that

I1 =

∫
D

{
∇ · {D0(x)w1(k∗(t, x))∇ p(t, x)} −G(k∗(t, x), x) · ∇ p(t, x)

+f ′(k∗(t, x))p(t, x)− δp(t, x)

}
k(t, x)dx−

∫
D
c(t, x)p(t, x)dx.

Combining that with (22) we see that

dI

dt
=

∫
D

{
∇ · {D0(x)w1(k∗(t, x))∇ p(t, x)} −G(k∗(t, x), x) · ∇ p(t, x) (24)

+f ′(k∗(t, x))p(t, x)− δp(t, x) +
∂p

∂t
(t, x)

}
k(t, x)dx−

∫
D
c(t, x)p(t, x)dx.

and upon choosing

∇ · (D0(x)w1(k∗(t, x))∇ p(t, x))−G(k∗(t, x), x) · ∇ p(t, x)

+f ′(k∗(t, x))p(t, x)− δp(t, x) +
∂p

∂t
(t, x) = rp(t, x), x ∈ D,

26



we express (24) as

dI

dt
(t) = rI(t)−

∫
D
c(t, x)p(t, x)dx.

Setting Ī(t) = e−rtI(t), the above becomes

dĪ

dt
(t) = −e−rt

∫
D
c(t, x)p(t, x)dx

which integrated over the time interval [0, T ] yields

Ī(T )− Ī(0) = −
∫ T

0
e−rt

∫
D
c(t, x)p(t, x)dxdt,

or equivalently,

e−rT
∫
D
k(T, x)p(T, x)dx−

∫
D
k(0, x)p(0, x)dx = −

∫ T

0
e−rt

∫
D
c(t, x)p(t, x)dxdt,

which upon choosing k(0, x) = 0 a.e x ∈ D and limT→∞ e
−rT ∫

D k(T, x)p(T, x)dx = 0 leads to the

result that

0 = −
∫ ∞

0
e−rt

∫
D
c(t, x)p(t, x)dxdt. (25)

We now consider the effect of the perturbation of the optimal policy on the control objective.

Assuming once more differentiability of the utility function we see that for any ε > 0,

1

ε
(J(c∗ + εc)− J(c∗)) =

∫ ∞
0

∫
D
e−rtU ′(c∗(t, x))c(t, x)dxdt

and adding (25) to this we obtain

1

ε

(
J(c∗ + εc)− J(c∗)

)
=

∫ ∞
0

∫
D
e−rt

(
U ′(c∗(t, x))− p(t, x)

)
c(t, x)dxdt.

Since a maximum is achieved for J at c∗ we have that for ε > 0 small enough,

1

ε

(
J(c∗ + εc)− J(c∗)

)
≤ 0,

for every c such that c∗(t, x) + εc(t, x) ≥ 0, a.e. (t, x) ∈ R+ × D, for suffi ciently small ε > 0, which

when combined with (??) leads to the inequality∫ ∞
0

∫
D
e−rt

(
U ′(c∗(t, x))− p(t, x)

)
c(t, x)dxdt ≤ 0,

for every c such that c∗(t, x) + εc(t, x) ≥ 0, a.e. (t, x) ∈ R+ × D, for suffi ciently small ε > 0. The

condition (??) is a variational inequality. If c∗(t, x) > 0, a.e. (t, x) ∈ R+ ×D, then (under continuity
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assumptions on c∗) we see that if (??) holds for any c then it will also hold for −c as well, as long as
ε > 0 is chosen small enough, so that (??) yields∫ ∞

0

∫
D
e−rt

(
U ′(c∗(t, x))− p(t, x)

)
c(t, x)dxdt = 0,

which means that

U ′∗(t, x))− p(t, x) = 0, a.e. (t, x) ∈ R+ ×D.

Collecting all the above we see that if (k∗, c∗) is an optimal path such that c∗(t, x) > 0, and p

solves the PDE

∂p

∂t
(t, x) = −∇ · (D(k∗(t, x))∇ p(t, x)) +G′(k∗(t, x), x) · ∇ p(t, x) (26)

−f ′(k∗(t, x))p(t, x) + δp(t, x) + rp(t, x), ,

with homogeneous Neumann boundary conditions for p,

∇ p(t, x) · n(x) = 0, x ∈ ∂D,

and the transversality condition

lim
T→∞

e−rT
∫
D
k(t, x)p(t, x)dx = 0,

then the optimal consumption is characterized by

U ′∗(t, x))− p(t, x) = 0, a.e. (t, x) ∈ R+ ×D, (27)

and the nonlinear PDE

∂k∗

∂t
(t, x) = ∇ · (D(k∗(t, x))∇ k∗(t, x)) + f(k∗(t, x))− δk∗(t, x)− c∗(t, x),

with initial condition k∗(0, x) = k0(x) and homogeneous Neumann boundary conditions ∇ k∗(t, x) ·
n(x) = 0 on ∂D. Note that the transversallity condition is satisfied as long as k(T, x) is bounded

and limT→∞ e
−rT p(T, x) = 0 for every x ∈ D (note that the boundedness of k(T, x) must be shown

using (21) with initial condition k(0, x) = 0). Furthermore, by using the vector calculus identities and

equivalent form for (26) is

∂p

∂t
(t, x) = −D(k∗(t, x))∇ · ∇ p(t, x)− f ′(k∗(t, x))p(t, x) + δp(t, x) + rp(t, x), (28)

where we will use the standard notation ∆p(t, x) := ∇ · ∇ p(t, x), for the Laplacian.

Using (27) and defining by G the inverse function of U ′ we obtain the coupled forward-backward
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system of PDE

∂k∗

∂t
(t, x) = ∇ · (D(k∗(t, x))∇ k∗(t, x)) + f(k∗(t, x))− δk∗(t, x)−G(p(t, x)), (29)

∂p

∂t
(t, x) = −∇ · {D(k∗(t, x))∇ p(t, x)}+D′(k∗(t, x))∇ k∗(t, x) · ∇ p(t, x) (30)

+(r + δ − f ′(k∗(t, x)))p(t, x),

with

∇ k∗(t, x) · n(x) = ∇ p(t, x) · n(x) = 0, x ∈ ∂D,

k∗(0, x) = k0(x), x ∈ D,

lim
T→∞

e−rT p(T, x) = 0, x ∈ D.

The optimal state capital spatio-temporal allocation k∗ is characterized by the solution of this system

whereas the optimal consumption c∗ is recovered from the adjoint variable upon setting c∗ = G(p)

pointwise (or equivalently solving U ′(c∗(t, x)) = p(t, x) pointwise).

B Hamiltonian structure

The Hamiltonian structure arises by first considering the Lagrangian form of the problem by eliminat-

ing consumption from the budget constraint (assumed to be binding on account of strict monotonicity

of the utility function u). This yields the problem in the calculus of variations form

max
k

∫ ∞
0

∫
D
e−rtu(∇ · (D(k)∇ k) + f(k)− δk − k′)dxdt.

We will express that as a minimization problem of the form

min
k

∫ ∞
0

∫
D
L(t, k(t, x), k′(t, x))dxdt,

where L is the Lagrangian density

L(t, k, k′ = e−rtu(∇ · (D(k)∇ k) + f(k)− δk − k′).

Then, using standard techniques from convex analysis we can define the Hamiltonian density

H̄(t, k, p̄) := sup
k′

{
p̄k′ − L(t, k, k′)

}
,

which allows us to bring the Pontryagin system in Hamiltonian form.
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C The Kirkhoff transformation

The above system of elliptic equations may in fact be transformed into a more convenient equivalent

form.

Proposition C.1. Define the variables u = Φ(k∗) and v = Ψ(c∗) where Φ′(s) = w1(s) and Ψ = U ′, 14

and assume that Φ and Ψ are invertible and denote their inverse by φ, ψ respectively, so that k∗ = φ(u)

and c∗ = ψ(v). Then (u, v) satisfies the system of semilinear elliptic equations

0 = ∆u+∇ lnD0 · ∇u− w2(φ(u))∆ lnA− w2(φ(u))∇ lnD0 · ∇ lnA− (31)

(w2(φ(u))′∇u · ∇ lnA+
1

D0

(
f(φ(u))− δφ(u)− ψ(v)

)
, (32)

0 = ∆v +∇ lnD0 · ∇ v +
w′2(φ(u))

w1(φ(u))
∇ lnA · ∇ v − (r + δ − f ′(φ(u)))

D0w1(φ(u))
v,

which Neumann boundary conditions

The proof is straightforward and uses the Kirkhoff transformation mentioned in the exposition

and algebraic manipulation. The invertibility of the transformation is guaranteed by monotonicity

arguments (e.g. it suffi ces that D(s) > 0 and that U ′ is strictly monotone). Note however, that even

in the absense of the above conditions the system (31) may be interpreted in terms of inclusions.

Note that if the coeffi cients A and B (hence also D0 = AB) are spatially independent this system

simplifies considerably as all the gradient terms disappear, rendering it very convenient for analysis

on account of its seilinear form. If at some point w1(φ(u)) = 0 then the second equation of (31) has

to be interpreted as

0 = D0w1(φ(u))∆v −+δ − f ′(φ(u)))v,

as a singular elliptic PDE, with a similar interpretation in the case of spatially dependent coeffi cients

A and B.

D On the stability of steady states

The following proposition provides some information on the evolution of perturbations to a steady

state.

Proposition D.1. Consider a steady state solution (k∗, c∗) of the nonlinear system (??) and assume
a small time dependent perturbation of the optimal steady state of the form (k∗ + εk, c∗ + εc). Then,

14Note that v = p.

30



under suffi cient smoothness conditions the functions (k, c) satisfy the linear parabolic system

∂

∂t
k = ∇ ·

(
D0w1(k∗)∇ k + (D0w

′∗
1 )∇ k∗)k − (D0w

′∗
2 )∇ lnA)k

)
+ (f ′(k∗)− δ)k − c,

U ′′(c∗)
∂

∂t
c = −∇ ·

(
D0w1(k∗)∇ (U ′′(c∗)c) +D0w

′
1(k∗)(∇ (U ′(c∗))k

)
+G(k∗, x) · ∇ (U ′′(c∗)c) +

(
(D0w

′′
1(k∗)∇ k∗)k +D0w

′
1(k∗)∇ k − (D0w

′′
2(k∗)∇ lnA)k

)
· ∇U ′(c∗)

+(r + δ − f ′(k∗))U ′′(c∗)c− f ′′(k∗)U ′(c∗)k

Consider the elliptic eigenvalue problem

ρk = ∇ ·
(
D0w1(k∗)∇ k + (D0w

′
1(k∗)∇ k∗)k − (D0w

′
2(k∗)∇ lnA)k

)
+ (f ′(k∗)− δ)k − c,

ρU ′′(c∗)c = −∇ ·
(
D0w1(k∗)∇ (U ′′(c∗)c) +D0w

′
1(k∗)(∇ (U ′(c∗))k

)
+G(k∗, x) · ∇ (U ′′(c∗)c) +

(
(D0w

′′
1(k∗)∇ k∗)k +D0w

′
1(k∗)∇ k − (D0w

′′
2(k∗)∇ lnA)k

)
· ∇U ′(c∗)

+(r + δ − f ′(k∗))U ′′(c∗)c− f ′′(k∗)U ′(c∗)k

with Neumann boundary conditions. If the eigenvalues have positive real parts then (k∗, c∗) compatible

with the transversality condition this corresponds to a saddle point.

The above proposition provides a generalization of the usual method of treating optimal control

problems for temporal problems in the phase space, looking for a saddle point solution. The treatment

of the linearized system and the corresponding elliptic eigenvalue problem is by no means an easy task

as the relevant systems are now with spatially dependent coeffi cients. There are limited analytical

tools to treat such systems, and one may either content to a priori estimates for the spectrum or to

numerical analysis.

E Proof of Proposition 4.1

Consider the eigenvalue problem

−∆φ(x) = µφ(x), x ∈ D,

∇φ(x) · n = 0, x ∈ ∂D.

Setting this problem in the proper functional setting (e.g. considering that φ ∈ W 1,2(D) the set

of L2(D) functions with first order weak derivatives in L2(D)), it is well known that this problem

admits a discrete set of eigenvalues {µn n ∈ N} such that µn → ∞ as n → ∞, corresponding to a
set of eigenfunctions {φn : n ∈ N} which importantly are orthogonal to each other with respect to
the inner product in L2(D). Furthermore, this set of eigenfunctions constitutes a complete basis is

L2(D), so that any ψ ∈ L2(D) can be expanded in a generalized Fourier series as ψ =
∑

n∈N ψnφ with
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ψn = 〈ψ, φn〉L2(D) =
∫
D ψ(x)φn(x)dx.

This observation allows us to expand any solution (k(t, x), c(t, x)) of (14) as

k(t, x) =
∑
n∈N

kn(t)φn(x),

c(t, x) =
∑
n∈N

cn(t)φn(x),

where (kn, cn) are functions of time only to be determined and all the spatial variability (including

the boundary conditions) is captured by the eigenfunction basis {φn : n ∈ N}. By the same token,
we may expand the initial conditions (k0, c0) in the same basis as

k0(x) =
∑
n∈N

k0,nφn(x),

c0(x) =
∑
n∈N

c0,nφn(x),

with k0,n =
∫
D k0(x)φn(x)dx, and c0,n =

∫
D c0(x)φn(x)dx.

Substituting the above expansions in (14) and taking into account the fact that φn are eigenfunc-

tions of the Laplacian operator as well as the orthogonality of the eigenfunctions, upon projection on

the eigenspaces spanned by these eigenvectors we conclude that the functions zn = (kn, cn)T solve the

countable system of ODEs

z′n = Lnzn, (33)

zn(0) = zn,0,

where

Ln =

(
−D(k∗)µn + f ′(k∗)− δ −1

− U ′∗)
U ′′(c∗)f

′′(k∗) D(k∗)µn

)
=

(
−D(k∗)µn + r −1

− U ′(c∗)
U ′′(c∗)f

′′(k∗) D(k∗)µn

)
,

and we took into account the fact that w2(k∗)
w1(k∗) = − f ′∗)

f ′′(k∗) > 0.

The solution to system (33) can be expressed in terms of the exponential of the matrices Ln defined

by exp(tLn) := I +
∑∞

k=1
1
k! t

kLkn, using the formula

zn(t) = exp(tLn)zn,0.

This expression shows that the behaviour of zn(t) is characterized by the behaviour of the matrix

exponential exp(tLn) and depends on the initial condition. If this matrix exponential grows as t →
∞, then we will observe long lasting perturbations to the flat steady state, whereas is the matrix
exponential decays as t → ∞, then we will not observe long lasting perturbations to the flat steady
state, and the system will asymptotically return to the flat steady state.

The matrix exponential exp(tLn) can be calculated in terms of the eigenvalues and the eigenvectors

of the matrix Ln, and it form depends on the spectrum of the matrix. In particular let ρ1,n, ρ2,n be
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the eigenvalues of Ln. There are three possible cases

A. ρ1,n, ρ2,n real and distinct

exp(tLn) =
1

ρ1,n − ρ2,n

(
eρ1,nt(Ln − ρ2,nI)− eρ2,nt(Ln − ρ1,nI)

)
,

B. ρ1,n = ρ2,n = ρn,

exp(tLn) = eρntI + eρntt(Ln − ρnI),

C. ρ1,n = an + ibn, ρ1,n = an − ibn, complex conjugate roots,

exp(tLn) = eant
(

cos(bnt)I +
1

bn
sin(bnt)(Ln − anI)

)
,

Case A corresponds to a saddle point solution to the linearized evolution equation (14). Clearly, the

zero function (0, 0) is a solution of (14). For some spatio-temporal perturbations around this constant

function we may expect a stable manifold like behaviour, which will allow for the controlled nature of

the system. Working in terms of the Fourier expansions of these perturbations, zn(0) = (kn(0), cn(0))T

we see that as long as kn(0) and cn(0) are appropriately chosen then zn(t) = exp(tLn)zn(0) will only

contain the contribution of one of the two exponential factors. In the controlled system choosing zn(0)

so that (Ln−ρ1,nI)zn(0) = 0, we can eliminate the contribution of the second exponential, and as long

as ρ1,n <
r
2 , this is an acceptable solution for the controlled system. The condition (Ln−ρ1,nI)zn(0) = 0

can be translated to conditions between kn(0) and cn(0) of the form cn(0) = Qnkn(0) for some suitable

Qn ∈ R. Geometrically, this can be interpreted as the projection of the graph of the stable manifold
for the saddle point on the subspace generated by the eigenfunctions of the Laplacian φn. Functions

of the form (k(0, x), c(0, x)) such that k(0, x) =
∑

n kn(0)φn(x) and c(0, x) =
∑

nQnkn(0)φn(x),

with Qn defined as above, belong to the stable manifold with the above expressions providing a

local parameterization of the (infinite) dimensional stable manifold (or rather its segments suffi ciently

close to the saddle point). The stable manifold clearly carries some spatial structure. Starting on

an initial perturbation (k(0, x), c(0, x)) on the stable manifold, this initial condition will evolve as

z(t, x) = (k(t, x), c(t, x))T with z(t, x) =
∑

n
1

ρ1,n−ρ2,n e
ρ1,nt(Ln − ρ2,nI)zn(0)φn(x) (since on the stable

manifold we have that (Ln − ρ2,nI)zn(0) = 0 for every n ∈ N). If ρ1,n < 0 for all n ∈ N such

spatio-temporal solutions starting on the linearized stable manifold, eventhough starting with a spatial

structure asymptotically in time this spatial structure will be eliminated yielding a flatbehaviour. If,

for some n ∈ N, ρ1,n ∈ (0, r2) then such modes will not decay in time but yield a spatial structure.

Clearly, linearized theory may not be provide the full picture, however, one may anticipate that such

structures may be precursors to the generation of fully nonlinear patterns. This is beyond the scope

of the present work.

One clearly sees by the above formulae that the asymptotic behaviour is dominated by the eigen-

values of Ln, leading to growth and sustainability of the perturbation if the eigenvalues have positive

real part. The eigenvalues of the matrix Ln can readily be calculated in terms of the roots of the
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quadratic equation

ρ2 − rρ+

{
D(k∗)µn(r −D(k∗)µn)− U ′(c∗)

U ′′(c∗)
f ′′(k∗)

}
= 0,

which can easily be computed as

ρj,n =
r

2
+

(−1)j

2

√
r2 − 4

[
D(k∗)µn(r −D(k∗)µn)− U ′(c∗)

U ′′(c∗)
f ′′(k∗)

]
, j = 1, 2.

To simplify the notation in this appendix we will denote D(k∗) by D and set M = U ′∗)
U ′′(c∗)f

′′(k∗) > 0,

by the properties of the utility function and the production function. Note also that since we would

like the flat fixed point to be a saddle point it must hold that M < r2

4 .

Using the labeling above, we will be in Case A (i.e. have two real roots) as long as

Dµn(r −Dµn) <
r2

4
+M.

To simplify notation further let us denote Dn = Dµn and we express the condition for two real

roots as −D2
n + rDn − ( r

2

4 + M) < 0, or equivalently −(Dn − r
2)2 −M < 0 which is always true.

Therefore, for any choice of Dn we are always in Case A, where we have two real roots - and a saddle

point. It is easily seen that ρ1,n < r/2 < ρ2,n, so that the part of the solution along the eigenvector

corresponding to the second eigenvalue will be suppressed by the dynamics of the optimal control

system as incompatible with the transversality condition. On the other hand, however, if 0 < ρ1,n

there will be an instability which will lead to the growth of a spatial pattern for the optimal system

compatible with the tranversality condition. By algebraic manipulation we see that 0 < ρ1,n as long

as Dµn(r−Dµn)−M > 0. We therefore see that we will have two positive roots, with the acceptable

root leading to instability if the parameters of the problem are such that

M < Dµn(r −Dµn).

Since µn →∞ as n→∞ it can easily be seen that for large values of n it will hold thatDµn(r−Dµn) <

0 hence condition (??) will not hold leading to eigenvalues ρ1,n < 0, which correspond to stability of

the flat steady state. Therefore, for given values of D and M only a finite number of modes can lead

to instability and these modes will be in the set N := {n ∈ N : 0 < Dµn(r −Dµn)M}.
We now pose the following question: Suppose that we are interested in a particular unstable

pattern corresponding to a spatial mode φn as presrcibed by the relevant eigenfunction of the Laplace

operator. What will be the values of D needed to support this mode? Clearly from (??) we see that
for given n, hence given µn, if D is too large that (??) fails. Therefore, there must be a range of values
of D such that (??) holds. We express this condition as a quadratic polynomial in D, in the form

0 < −µ2
nD

2 + rµnDM.

This can never hold if the above quadratic polynomial admits no real roots, i.e., as long as r2

4 < M .
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Therefore, a spatial pattern will not appear for small enough values of the discount factor r.

F Proof of Propositions 4.5 and 4.7

We begin by expressing the state equation in the equivalent (but more convenient for our analysis)

form

∂k

∂t
= −∇ · [D̄0Bψ(k)k∇(Af ′(k))] +Af(k)− δk − c. (34)

We restate the Pontryagin principle for this equivalent form of the equation using Remark 3.5 leading

to an equation for the costate variable as

∂p

∂t
= D̄0Af

′′(k∗)∇ · [Bψ(k∗)k∗∇p]− D̄0B
∂

∂k
(ψ(k∗)k∗)∇(Af ′(k∗)) · ∇p+ (35)

(δ + r −Af ′(k∗))p.

The solution of the Pontryagin system in the case where D̄0 = 0 (no capital mobility) will be denoted

by k0 and its is easily seen to correspond to Af ′(k0) = δ + r, c0 = Af(k0) − δk0), U ′(c0) = p0. We

will consider an expansion of the solution of the Pontryagin system in the case of D̄0 6= 0 (small) as

k = k0 + D̄0k1 + · · · and similarly for p . By substitution in the Pontryagin system and keeping only

first order terms in D0 we obtain

0 = −∇ · [Bψ(k0)k0∇(Af ′(k0))] + [Af ′(k0)− δ]k1 − c1

0 = Af ′′(k0)∇ · (Bψ(k0)k0∇p0)−B ∂

∂k
(ψ(k0)k0) · ∇p0+

(δ + r −Af ′(k0))p1 −Af ′′(k0)p0k1.

Since Af ′(k0) = δ + r, if there is no spatial variation of δ, then the above system simplifies to

0 = rk1 − c1

0 = Af ′′(k0)∇ · (Bψ(k0)k0∇p0)−Af ′′(k0)p0k1

which provides an explicit form for k1 and c1 as

k1 =
1

p0
∇ · (Bψ(k0)k0∇p0),

c1 = rk1.

Up to the first order in D̄0 we have∫
D
|∇k|2dx =

∫
D
|∇k0|2dx+ 2D̄0

∫
D
∇k0 · ∇k1dx,

35



hence

I − I0 = 2D̄0

∫
D
∇k0 · ∇k1dx,

and the sign of I − I0 depends on the sign of
∫
D∇k0 · ∇k1dx. If this quantity is positive then capital

mobility enhances spatial inhomogeneity of capital whereas if it is negative it has the opposite effect.

We now compute this quantity in the case where A(x) = C exp(− |x−x0|
2

2σ2
), and for the case where

the production function is of the Cobb-Douglas type f(k) = Akα, ψ(k) = kρ, and U(c) = 1
1−λc

1−λ. A

straight forward calculation yields,

k0 = M0C
1/(1−α) exp(− |x− x0|2

2(1− α)σ2
),

p0 = N0C
−λ/(1−α) exp(λ

|x− x0|2
2(1− α)σ2

),

with

M0 =

(
r + δ

α

)−1/(1−α)

, N0 =

(
(1− α)δ + r

α

)−λ
M−λ0 .

After some straighforward calculations we obtain that

k1 = Λ0

[
− ρ+ 1− λ

(1− α)σ2
|x− x0|2 + d

]
exp(−(ρ+ 1)

|x− x0|2
2(1− α)σ2

),

where

Λ0 = Mρ+1
0 C(ρ+1)/(1−α) λ

1− ασ.

We now calculate ∇k0 and ∇k1 explicitly from the above expressions to get that

∇k0 · ∇k1 = Ξ0(ρ+ 1− λ)

[
|x− x0|4 + 2− (1− α)σd

ρ+ 1− λ |x− x0|2
]

exp(−ρ |x− x0|2
2(1− α)σ2

)

We can now calculate the quantity
∫
D∇k0 ·∇k1dx in terms Gaussian integrals as long as diam(D) >>

σ2. We can estimate ∫
D
|x− x0|2 exp

(
− 1

2σ̄2
|x− x0|2

)
dx ' (2πσ̄2)d/2dσ̄2,∫

D
|x− x0|4 exp

(
− 1

2σ̄2
|x− x0|2

)
dx ' (2πσ̄2)d/2ν(d)σ̄4,

for σ̄2 = (1−α)σ2

ρ , and ν(1) = 3, ν(2) = 8. Using the above formulae we obtain

∆I :=

∫
D
∇k0 · ∇k1dx ' Ξ′0(ρ+ 1− λ)

[
(1− α)σ2

ρ
ν(d) + 2− (1− α)σd

ρ+ 1− λ

]
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where

Ξ′0 = Ξ0
1

(1− α)ρσ
(2πσ̄2)d/2 > 0.

Setting z := ρ+ 1− λ we see that the sign of ∆I depends on the sign of

z

(
(1− α)σ2

ρ
ν(d) + 2− (1− α)σd

z

)
=

(
(1− α)σ2

ρ
ν(d) + 2

)
z − (1− α)σd,

hence ∆I ≤ 0 as long as

z = ρ+ 1− λ ≤ (1− α)σd
(1−α)σ2

ρ ν(d) + 2
,

from which the stated result follows.
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