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Abstract

This paper is, to our knowledge, the first paper in climate eco-

nomics to consider the combination of spatial heat transport and polar

amplification. We simplified the problem by stratifying the Earth into

latitude belts and assuming, as in North et al. (1981), that the two

hemispheres were symmetric. Our results suggest that it is possible to

build climate economic models that include the very real climatic phe-

nomena of heat transport and polar amplification and still maintain

analytical tractability. We derive optimal fossil fuel paths under heat

transport with and without polar amplification. We show that the

optimal tax function depends not only on the distribution of welfare

weights but also on the distribution of population across latitudes, the

distribution of marginal damages across latitudes and cross latitude

interactions of marginal damages, and climate dynamics. We also de-

termine optimal taxes per unit of emission and show that, in contrast

to the standard results suggesting spatially uniform emission taxes,

poorer latitudes should be taxed less per unit emissions than richer

latitudes.
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1 Introduction

While spatial heat transport and polar amplification are well-established

phenomena in the science of climate change, they have been largely ignored

in the economic modeling of climate change. This paper introduces spatial

heat transport and polar amplification in a simple spatial climate economics

model, in which the climate model is based upon the work of Alexeev et al.

(2005) and Langen and Alexeev (2007).

In this work the strength of spatial poleward heat transport from the

lower latitudes to the higher latitudes depends upon the level of global mean

average temperature, The spatial transport effect causes polar amplification

due to increased meridional latent heat transport, as discussed by Alexeev et

al. (2005) and further developed by Alexeev and Langen (2007) and Alexeev

and Jackson (2012).

In order to exhibit the economic and climatic effects of spatial heat

transport in the clearest and simplest possible way, we stratify the Earth

into latitude belts and model the change in damages to each latitude belt

from increased CO2 into the atmosphere from fossil fuel use in economic

production activities located at each latitude. In order to focus completely

on spatial climatic heat transport, we assume that total production at lat-

itude belt x is given by y (x, t)E (x, t)α , 0 < α < 1 where y (x, t) grows

exogenously and E (x, t) denotes emissions from fossil fuel inputs, or fossil

fuel use by an appropriate choice of units in total production. This sim-

plification and abstraction away from the allocative effects of other inputs

to production on the economic side of the model enables us to keep a tight

focus on climatic heat transport effects. In this context our approach and

contributions can be summarized in the following way.

First, consider the usual welfare optimization problem in which a social

planner chooses the latitude emissions to maximize the integral over lati-

tudes and time of discounted weighted utilities of consumption per capita

where the climate dynamics are modeled by an energy balance model with

spatial heat transport. Progress in this kind of modeling of more realistic

climate representations in Integrated Assessment Models (IAMs) has been

hindered by the analytical diffi culties in dealing with more realistic climatic

heat and moisture transport dynamics across a continuum of locations, and

the modeling of the carbon cycle under anthropogenic forcing.
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Seeking more realistic climate representations, we use a linear approxi-

mation of Pierrehumbert (2014), which he calls a “radiative forcing kernel”,

to approximate the combined dynamics equations of CO2 stock forcing,1

the dynamics of the carbon cycle, and anthropogenic emissions into the at-

mosphere. We show that by using Pierrehumbert’s radiative kernel, and by

expanding the climate dynamics of the latitude temperature field, T (x, t),

into an infinite series of even numbered Legendre polynomials, the opti-

mization model can be solved to any desired degree of accuracy for usual

specifications of utility functions and latitude climatic damages. This ana-

lytical contribution enables economists to introduce climate effects of spatial

transport and still retain some useful analytical tractability in climate eco-

nomic models at this level of aggregation. We believe that this theoretical

contribution is important for advancing analytically tractable IAM model-

ing by introducing more realistic climate dynamics than, for example, simple

three box carbon cycle models and two box temperature dynamics models,

for the climate component of IAMs. Analytic tractability enables us to un-

derstand how the climate and economic components of an IAM interact to

produce outcomes. We feel that our approach contributes to this objective.

As an example, consider the case of zero income effects when it is optimal

for the tax function to be uniform across latitudes. In this case, we show

that an increase in the strength of poleward amplification of transport of

heat energy r̂ from r̂ = 0 to a small positive number causes the optimal tax

function to shift upward or downward depending on the interaction of the

distribution of welfare weights, population, and damages per capita across

latitudes with the distribution of the temperature anomaly T (x, t) across

latitudes at each point in time. We illustrate this marginal distribution

effect of increased polar amplification with data and plots of population

distribution data across latitudes for potentially plausible per capita damage

distributions across latitudes.2

It is worth noting that our analysis indicates that ignoring heat transport

1CO2 forcing at each date t is logarithmic in the ratio of atmospheric CO2 (t) /CO2 (0)
where CO2 (0) is the pre-industrial stock.

2E.g. we might expect that poorer latitudes will experience larger per capita damages,
all other things equal (Burgess et al. (2014), Dell (2012). For example, Dell et al. (2012),
have stressed the damaging effects of climatic changes in temperature and precipitation
upon not only output levels but growth rates of poorer countries. Burgess et al. (2014)
document increased death rates due to high temperature extremes among the poor who
do not have access to adaptation strategies such as air conditioning.
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and polar amplification in the standard economic models of climate change

implies a potential bias in the calculation of emission taxes and emission

path for policy purposes. The present work on distributional impacts of

climate change suggests that it is worthwhile to generalize IAMs to include

marginal distributional impacts of spatial heat and moisture transport across

latitudes and longitudes. We believe that isolating this marginal impact of

polar amplification of heat transport on the optimal tax function is new to

our paper.

Desmet and Rossi-Hansberg (2015) have studied spatial effects in IAM

models at the level of disaggregation into latitude belts as we do in this

paper. They do not include heat transport effects across latitudes and do

not include polar amplification effects. On the other hand, they include

the important adaptation response of migration to negative climate change

while we do not include this response. Their paper shows the importance

of removing, or at least reducing, restrictions on the adaptive response of

migration.

Second, in a world where compensatory transfers are not possible, the

usual result that emission taxes should be uniform fails because of income

effects. We show that “poorer”latitudes should be taxed less than “richer”

latitudes due to income effects. Furthermore we conduct comparative dy-

namics of optimal emissions taxes w.r.t. to parameters, e.g. the strength of

heat transfer, the strength of polar amplification r̂, due to increased pole-

ward latent heat transport, and more. Our comparative dynamics indicate

that the optimal tax function depends not only on socioeconomic factors,

but also on the interactions of these factors with climate dynamics as they

are reflected in the heat transport process.

Third, our decomposition of the temperature field T (x, t) into modes

enables us to rank the modes by response times with the higher numbered

modes responding faster than the lower numbered modes. This decomposi-

tion allows us to show that optimal paths may induce polar amplification.

The remainder of this paper is organized as follows. Section 2 devel-

ops the basic analytical framework used in the paper. Section 3 conducts

welfare analysis and derives optimality conditions for the unified spatial cli-

mate and economic model. Section 4 studies the impact and exhibits the

importance of heat transfer and polar amplification in the welfare analy-

sis of climate change, and in particular on the social price of the climate
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change externality. This section shows how the comparative dynamics of

heat transfer strength and polar amplification strength depend upon the

interaction of climate component dynamics with the distribution of welfare

weights, population, and productive capacities across latitudes. Section 5

discusses optimal fossil fuel taxes in a competitive environment with income

effects; we show that optimal taxes have a spatial structure and are depen-

dent on each latitude’s output. Section 6 conducts the same type of analysis

as was done for logarithmic utility in earlier sections, but for general power

utility functions. We show that an increase in the coeffi cient of relative risk

aversion will reduce the social price of the climate externality. Section 7

includes a short summary, conclusions, and suggestions for future research.

An Appendix contains the proofs of the propositions.

2 Temperature Dynamics and Heat Transport

To study the evolution of local temperature and its impact on climate policy

when heat transport across the globe is taken into account, we build and ex-

tend the standard one-dimensional energy balance model (EBM) developed

by North (1975a,b), North et al. (1981), and Wu and North (2007). We

also substantially extend the work of Brock et al. (2013, 2014) which, for

the first time to our knowledge, introduced into an one-dimensional EBM

the anthropogenic influence on local temperature resulting from the accu-

mulation of carbon in the atmosphere and conducted economic optimization

analysis in this type of model.

Let x denote the sine of the latitude. For simplicity we will just refer

to x as “latitude”, and let Ttotal (x, t) denote surface (sea level) temperature

measured in C◦ at latitude x and time t. We assume constant albedo across

latitudes. The simplifying assumption of constant albedo allows us to cancel

out the solar input and the constant in the outgoing radiation term of North

et al. (1981) and decompose Ttotal (x, t) into two parts: a baseline part and

the temperature anomaly which is associated with human actions. Thus we

define surface temperature as:

Ttotal (x, t) ≡ Tb (x, t) + T (x, t) , (1)

where Tb (x, t) is what the temperature at (x, t) would have been if humans
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were not increasing the carbon content of the atmosphere beyond the pre-

industrial levels, and T (x, t) is the temperature anomaly, which is the

temperature increase attributed to the anthropogenic emissions of green-

house gasses (GHGs).

Let M (t) ,M0 denote the current stock of carbon content of the at-

mosphere (assuming well-mixing) at time t, and the preindustrial carbon

content respectively. Then the basic energy balance equation for the tem-

perature anomaly with human input added can be written as:

C
∂T (x, t)

∂t
= −BT (x, t) +DLT (x, t) + ξ ln

(
M (t)

M0

)
(2)

T0 (x, 0) = 0, given

LT (x, t) ≡ ∂

∂x

[(
1− x2

)
∂T (x, t)

∂x

]
, (3)

where x = 0 denotes the Equator, x = 1 denotes the North Pole and x = −1

denotes the South Pole and the heat capacity parameter “C”of North et al.

(1981) is absorbed into the other parameters of (2). That is, we put C = 1 by

absorbing it into the other parameters in (2). In (2), D is a heat transport

coeffi cient which is an adjustable parameter measured in W/(m2 )(◦C) and

has been calibrated to match observed temperatures across latitudes. It can

also be expressed in dimensionless form as in North et al. (1981). The heat

transport coeffi cient depends in principle on the global temperature anomaly

defined as:

T (t) =

∫ x=1

x=−1
T (x, t) dx. (4)

Alexeev et al. (2005) specify the heat transport coeffi cient as a function of

the temperature anomaly as follows3:

D = D (T (t)) = D (Tb (t) + T (t)) = (5)

Dref [1 + r̂ (Tb (t) + T (t)− Tb (t))] = Dref [1 + r̂T (t)] (6)

Dref = 0.445, Tb (t) ≡ T̄b = 15◦C, r̂ = 0.03/K (7)

where Tb (t) is baseline global average temperature, i.e. the integral of overall

latitude belts.

The operator L is a linear operator on the space of functions of x with

3Alexeev et al. (2005) specify r̂ to be 3% per degree Kelvin.
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the property that the nth Legendre polynomial Pn (x) is an eigenfunc-

tion of L, i.e. LPn (x) = −n (n+ 1)Pn (x).4 We use this property in

the solution of the model. The term D (T (t))LT (x, t) models therefore

the heat flux associated with the temperature anomaly. Finally the term

∆F = ξ ln (M (t) /M0) is the radiative forcing term due to anthropogenic

emissions and ξ is a temperature forcing parameter (measured in oC per W

per m2).

We assume that dynamics of carbon content of the atmosphere under

the well-mixing assumption are given by:

Ṁ (t) = −mM (t) + E (t) , M (0) = M0 , given (8)

where

E (t) =

∫ x=1

x=−1
E (x, t) dx (9)

denotes total carbon emissions generated at latitudes. Temperature dynam-

ics (2) and carbon dynamics (8) will be used as dynamic constraints in the

optimization of the objective function that reflects the economy part of our

model. To enhance the tractability of the optimized model, since in (2)

dynamics are described by partial differential equations (PDE) with a non-

linear diffusion term, we introduce two approximations, one from North et

al. (1981) and the other from Pierrehumbert (2014, equations (1)-(3)).

North et al. (1981) note that T (x, t) can be written in a series expansion

in terms of Legendre polynomials, or

T (x, t) =
∑

n=0,even

Tn (t)Pn (x) (10)

where Pn (x) is the nth Legendre polynomial. They approximate T (x, t) by

truncating the expansion at some finite N .5

Following Pierrehumbert (2014, equations (1)-(3)), the radiative forcing

4Pn (x) = 2
n

n∑
k=0

(
n
k

)(
n+ k − 1/2

n

)
, P0 (x) = 1, P2 (x) =

1
2

(
3x2 − 1

)
.

5Note that
∑∞
n=0 Tn (0)Pn (0) does not imply that all Tn (0)’s are zero. Indeed, if all

Tn (0)’s are zero then the solution of (2) would be independent of x and all spatial effects
would vanish for the anomaly. As one might expect, if one is dealing with differential
equations in an infinite dimensional space, one must specify an infinite number of initial
conditions.
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∆F can be approximated by:6

∆F =
3∑

k=0

akXk (t) (11)

Ẋk (t) = −bkXk (t) + E (t) , Xk (0) = 0 given, k = 0, 1, 2, 3. (12)

Using (10) and (11),(12) into (2), and assuming for the moment a fixed

D, we can write the temperature anomaly dynamics as:

∂T (x, t)

∂t
=

∞∑
n=0,even

Ṫn (t)Pn (x) = −BT (x, t) +D

[ ∞∑
n=0

λnTn (t)Pn (x)

]
+

3∑
k=0

akXk (t) (13)

Ẋk (t) = −bkXk (t) + E (t) , Xk (0) = 0 given, k = 0, 1, 2, 3 (14)

T0 (x, 0) =
∞∑
n=0

Tn (0)Pn (0) = 0 , given (15)

λn = n (n+ 1) . (16)

We can simplify (13) by using the property that the Legendre polynomials

are orthogonal with respect to the inner L2 product on the interval x ∈
[−1, 1], which implies that

〈Pn, Pm〉 =

∫ x=1

x=−1
Pn (x)Pm (x) dx =

2

2n+ 1
δnm (17)

δnm =

{
1 if n = m

0 if n 6= m.
(18)

Multiplying the temperature dynamics in (13) by Pn (x) , integrating over

the interval x ∈ [−1, 1] , and noting that P0 (x) = 1,
∫ 1
−1 P0 (x) = 2,

6 It is very important to recognize that Pierrehumbert (2014) specifies specific values
for {ak, bk}3k=0 which will depend upon a specific emissions path and the approximation
(11-12) for the carbon cycle dynamics may depend on that specific emissions path. We
assume in the following analysis that the approximation is good enough that we can treat
the values {ak, bk}3k=0 as constants over the set of emissions paths that we optimize over.
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∫ 1
−1 Pn (x) = 0 , n = 2, 4, 6, ..., we obtain

Ṫn (t) = − (B +Dλn)Tn (t) , Tn (0) given n = 2, 4, 6, ... (19)

Ṫ0 (t) = −BT0 (t) + ∆F , T0 (0) given. (20)

The EBM can become more realistic by allowing the diffusion coeffi cient

D to depend on the global average temperature anomaly, following Alexeev

et al. (2005), since it is expected that with a warmer atmosphere more heat

will be transported polewards. Using (6) with D = Dref , we obtain

∂T (x, t)

∂t
= (21)

−BT (x, t) + ∆F +DLT (x, t) + r̂DT (x, t) [LTb (x, t) + LT (x, t)] .

Using North’s approximation for the baseline local temperature and the local

temperature anomaly which is

T (x, t) =
∑
n,even

Tn (t)Pn (x) , Tb (x, t) =
∑
n,even

Tbn (t)Pn (x) , (22)

we can write the dynamics of the temperature anomaly as:

∂T (x, t)

∂t
= (23)

∞∑
n=0

Ṫn (t)Pn (x) = −B
∞∑
n=0

Tn (t)Pn (x) +D

[ ∞∑
n=0

λnTn (t)Pn (x)

]
+

∆F + r̂D

( ∞∑
n=0

Tn (t)Pn (x)

)( ∞∑
m=0

λm [Tbm (t) + Tm (t)]Pm (x)

)

T0 (x, 0) =

∞∑
n=0

Tn (0)Pn (0) = 0 , given.

Multiply both sides of (23) by Pn (x) and integrate over x ∈ [−1, 1] to obtain,

using (17-18) and the inner product notation
∫ x=1
x=−1 F (x)G (x) = 〈F,G〉 ,

Ṫn (t) = − [B +Dn (n+ 1)]Tn (t) + ∆F
〈1, Pn〉
〈Pn, Pn〉

(24)

+
r̂D

〈Pn, Pn〉

〈
Pn,−

∑
n even

∑
m even

Tn (t)Pn (x)m (m+ 1) [Tbm (t) + Tm (t)]Pm (x)

〉
.

n,m = 0, 2, 4, ...
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The two-mode approximation of (24) results in the following system of or-

dinary differential equations in which we omit (t) and (x) in order to ease

notation:

Ṫ0 = −BT0 +
3∑

k=0

akXk −
1

2
r̂D 〈1, 6 (T0 + T2P2) (Tb2 + T2)P2〉 (25)

= −BT0 +

3∑
k=0

akXk −
1

2
r̂D6

〈
1, T2 (Tb2 + T2)P 2

2

〉
= −BT0 +

3∑
k=0

akXk − 3r̂DT2 (Tb2 + T2) 〈P2, P2〉 (26)

Ṫ2 = − (B + 6D)T2 −
6r̂D

〈P2, P2〉
〈P2, (T0 + T2P2) (Tb2 + T2)P2〉 (27)

〈1, P2〉 = 0,
〈
1, P 2

2

〉
= 〈P2, P2〉 , P2 (x) =

1

2

(
3x2 − 1

)
. (28)

The dynamical system (25)-(28), along with

Ẋk (t) = −bkXk (t) + E (t) , Xk (0) = 0 given, k = 0, 1, 2, 3, (29)

represent the climate model that describes the evolution of temperature

across latitudes. We will use this model to derive the optimal emission

paths and the corresponding optimal spatial taxes.

3 Welfare Maximization under Heat Transfer

To study optimal emissions paths in the context of the one-dimensional

climate model described above, we consider a simple welfare maximization

problem with logarithmic utility, where world welfare is given by:∫ ∞
t=0

e−ρt
[∫ x=1

x=−1
v (x)L (x) ln

[
yEαe−φT (x)Ttotal

]]
dxdt (30)∫ ∞

0
e−ρt

[∫ 1

−1
v (x)L (x) ln

[
y (x, t)E (x, t)α e−φT (x,t)[Tb(x,t)+T (x,t)]

]]
dxdt,

where y (x, t)E (x, t)α , 0 < α < 1, E (x, t) , T (x, t) , L (x) are output per

capita, fossil fuel input, temperature anomaly and fully employed population

at location (or latitude) x at date t, respectively. The term e−φT (x)Ttotal(x,t)

reflects damages to output per capita in location x from an increase in the

10



temperature anomaly at this location. In the second equation of (30), we

have allowed damages to depend upon time and have specified damages to

depend upon total temperature at (x, t) which is defined by the sum of

baseline temperature which would have occurred if there were no human

emissions into the system, Tb (x, t), and the temperature anomaly, T (x, t) ,

caused by human emissions into the atmosphere. We assume that y (x, t) ,

L (x) are exogenously given and fixed. That is, we are abstracting away from

the problem of optimally accumulating capital inputs and other inputs in

order to focus sharply on optimal fossil fuel taxes. Finally, v (x) represents

welfare weights associated with location x.

Formulation (30) allows the incorporation of another very important as-

pect of spatially distributed damages from climate change, namely damages

from precipitation. Defining total precipitation as the sum of baseline pre-

cipitation and the precipitation anomaly or Ptotal (x, t) = Pb (x, t)+P (x, t) ,

Castruccio et al. (2014) suggest the following approximation for the precip-

itation anomaly:7

P (x, t) = ψ (x)T (x, t) . (31)

Assuming exponential precipitation damages of the form exp (−ϕ (x, t) (Pb (x, t) + P (x, t)))

and using Castruccio et al.’s (2014) approximation, we can write a welfare

function that contains both temperature impacts and precipitation damages

as: ∫ ∞
0

e−ρt
∫ 1

−1
[v (x)L (x) ln (y (x, t)E (x, t)α)× (32)(

e−φ(x,t)[Tb(x,t)+T (x,t)]e−ϕ(x,t)[Pb(x,t)+ψ(x)T (x,t)]
)]
dxdt.

In the case where we are assuming logarithmic utility and exponential

damages to output both from temperature and precipitation, we can add

a baseline temperature Tb (x, t) and a baseline precipitation Pb (x, t) to the

corresponding anomalies and still be able to assert that (32) can be replaced

for optimization purposes by the equivalent problem,

max
E(x,t)

{∫ ∞
0

e−ρt
∫ 1

−1
v (x)L (x) [α lnE (x, t)− φ (x, t)T (x, t)] dxdt

}
, (33)

where φ (x, t) = φT (x, t)+ϕ (x, t)ψ (x). In the definition of φ (x, t) the term

7We ignore the conditional variance since we are working with a deterministic model.
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φT (x, t) accounts for temperature damages, while the term ϕ (x, t)ψ (x) al-

lows for precipitation damages. It should be noted that to the best of our

knowledge, this is the first time that climate science in terms of a spatial

one-dimensional EBM that incorporates the important climate science phe-

nomenon of heat transfer is combined with the spatial characteristics of

damages from temperature and precipitation. This combination results in

a model of climate economics capable of determining the value of climate

externality and optimal fossil fuel taxes.

The problem of a social planner would be to choose fossil fuel paths

E (x, t) or equivalently, by an appropriate change in units, emissions paths

E (x, t) to maximize (33) subject to climate dynamics given by (25)-(28) and

(29), and an additional constraint reflecting the potential exhaustibility of

global fossil fuel reserves.∫ ∞
t=0

E (t) dt < R0 , E (t) =

∫ x=1

x=−1
E (x, t) dx ,

∫ x=1

x=−1
R0 (x) = R0, (34)

where R0 denotes global fossil fuel reserves, and R0 (x) fossil fuel reserves in

location x.

Constraint (34) implies that the social planner is altruistic and treats

fossil fuels reserves as a common property which can be transferred across

locations. The alternative polar case is to assume that no transfers are

possible and that each location is constrained by local fossil fuel reserves, or∫ ∞
t=0

E (t, x) dt < R0 (x) for all x ∈ [−1, 1] ,

∫ x=1

x=−1
E (x, t) dx = E (t) .

(35)

We start with the welfare maximization problem of the altruistic planner,

making the simplifying assumption that the damage parameter φ (x, t) is
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independent of t. The current value Hamiltonian for this problem is:

H =

∫ x=1

x=−1
{v (x)L (x) [α lnE (x, t)− φ (x) [T0 (t) + T2 (t)P2 (x)]] (36)

−λR (t)E (t, x)} dx+

λT0 (t)

[
−BT0 +

3∑
k=0

akXk − 3r̂DT2 (Tb2 + T2) 〈P2, P2〉
]

+

λT2 (t)

[
− (B + 6D)T2 −

6r̂D

〈P2, P2〉
〈P2, (T0 + T2P2) (Tb2 + T2)P2〉

]
+

3∑
k=0

λXk (t) [−bkXk (t) + E (t)] .

The first order necessary conditions (FONC) resulting from the maxi-

mum principle, after suppressing the (x, t) arguments to ease notation when

necessary, can be obtained as follows. The optimal emission (or fossil fuel)

E∗ (x, t) path satisfies:

αv (x)L (x)

E (x, t)
= λR (t)−

3∑
k=0

λXk (t)⇒ (37)

E∗ (x, t) =
αv (x)L (x)

λR (t)−
∑3

k=0 λXk (t)
, (38)

where ξC (t) = −
∑3

k=0 λXk (t) is the social price of the climate externality

and ξF (t) = λR (t) −
∑3

k=0 λXk (t) is the social price of fossil fuels. Here

we define social price of the climate externality to allow it to be negative,

which it usually will be since it is typically a “bad”.

The costate variables evolve according to

λ̇T0 = (ρ+B)λT0 + 〈vL, φ〉+ λT26r̂D (T2 + Tb2) (39)

λ̇T2 = (ρ+B + 6D)λT2 + 〈vL, φP2〉+ λT03r̂D (2T2 + Tb2) 〈P2, P2〉

+λT26r̂D

[
T0 +

〈
P2, P

2
2

〉
〈P2, P2〉

(2T2 + Tb2)

]
(40)

λ̇Xk = (ρ+ bk)λXk − akλT0 , k = 0, 1, 2, 3 (41)

λ̇R (t) = ρλR (t) , (42)
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while temperature and externality dynamics are given by

Ṫ0 = −BT0 +
3∑

k=0

akXk − 3r̂DT2 (Tb2 + T2) 〈P2, P2〉 (43)

Ṫ2 = − (B + 6D)T2 −
6r̂D

〈P2, P2〉
〈P2, (T0 + T2P2) (Tb2 + T2)P2〉 (44)

Ẋk (t) = −bkXk (t) + E∗ (t) , (45)

and the fossil fuel constraint satisfies

E∗ (t) =

∫ x=1

x=−1
E∗ (x, t) dx ,

∫ ∞
t=0
〈1, E∗ (x, t)〉 dt = R0. (46)

If we assume that each location is constrained by local fossil fuel reserves

R0 (x) and that no transfers are possible, condition (42) should be replaced

by

λ̇R (x, t) = ρλR (x, t) . (47)

Then

E∗ (x, t) =
αv (x)L (x)

λR (x, t)−
∑3

k=0 λXk (t)
, (48)

while the fossil fuel constraint becomes∫ x=1

x=−1
E∗ (x, t) dx = R0 (x) . (49)

3.1 Welfare Maximization when Heat Transfer is Ignored

To understand the impact of heat transfer on optimal fossil fuel paths (or

emission paths) and optimal climate policy, it is helpful to consider at the

beginning welfare optimization where heat transfer is ignored, orD = 0. The

optimality conditions (39-42) with D = 0, or equivalently r̂ = 0, become:

λ̇T0 = (ρ+B)λT0 + 〈vL, φ〉 (50)

λ̇T2 = (ρ+B + 6D)λT2 + 〈vL, φP2〉 (51)

λ̇Xk = (ρ+ bk)λXk − akλT0 , k = 0, 1, 2, 3 (52)

λ̇R (t) = ρλR (t) , (53)

14



while temperature and carbon dynamics in (43-45) are independent of D.

Taking the forward solutions for the costate variables we obtain:

λT0 = −
∫ ∞
s=0

e−(ρ+B)(s−t) 〈v (x)L (x) , φ (x)〉 ds (54)

λT2 = −
∫ ∞
s=0

e−(ρ+B)(s−t) 〈v (x)L (x) , φ (x)P2 (x)〉 ds (55)

λXk =

∫ ∞
s=0

e−(ρ+bk)(s−t)akλT0 (s) ds , k = 0, 1, 2, 3. (56)

Then the optimal fossil fuel path for the log utility case is given by

E∗ (x, t) =
αv (x)L (x)

λR (0) eρt −
∑3

k=0 λXk (t)
. (57)

Using the assumption that population and the damage parameter do not

change with time, then the steady-state values for the costate variables

implied from (50-53) are:

λ∗T0 = −〈v (x)L (x) , φ (x)〉
(ρ+B)

, λ∗T2 = −〈v (x)L (x) , φ (x)P2 (x)〉
(ρ+B)

(58)

λ∗Xk = − ak
(ρ+ bk)

〈v (x)L (x) , φ (x)〉
(ρ+B)

(59)

〈v (x)L (x) , φ (x)〉 =

∫ x=1

x=−1
v (x)L (x)φ (x) dx (60)

〈v (x)L (x) , φ (x)P2 (x)〉 =

∫ x=1

x=−1
v (x)L (x)φ (x)P2 (x) dx. (61)

This means that the steady-state costate variables are independent of loca-

tion x. The resource constraint implies

R0 ≥
∫ ∞
t=0

dt

∫ x=1

x=−1
E (x, t) dx =

∫ ∞
t=0

∫ x=1

x=−1

(
αv (x)L (x)

λR (0) eρt −
∑3

k=0 λXk (t)

)
dxdt.

(62)

The initial value λR (0) can be obtained by solving (62) for this initial value

for any given value of total reserves R0. Conditions (58)-(61) and (62)

completely determine the optimal emission path for each location with the

population kept constant at each location. Since the steady-state costate

variables are independent of location x, the social price of the climate ex-

ternality and the social price of fossil fuels are independent of location x. If
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we consider the case in which each location is constrained by local fossil fuel

reserves R0 (x) , and that no transfers are possible, then the local resource

constraint implies

∫ x=1

x=−1
E∗ (x, t) dx =

∫ x=1

x=−1

(
αv (x)L (x)

λR (x, 0) eρt −
∑3

k=0 λXk (t)

)
dx = R0 (x) .

(63)

This constraint can be used to determine the initial value λR (x, 0) for

any given value of total local reserves R0 (x) . In this case, although the

social price of the climate externality does not depend on the location, the

social price of fossil fuels depends on location through local reserves. This

result is similar to an analogous result in Brock et al. (2014).

4 Heat Transport and Climate Change Policy

We move now to one of the main objectives of this paper, which is the

characterization of the impact of heat transport towards the Poles on the

social price of climate externality ξ (t) = −
∑3

k=0 λXk (t) and consequently

on optimal fossil fuel paths and fossil fuel taxes. This impact is given by the

derivative
∂ξ (t;D, r̂)

∂r̂
= −

3∑
k=0

λ
′
Xk

(t;D, r̂) . (64)

To identify this impact, given the complexity of the model, we concentrate on

the effect of a small change in r̂ from the value of r̂ = 0. Thus we concentrate

on small expansions around r̂ = 0. Note from (25)-(28) that when r̂ = 0, the

temperature dynamics in the two-mode approximation are independent of

heat transport and thus the costate variables are independent of D as shown

in section 3.1. Thus the effects of a small increase in r̂ from the value of

zero will provide information about the derivative of interest, (64). In this

expansion it seems sensible to assume that Tb (x, t) = T̄b (x) since, as we have

assumed, the anomaly temperature field, T (x, t) , is defined as the difference

between the total temperature field minus the reference temperature field

which is the pre-industrial temperature field, e.g. before 1750.

To obtain the impact of a small change in r̂ around zero, we differentiate

the optimality conditions with respect to r̂ and evaluate the derivatives at

r̂ = 0. We examine both polar cases. The case where the regulator treats
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fossil fuel reserves as a common property, and the opposite polar case where

each location is constrained by its own reserves, and fossil fuel transfers are

not possible.

Proposition 1 The impact on the social price of the climate externality
from a small increase in r̂ from r̂ = 0 at a steady state is given by:

−
3∑

k=0

λ
′
Xk

= −S (x)

[
6DT̄b2

(ρ+B)

] 3∑
k=0

[
ak

(ρ+ bk)

]
(65)

S (x) =

[
〈v (x)L (x) , φ (x)P2 (x)〉

(ρ+B + 6D)

]
, T̄b2 < 0. (66)

For proof see Appendix 1.

As shown in the proof to the proposition, T̄b2 < 0. Therefore, the sign of

this derivative depends on the distributions across latitudes of the welfare

weights v (x), the population L (x), the damages φ (x) from an increase

in global temperature, and P2 (x) that reflects the dynamics of Nature on

the spatial distribution of temperature. These effects are combined in the

quantity

S (x) =
〈v (x)L (x) , φ (x)P2 (x)〉

(ρ+B + 6D)
= (67)

1

(ρ+B + 6D)

∫ x=1

x=−1
v (x)L (x)φ (x)P2 (x) dx (68)

φ (x) = φT (x) + ψ (x)ϕ (x) . (69)

Suppose that S (x) < 0 so that −
∑3

k=0 λ
′
Xk

< 0. Recall that −
∑3

k=0 λXk
is a positive quantity. Hence a marginal increase in r̂ from r̂ = 0 shifts the

social price of the climate externality down at every (x, t). However the

sign of S (x) is not straightforward since it is determined by socioeconomic

factors (v (x) , L (x) , φ (x)) and Nature dynamics P2 (x) .

To obtain some insight about the potential sign of S (x) , we consider

the general function

f (x) =
(1− x)α0 (1 + x)β0

(
γ0 + δ0x

2
)∫ x=1

x=−1 (1− x)α0 (1 + x)β0 (γ0 + δ0x2) dx
, (70)

which can be used to approximate the distributions for distributional weights

and damages across latitudes (see Brock et al. 2013). Following work by e.g.

17



Mendelsohn et al. (2006) or Burgess et al. (2014), we assume that climate

change is expected to be most severe in poor countries surrounding the

equator, with a skew towards southern latitudes. Thus we approximate the

distribution of φT (x) by setting the parameters α0 = 4, β0 = 3, γ0 = 1, δ0 =

0. Regarding welfare weights we consider three possible alternatives: (i)

equal weights for all x with v (x) = 1, (ii) Negishi-type weights set according

to GDP per capita across latitudes as determined by Kummu and Varis

(2011). These weights are obtained by using the parameterization α0 =

2, β0 = 2.2, γ0 = 0.01, δ0 = 1 in (70), and (iii) weights where the most

importance is given to latitudes around the equator obtained by the normal

probability density function with zero mean and standard deviation equal to

0.2. Finally, for the population, we use a density function compatible with

evidence suggesting that roughly 88% of the world’s population lives in the

northern hemisphere, and about half the world’s population lives north of

27◦N.8 These densities are presented in figure 1 below.

Figure 1: Negishi-type weights 1, Importance given to the Equator 2,

Population 3, Damages 4, Equal weights 5.

The precipitation impact across latitudes is more diffi cult to assess. Fig-
8See http://visual.ly/worlds-population-2000-latitude-and-longitude.
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ure 7 of Castruccio et al. (2014) suggests that the slope ψ (x) may be

negative. For the damage distribution ϕ (x) , we consider two alternative

distributions: one the same as φT (x) , and the other with a skew towards

the northern latitudes (α0 = 3, β0 = 4, γ0 = 1, δ0 = 0). In most of the sim-

ulations, the term S (x) turns out to be negative, while with Negishi-type

weights and a steep negative slope for ψ (x) , the term S (x) becomes posi-

tive. The sign of S (x) is an empirical issue that requires further research.

The important message, however, is that taking into account the spatial

dynamics of nature emerging by heat transport across latitude, which is a

well-documented natural process, changes the social price of the climate ex-

ternality. The direction of the change depends on the natural parameters

reflected in P2 (x), but also on socioeconomic parameters reflected in the

distribution of population, climate change damages and welfare weights.

The change in the social price of the climate externality due to heat

transport effects implies that the optimal emission paths will also be affected.

This can be shown easily by taking the total derivative of E∗ (x, t) in (37)

and assuming that fossil fuel reserves are infinite so that λR (t) = 0 for all

t ≥ 0. Denoting ∂E∗(x,t;D,r̂)
∂r̂ = E∗

′
(x, t) , we obtain

E∗
′
(x, t) =

(E∗ (x, t))2

αv (x)L (x)

(
3∑

k=0

λ
′
Xk

(t;D, r̂)

)
. (71)

Since
[
(E∗ (x, t))2 /αv (x)L (x)

]
> 0, the direction of the impact of spatial

heat transport on the optimal emission path is the same as the impact of

spatial heat transport on social price of the climate externality.

4.1 Welfare Optimization, Polar Amplification, and Cross
Latitude Effects

Having established that taking into account that heat transport across lati-

tudes affects the social price of the climate externality and consequently op-

timal emission paths and taxes through socioeconomic and natural factors,

our next step is to examine the same impact on the optimal temperature

paths.

The identification of such a potential impact is important since our spa-

tial model allows us to determine the characteristics of the temperature

anomaly at the Poles, i.e. at x = ±1. An increase in the temperature anom-
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aly at the Poles is related to the phenomenon of Polar amplification, which

causes loss of Arctic sea ice. That in turn has consequences for melting land

ice and other effects. There is growing evidence suggesting a link between

rapid Arctic warming relative to the Northern hemisphere mid-latitudes.

This phenomenon has been called Arctic amplification and is expected to

increase the frequency of extreme weather events (Francis and Vavrus 2014).

Melting land ice associated with a potential meltdown of Greenland and

West Antarctica ice sheets due to polar amplifications might cause serious

global sea level rise. It is estimated that the Greenland ice sheet holds an

equivalent of 7 metres of global sea level rise, while the West Antarctica ice

sheet holds the potential for up to 3.5 metres of global sea level rise (see

Lenton et al. 2008).9 On the other hand the loss of Arctic sea ice due to

the Arctic amplification may generate economic benefits by making possible

the exploitation of natural resources and fossil fuel reserves which are not

accessible now because of the sea ice. Thus any polar or Arctic amplification

implied by welfare maximization in the context of the spatial climate model

should be taken into account.

Proposition 2 Assuming infinite fossil fuel reserves, an increase in r̂ in the
neighborhood of r̂ = 0 will cause polar amplification for the socially optimal

temperature path if the increase in r̂ reduces the social price of the climate

externality. If the increase in r̂ increases the social price of the climate

externality, there is no polar amplification. The impact from an increase in

r̂ on the Equator’s temperature (x = 0) is ambiguous.

For proof see Appendix 2.

The impact of heat transport on the social price of the climate exter-

nality depends on socioeconomic as well as natural factors. Therefore polar

amplification may emerge from an optimization model as a result of specific

choices like welfare weights or existing conditions, such as the distribution

of population or production damages from climate change across latitudes.

The potential generation of extra costs and benefits to mid-latitudes due

to polar amplification resulting from the optimizing model should be taken

into account by fine tuning the spatial damage function. A damage function
9 In the discussion about tipping points it has been stressed that the time scale of

melting of the Greenland ice sheet is much longer than Arctic sea ice melting. However
the Antarctic ice sheet could melt very fast once it gets started, but it will take an increase
of 5◦C of surface temperature for a serious destabilization.
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which includes damages to latitude x caused by spillovers from temperature

increases at other latitudes z, e.g. melting of land ice and, maybe indirect

effects caused by melting of sea ice, can be written as:

φ
(
x; {T0 (t) + T2 (t)P2 (z)}z=+1

z=−1

)
[T0 (t) + T2 (t)P2 (x)] . (72)

Damages from increased melting of land ice is a flow variable rather than

a stock variable, so the flow of damages should depend upon the flow of

melted land ice which depends, in turn, on the volume of available ice to

melt. Consider the following high-latitude belt temperature index:

I (T0 (t) , T2 (t) ; zc) ≡
∫
|z|>|zc|

(T0 (t) + T2 (t)P2 (z)) dz = (73)

2

∫
z∈[zc,1]

(T0 (t) + T2 (t)P2 (z)) dz = 2 (1− zc)
[
T0 (t) +

T2 (t)

2

]
zc (1 + zc) .

Then the damage function (72) where the high-latitude temperature anom-

aly affects mid-latitude damages can be specified as:

φ (I (T0 (t) , T2 (t) ; zc) ;x) [T0 (t) + T2 (t)P2 (x)] . (74)

It is plausible to assume that φ (·) is positive and increasing in the index
I (T0 (t) , T2 (t) ; zc) for latitudes in the set {|z| : |z| ≤ |zc|} . Note that φ (·)
might even be negative for some high latitudes because of the potential open-

ing of new shipping lanes and the potential opening of access to previously

inaccessible natural resources and fossil fuel reserves. Polar amplification

effects could become substantial if warming continues, i.e. T0 (t) continues

to increase.
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Using (74) the current value Hamiltonian (36) becomes

H =

∫ x=1

x=−1
{v (x)L (x) [α lnE (x, t)− φ (I (T0 (t) , T2 (t) ; zc) ;x) [T0 (t) + T2 (t)P2 (x)]]

−λR (t)E (t, x)} dx+

λT0 (t)

[
−BT0 +

3∑
k=0

akXk − 3r̂DT2 (Tb2 + T2) 〈P2, P2〉
]

+

λT2 (t)

[
− (B + 6D)T2 −

6r̂D

〈P2, P2〉
〈P2, (T0 + T2P2) (Tb2 + T2)P2〉

]
+

3∑
k=0

λXk (t) [−bkXk (t) + E (t)] . (75)

Polar amplification affects the costate variables for the two temperature

modes T0, T2 which are now modified, relative to (39)-(40) and evolve ac-

cording to

λ̇T0 = (ρ+B)λT0 + 〈vL, φ〉+ (76)〈
vL,

∂φ

∂I
2zc (1− zc) (1 + zc) (T0 + T2P2)

〉
+ λT26r̂D (T2 + Tb2)

λ̇T2 = (ρ+B + 6D)λT2 + 〈vL, φP2〉+

〈
vL,

∂φ

∂I
zc (1− zc) (1 + zc) (T0 + T2P2)

〉
+λT03r̂D (2T2 + Tb2) 〈P2, P2〉+ λT26r̂D

[
T0 +

〈
P2, P

2
2

〉
〈P2, P2〉

(2T2 + Tb2)

]
. (77)

The impact of polar amplification is captured by the terms〈
vL,

∂φ

∂I
2zc (1− zc) (1 + zc) (T0 + T2P2)

〉
(78)〈

vL,
∂φ

∂I
zc (1− zc) (1 + zc) (T0 + T2P2)

〉
. (79)

Although it is diffi cult to provide analytical results at this stage, it is clear

that the polar amplification will affect the shadow values of the two tem-

perature modes and through them the social price of the climate externality

and the optimal temperature path. It is worth noting that polar amplifica-

tion effects are determined by socioeconomic factors and nature dynamics.

Calibration might provide a quantification of all these effects but the insight

obtained is clear.

22



4.2 Heat transport and the social price of fossil fuels

Another issue that needs further analysis is the potential impact of heat

transport on the social price of fossil fuels, i.e. on ξF = λR (t)−
∑3

k=0 λXk (t) ,

when the social planner can allocate global reserves without cost, or on

ξF = λR (x, t)−
∑3

k=0 λXk (t) when each location owns finite reserves. This

is important since the impact of heat transport on fossil fuel paths and the

optimal tax was derived under the simplifying assumption that the fossil

fuel reserve was infinite so that the corresponding costates λR for fossil fuels

were zero. Having already determined the impact on the social price of the

externality, we need - in order to determine the impact on the social price

of fuel - to evaluate the derivative of λR (x, t) with respect to r̂.We evaluate

the derivative for the costate variable that corresponds to the case where

each location owns finite reserves. We denote this derivative by λ′R (x, t).

Proposition 3 Let ξ̄ = −
∑3

k=0 λXk be the steady-state social price of the

climate externality which is independent of heat transfer when r̂ = 0. Then

the sign of λ′R (x, 0) is opposite to the sign of ξ̄′.

For the proof see Appendix.

Thus when the social price of the climate externality goes down, the

social price of a finite fossil fuel reserve should go up because there is a

tendency to extract more and vice versa.

5 Optimal Fossil Fuel Taxes

The solution of the welfare maximization problem allows us to obtain some

insight into the structure of optimal fuel taxes, or equivalently, optimal car-

bon emission taxes. A representative firm produces output using emissions

or, equivalently, fossil fuels according to the production function y (x, t)E (x, t)α

and faces a fossil fuel tax (or carbon tax) τ (x, t) .10 Then the profit maxi-

mizing path of fossil fuel use E (x, t) is determined by

E0 (x, t) = arg max
E(x,t)

{y (x, t)E (x, t)α − τ (x, t)E (x, t)} , (80)

10To simplify things we assume that competitive markets exist so that output is sold at
a competitive world price normalized to one, while fossil fuels are bought at a competitive
world price pF that satisfies the arbitrage condition (ṗF (t) /pF (t)) = r (t), where r (t) are
world interest rates. Thus τ should be interpreted as including the exogenously determined
fossil fuel price.
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with

E0 (x, t) =

(
τ (x.t)

αy (t, x)

) 1
α=1

and (81)

y (x, t)E0 (x, t)α − τ (x, t)E0 (x, t) = (82)

(1− α) y (t, x)
1

1−α τ (x, t)
α
α=1 α

α
α=1 . (83)

Consider now the problem of the social planner whose objective is to

maximize∫ x=1

x=−1
v (x)L (x) [lnC (x, t)− φ (I (T0 (t) , T2 (t) ; zc) ;x) [T0 (t) + T2 (t)P2 (x)]] dx,

(84)

subject to climate and resource availability constraints, where C (t, x) is

per capita consumption at latitude x and time t. The planner chooses an

emission tax τ (x, t) for each latitude and then the representative firm in

each latitude takes this tax as parametric and determines fossil fuel use to

maximize latitude payoff according to (81). Taxes collected are given by

τ (x, t)E0 (x, t) . In a competitive equilibrium the lump sum transfers from

the social planner back to the consumers at latitude x at date t are equal to

the taxes collected at this latitude and they are given by

Tr (x, t) = τ (x, t)E0 (x, t) = τ (x, t)

(
τ (x.t)

αy (t, x)

) 1
α=1

. (85)

Hence in equilibrium consumption at latitude x is

C (t, x) =
[
y (x, t)E0 (x, t)α − τ (x, t)E0 (x, t)

]
+ Tr (x, t)⇒ (86)

C (t, x) = y (t, x)

(
τ (x.t)

αy (t, x)

) α
α=1

= y (t, x)
1

1−α τ (x, t)
α
α=1 α

α
α=1 . (87)

With consumption determined in terms of the fossil fuel tax by (87), the

social planner acting as a Stackelberg leader chooses the spatiotemporal path

for the fossil fuel tax τ (x, t) to maximize the integral of discounted values

of optimized objectives (84), subject to climate and resource availability

constraints. The current value Hamiltonian function for this problem is
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defined as:

H =

∫ x=1

x=−1
v (x)L (x)

{
ln
[
y (t, x)

1
1−α τ (x, t)

α
α=1 α

α
α=1

]
− (88)

−φ (I (T0 (t) , T2 (t) ; zc) ;x) [T0 (t) + T2 (t)P2 (x)]− λR (t)E (t, x)} dx+

λT0 (t)

[
−BT0 +

3∑
k=0

akXk − 3r̂DT2 (Tb2 + T2) 〈P2, P2〉
]

+

λT2 (t)

[
− (B + 6D)T2 −

6r̂D

〈P2, P2〉
〈P2, (T0 + T2P2) (Tb2 + T2)P2〉

]
+

3∑
k=0

λXk (t)

[
−bkXk (t) +

(
τ (x.t)

αy (t, x)

) 1
α=1

]
.

To provide a first insight into the optimal tax, we consider the simplest

possible case where there are infinite reserves and damages are independent

of the high-latitude index I (T0 (t) , T2 (t) ; zc). In this case the optimal tax

is determined as

τ∗ (x, t) = arg max
τ

{
v (x)L (x) ln

[
y (t, x)

1
1−α τ (x, t)

α
α=1 α

α
α=1

]
(89)

+
3∑

k=0

λXk (t) y (t, x)
1

1−α τ (x, t)
1

α=1 α
1

α=1

}
, (90)

which results in

τ∗ (x, t) = αα (v (x)L (x))α−1 y (x, t)

(
−

3∑
k=0

λXk (t)

)1−α

. (91)

For the simplest case where r̂ = 0, the optimality conditions from (88) imply

that at a steady state,

λT0 = − 〈vL, φ〉
(ρ+B)

, λXk =
ak

(ρ+ b)
, (92)

and therefore

τ∗ (x, t) =

αα (v (x)L (x))α−1

(
−

3∑
k=0

−〈vL, φ〉 ak
(ρ+B)

)1−α y (x, t) . (93)

Thus although the steady-state social price of the climate externality, i.e.,

−
∑3

k=0
ak

(ρ+b) , is independent of location, the optimal steady-state fossil fuel
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tax is linear in y (x, t) which can be interpreted as the output-productivity

component of location x. Thus there are two sources of spatial dependence

for the optimal fossil fuel tax. The first is through the proportionality fac-

tor of y (t, x) and it is the result of different welfare weights and population

across latitudes. The second is the output-productivity component y (x, t) .

Note that even if welfare weights and population differences across latitudes

are ignored, e.g. v (x)L (x) = 1, the spatial differentiation of the fossil fuel

tax is introduced by spatial differences in the output-productivity compo-

nent.

When damages depend on the high-latitude index, i.e. we have the case

φ (x, I) , then the steady state values for λT0 , λXk are

λT0 = −

〈
vL, φ+ T0

∂φ
∂I

〉
(ρ+B)

, λXk =
ak

(ρ+ b)
, (94)

and the optimal fossil fuel tax will be adjusted by the term T0
∂φ
∂I which

reflects polar amplification effects.11

It should be noted that for any given distribution of welfare weights

v (x) and population L (x) , poorer latitudes, i.e., latitudes with a relatively

lower output-productivity component y (t, x) , are taxed less per unit emis-

sions than richer latitudes. This result should be contrasted with the result

derived under the standard assumption of compensatory transfers which in-

dicates that a unit of emissions is taxed the same no matter which latitude

belt emitted it.

5.1 The Finite Reserve Case

For the finite reserve case we choose τ (x, t) to maximize{
v (x)L (x) ln

[
y (t, x)

1
1−α τ (x, t)

α
α=1 α

α
α=1

]
(95)

+

3∑
k=0

λXk (t) (αy (t, x))
1

1−α τ (x, t)
1

α=1 − λR (t)
[
(αy (t, x))

1
1−α τ (x, t)

1
α=1

]}
.

Following the same computations as above, we obtain the solution

11Note that since T0 (t) , the global mean yearly temperature is positive and is likely
to be positive for most latitudes except possibly the higher latitudes, we expect that the
added term will be positive and

〈
vL, φ+ T0

∂φ
∂I

〉
will be increased over the quantity 〈vL, φ〉

but this does not have to be the case.
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τ∗ (x, t) =

αα (v (x)L (x))α−1

(
−

3∑
k=0

λXk (t) + λR (t)

)1−a y (x, t) . (96)

Computing optimal emissions, we obtain

E∗ (x, t) =

(
τ∗ (x.t)

αy (t, x)

) 1
α=1

=
αv (x)L (x)(

−
∑3

k=0 λXk (t) + λR (t)
) . (97)

In the finite reserves case we can determine λR (t) from the resource con-

straint as:

∫ x=1

x=−1

∫ ∞
t=0

E∗ (x, t) dxdt =

∫ x=1

x=−1

∫ ∞
t=0

 αv (x)L (x)(
−
∑3

k=0 λXk (t) + λR (t)
)
 dxdt = R0.

(98)

When we consider the full model with r̂ > 0, the approach for determin-

ing the optimal tax is the same, but calculation of the social price of the

externality requires numerical approaches. It should be noted, however, that

our analysis in Proposition 1 remains valid for the Hamiltonian (88) with

damages φ (x) independent of the high-latitude index I (T0 (t) , T2 (t) ; zc) .

This is because τ (x, t) enters as a control and does affect the evolution

of the state variable associated with temperature dynamics. With propo-

sition 1 valid, it is clear that accounting for the heat transport shifts the

spatial distribution of the optimal fossil fuel taxes upwards or downwards.

The direction of the shift depends on the interactions between the spatially

differentiated socioeconomic factors and Nature’s spatiotemporal dynamics.

When reserves are finite, then the impact from an increase in r̂ is given by

combining the results of Propositions 1 and 3. In this case,

∂τ∗ (x, t)

∂r̂
=
[
(1− α) y (x, t)αα (v (x)L (x))α−1 (99)

×
(
−

3∑
k=0

λXk (t) + λR (t)

)−α(
−

3∑
k=0

λ′Xk (t) + λ′R (t)

) , (100)
where λ′Xk (t) , λ′R (t) are determined in Propositions 1 and 3.
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5.2 Heat Transport and Optimal Taxation

An interesting question arising from the introduction of heat transport and

polar amplification is whether heat transport from the equator to the Poles

increases or reduces optimal fossil fuel taxes. From (72) and (75), total

damages from the temperature anomaly can be written as:

TC (t) =

∫ x=1

x=−1
v (x)L (x)φ

(
x, T̂ (t)

)
T (t, x) dx (101)

T̂ (t) = {T0 (t) + T2 (t)P2 (z)}z=1
z=−1 (102)

T (x, t) = T0 (t) + T2 (t)P2 (x) . (103)

The marginal cost of a temperature rise at location x′, dropping t to ease

notation, can be defined as

MC(x′) =
∂TC

∂T (x′)
=

∫ x=1

x=−1
v (x)L (x)


∂φ

(
x, T̂

)
∂T (z)


z=x′

T (x) dx+

v
(
x′
)
L
(
x′
)
φ
(
x′, T̂

)
(104)

When heat transfer increases, which in our model means an increase in r̂,

then heat moves from lower latitudes to higher latitudes. If at the higher

latitudes the marginal costs MC(x′)s are small relative to lower latitudes or

even negative, the optimal emissions tax should be smaller and hence more

fossil fuels should be burned. Smaller marginal costs at high latitudes are

supported by arguments suggesting that in high latitude zones there are few

people to be damaged by more heat there, while more heat may open trade

routes, allow crops to be grown in previously frigid zones, lengthen growing

seasons, and allow access to valuable natural resources. On the other hand,

ifMC(x′)s are larger at the high latitudes than the lower latitudes, the effect

on taxes is reversed. Higher marginal costs at lower latitudes are supported

by arguments suggesting that more heat at high latitudes may destabilize ice

sheets or release carbon in the permafrost, thus creating substantial damages

to lower latitudes. In this case taxes should rise sharply.
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6 Climate Externality Price and "Safety First"

Utility

The results obtained above were based on the tractability advantages of the

logarithmic utility function. In this section we seek to identify the impact on

the social price of climate externality and the socially optimal use of fossil

fuel under a more general utility function. In particular we investigate the

class of utilities where marginal disutility increases very fast relative to the

logarithmic utility as consumption goes towards zero.

A more general utility function results in the following welfare function:

∫ ∞
t=0

e−ρt

[∫ x=1

x=−1
v (x)L (x)U

[
yEαe−φ(x)Ttotal(x,t)

L (x)

]]
dxdt = (105)

∫ ∞
0

e−ρt

[∫ 1

−1
v (x)L (x)U

[
y (x, t)E (x, t)α e−φ(x,t)[Tb(x,t)+T (x,t)]

L(x)

]]
dxdt,

which is maximized by choosing the optimal path E (x, t) , subject to the

constraints imposed by Nature dynamics and fossil fuel exhaustibility. Us-

ing the two-mode approximations and the approximations of the radiating

forcing term employed above, the current value Hamiltonian for the problem

is:

H =

∫ x=1

x=−1

{
v (x)L (x)U

[
y (x, t)E (x, t)α e−φ(x)[T0(t)+T2(t)P2(x)]

L (x)

]
−λR (t)E (t, x)} dx+

λT0 (t)

[
−BT0 +

3∑
k=0

akXk − 3r̂DT2 (Tb2 + T2) 〈P2, P2〉
]

+

λT2 (t)

[
− (B + 6D)T2 −

6r̂D

〈P2, P2〉
〈P2, (T0 + T2P2) (Tb2 + T2)P2〉

]
+

3∑
k=0

λXk (t) [−bkXk (t) + E (t)] . (106)

The FONC resulting from the maximum principle, after suppressing the

(x, t) arguments to ease notation when necessary, are presented below. The

optimal emission path E∗ (x, t) satisfies
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αv (x)L (x)
[
U ′
(
C̆ (x, t)

)
C̆ (x, t)

]
E∗ (x, t)

= λR (t)−
3∑

k=0

λXk(t) (107)

C̆ (x, t) = y (x)E∗ (x, t)α e−φ(x)[T0(t)+Tb0(t)+(T2(t)+Tb2(t))P2(x)]. (108)

We use C̆ (x, t) to denote the output of the economy. We assume that

this output is consumed, but the consumption value has been damaged by

climate damages reflected in the exponential term. The costate variables

evolve according to:

λ̇T0 = (ρ+B)λT0 +
〈
vL, φU ′

(
C̆
)
C̆
〉

+ λT26r̂D (T2 + Tb2) (109)

λ̇T2 = (ρ+B + 6D)λT2 +
〈
vL, φP2U

′
(
C̆
)
C̆
〉

+ λT03r̂D (2T2 + Tb2) 〈P2, P2〉

+λT26r̂D

[
T0 +

〈
P2, P

2
2

〉
〈P2, P2〉

(2T2 + Tb2)

]
(110)

λ̇Xk = (ρ+ bk)λXk − akλT0 , k = 0, 1, 2, 3 (111)

λ̇R (t) = ρλR (t) . (112)

The optimality conditions for temperature dynamics, externality dynamics

and the fossil fuel constraints are the same as (43)-(47).

If the heat transport is ignored, i.e. D = 0, or equivalently r̂ = 0, the

costate variables evolve according to:

λ̇T0 = (ρ+B)λT0 +
〈
vL, φU ′

(
C̆
)
C̆
〉

(113)

λ̇T2 = (ρ+B + 6D)λT2 +
〈
vL, φP2U

′
(
C̆
)
C̆
〉

λ̇Xk = (ρ+ bk)λXk − akλT0 , k = 0, 1, 2, 3 (114)

λ̇R (t) = ρλR (t) , (115)

with forward solutions

λT0 = −
∫ ∞
s=0

e−(ρ+B)(s−t)
〈
v (x)L (x) , φ (x)U ′

(
C̆
)
C̆
〉
ds (116)

λT2 = −
∫ ∞
s=0

e−(ρ+B)(s−t)
〈
v (x)L (x) , φ (x)P2 (x)U ′

(
C̆
)
C̆
〉
ds

λXk =

∫ ∞
s=0

e−(ρ+bk)(s−t)akλT0 (s) ds , k = 0, 1, 2, 3. (117)
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Conditions (109)-(117) indicate that the neat property of the log utility

function obtained above is lost because of the term U ′
(
C̆
)
C̆ which emerges

when general utility functions are used. In order to obtain some analytical

results, we consider the class of utility functions

U (C) =
C1−γ

1− γ , (118)

where γ is both the coeffi cient of relative risk aversion and (minus) the

elasticity of marginal utility with respect to consumption, while the log

utility function is the special case γ = 1. For γ > 1, we call the class

of utilities "safety first" because in this case when the consumption value

is damaged due to climate change, the disutility increases faster than the

logarithmic utility for which γ = 1. In the same context, an increase of γ

from the value of one implies an increase in the relative risk aversion. For this

class of utility functions, we have U ′
(
C̆
)
C̆ = C̆1−γ . The main question is

whether an increase in the coeffi cient of relative risk aversion from the value

of one will have an impact on the social price of the climate externality and

the socially optimal fossil fuel path.

Using (118), the optimality condition for the optimal choice of fossil fuel

use becomes

αv (x)L (x) C̆ (x, t; r̂, γ)1−γ

E (x, t; r̂, γ)
= λR (t) + ξ (t; r̂, γ) (119)

ξ (t; r̂, γ) = −
3∑

k=0

λXk(t). (120)

Differentiating (119) with respect to γ, using ∂C̆1−γ

∂γ = − ln C̆, evaluating

the derivatives at (r̂, γ) = (0, 1) and suppressing (r̂, γ) to ease notation, we

obtain

αv (x)L (x)

[
− 1

E (x, t)2

∂E (x, t)

∂γ
− ln C̆

E (x, t)

]
=
∂λR (t)

∂γ
+
∂ξ (t)

∂γ
. (121)

To identify the impact of increasing γ from the value γ = 1 on the

social price of the climate externality, we consider expansions of any en-

dogenous variable ζ (t; r̂, γ) of our model with respect to (r̂, γ) around the
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point (r̂, γ) = (0, 1) , or

ζ (t; r̂, γ) = ζ (t; 0, 1)+
∂ζ (t; 0, 1)

∂r̂
r̂+

∂ζ (t; 0, 1)

∂γ
(γ − 1)+o (r̂, |γ − 1|) . (122)

Since we are interested in the social price of the climate externality and the

use of fossil fuels, we consider the following expansions

ξ (t; r̂, γ) = ξ (t; 0, 1) +
∂ξ (t; 0, 1)

∂r̂
r̂ +

∂ξ (t; 0, 1)

∂γ
(γ − 1) + (123)

o (r̂, |γ − 1|)

E (t; r̂, γ) = E (t; 0, 1) +
∂E (t; 0, 1)

∂r̂
r̂ +

∂E (t; 0, 1)

∂γ
(γ − 1) + (124)

o (r̂, |γ − 1|)

ξ (t) = −
3∑

k=0

λXk (t) > 0, (125)

which approximate the climate externality price and the fossil fuel use. Using

these expansions, we can state the following result.

Proposition 4 Assuming no serious poverty at any location at any time,
so that ln C̆ (x, t) > 0 for all (x, t) and λR (t) = 0 for all t, then a small

increase in the coeffi cient of relative risk aversion γ from γ = 1 will reduce

the social price of the climate externality ∂ξ(t;0,1)
∂γ = −

∑3
k=0

∂λXk (t;0,1)

∂γ < 0

for all t ≥ 0 , where

∂λXk (t; 0, 1)

∂γ
=

∫ ∞
s=t

e−ρ(s−t)ak
∂λT0 (s; 0, 1)

∂γ
ds > 0 (126)

∂λT0 (υ; 0, 1)

∂γ
=

∫ ∞
s=υ

e−ρ(s−υ)
〈
vL, φ ln C̆

〉
(s)ds > 0. (127)

For proof see Appendix.

Since in the safety-first class of utilities, climate damages in the utility

function are realized through damages in the value of consumption, and

recalling that C = yEαe−φT , and U (C) = C1−γ/ (1− γ) , it is reasonable to

expect that an increase in γ from γ = 1 will reduce the price of the climate

externality and the corresponding fuel tax when the stock of fossil fuels is

assumed to be infinite. It should also be noted that the impact of the safety-

first utility as quantified by the derivative
∂λXk (t;0,1)

∂γ depends, through the

derivative
∂λT0 (υ;0,1)

∂γ , on the socioeconomic factors v (x) , L (x) , φ (x) and the
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value of consumption C̆ adjusted for climate change damages.

7 Concluding Remarks and Suggestions for Future

Research

This paper is, to our knowledge, the first paper in climate economics to

consider the combination of spatial heat transport and polar amplification.

We simplified the problem by stratifying the Earth into latitude belts and

assuming as in North et al. (1981) and Wu and North (2007) that the two

hemispheres were symmetric so that solutions of the climate dynamics could

be expanded into an infinite series of even numbered Legendre Polynomials.

In order to obtain analytical tractability of the climate dynamics across

latitude belts and to solve the economic infinite horizon welfare economics

problem, we introduced some approximations to the climate dynamics and

some specializations to specific utility functions.

First we used a linear radiative kernel approximation to the carbon cy-

cle which has been used by Hasselmann et al. (1997) and Pierrehumbert

(2014).12 Second we truncated the Legendre polynomial expansion of the

climate dynamics to a small number of modes. Third, we built upon work

by Alexeev et al. (2005), Langen and Alexeev (2007), and Alexeev and

Jackson (2012) to motivate our specification of the heat transport function

across latitudes as a function of global average temperature. This specifi-

cation imparts a nonlinearity which we approximated by series expansion

around the case of no polar amplification where heat transport is linear.

In this paper we use logarithmic utility and exponential specification of

climate damages as a function of temperature, except in section 6 where

we use a more general utility function. We analyzed spillover effects from

higher latitudes onto lower latitudes because of amplification of warming on

the higher latitudes. Our main contributions are the following.

First, we showed that it is possible to build climate economic models that

include the very real climatic phenomena of heat transport and high lati-

tude amplification of warming (i.e. “polar amplification”) and still maintain

analytical tractability.
12Brock thanks L.P. Hansen, A. Sanstad, V. Zhorin, and L. Han at RDCEP, University

of Chicago, for stimulating conversations about radiative kernels and other ideas for solving
climate economics models while working with them on climate economic models with no
spatial transport.
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Since analytical tractability is essential for understanding the output

of more complicated and realistic models, we view this as an important

- maybe the most important - contribution of this line of research. For

example witness how important the work of North and others has been

in showing how models with spatial transport in climate dynamics can be

made analytically tractable by use of the “right”mathematics, e.g. bases of

even number Legendre polynomials and spherical harmonics. This kind of

work is used heavily to understand the computational output of much more

complicated and realistic climate models. We view ourselves as initiating a

similar line of research for the joint modeling of coupled climate dynamics

and economic dynamics. We believe that our finding regarding the link

between heat transfer, polar amplification, and optimal fuel taxes illustrates

the importance of future research in climate change economics to study the

impact of spatial energy transport across the globe.

Second, we showed that the optimal tax function, i.e. the marginal social

cost of emissions, depended upon the distribution not only of welfare weights

but also population across latitudes, the distribution of marginal damages

across latitudes and cross latitude interactions of marginal damages, along

with nature dynamics. These dynamics are reflected in the decomposition of

the temperature field into modes via the expansion of the climate dynamics

into a series of even numbered Legendre polynomials. The formulas we

obtained are quite interpretable and comparative dynamics can be quite

easily done on their components.

Third, we derived and compared optimal solutions under (i) no heat

transport, (ii) heat transport but no polar amplification, (iii) both heat

transport and polar amplification.

Fourth, we compared the solution for optimal taxes under the standard

assumption of compensatory transfers, so that a unit of emissions is taxed

the same no matter which latitude belt emitted it, with the solution for

optimal taxes in which there are no compensatory transfers at all. In this

latter case the poorer latitudes are taxed less per unit emissions than richer

latitudes. While this is obvious for the direction of the tax, we give a formula

that shows both how the interaction of the climate system with the economic

system feeds into a formula for the optimal tax per unit emissions, and

the way in which optimal taxes are differentiated across locations. We also

discuss the possibility that an increase in the heat transfer towards the Poles
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may increase or reduce fossil fuels taxes. This is an important observation

because it provides a direct link between climate dynamics, which are usually

disregarded in IAMs, and optimal economic policy.

Future research could move in different directions. First, and most im-

portant, extensive computational work should be done to locate suffi cient

conditions for spatial heat transport and polar amplification to quantita-

tively matter significantly for welfare economics at different locations on the

planet. We believe the ideal would be to conduct computational work like

that of the important work of Cai et al. (2015) to assess the quantitative

importance of taking into account heat transport. Second, it would be valu-

able to extend the results in this paper to two-dimensional space where heat

transport occurs across both latitude and longitude. Brock et al. (2013)

did this for the case of linear heat transport but did not include polar am-

plification. A third area of future research would be to extend our current

paper and the Desmet and Rossi-Hansberg (2015) paper, which addresses

migration responses to climate change, to include the impact of heat and

moisture transport across the globe. This research could build on the work

of Desmet and Rossi-Hansberg (2010), (2014), and Boucekkine et al. (2009),

(2013). The results in this paper suggest that spatial heat transfer and polar

amplification have a potentially important impact on climate change policy.

Our conjecture is, therefore, that accounting for these natural phenomena in

economic models that include policies such as adaptation to climate change,

costly mitigation, back up technologies, or difference in emissions across

different fossil fuels, would provide new insights into the effi cient design of

climate change policy.

8 Appendix

Proof of Proposition 1:
We differentiate the optimality conditions (37) - (46) with respect to r̂.

Since we are solving for the temperature anomaly it is natural to assume

that initial values of the two-mode expansion are T0 (0) = 0, T2 (0) = 0. In

the case of r̂ = 0, we obtain T2 (t) = 0 for all dates t ≥ 0. Denote derivatives

w.r.t. r̂ by primes to obtain the following.

For the two-mode temperature dynamics:
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Ṫ ′0 = −BT ′0 +

3∑
k=0

akX
′
k , T

′
0 (0) = 0 (128)

Ṫ ′2 = − (B + 6D)T ′2 − 6T0Tb2 , T
′
2 (0) = 0. (129)

For optimal emissions when the regulator treats fossil fuels reserves as a

common property:

−αv (x)L (x)E′ (x, t)

E (x, t)2 = λ′R (t)−
3∑

k=0

λ′Xk (t) (130)∫ ∞
t=0

〈
1, E′ (x, t)

〉
dt = 0. (131)

For optimal emissions when each location is constrained by its own reserves:

−αv (x)L (x)E′ (x, t)

E (x, t)2 = λ′R (x, t)−
3∑

k=0

λ′Xk (t) (132)∫ ∞
t=0

E′ (x, t) dt = 0. (133)

For the costate variables:

λ̇
′
T0 = (ρ+B)λ′T0 + 6λT2DTb2 (134)

λ̇
′
T2 = (ρ+B + 6D)λ′T2 + 3λT0DTb2 〈P2, P2〉

+6λT2D (T0 + Tb2)

〈
P2, P

2
2

〉
〈P2, P2〉

(135)

λ̇
′
Xk

= (ρ+ bk)λ
′
Xk
− akλ′T0 , k = 0, 1, 2, 3 (136)

λ̇
′
R (t) = ρλ′R (t) . (137)

The forward solutions for (134) and (136) are obtained as:

λ′Xk = ak

∫ ∞
s=t

e−(ρ+bk)(s−t)λ′T0ds where (138)

λ′T0 = −6D

∫ ∞
q=s

e−(ρ+B)(q−s)λT2 (q)Tb2 (q) dq. (139)
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In order to obtain the forward solution for (139) we need to determine

λT2 (q) , Tb2 (q). From (40) the forward solution of (135), and the steady

state for λT2 evaluated at r̂ = 0, are respectively:

λT2 (q) = −〈v (x)L (x) , φ (x)P2 (x)〉
∫ ∞
q=s

e−(ρ+B+6D)sds (140)

λ̄T2 = −〈v (x)L (x) , φ (x)P2 (x)〉
(ρ+B + 6D)

. (141)

In order to evaluate Tb2 (q) we need to go back to the original two-mode

expansion for the original energy balance model dynamics,

Ṫb (x, t) = QŜ (x) â (x)− (A+BTb (x, t)) +DLTb (x, t) (142)

Ṫb0 (t) + Ṫb2 (t)P2 (x) = Q (1− 0.482P2 (x)) a (x)−

A−BTb0 (t)−BTb2 (t)P2 (x)− 6DTb2 (t)P2 (x) . (143)

Here Q = (1/4) 1367.7W/m2 is the mean value of the solar constant divided

by 4 and the values of the other constants are taken from North (1975

a,b) as well as Ŝ (x). Since North is interested in analytical solutions with

an endogenous ice line and we are not, we can approximate the co-albedo

function â (x) ≡ 1 − α̂ (x) where α̂ (x), the latitude average of albedo, by

the parabola α̂ (x) = 0.1 + (1/2)x2.13 In order to get an approximation to

the likely sign of Tb2 (t) , we assume constant co-albedo ā. From (143) we

obtain:

Ṫb2 (t) = Qā
〈P2 (x) , (1− 0.482P2 (x))〉

〈P2 (x) , P2 (x)〉 − (B + 6D)Tb2 (t) (144)

Ṫb2 (t) = −0.482Qā− (B + 6D)Tb2 (t) . (145)

Hence, the steady state for Tb2 (t) is obtained as:

Tb2 (t)→ T̄b2 =
−0.482Qā

(B + 6D)
< 0 as t→∞. (146)

Then (139) and (138), evaluated at the steady state values
(
λ̄T2 , T̄b2

)
for

13See http://www.climatedata.info/Forcing/Forcing/albedo.htmlf Figure 1 for the
graph of average albedo by latitude.
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λT2 (q) , Tb2 (q) , result in:

λ′T0 =

[
−6DT̄b2
(ρ+B)

] [
−〈v (x)L (x) , φ (x)P2 (x)〉

(ρ+B + 6D)

]
(147)

λ′Xk =
ak

(ρ+ bk)
λ′T0 (148)

λ′Xk =

[
ak

(ρ+ bk)

] [
6DT̄b2

(ρ+B)

] [
〈v (x)L (x) , φ (x)P2 (x)〉

(ρ+B + 6D)

]
. (149)

Therefore,

−
3∑

k=0

λ
′
Xk

= −S (x)

[
6DT̄b2

(ρ+B)

] 3∑
k=0

[
ak

(ρ+ bk)

]
(150)

S (x) =

[
〈v (x)L (x) , φ (x)L (x)〉

(ρ+B + 6D)

]
, T̄b2 < 0. (151)

�
Proof of Proposition 2:
The impact of heat transport on the optimal temperature paths requires

the computation of the derivative of T (x, t) with respect to r̂ which, using

the two-mode approach, is defined as:

T ′ (x, t) = T ′0 (t) + T ′2 (t)P2 (x) . (152)

Differentiating the optimality conditions for the state variables we obtain:

Ṫ ′0 (t) = −BT ′0 +

3∑
k=0

akX
′
k , T

′
0 (0) = 0 (153)

Ṫ ′2 (t) = − (B + 6D)T ′2 − 6T0Tb2 , T
′
2 (0) = 0 (154)

Ẋ ′k (t) = −bX ′k + E′ (t) , X ′k (0) = 0 , k = 0, 1, 2, 3. (155)

We evaluate (153)-(155) at T̄b2 < 0. The solution of (155) is:

X ′k (t) = e−bkt
(
X ′k (0) +

∫ t

s=0
ebksE′ (s) ds

)
=

∫ t

s=0
ebk(s−t)E′ (s) ds. (156)

Assume that the fossil fuel reserves are infinite so that λR (t) = 0 for all

t. The derivative E′ (s)|ts=0 could be either positive or negative, depending

on the sign of the derivative of the social price of the externality given in

Proposition 1.
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Assume that socioeconomic and natural factors are such that−
∑3

k=0 λ
′
Xk

<

0, then E′ (s) > 0 at all locations x and at all dates s when reserves are in-

finite and X ′k (t) > 0 for all k, andt > 0. This because when the social price

of the climate externality goes down, fossil fuel use goes up with infinite

reserves.

Solving (153) we obtain

T ′0 (t) = e−Bt

(
T ′0 (0) +

∫ t

s=0
eBs

3∑
k=0

akX
′
k (s) ds

)
= (157)

∫ t

s=0
eB(s−t)

3∑
k=0

akX
′
k (s) ds > 0. (158)

Recall that T0 (t) is global average temperature at date t. Hence we should

expect global average temperature to increase when more fossil fuels are

used. Solving (154) and using T0 (t) > 0, T̄b2 < 0, we obtain T ′2 (t) > 0 for

all t > 0, or

T ′2 (t) = e−(B+6D)t

(
T ′2 (0)− 6D

∫ t

s=0
e(B+6D)sT0 (s)Tb2 (s) ds

)
(159)

=

∫ t−6D

s=0
e(B+6D)(s−t)T0 (s)Tb2 (s) ds > 0, (160)

since T0 (s) > 0, Tb2 (s) < 0 for all dates s. Then from the derivative (152)

we obtain:

T ′ (x, t) = T ′0 (t) + T ′2 (t)P2 (x) = T ′0 (t) + T ′2 (t)

[
1

2

(
3x2 − 1

)]
(161)

T ′ (0, t) = T ′0 (t) + T ′2 (t)P2 (0) = T ′0 (t)− T ′2 (t)

(
1

2

)
(162)

T ′ (±1, t) = T ′0 (t) + T ′2 (t)P2 (±1) = T ′0 (t) + T ′2 (t) > 0, (163)

i.e. temperature may fall or even rise at the Equator and rises at the poles.

Hence we obtain polar amplification when r̂ increases from r̂ = 0 in the case

where reserves are infinite at all locations and −
∑3

k=0 λ
′
Xk

< 0.

If −
∑3

k=0 λ
′
Xk

> 0, the signs of inequalities are reversed. That is,

E′ (t) < 0, X ′k (t) < 0, T ′0 (t) < 0, T ′2 (t) < 0 and

T ′ (±1, t) = T ′0 (t) + T ′2 (t)P2 (±1) = T ′0 (t) + T ′2 (t) < 0. (164)
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In this case temperature may fall or even rise at the Equator and fall at the

poles.�
Proof of Proposition 3:
Recall the optimality condition for the optimal emission path

E (x, t) =
αv (x)L (x)

λR (x, t) + ξ (t)
, ξ (t) = −

3∑
k=0

λXk (t) . (165)

Combining this condition with the constraint of finite fossil fuel reserves in

each location we obtain

αv (x)L (x)

∫ ∞
s=0

[
1

λR (x, 0) eρt + ξ (s)

]
ds = R0 (x) . (166)

We evaluate the last integral at r̂ = 0, where ξ (s) = ξ̄ constant and solve

for λR (x, 0) to obtain:

λR (x, 0) = ξ̄/

{
exp

[
ρξ̄R0 (x)

αv (x)L (x)

]
− 1

}
, (167)

since ∫ ∞
s=0

[
1

λR (x, 0) eρs + ξ̄

]
ds =

1

ρξ̄

[
ln

(
λR (x, 0) + ξ̄

λR (x, 0)

)]
. (168)

Differentiating (165) and (166) with respect to r̂ we obtain

E′ (x, t) = −αv (x)L (x)
λ′R (x, 0) eρs + ξ′ (t)[
λR (x, 0) eρs + ξ̄

]2 (169)

− αv (x)L (x)

∫ ∞
s=0

(
λ′R (x, 0) eρs + ξ′ (t)[
λR (x, 0) eρs + ξ̄

]2
)
ds = 0. (170)

Multiplying the nominator and denominator of the integral in (170) by e−ρs
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and solving for λ′R (x, 0) , we obtain:

λ′R (x, 0) = (171)

−
∫∞
s=0 ξ

′ (s)
{

1/
[
λR (x, 0) eρs + ξ̄

]2}
ds∫∞

s=0

{
eρs/

[
λR (x, 0) eρs + ξ̄

]2}
ds

= (172)

−ξ̄′
∫∞
s=0

{
1/
[
λR (x, 0) eρs + ξ̄

]2}
ds∫∞

s=0

{
eρs/

[
λR (x, 0) eρs + ξ̄

]2}
ds

= (173)

−ξ̄′
{
ρλR (x, 0)

[
λR (x, 0) + ξ̄

]} ∫ ∞
s=0

{
1[

λR (x, 0) eρs + ξ̄
]2
}
ds,(174)

since∫ ∞
s=0

{
eρs/

[
λR (x, 0) eρs + ξ̄

]2}
ds =

1

ρλR (x, 0)
[
λR (x, 0) + ξ̄

] . (175)

It follows from (174) that λ′R (x, 0) and ξ̄′ have opposite signs.�
Proof of Proposition 4
We differentiate the dynamical system (113)-(115) with respect to γ,

using the utility function U (C) = C1−γ

1−γ , to obtain:

∂λ̇T0
∂γ

= (ρ+B)
∂λT0
∂γ

+
〈
vL,−φ ln C̆

〉
(176)

∂λ̇T2
∂γ

= (ρ+B + 6D)
∂λT2
∂γ

+
〈
vL,−φP2 ln C̆

〉
(177)

∂λ̇Xk
∂γ

= (ρ+ bk)
∂λXk
∂γ

− ak
∂λT0
∂γ

, k = 0, 1, 2, 3 (178)

∂λ̇R (t)

∂γ
= ρ

∂λR
∂γ

. (179)

The quantity ln C̆ can be computed at (r̂, γ) = (0, 1) as

ln C̆ (x, t; 0, 1) = ln y (x, t) + α lnE (x, t; 0, 1)− (180)

φ (x) [T0 (t; 0, 1) + Tb0 (t) + (T2 (t; 0, 1) + Tb2 (t))P2 (x)] . (181)

Note that T2 (t) = 0 for all dates. It is natural to put Tb0(t) = T̄b0,

Tb2(t) = T̄b2 at steady state values for all t because the climate system

without humans would plausibly be at the steady state. Making the no-
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serious-poverty assumption at any location at any time, so that ln C̆ (x, t) >

0 for all (x, t) , we can compute the forward solution for
∂λT0
∂γ from (176) and

use it to obtain
∂λXk
∂γ from (178). Thus we have

∂λXk (t; 0, 1)

∂γ
=

∫ ∞
s=t

e−ρ(s−t)ak
∂λT0 (s; 0, 1)

∂γ
ds > 0 (182)

∂λT0 (υ; 0, 1)

∂γ
=

∫ ∞
s=υ

e−ρ(s−υ)
〈
vL, φ ln C̆

〉
(s)ds > 0. (183)

Therefore
∂ξ (t; 0, 1)

∂γ
= −

3∑
k=0

∂λXk (t; 0, 1)

∂γ
< 0. (184)

�
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