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Abstract

Variables describing the state of an environmental system such as resources (renewable or ex-
haustible), pollutants, greenhouse gases have a profound spatial dimension. This is because re-
sources or pollutants are harvested, extracted, emitted, or abated in a speci�c location or loca-
tions, the impacts of environmental variables, whether bene�cial or detrimental, have a strong
spatial dimension, and there is transport of environmental state variables across geographical space
due to natural processes. In this paper we study dynamic optimization for the joint management
of resources and pollution when pollution a¤ects resource growth and when spatial transport phe-
nomena both for the resources and the pollution are present. We present approaches that deal with
dynamic optimization in in�nite dimensional spaces which can be used as tools in environmental
and resource economic. We also present methods which can be used to study the emergence of
spatial patterns in dynamic optimizations models. Our methods draw on the celebrated Turing
di¤usion induced instability but are di¤erent from Turing�s mechanism since they apply to forward-
optimization models. We believe that this approach provides the tools to analyze a wide range of
problems with explicit spatial structure which are very often encountered in environmental and
resource economics.
Keywords: Spatial transport, renewable resource, pollution, optimization, in�nite dimensional

spaces, Tiring instability, patter formation, policy design.
JEL Classi�cation: C61, Q20, Q52

1 Introduction

Resource management - renewable or exhaustible resources - is usually analyzed in terms of dynamic
models where the resource stock is a state variable that evolves in time, and harvesting or extraction
per unit time is a control variable. The evolution of the state variables under the in�uence of resource
growth functions and harvesting or extraction is modeled in general by dynamical systems consisting
of nonlinear ordinary di¤erential equations (ODEs).

Pollution management problems are dynamic when pollution has stock and not �ow character-
istics (e.g. accumulation of phosphorus in a lake that may cause eutrophication, accumulation of
airborne particles and pollutants from combustion creating "brown clouds"). The system�s evolution
is described in this case by dynamical systems of ODEs.

However, variables describing the state of an environmental system such as resources (renewable
or exhaustible), pollutants, greenhouse gases (GHGs), heat, and precipitation have a profound spatial
dimension in addition to their temporal dimension. This is because:

�We would like to thank William Brock for many challenging ideas and suggestions.This research has been co-�nanced
by the European Social Fund �and Greek national funds through the Research Funding Program: Excellence(ARISTEIA)
�AUEB �Spatiotemporal Dynamics in Economics.�

yAthens University of Economics and Business, Department of International and European Economic Studies, xepa-
pad@aueb.gr

zAthens University of Economics and Business, Department of Statistics, ayannaco@aueb.gr
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(i) Resources or pollutants are harvested, extracted, emitted, or abated in a speci�c location or
locations.

(ii) The impacts of environmental variables, whether bene�cial or detrimental, have a strong spatial
dimension. Polar ampli�cation suggests that the temperature increases faster in the Poles than
the Equator because of heat transfer polarwards. Polar ampli�cation is an established natural
phenomenon since the recorded temperature anomaly is consistently higher at the Poles that
the Equator and results in the loss of sea ice and land ice. Loss of sea ice could be bene�cial
because of the potential opening of new shipping lanes and the potential opening of access
to previously inaccessible natural resources and fossil fuel reserves Loss of land ice may cause
damages to lower latitudes because of sea level rise. Thus there is strong spatial dimension in
climate change policies. The Atmospheric Brown Clouds (ABC) can be regarded as re�ecting
the spatial structure of air pollution. As stated in recent a UNEP study (Ramanathan et al.
(2008)), ABC consist of particles (or primary aerosols) and pollutant gases, such as nitrogen
oxides (NOx), carbon monoxide (CO), sulphur dioxide (SO2), ammonia (NH3), and hundreds of
organic gases and acids. ABC plumes which result from the combustion of biofuels from indoors;
biomass burning outdoors and fossil fuels, are found in all densely inhabited regions and oceanic
regions downwind of populated continents.1 Fisheries crashes have a profound spatial dimension
e.g. the Peruvian coastal anchovies �sheries crash on the 1970s, or the collapse of the Atlantic
northwest cod �shery o¤ the cost of Newfoundland in early 1990s.

(iii) There is transport of environmental state variables across geographical space due to natural
processes.

�Energy balance climate models (EBCMs) explicitly account for the transport of heat across
the globe from the Equator to the Poles (e.g. North et al. (1981))

�There is horizontal heat and moisture transport across the globe in more general EBCMs.

�Air-borne contaminants are transported in the atmosphere from the source of emissions
due to turbulent eddy motion and wind.

�Renewable resources move in a given spatial domain.

When forward-looking optimizing economics agents that take decisions regarding resource man-
agement or emissions ignore transport e¤ects, they essentially ignore the impact of their own actions
on the utility or pro�ts of agents located at di¤erent sites. This is a spatial externality, which is not
internalized. Therefore e¢ cient policy seeking to maximize social welfare should involve mechanisms
to internalize spatial spillovers, along with potential temporal spillovers.

It should be noted that although the spatial dimension is important in resource management not
much research in the spatial aspect of environmental and resource economics has been undertaken,
although there are notable exceptions in several cases such as:

� Spatially dependent taxes (e.g. Xabadia et al. (2004), Goetz and Zilberman (2007))

� Spatial resource models and spatial �shery models (e.g. Wilen (2007), Smith et al. (2009),
Desmet and Rossi-Hansberg (2010), Brock et al. (2014b), Brock et al. (2014a), Behringer and
Upmann (2014), Camacho and Pérez-Barahona (2015))

� Spatial models of climate and the economy (e.g. Brock et al. (2013), Brock et al. (2014c), Hassler
and Krusell (2012), Desmet and Rossi-Hansberg (2015))

1Five regional ABC hotspots around the world have been identi�ed: i) East Asia, ii) Indo-Gangetic Plain in South
Asia, iii) Southeast Asia, iv) Southern Africa; and v) the Amazon Basin.

2



The lack of substantial literature incorporating spatial issues in environmental and resource eco-
nomics can be attributed to the technical di¢ culties involved when the mathematics of optimal control
theory is extended to in�nite dimensional state spaces that naturally emerge when optimization takes
place in a spatiotemporal domains. Exceptions try to overcome the mathematical complication by
imposing a certain structure to the problem that allows simpli�cations and sometimes closed form so-
lutions. However, the importance of transport phenomena in environmental and resource economics,
and the need to design regulation for internalizing spatial externalities emerging from these transport
phenomena, make it necessary to extend dynamic optimization methods into spatial settings.

In this context we study dynamic optimization for the joint management of resources and pollution
when pollution a¤ects resource growth and when spatial transport phenomena both for the resources
and the pollution are present. We present approaches that deal with dynamic optimization in in�nite
dimensional spaces which can be used as tools in environmental and resource economics, along with
examples of their application. We also present methods which can be used to study the emergence of
spatial patterns in dynamic optimizations models.

Our methods draw on the celebrated Turing di¤usion induced instability but are di¤erent from
Turing�s mechanism since they apply to forward-optimization models. We believe that this approach
provides the tools to analyze a wide range of problems with explicit spatial structure which are very
often encountered in environmental and resource economics.

2 The model

Consider a two sector economy, consisting of an industrial sector generating emissions (pollution) and
a harvesting sector. The harvesting sector specializes in a single species. This is modelled by a density
function v whose spatiotemporal evolution is given by the partial di¤erential equation (PDE)

@

@t
v = f(v;K) + d1�v �H;

where f is a nonlinear function modelling the dynamics of the species, K is the carrying capacity of
the environment and H is a harvesting function. A typical example for the function f is the logistic
function f(v;K) = a v

�
1� v

K

�
. The term d1�n models the spatial transport of the species in terms

of a di¤usion mechanism, whereas h is a harvesting term. Importantly, the carrying capacity of the
environment is not considered to be a constant but rather a varying quantity modelled by a function
K : D � R+ ! R+. Depending on the level of complexity of the model we may discard the spatial
dependence on K and leave only the temporal dependence.

The industrial sector of the economy interacts with the harvesting sector via the carrying capacity
K. The underlying idea is that the industry sector generates pollution externalities through emissions
which have a negative e¤ect on the harvesting sector by decreasing the carrying capacity K thus
reducing the population and having a negative overall e¤ect on the harvesting.

Emissions are generated by agents at di¤erent locations x 2 D, and by s(t; x) we denote the
emissions at time t and location x. Emissions generate bene�ts locally through a bene�t function B,
in particular, B(x; s(t; x)) is the bene�t generated from emissions at point (t; x). The bene�t function
is assumed to be increasing and strictly concave.

The emissions aggregate and create an emissions stock S. The emissions stock displays spatiotem-
poral dynamics of the form

@

@t
S = d2�S � �S + s;

where d2�s models the spatial transport of the emissions and the term ��s models the natural
tendency of the environment to absorb emissions and restore to its initial state.
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The carrying capacity is negatively a¤ected by the emissions stock S. This e¤ect depends on some
weighted spatial average of the total stock i.e. is assumed to depend on

(T S)(t) =
Z
D
k(x0)S(t; x0)dx0;

where k is a kernel function modelling the e¤ect of total emissions stock on the carrying capacity. The
e¤ect of the total emissions stock on the carrying capacity is then modelled by

K(t) = K((T S)(t)) = K(
Z
D
k(x0)S(t; x0)dx0);

where K : R! R is a decreasing function which is positive and bounded away from zero.
Furthermore, harvesting must necessarily be a fraction of the total population, so it is more natural

to express H = hv where h : R+ � D ! [0; 1] and h(t; x) is the fraction of the population which is
harvested at location x at time t.

Then we get a coupled system of the form

(1)

@

@t
v = f(v;K(T (S)) + d1�v � hv;

@

@t
S = d2�S � �S + s;

where e.g. f(v; S) = �v
�
1� v

K(T )

�
. Our state equations is a coupled nonlocal reaction di¤usion

system. The variables (v; S) are the state variables and the variables (h; s) are the control variables.
The decision maker (social planner) solves the following problem. She wishes to maximize the

total pro�t from both sectors, the harvesting sector and the industrial sector. The pro�t from the
harvesting sector depends on h and is a concave function of hv. The pro�t from the industrial sector is
a concave function of emissions s and there is also a damage function Z from the total emissions stock.
We may consider therefore that the decision maker, who can be regarded as a regulator managing the
coupled system, chooses (h; s) so as to maximize

J(h; s) =

Z 1

0

Z
D
e�rt (U(h v) +B(s)� Z(S)) dxdt;

under the dynamic constraints

(2)

@

@t
v = f(v; T ) + d1�v � hv;
@

@t
S = d2�S � �S + s;

subject to homogeneous Neumann boundary conditions.
The control variable h is constrained to take values in [0; 1] and the control variable s in constrained

to take values in [0; �s] where �s is the maximum possible pollution rate allowed by the production
capacity of the economy. We assume that the control variables (h; s) lie in the convex subset of
H := L2(0;1;D)� L2(0;1;D),

C = f(h; s) 2 H; h(t; x) 2 [0; 1]; s(t; x) 2 [0; �s]; (t; x) a:e: (0;1)�Dg:

Proposition 2.1. The state equation (2) is well posed for any choice of control procedure (h; s) 2 K.
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3 A necessary condition in terms of the Pontryagin maximum prin-
ciple

In this section, assuming the existence of a solution to this optimal control system, we derive a
necessary condition that allows for the identi�cation of the optimal path and the optimal control
procedure.

In order to express the maximum principle we need to de�ne the adjoint variables (p; q), which are
solutions of the backward system

(3)

@p

@t
= �d1�p+ (h� fv)p+ rp+ U 0(hv)h;

@q

@t
= �d2�q � T �(fKK 0(T S)p) + �q + rq � Z 0(S);

where T � is the adjoint operator of T .
This system is solved for homogeneous Neumann boundary conditions and with a transversality

condition of the form

lim
t!1

e�rt
Z
D
(v(t; x)p(t; x) + S(t; x)q(t; x))dx = 0; a:e: t 2 (0;1):

An equivalent way of expressing the adjoint system is in terms of the adjoint variables (p; q) =
(�p;�q). This leads us to the equivalent backward system,

(4)

@p

@t
= �d1�p+ (h� fv)p+ rp� U 0(hv)h;

@q

@t
= �d2�q� T �(fKK 0(T S)p) + �q+ rq+ Z 0(S);

where we used the linearity of the adjoint system in (p; q). The transversality condition remains the
same, but now is expressed in terms of (p; q). The same applies for the boundary conditions. The
state equation is unchanged.

The following proposition provides the maximum principle.

Proposition 3.1. Let (v; S) be the optimal path and (h; s) be the optimal control protocol. Then, there
exists a pair of processes (p; q) which along with the quadruple (v; S; h; s) satisfy the set of forward-
backward PDEs (2)-(3) along with the maximality condition

(5)
Z
D
[(U 0(hv) + p)v� + (B0(s)� q)�]dx � 0; 8 (�; �) 2 C0;

where C0 is the relative interior of C.
An equivalent form of the maximum principle is that there exists a pair of processes (p; q) which

along with the quadruple (v; S; h; s) satisfy the set of forward-backward PDEs (2)-(4) along with the
maximality condition

(6)
Z
D
[(U 0(hv)� p)v� + (B0(s) + q)�]dx � 0; 8 (�; �) 2 C0;

Proof. See Appendix A.

Note that condition (5) can be interpreted as a condition for static maximization of the Hamiltonian

H(h; s) =

Z
D
f(U(hv) +B(s)�D(S)) + p(d1�v + f(v;K(T S))� hv) + q(d2�S � �S + s)gdx;
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over (h; s) 2 C, where v; S; p; q are considered as given functions (of space and time) and treated in
the above optimization problem as �xed functional parameters. In this sense condition (5) can be
written in equivalent form as

DH(h; s) 2 NC(h; s);

where by NC(h; s) we denote the normal cone of the convex set C at point (h; s). By the structure of
the set C it can be seen that the normal cone NC(h; s) is characterized as follows

DhU(hv) + vp > 0; if h = 0;

DhU(hv) + vp = 0; if h 2 (0; 1);
DhU(hv) + vp < 0; if h = 1;

and

DsB(s) + q > 0; if s = 0;

DsB(s) + q = 0; if s 2 (0; �s);
DsB(s) + q < 0; if s = �s;

where all the above are considered to hold a.e. in (0;1)�D, i..e.,DhU(h(t; x)v(t; x))+v(t; x)p(t; x) > 0
if h(t; x) = 0 and similarly for the other conditions.

To simplify the exposition a little, assume that the functions U and B are such that the maximum
is attained for h 2 (0; 1) and s 2 (0; �s) respectively. A condition that will certainly guarantee that
h > 0 and s > 0 is to assume that U 0(z) and B0(z) tend to +1 as z ! 0+. This condition holds for
e.g. logarithmic function. A similar condition can be imposed on the other end of the interval.

Under this assumption, and de�ning by I1 the inverse function of U 0 and I2 the inverse function
of B0, we can express the maximality condition as

U 0(hv)� p = 0;
B0(s) + q = 0;

which yields,

hv = I1(p);

s = I2(�q):

This allows to express the necessary condition in terms of (v; S; p; q) only, and characterize the
optimal path and the optimal control procedure in terms of the solution of the forward-backward
PDE system

(7)

@v

@t
= d1�v + f(v;K(T (S))� I1(�p);

@S

@t
= d2�S � �S + I2(q);

@p

@t
= �d1�p+ (r � fv(v;K(T (S)))p;

@q

@t
= �d2�q � T �(fK(v;K(T (S))K 0(T (S))p) + (r + �)q � Z 0(S);

with homogeneous Neumann boundary conditions for all the variables, initial conditions for the state
variables (v; S) and the transversality condition for the adjoint variables (p; q).
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In terms of the adjoint variables (p; q), the Hamiltonian is transformed to

H(h; s) =

Z
D
f(U(hv) +B(s)�D(S)) + p(d1�v + f(v;K(T S))� hv) + q(d2�S � �S + s)gdx;

and in view of the discussion above, the connection between the adjoint variables (p; q) and the optimal
control protocol becomes,

U 0(hv)� p = 0;
B0(s) + q = 0;

which yields,

hv = I1(p);

s = I2(�q):

This allows us to understand p as a price for the resource and q as a cost for pollution. The necessary
condition when expressed in terms of (v; S; p; q) becomes

(8)

@v

@t
= d1�v + f(v;K(T (S))� I1(p);

@S

@t
= d2�S � �S + I2(�q);

@p

@t
= �d1�p+ (r � fv(v;K(T (S)))p;

@q

@t
= �d2�q� T �(fK(v;K(T (S))K 0(T (S))p) + (r + �)q+ Z 0(S);

with homogeneous Neumann boundary conditions for all the variables, initial conditions for the state
variables (v; S) and the transversality condition for the adjoint variables (p; q).

The equation (7) (or its equivalent version (8)) is a system of nonlinear di¤erential integral equa-
tions (non-local PDEs). We will write them in explicit form in order to make the e¤ect of the kernel
k, more transparent. In order to do so, we recall the nature of the actions of the averaging operator
T and its adjoint T � on any function u : [0;1)�D ! R (see Appendix A):

(T u)(t; x) =
Z
D
k(x0)u(t; x0)dx0;

(T �u)(t; x) = k(x)
Z
D
u(t; x0)dx0:

Note that while the action of T on any spatiotemporally varying function u will deliver a function
U := T u which depends only on t, the action of T � will in general deliver a function U� := T �u that
depends on both time and space! In the special case where the averaging kernel k = k0 is a constant,
the action of T � will deliver a function which depend only on time. This physically corresponds to the
case where the e¤ect of pollution on the carrying capacity of the species is obtained by an unweighted
average of the pollution stock over the whole spatial domain D (i.e. all regions contribute equally on
the e¤ect of pollution on the carrying capacity).

In view of the above observation we may write (7) in a more explicit form. We will use the
shorthand notation

Sa(t) := T (S) =
Z
D
k(x0)S(t; x0)dx0
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and

Ka(t) := K(T (S)) = K(Sa(t));
K 0
a(t) := K

0(T (S)) = K 0(Sa(t)):

Using this notation and the de�nition of the operator T � we can express the non-local term in the
last equation of (7) as�

T �(fK(v;K(T (S))K 0(T (S))p)
�
(t; x) = k(x)

Z
D

�
fK(v(t; x

0);Ka(t))K
0
a(t)p(t; x

0)
�
dx0

= k(x)K 0
a(t)

Z
D

�
fK(v(t; x

0);Ka(t))p(t; x
0)
�
dx0

We can therefore express (7) in the more explicit form

(9)

@v

@t
(t; x) = d1�v(t; x) + f(v(t; x);Ka(t))� I1(�p(t; x));

@S

@t
(t; x) = d2�S(t; x)� �S(t; x) + I2(q(t; x));

@p

@t
(t; x) = �d1�p(t; x) + (r � fv(v(t; x);Ka(t)))p(t; x);

@q

@t
(t; x) = �d2�q(t; x)0 + (r + �)q(t; x)� Z 0(S(t; x))

� k(x)K 0
a(t)

Z
D

�
fK(v(t; x

0);Ka(t))p(t; x
0)
�
dx;

where the terms Ka(t) and K 0
a(t) have a non-local dependence on S via

(10)
Ka(t) = K

�Z
D
k(x0)S(t; x0)dx0

�
;

K 0
a(t) = K

0
�Z

D
k(x0)S(t; x0)dx0

�
:

The equation (7) is therefore expressed in explicit nonlinear nonlocal PDE form in terms of the system
(9)-(10). For most of the remaining part of the paper, we will favour the more compact formulation
(7) which uses the operator notation.

Similarly, we can express (8) in the more explicit form

(11)

@v

@t
(t; x) = d1�v(t; x) + f(v(t; x);Ka(t))� I1(p(t; x));

@S

@t
(t; x) = d2�S(t; x)� �S(t; x) + I2(�q(t; x));

@p

@t
(t; x) = �d1�p(t; x) + (r � fv(v(t; x);Ka(t)))p(t; x);

@q

@t
(t; x) = �d2�q(t; x)0 + (r + �)q(t; x) + Z 0(S(t; x))

� k(x)K 0
a(t)

Z
D

�
fK(v(t; x

0);Ka(t))p(t; x
0)
�
dx;

where the terms Ka(t) and K 0
a(t) have a non-local dependence on S via

(12)
Ka(t) = K

�Z
D
k(x0)S(t; x0)dx0

�
;

K 0
a(t) = K

0
�Z

D
k(x0)S(t; x0)dx0

�
:
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The equation (8) is therefore expressed in explicit nonlinear nonlocal PDE form in terms of the system
(11)-(12). For most of the remaining part of the paper, we will favour the more compact formulation
8 which uses the operator notation.

It is highly unlikely that the system (7) (or the equivalent form (9)-(10)) � respectively (8) (or
the equivalent form (11)-(12)) �can be solved analytically, in closed form and we need to resort to
numerical techniques. However, there is still a lot that can be said from the analysis point of view,
such as for instance the existence of solutions, uniqueness issues as well as important information on
the qualitative nature of the solutions. Such issues will be the main concern of the remaining part of
the paper.

4 The steady state solution and its properties

We are now interested in special solutions of the optimally controlled system, for which there is no
time dependence, which will be here after called the steady state solution. These can be understood as
�xed points of the forward-backward in�nite dimensional dynamical system which is presented in (7),
and is the in�nite dimensional analogue of a saddle point. Such a saddle point however, in principle
will have still a spatial structure, i.e., it will be a function of space. A steady state will be the solution
of the system of non-local partial di¤erential equations (integro-di¤erential equations)

(13)

0 = d1�v + f(v;K(T (S))� I1(�p);
0 = d2�S � �S + I2(q);
0 = �d1�p+ (r � fv(v;K(T (S)))p;
0 = �d2�q � T �(fK(v;K(T (S))K 0(T (S))p) + (r + �)q � Z 0(S);

with homogeneous Neumann boundary conditions, where the actions of the operators T and T � on
any function u (see Appendix A) are de�ned as

(T u)(x) =
Z
D
k(x0)u(x0)dx0;

(T �u)(x) = k(x)
Z
D
u(x0)dx0:

Note that in general, when T acts on any function it delivers a constant, whereas when T � acts on
any function it delivers a constant multiple of the spatially varying function k which is the averaging
kernel. In the special case where k = k0, a constant, both T and T � deliver a constant when acting on
any function. This special case, corresponds to the case where the e¤ect of pollution on the carrying
capacity of the species is obtained by an unweighted average of the pollution stock over the whole
spatial domainD (i.e. all regions contribute equally on the e¤ect of pollution on the carrying capacity).

In view of the above observation we may write (13) in a more explicit form. If the solution of
(7) is not time dependent, then the functions Ka and K 0

a will no longer depend on time and will be
constants denoted by Kc and K 0

c respectively, depending of course on the spatial distribution of S.
We can therefore express (13) in the more explicit form

(14)

0 = d1�v(x) + f(v(x);Kc)� I1(�p(x));
0 = d2�S(x)� �S(x) + I2(q(x));
0 = �d1�p(x) + (r � fv(v(x);Kc))p(x);
0 = �d2�q(x) + (r + �)q(x)� Z 0(S(x))

� k(x)K 0
c

Z
D

�
fK(v(x

0);Kc)p(x
0)
�
dx0;
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where the terms Kc and K 0
c have a non-local dependence on S via

(15)
Kc = K

�Z
D
k(x0)S(x0)dx0

�
;

K 0
c = K

0
�Z

D
k(x0)S(x0)dx0

�
:

A steady state solution is then a quadruple of functions z := (v; S; p; q) : D ! R4 which is a solution
of the system of nonlinear and nonlocal elliptic PDEs (13) (or equivalently (14)-(15)). Considering
z as a point in the function space X in which (v; S; p; q) : D ! R4 is properly de�ned (typically
X = L2(D)�L2(D)�L2(D)�L2(D)). Note that unlike the case where di¤usion is not present, now
the steady optimal solution (the analogue of the saddle point in the temporal system) carries a spatial
dependence. It is a point, when treated as an element of the in�nite dimensional space X, which is a
function space.

The solvability of the steady state system is by no means a trivial task but it can be shown that
under certain conditions, the system (13) (or equivalently (14)-(15)) admits a solution. We turn our
attention to qualitative properties of this system.

A particularly interesting steady state is the so called �at steady state, which corresponds to a
solution of (7) which is spatially independent.

We �rst address the question of when such a solution may exist. We claim that such a solution
exists when the averaging kernel k is constant k = k0 for all x 2 D. If k = k(x), i.e. if the operator
T corresponds to a weighted averaging then we claim that a �at steady state of (7) cannot exist.

Proposition 4.1 (Spatial variability of the steady state optimal solution).

(i) If the averaging kernel k is not a constant function (weighted averaging) then a �at steady state
solution of (7) does not exist. This implies that the candidate for the optimal solution necessarily
presents spatial variability.

(ii) If the averaging kernel is a constant function k = k0 (unweighted averaging corresponding to
T �S = k0

R
D S(x

0)dx0), a �at optimal steady state exists, and the corresponding optimal policy
which supports it is prescribed by the solution of the system of equations

(16)
�h =

f(�v; �K)

�v
;

�s = � �S

while it must hold that

(17)
fv(�v; �K) = r;

0 = �MfK(�v; �K) �K 0�p+ (� + r)�q � Z 0( �S):

where �K = K(M �S), �K 0 = K 0(M �S), and M =
R
D k(x

0)dx0 = L(D)k0 and L(D) is the Lebesgue
measure of D.2

Proof. The proof is given in Appendix C

The following remark is useful: The second system (17) speci�es �v and �K, while the �rst system
(16) gives the optimal policy (considered as an asymptotic optimal policy rule). The above rule is a
sensible suggestion, since it requires that the pollution rate should equal the natural rate by which
the pollution stock decays, where as the rate of regeneration of the natural resource fv(�v; �K) should
equal the discount rate r. This naturally holds for speci�c values of �v and �K (hence �S).

2L(D) is the length of D if D � R, the area of D if D � R2 and the volume of D if D � R3.
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Example 4.2 (The logistic growth model). In order to provide a concrete example of this �at steady
state solution, consider the case where the function f corresponds to logistic growth,

f(v;K) = �v
�
1� v

K

�
;

and the carrying capacity K depends on the global pollution stock in terms of an exponential decay
law as

K = Km exp (�� T (S)) ; � > 0:

In the above, Km is the maximal carrying capacity, which decreases as the pollution stock increases
(T is a positive operator).

In this case we see that

�v =
�� r
2�

�K;

�h =
�+ r

2
;

where
�K = Km exp(��M �S);

is still to be determined.
We furthermore assume that the utility, the bene�t and the damage function are all logarithmic

and of the form

U(y) = �1 ln(y); B(y) = �2 ln(y); Z(y) = �3 ln(y); �i > 0:

With this choice we see that

�p = ��p = 4��1
�K(�2 � r2)

;

�q = ��q = � �2
� �S

Finally, the last equation of (17) yields,

�S =
(�2 � �3)� + r�2

�1�M

�+ r

�� r :

This fully determines the �at optimal steady state.

5 Qualitative behavior near a steady state

We now consider a solution �z := (�v; �S; �p; �q) of the time independent problem (13). This a time
independent optimal solution not necessarily spatially independent (an in�nite dimensional analogue
of a saddle point). The stable and the unstable manifolds of this saddle point can be obtained through
linearization of the full time dependent problem (7).

Consider a solution of the full time dependent system (7) of the form Z = �z+ �z for some small �,
where z = (v; S; p; q) denote the deviation from the time independent optimal solution �z = (�v; �S; �p; �q).
The spatiotemporal evolution of z = (v; S; p; q) is approximated for small enough � by the linearized
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version of (7) which after some tedious algebra can be shown to admit the following form

(18)

@v

@t
= d1�v + fv(�z)v + fK(�z)K

0(�z)T S � I 01(��p)p;
@S

@t
= d2�S � �S + I 02(�q)q;

@p

@t
= �d1�p� �pfvv(�z)v + (r � fv(�z))p� �pfvK(�z)K 0(�z)T S;

@q

@t
= �d2�q � Z

00
( �S)s+ (� + r)q � T �(�pK 0(�z)fKv(�z)v)

� T �(fK(�z)K 0(�z)p)� T �([�pfKK(�z)(K 0(�z))2 + �pfK(�z)K
00
(�z)]T (S)):

We remark that K(�z), K 0(�z) and K 00(�z) are shorthands for the constants

K(�z) := K

�Z
D
k(x0) �S(x0)dx0

�
= Kc;

K 0(�z) := K 0
�Z

D
k(x0) �S(x0)dx0

�
= K 0

c;

K 00(�z) := K 00
�Z

D
k(x0) �S(x0)dx0

�
=: K 00

c ;

while fv(�z), fK(�z), fvv(�z), fvK(�z), fKK(�z) are shorthands for

fv(�z) = fv

�
�v(x);K

�Z
D
k(x0) �S(x0)dx0

��
= fv(�v(x);Kc);

and similarly for all the other partial derivatives of f calculated at �z.
Note that the linearized system (18) consists of a local and nonlocal part and can be expressed in

compact form as

(19) z0 = Az + Lz +Nz;

where z = (v; S; p; q)tr and

A =

0BB@
d1� 0 0 0
0 d2� 0 0
0 0 �d1� 0
0 0 0 �d2�

1CCA

L =

0BB@
fv(�z) 0 �I 01(��p) 0
0 �� 0 �I 02(�q)

��pfvv(�z) 0 r � fv(�z) 0

0 �Z 00
( �S) 0 � + r

1CCA

N =

0BBBB@
0 fK(�z)K

0(�z)T 0 0
0 0 0 0
0 ��pfvK(�z)K0(�z)T 0 0

�T �
�
�pK0(�z)fKv(�z)I

�
�T �

�
�p
h
fKK(�z)(K

0(�z))2 + fK(�z)K
00
(�z)
i
T
�

�T �
�
fK(�z)K

0(�z)I

�
0

1CCCCA
This is a linear system consisting of a local part A+ L and a nonlocal part L.
If �z is a spatially dependent solution of the time independent problem (7) then the operator

A+L is a local operator with spatially dependent coe¢ cients, while N is a nonlocal (integral) operator
again with spatially dependent coe¢ cients.
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If �z is spatially independent, i.e. corresponds to a �at steady state then all the operators, local
and nonlocal are constant coe¢ cient operators, and the analysis simpli�es considerably. Note that by
Proposition 4.1, this case can only happen if k = k0, a constant function. In this case fv(�z), fK(�z),
fvv(�z), fvK(�z), fKK(�z) are constants (i.e. independent of x) and the operator N achieves the reduced
form

N =

0BBB@
0 fK(�z)K

0(�z)T 0 0
0 0 0 0
0 ��pfvK(�z)K0(�z)T 0 0

��pK0(�z)fKv(�z)T � ��p
h
fKK(�z)(K

0(�z))2 + fK(�z)K
00
(�z)
i
T �T �fK(�z)K0(�z)T � 0

1CCCA
An important question that arises is the stability of the steady state �z. This is an optimal procedure

leading to the optimal state (�v; �S) which is supported by an optimal control policy �h = 1
�v I1(��p)

and �s = I2(�q). Is that steady state stable, i.e., what happens if we deviate from �z = (�v; �S; �p; �q)
(hence equivalently from (�v; �S; h(0); s(0))) by a small deviation that will lead to new path �z + �z =
(�v+ �v; �S+ �S; �p+ �p; �q+ �q). Under smoothness assumptions, the deviation z is given by the solution
of the linearized, nonlocal system

z0 = (A+ L)z +Nz:

In order to study the local dynamics we need to consider the linear eigenvalue problem

�u = (A+ L)u+Nu;

with homogeneous Neumann boundary conditions on @D.
The eigenmodes that correspond to eigenvalues with positive real part are unstable eigenmodes,

whereas the eigenmodes that correspond to eigenvalues with negative real part are stable eigenmodes.
This provides a generalization of the familiar picture of a saddle point, usually encountered in �nite
dimensional problems, however, care must be taken with subtle technical issues arising from the in�nite
dimensional nature of the dynamics.

The existence of stable and unstable eigenmodes can be obtained using perturbation theory for
linear operators.

6 Turing type instability formation for the controlled system

6.1 Turing instability of a �at steady state optimal solution

Assume now that the steady state solution �z := (�v; �S; �p; �q) is spatially independent, hence a con-
stant. We will call that a �at steady state optimal solution. By Proposition 4.1 this requires the
special case k = k0, a constant.

In this case, the linear operator L is a constant matrix multiplication operator of the type

L =

0BB@
a1 0 a2 0
0 a3 0 a4
a5 0 a6 0
0 a7 0 a8

1CCA(20)

and the nonlocal operator simpli�es to

N =

0BB@
0 A1T 0 0
0 0 0 0
0 A2T 0 0

A3T � A4T �T A5T � 0

1CCA ;(21)
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where ai, Ai are constants de�ned by

(22)

a1 = fv(�z); a2 = �I 01(��p); a3 = ��; a4 = �I 02(�q);
a5 = ��pfvv(�z); a6 = r � fv(�z); a7 = �Z

00
( �S); a8 = � + r;

A1 = fK(�z)K
0(�z); A2 = ��pfvK(�z)K 0(�z) A3 = ��pK 0(�z)fKv(�z);

A4 = ��p(fKK(�z)(K 0(�z))2 + fK(�z)K
00
(�z)); A5 = �fK(�z)K 0(�z);

Note that A1 = �A5 and that under smoothness assumptions on f , A2 = A3.

Example 6.1. For the logistic growth case of Example 4.2 the above constants are

a1 = r; a2 = �
K2(a2 � r2)
16a2�1

; a3 = ��; a4 =
�2

�2


2

�2M2

(a+ r)2

(a� r)2 ;

a5 = �
8a2

K2

�1
a2 � r2 ; a6 = �3

�2M2


2
(a� r)2
(a+ r)2

; a7 = � + r

In order to study the spatiotemporal evolution of a �at optimal steady state, we need to study the
constant coe¢ cient nonlocal system

(23) z0 = Az + Lz +Nz;

subject to the initial condition z(0) = Z0 (this is the known initial deviation from the �at steady state
�z; it is a known function of space) and Neumann boundary conditions.
To study the dynamics of (23) we will use a Galerkin approach to reduce the nonlocal problem (23)

to a countable system of ODEs, whose structure may reveal the qualitative features of the dynamics
and importantly, the possible spatial structures that may arise for the deviation z from the desired
�at optimal steady state �z.

Let f�n; �ng, n 2 N0 := f0; 1; 2; � � � g, be the solutions to the eigenvalue problem

���n = �n�n; in D;
r�n � � = 0; on @D

The eigenvalue �0 = 0 corresponds to the constant eigenfunction �0 = C, where C is chosen so that �0
is normalized. In particular, we choose C so that

R
D �

2
0dx = 1 which means C = (L(D))

�1=2, where
L(D) is the Lebesgue measure of D (the length of D in dimension 1, the area of D is dimension 2 and
the volume of D in dimension 3).

The set f�ng forms a complete orthonormal system for L2(D) so that expansions for (v; S; p; q) of
the form

v =
X
n2N0

vn�n; S =
X
n2N0

Sn�n; p =
X
n2N0

pn�n; q =
X
n2N0

qn�n;(24)

vn =

Z
D
v�ndx; Sn =

Z
D
S�ndx pn =

Z
D
p�ndx; qn =

Z
D
q�ndx;

are guaranteed. The orthonormality means that
R
D �n�mdx = �n;m for every n;m 2 N0.

Using this basis, the nonlocal equation (23) reduces to a countable set of ODEs for the expansion
modes (vn; Sn; pn; qn), n 2 N0 of the form (see Appendix D for details)

(25)

v00 = a1v0 + a2p0 +A1�0S0;

S00 = a3S0 + a4q0;

p00 = a5v0 + a6p0 +A2�0S0;

q00 = a7S0 + a8q0 +
�
A3�0v0 +A4�

2
0S0 +A5�0p0

	
14



and

(26)

v0n = �d1�nvn + a1vn + a2pn;
S0n = �d2�nSn + a3Sn + a4qn;
p0n = d1�npn + a5vn + a6pn;

q0n = d2�nqn + a7Sn + a8qn

where �0 = k0L(D).
Note that this is a system of uncoupled ODEs that may be solved for each n separately to provide

the full solution for (vn; Sn; pn; qn), n 2 N0 and then from that we may obtain by summing the
representations (24) the full spatiotemporal dependence.

These equations (n 2 N0) can be expressed in compact form in terms of the family of matrices
G(n) de�ned in terms of the family of matrices A(n) which is the related to the diagonalization of the
operator A in the basis of eigenfunctions of the Laplacian,

A(n) =

0BB@
�d1�n 0 0 0
0 �d2�n 0 0
0 0 d1�n 0
0 0 0 d2�n

1CCA
so that

G(n) = A(n) + L =

0BB@
a1 � d1�n 0 a2 0

0 a3 � d2�n 0 a4
a5 0 a6 + d1�n 0
0 a7 0 a8 + d2�n

1CCA ; n 2 N:(27)

Note that when n = 0, the matrix G(0) admits a di¤erent form

G(0) =

0BB@
a1 A1�0 a2 0
0 a3 0 a4
a5 A2�0 a6 0
A3�0 a7 +A4�

2
0 A5�0 a8

1CCA(28)

In terms of the above de�nitions and using the notation zn = (vn; Sn; pn; qn)tr 2 R4 for any n, we
may rewrite the set of equations (25)-(26) as

z0n = G(n)zn; n 2 N0:

The general solution of these is expressed in terms of the exponential of the matrices G(n), as

zn(t) = exp(tG(n))zn(0); n 2 N0:

We note that zn(0) is the expansion in the complete basis of eigenfunctions of the Laplacian of the
initial conditions z(0), and only the part vn(0); Sn(0) is this vector is known to us. The second part
which corresponds to the adjoint variables pn(0); qn(0) is in principle not known but this is not crucial
for our arguments that follow.

The general spatiotemporal evolution of any initial deviation z(0) =
P
n zn(0)�n from the optimal

policy and path which corresponds to the �at optimal steady state is expressed

z(t) =
X
n

zn(t)�n =
X
n2N0

exp(tG(n))zn(0)�n
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where in the above sum, for each summand, the �rst term zn(t) = exp(tG(n))zn(0) is only time depen-
dent whereas the second term contains spatiotemporal variation (the spatial dependence is contained
in the �n terms).

This expression allows us to consider the problem of pattern formation for the controlled system.
As all spatial variation comes from the second term we need �rst to consider carefully the function

X(t; x) =
X
n6=0

exp(tG(n))zn(0)�n(x);

which will specify the spatial patterns that may develop in the controlled system. This is a sum
of matrix exponentials, the asymptotic behavior of which is determined from the spectrum of the
matrices G(n). Let us denote by �i(n), i = 1; 2; 3; 4 the eigenvalues of the matrix G(n), n 6= 0.

Consider the sets

� S = fn 2 N n f0g : maxi2f1;2;3;4gRe(�i(n)) < 0g

� P = fn 2 N n f0g : Re(�i(n) 2 [0; r2 ]; i 2 f1; 2; 3; 4gg

We then have that
lim
t!1

X
n2S

exp(tG(n))zn(0)�n(x)! 0;

whereas
lim
t!1

X
n2P

exp(tG(n))zn(0)�n(x)!1;

however at an exponential rate which is allowed by the transversality condition.
We therefore conclude that possible spatial patterns allowed by the transversality condition hence

viable even under the e¤ect of control will be of the form

P (t; x) =
X
n2P

exp(tG(n))zn(0)�n(x)

This resembles a Turing pattern, a phenomenon which is often encountered in uncontrolled systems.
What is interesting here is that the pattern forming instability may be triggered by the actions of the
controller. The spatial content of the pattern is determined by the shape of the relevant eigenfunctions
�n for n 2 P.

We thus arrive at the following result

Proposition 6.2. Spatiotemporal patterns may occur for the controlled system for small enough
perturbations z(0; x) from the �at optimal steady state, as long as there exists n 2 P such that
�nz :=

R
D z(0; x)�n(x)dx 6= 0. A condition for the occurrence of patterns is the existence of n 2 Nnf0g,

such that mini2f1;2;3;4g �i(n) 2 [0; r2 ].

6.2 Turing patterns arising from a �at non optimal steady state

In the case where k = k(x) is spatially dependent, we have seen that an optimal �at steady state
cannot exist. In this case we may consider variations of the Turing mechanism of pattern formation,
by considering perturbations about �at steady states which are not optimal for the controlled system.
One such case, may be to consider a �at steady state which is optimal for the spatially independent
problem, of maximizing

J(h; s) =

Z 1

0
e�rt (U(h v) +B(s)� Z(S)) dt;
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under the dynamic constraints

(29)
v0 = f(v;K(S))� hv;

S0 = ��S + s;

Then we will take (�v; �S; �p; �q) to be saddle point of the above spatially independent problem and
consider linearizations of the optimality conditions around this �at steady state. Now we no longer
need k to be a constant, so this will lead to a linearized problem which is slightly more complicated
than the one treated in the previous section. However, the qualitative nature of the results will be
similar.

If we assume that d1 = d2 = 0 and that the averaging kernel normalized such that k(x) = k0 =
(L(D))�1 then the optimality condition forward-backward PDE (9) simpli�es to

(30)

@v

@t
(t; x) = f(v(t; x);Ka(t))� I1(�p(t; x));

@S

@t
(t; x) = ��S(t; x) + I2(q(t; x));

@p

@t
(t; x) = (r � fv(v(t; x);Ka(t)))p(t; x);

@q

@t
(t; x) = (r + �)q(t; x)� Z 0(S(t; x))

� k0K 0
a(t)

Z
D

�
fK(v(t; x

0);Ka(t))p(t; x
0)
�
dx;

where the terms Ka(t) and K 0
a(t) have a non-local dependence on S via

(31)
Ka(t) = K

�
k0

Z
D
S(t; x0)dx0

�
;

K 0
a(t) = K

0
�
k0

Z
D
S(t; x0)dx0

�
:

Assume that we look for only temporally dependent solutions. Then

Ka(t) = K

�
k0

Z
D
S(t)dx0

�
= K (k0L(D)S(t)) = K(S(t));

K 0
a(t) = K

0
�
k0

Z
D
S(t)dx0

�
= K 0 (k0L(D)S(t)) = K 0(S(t));

by the choice of the constant k0. Furthermore,

k0K
0
a(t)

Z
D
(fK(v(t);Ka(t))p(t)) dx = k0L(D)K 0

a(t)fK(v(t);Ka(t))p(t)

= K 0
a(t)fK(v(t);Ka(t))p(t);

by the choice of the constant k0. Suppressing the explicit time dependence to ease notation for such
a temporal solution (32) becomes

(32)

@v

@t
= f(v;K(S))� I1(�p);

@S

@t
= ��S + I2(q);

@p

@t
= (r � fv(v;K(S)))p;

@q

@t
= (r + �)q � Z 0(S)�K 0(S)fK(v;K(S));
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which is readily recognized as the optimality condition for the temporal optimization problem. The
saddle point for this problem will correspond to the steady state solution which will be the solution
to the set of algebraic equations

(33)

0 = f(�v;K( �S))� I1(��p);
0 = �� �S + I2(�q);
0 = (r � fv(�v;K( �S)))�p;
0 = (r + �)�q � Z 0( �S)�K 0( �S)fK(�v;K( �S));

We now consider the case where d1 = �D1, d2 = �D2 and k(x) = k0 + �k̂(x) with k0 = L(D)�1,
and consider the optimality condition forward-backward PDE (9) looking for spatiotemporal solutions
of the form Z := �z + �z where z = (v; S; p; q). We express the nonlocal term in operator form as
T = T0 + �T1, where, using u as a proxy for v; S; p; q.

(T0u)(x) =
Z
D
k0u(x

0)dx0 = k0

Z
D
u(x0)dx0;

(T1u)(x) =
Z
D
k̂(x)u(x0)dx0:

According to Appendix B the adjoint admits the form T � = T �0 + �T �1 where

(T �0 u)(x) = k0
Z
D
u(x0)dx0 = (T0u)(x);

(T1u)(x) = k̂(x)
Z
D
u(x0)dx0:

The action of T and T � to a function of the form U(t; x) = �u+ �u(t; x) is

T U = (T0 + �T1)(�u+ �u) = T0�u+ � (T0u+ T1�u) +O(�2);
T �U = (T �0 + �T �1 )(�u+ �u) = T �0 �u+ � (T �0 u+ T �1 �u) +O(�2):

We now insert an ansatz of the form Z = �z + �z into the optimality condition (7) where �z =
(�v; �S; �p; �q) is the �at steady state solution of the temporal model (32), and expand in powers of �
keeping only terms up to the �rst order. We observe that the zeroth order term is (32) calculated at
�z which vanishes, since �z is chosen to be a solution of (32) .
After some rather tedious algebra we obtain the linearized equation

(34)

@v

@t
= d1�v + fv(�z)v + fK(�z)K

0(�z)T0S � I 01(��p)p+ F (1);
@S

@t
= d2�S � �S + I 02(�q)q + F (2);

@p

@t
= �d1�p� �pfvv(�z)v + (r � fv(�z))p� �pfvK(�z)K 0(�z)T0S + F (3);

@q

@t
= �d2�q � Z

00
( �S)s+ (� + r)q � T �0 (�pK 0(�z)fKv(�z)v)� T �0 (fK(�z)K 0(�z)p)

� T �0 ([�pfKK(�z)(K 0(�z))2 + �pfK(�z)K
00
(�z)]T0(S)) + F (4)

where the source terms F := (F (1); F (2); F (3); F (4)) are known functions of space depending on the
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steady state and of the form

F (1) := +fK(�z)K
0(�z)T1 �S;

F (2) := 0

F (3) := ��pfvK(�z)K 0(�z)T1 �S;
F (4) := �T �1 (�pK 0(�z)fKv(�z)�v)� T �1 (fK(�z)K 0(�z)�p)

� T �0 ([�pfKK(�z)(K 0(�z))2 + �pfK(�z)K
00
(�z)]T1( �S))� T �1

�
�pK 0(�z)fKv(�z)

�
:

The linearized system is can be brought into the general compact form

(35) z0 = Az + Lz +Nz + F

where the operators L and N are of the same form as in (20), (21) with the same constants as in (22),
the only di¤erence being that T0 replaces the operator T . Therefore, (23) is of the same form as (19)
but now with the addition of a known spatially depending source term, which it terms of this notation
simpli�es to

F (1)(x) = A1T1( �S) = A1
Z
D
k̂(x0) �Sdx0 = A1 �S

Z
D
k̂(x0)dx0;

F (2)(x) = 0

F (3)(x) = A3T1( �S) = A3 �S
Z
D
k̂(x0)dx0;

F (4)(x) = A3T �1 (�v) +A5T �1 (�p) +A4T �0 (T1 �S) +A3T �1 (1)

= A3L(D)�vk̂(x) +A5L(D)�pk̂(x) +A4L(D)k0 �S
Z
D
k̂(x0)dx0 +A3L(D)k̂(x)

We now consider the complete orthonormal set f�ng, n 2 N0 consisting of the eigenfunctions of
the Neumann Laplacian (as before) and assume that the constant eigenfunction is chosen normalized
to �0 = C, C = (L(D))�1=2. Then the averaging kernel k̂ admits an expansion as

k̂(x) =
X
n2N0

k̂n�n(x);

k̂n =

Z
D
k̂(x)�n(x)dx; n 2 N0:

In terms of these we can expand the source term in this basis as

F (1)(x) = A1L(D) �Sk̂0�0;
F (2)(x) = 0

F (3)(x) = A3L(D) �Sk̂0�0;
F (4)(x) = A3L(D)�vk̂(x) +A5L(D)�pk̂(x) +A4(L(D))2k0k̂0 �S�0 +A3L(D)k̂(x)

= L(D)
�
A3�v +A5�p+A4(L(D))k0 �S +A3

�
k̂0�0 +

1X
n=1

L(D)(A3�v +A5�p+A3)k̂n�n(x):

which means that

F (i)(x) =
X
n2N0

F (i)n �n(x); i = 1; 2; 3; 4;
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with

F (1)n = A1L(D) �Sk̂0�n;0;
F (2)n = 0;

F (3)n = A3L(D) �Sk̂0�n;0;

F
(4)
0 = L(D)

�
A3�v +A5�p+A4(L(D))k0 �S +A3

�
k̂0;

F (4)n = L(D)(A3�v +A5�p+A3)k̂n

Working in a similar fashion as in the previous case, we may reduce 35 to a countable system of
ODEs for the expansion modes (vn; Sn; pn; qn), n 2 N0 of the form (see Appendix D for details)

(36)

v00 = a1v0 + a2p0 +A1�0S0 + F
(1)
0 ;

S00 = a3S0 + a4q0;

p00 = a5v0 + a6p0 +A2�0S0 + F
(3)
0 ;

q00 = a7S0 + a8q0 +
�
A3�0v0 +A4�

2
0S0 +A5�0p0

	
+ F

(4)
0 ;

and

(37)

v0n = �d1�nvn + a1vn + a2pn;
S0n = �d2�nSn + a3Sn + a4qn;
p0n = d1�npn + a5vn + a6pn;

q0n = d2�nqn + a7Sn + a8qn + F
(4)
n

where �0 = k0L(D).
Using for any n 2 N0 the notation zn = (vn; Sn; pn; qn) and Fn = (F (1)n ; F

(2)
n ; F

(3)
n ; F

(4)
n ), these are

brought into the compact form

z0n = G(n)zn + Fn; n 2 N0(38)

where the matrices G(n) are the same as in (27) and (28) .
The analysis of the Turing pattern instability remains essentially the same from there. The main

di¤erence is that now there is a constant in time part of the solution which may contain spatial
dependence. Consider the steady states solutions of the above which are zn = �G(n)�1Fn. The
pattern

P0(x) :=
X
n

(�G(n)�1Fn)�n(x);

is a steady state spatial pattern.
For the exponentially growing patterns Proposition 6.2 covers us completely.

6.3 Turing Instability and Optimal Turing Instability

The results of the two previous subsections relate to the Turing di¤usion-induced instability which
underlies spatial pattern formation in reaction-di¤usion systems which are either:

� not controlled at all, or

� controlled by some arbitrary rule but not controlled optimally.
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In this paper, where the reaction-di¤usion system is optimally controlled, the following possibilities
arise when we compare optimally controlled with uncontrolled systems.

1. The non-optimally controlled system generates spatial patterns through Turing instability, but
the optimally controlled system has an optimal �at steady state which is stable to spatial per-
turbations. Optimal control acts as a spatial stabilizing or spatial homogenizing force.

2. The non-optimally controlled system is spatially stable in the sense of Turing instability, but a
�at steady state of the optimally controlled system is unstable to spatial perturbations. Optimal
control acts as a generator of optimal spatial patterns.

3. The non-optimally controlled system generates spatial patterns through Turing instability and a
�at steady state of the optimally controlled system is unstable to spatial perturbations. Optimal
control acts as a generator of optimal spatial patterns which are di¤erent from Turing�s pattern
for the non-optimally controlled system.

The spatial structure of the optimal pattern in the last two cases (cases 2 and 3) is determined
by the shape of the relevant eigenfunctions �n for n 2 P. We call these two cases optimal Turing
instability.

Optimal Turing instability generates spatial patterns in the state-costate space, or equivalently in
the space of stocks (the states) and their corresponding shadow values (the costates). Furthermore, the
optimal Turing instability generates spatial patterns in the state-control space. The spatiotemporal
patterns either in the state-costate space or the state control space can be used by a regulator seeking
to internalize the spatial externality to design optimal spatial policies in terms of prices (costates) or
quantities (controls).

7 Concluding Remarks

Transport phenomena, local or non-local, are very closely associated with environmental and resource
systems. Spatial transport in renewable resources, air or water pollution, and heat transfer towards
the Poles, are some of the issues that should be taken into account in environmental and resource
management. Most of the times we tend to ignore these issues and design policies assuming that
spatially homogeneity is a good approximation and spatial heterogeneities are not that important.
However, this might not be the case.

In this paper we model spatial interactions in a coupled system of a renewable resource and in-
dustrial pollution and study the optimal control of this system, in the sense of attaining an optimal
solution for a regulator Our results suggests that optimal policies may have a spatial structure and
that the emergence of Turing type optimal instability indicates the potential existence of optimal ag-
glomerations in the environmental systems. Optimal agglomerations imply that spatially homogenous
policies which are derived when spatial interactions and transport phenomena are ignored may not be
the optimal policies, but instead spatial structured policies are required.

The study of spatial interactions in urban and regional economics, mainly through non-local in-
teractions, has recently led to very interesting results on the structure of cities and agglomeration
dynamics. In this paper we provide analytical tools to study the qualitatively similar issues of spatial
patterns and agglomeration dynamics associated with environmental and resource systems by intro-
ducing spatial transport phenomena which are an empirically relevant. The type of research presented
here could therefore provide new insights into the spatial dimension of environmental policy. Spatially
di¤erentiated instruments - price or quantities - zoning systems, reserves and no-take areas could be
cases where spatially heterogenous policies are appropriate.
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A Proof of Proposition 3.1

Consider the problem of maximizing the functional J under the dynamic constraints de�ned by the
nonlocal nonlinear PDEs (2). Let U be the set of admissible controls (h; s), and assume that (h�; s�) 2
U is a maximizer of the functional J : U ! R under the stated constraints. Consider any perturbation
of the optimal protocol (u�+�u; s�+�s) chosen so that (u�+�u; s�+�s) 2 U . The new control protocol
is not optimal so it leads to a path for the state equation which is not optimal. Let us denote the
optimal path by (v�; S�), which is nothing but the solution of the state equation (2) when h = h� and
s = s�. The adoption of the perturbed protocol (u�+ �u; s�+ �s) will lead to a new path (non-optimal
in general) which we will denote by (v� + �v; S� + �S) and will be the solution of system (2) when
we substitute the control procedure (u� + �u; s� + �s). We are interested in small deviations, from
the optimal path, so we will assume that � ! 0. Under technical regularity conditions for the state
equation (2) (typically smoothness of the nonlinearities) for small �, the evolution of the deviation
from the optimal path is given by the solution of the linearized system

(39)

@

@t
v = d1�v + (fv(v�;K(T S�))� h�)v + fK(v�)fv(v�;K(T S�))K 0(T S�)T S � v�h

@

@t
S = d2�S � � S + s;

with Neumann boundary conditions and initial conditions v(0; x) = 0 and S(0; x) = 0. This is an
approximation of the deviation from the optimal path, which under smoothness assumptions can be
shown to be a good approximation up to O(�2). To simplify the notation we will de�ne

F1 := fv(v�;K(T S�))� h�;
F2 := fK(v�)fv(v�;K(T S�))K 0(T S�):

We furthermore, assume smoothness assumptions for U , B and Z and we calculate J(h�+�h; s�+�s)
which using the Taylor approximation around (h�; s�) we obtain that up to O(�),

(40)

1

�
(J(h� + �h; s� + �s)� J(h�; s�)) =

Z 1

0
e�rt

Z
D

�
U 0(h�v�)v�h+B

0(s�)s

�
dxdt

+

Z 1

0
e�rt

Z
D

�
U 0(h�v�)h�v � Z 0(sS�)S

�
dxdt:

The �rst integral in the above expression is in a desirable form since it contains only the optimal
quadruple (h�; s�; v�; S�) and the arbitrary perturbation (h; s). The second integral however is not so
nice, as it contains the optimal path (h�; s�; v�; S�) again but now the deviation (v; S) from the optimal
path, rather than the deviation of the policy (h; s). Clearly, (v; S) is connected to (h; s) through the
solution of the linearized system (39) and this is dependence is furnished in general via the action of
the solution operator whose action is de�ned as (h; s) 7! (v; S). Our aim is to make this connection
explicit and this is accomplished by the construction of the adjoint system.

To motivate the construction of the adjoint system, we introduce two auxiliary variables (p; q) (one
for each state variable) and introduce the auxiliary functional

�I =

Z
D
(v p+ S q)dx:

Since this functional involves only integration over space, its value depends on time and taking the
time derivative and substituting ( @@tv;

@
@tS) , by their evolution given by the linearized system (39),

we obtain that

(41)
d�I

dt
=

Z
D

��
d1�v + F1v + F2 T S � v�h

�
p+

�
d2�S � � S + s

�
q + v

@p

@t
+ S

@q

@t

�
dx
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We use the Green�s formulae Z
D
�v pdx =

Z
D
�p vdx;Z

D
�S qdx =

Z
D
�q Sdx;

as well as the de�nition of the adjoint operator of T ,Z
D
F2p(T S)dx =

Z
D
T �(F2p)Sdx;

to bring the expression (41) into the equivalent form,

(42)
d�I

dt
=

Z
D

�
d1�p+F1p+

@p

@t

�
vdx+

Z
D

�
d2�q�� S+T �(F2p)+

@q

@t

�
Sdx+

Z
D

�
�v�hp+sq

�
dx

We have so far left (p; q) completely unspeci�ed. We now assume that (p; q) are solutions of the
evolution equations

d1�p+ F1p+
@p

@t
= G1;

d2�q � � S + T �(F2p) +
@q

@t
= G2;

with Neumann boundary conditions and (G1; G2) to be speci�ed shortly. This yields,

d�I

dt
=

Z
D
(G1v +G2S)dx+

Z
D
(�v�hp+ sq)dx:

Since (G1; G2) are left unspeci�ed, we will choose them in such a way that
R
D(G1v+G2S)dx resembles

or reproduces the second problematic integral in (40). To this end we choose

G1 = U
0(h�v�)h� + r p;

G2 = �Z 0(S�) + r q:

For this choice, (42) becomes

d�I

dt
= r�I +

Z
D

�
U 0(h�v�)h�v � Z 0(S�)S

�
dx+

Z
D
(�v�hp+ sq)dx;

where we used the de�nition of �I, and integrating over time between t = 0 and t = T (for T arbitrary)
we get after taking the limit as T !1 that,

lim
T!1

e�rT �I(T )� �I(0) =(43) Z 1

0
e�rt

Z
D

�
U 0(h�v�)h�v � Z 0(S�)S

�
dx dt+

Z 1

0
e�rt

Z
D
(�v�hp+ sq)dx dt:

By the de�nition of the functional �I and the chosen initial conditions for (39), I(0) = 0. If we choose

lim
T!1

e�rT �I(T ) := lim
T!1

e�rT
Z
D
(v(T; x)p(T; x) + S(T; x)q(T; x))dx = 0;

then (43) yields,Z 1

0
e�rt

Z
D

�
U 0(h�v�)h�v � Z 0(S�)S

�
dx dt = �

Z 1

0
e�rt

Z
D
(�v�hp+ sq)dx dt;
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so that we have managed to express the problematic second integral in (40) in terms of the variation
of the optimal protocol (h; s) at the cost of introducing the adjoint variables (p; q).

Combining these results we conclude that

1

�
(J(h� + �h; s� + �s)� J(h�; s�)) =

Z 1

0
e�rt

Z
D

��
U 0(h�v�)v� � v�p

�
h+

�
B0(s�)� q

�
s

�
dxdt;

and since J(h�; s�) is assumed to be a maximum, for any admissible (h; v) , and any � > 0 we have
that 1� (J(h� + �h; s� + �s)� J(h�; s�)) � 0, hence we conclude that

(44)
Z 1

0
e�rt

Z
D

��
U 0(h�v�)v� � v�p

�
h+

�
B0(s�)� q

�
s

�
dxdt � 0; 8 (h; s)

This holding for any (h; s) can be seen to hold a.e. on D and this can be recognized as an optimality
condition. To make this point more clear assume, for the time being, that any variation (h; s) 2
L2(D)�L2(D) is possible (meaning that we may take as variations (h; 0) and (�h; 0) for any h 2 L2(D),
as well as (0; s) and (0;�s) for any s 2 L2(D)). Then condition (44) yields,

v�(U
0(h�v�) + p) = 0;(45)

B0(s�)� q = 0;(46)

with the above holding a.e. on D, which can be recognized as the �rst order conditions for the
maximization of

�H1(h) := U(hv) + vhp;

�H2(s) := B(s)� qs;

with respect to h and s. These are considered are static optimization problems, since the optimality
conditions hold for any (�xed) (t; x) a.e. on [0; T ]�D. In the general case where constraints are to be
taken into account on the admissible set for the allowed (h; s), we recognize (45) as the condition for
maximization of �H1 and �H2 with respect to h and s subject to the constraints that (h�+�h; s�+�s) 2 U .
Note that the optimality condition (45) (or the simplest special case version (45) connects the adjoint
variables (p; q) with the optimal policy (h�; s�).

We therefore conclude that if (v�; S�; h�; s�) is an optimal quadruple, then it is connected with the
solution (p; q) for the adjoint system

d1�p+ F1p+
@p

@t
= U 0(h�v�)h� + r p;

d2�q � � S + T �(F2p) +
@q

@t
= �Z 0(S�) + r q;

subject to Neumann boundary conditions and the transversality condition, (v�; S�) is the solution of
the state equation (2) for h = h�, s = s�, and that (v�; S�; p; q; h�; s�) must be connected through the
optimality condition (45).

B Adjoint operator

Assume that T is the integral operator de�ned by

(T S)(x) :=
Z
D
k(x; x0)S(x0)dx0
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The adjoint T � is de�ned byZ
D
(T S)(x)u(x)dx =

Z
D
S(x)(T �u)(x)dx; 8u 2 L2(D):(47)

Start from the left hand side, Z
D
(T S)(x)u(x)dx =

Z
D

�Z
D
k(x; x0)S(x0)dx0

�
u(x)dx

=

Z
D

�Z
D
k(x0; x)S(x)dx

�
u(x0)dx0 =

Z
D

�Z
D
k(x0; x)u(x0)dx0

�
S(x)dx;(48)

where we �rst �relabelled�x and x0 by interchanging them and then we used Fubini-Tonelli to inter-
change the order of integration. Comparing (47) with (48) we see that the action of the operator T �
is as follows:

(T �u)(x) :=
Z
D
k(x0; x)u(x0)dx0;

i.e. it is an integral operator again by now with kernel k(x0; x) in lieu of k(x; x0). If k is symmetric,
e.g. if k(x; x0) = �(jx� x0j) as for instance in most of the cases we use in the past then T = T �, i.e.
T is self adjoint.

Suppose now that T is just a global spatial averaging operator,

(T S)(x) :=
Z
D
k(x0)S(x0)dx0

i.e. we get the same answer for all x. We repeat the aboveZ
D
(T S)(x)u(x)dx =

Z
D

�Z
D
k(x0)S(x0)dx0

�
u(x)dx

=

Z
D

�Z
D
k(x)S(x)dx

�
u(x0)dx0 =

Z
D
k(x)

�Z
D
u(x0)dx0

�
S(x)dx;(49)

so that comparing (47) with (49) we see that the action of the operator T � is as follows:

(T �u)(x) := k(x)
Z
D
u(x0)dx0;

When acting on spatiotemporal functions, then the operator only a¤ects the spatial part, i.e.

(T �u)(t; x) := k(x)
Z
D
u(t; x0)dx0;

So for example,

(T �fKK 0(TS)p)(t; x) := k(x)

Z
D
fK(t; x

0)K 0(t)p(t; x0)dx0 = k(x)K 0(t)

Z
D
fK(t; x

0)p(t; x0)dx0

where

K 0(t) = K 0
�Z

D
q(x0)S(t; x0)dx0

�
;

fK(t; x
0) = fK

�
v(t; x0);

Z
D
q(z)S(t; z)dz

�
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C Proof of Proposition 4.1

Proof. (i) Assume on the contrary that it does, i.e. there exists a constant vector (�v; �S; �p; �q) that solves
(7). The action of T on a constant function yiels a constant, i.e., T �S =M �S where M =

R
D k(x

0)dx0.
The action of T � on a constant function on the other hand, does not yield a constant function unless
k is constant. In fact, T �C = k(x)

R
D Cdx = CL(D)k(x), where L(D) is the Lebesgue measure of D.

3

That implies,

Kc = K(M �S); K 0
c = K

0(M �S);

while

fv(v(x
0);Kc) = fv(�v;K(M �S)); fK(v(x

0);Kc) = fK(�v;K(M �S)); 8x0 2 D;

so that taking into account the action of the T � operator (and under the assumption p(x0) = �p for all
x0 2 D, we see that system (13) for the assumed solution reduces to the following system

(50)

0 = f(�v; �K)� I1(��p);
0 = �� �S + I2(�q);
0 = (�fv(�v; �K) + r)�p;
0 = �

�
L(D)fK(�v; �K) �K 0�p

�
k(x) + (� + r)�q � Z 0( �S);

where �K = K(M �S) and �K 0 = K 0(M �S). System (51) must be true for every x 2 D, which is clearly
impossible, hence the claim is proved. (ii) We now consider the case where k = k0 is the constant
function. Then, condition for existence of a �at optimal steady state reduces to the solvability of the
system of algebraic equations

(51)

0 = f(�v; �K)� I1(��p);
0 = �� �S + I2(�q);
0 = (�fv(�v; �K) + r)�p;
0 = �MfK(�v; �K) �K 0�p+ (� + r)�q � Z 0( �S);

where �K = K(M �S), �K 0 = K 0(M �S), and M =
R
D k(x

0)dx0 = L(D)k0. That implies, that the optimal
state is given by the following control strategy

(52)
�h =

f(�v; �K)

�v
;

�s = � �S

while it must hold that

(53)
fv(�v; �K) = r;

0 = �MfK(�v; �K) �K 0�p+ (� + r)�q � Z 0( �S):

This completes the proof.

3L(D) is the length of D if D � R, the area of D if D � R2 and the volume of D if D � R3.
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D Expansion of the linearized system into eigenmodes

The action of the operator T on �n is as follows

T �n = �n�0; n 2 N0;

where

�n =
1

C

Z
D
k(x)�n(x)dx: n 2 N0:

Note that even though �0 is just a constant (�0 = C = (L(D))�1=2) we express the action of the
operator T in the above form so that it is clear that this operator contributes along the direction of �0
and not along any other eigenspace or linear subspace spanned by �n with n 6= 0. This observation
is important in the Galerkin type expansion that follows. Since in this section we consider the special
case where k(x) = k0, a constant (this is the only case where the �at optimal steady state exists!) we
may calculate �n explicitly to obtain

�n =
1

C

Z
D
k0�n(x)dx =

k0
C2

Z
D
�n(x)�0(x)dx =

k0
C2
�0;n = k0L(D)�0;n;

which means that for this special case only the �0 term survives and all the other �n = 0, n = 1; 2; � � � .
Our �nal result then is that when k(x) = k0 we have that

T �0 = �0�0; T �n = 0; n 6= 0;(54)

where

�0 = k0L(D):

The action of the operator T � on �n is as follows:

(T ��n)(x) = k(x)
Z
D
�n(x)dx = k(x)

1

C

Z
D
�n(x)�0dx =

1

C
k(x)�n;0 =

1

C2
k(x)�0�n;0;

and in the special case where k(x) = k0 a constant, we obtain that

(T ��n)(x) =
k0
C2
�0�n;0 = k0L(D)�0�n;0;

i.e.

T ��0 = k0L(D)�0 = �0�0; T ��n = 0; n 6= 0:(55)

Consider now the action of T � on S =
P
n2N0 Sn�n. For the special case k(x) = k0, using linearity

and (54) we �nd that

(56) (T S)(t; x) = T

0@X
n2N0

Sn(t)�n(x)

1A =
X
n2N0

Sn(t)(T �n)(x) = k0L(D)S0(t)�0 = �0S0(t)�0;

i.e. the action of the operator T on any spatiotemporal �eld S(t; x) =
P
n2N0 Sn(t)�n(x) annihilates

all the �n components except �0 leading to a term which only depends on t while, using again linearity
and (55) we obtain that

(T �S)(t; x) = T �
0@X
n2N0

Sn(t)�n(x)

1A =
X
n2N0

Sn(t)(T ��n)(x) = k0L(D)S0(t)�0 = �0S0(t)�0;
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i.e., the action of T � on any S(t; x) =
P
n inN0 Sn(t)�n(x) is the same as that of T ,

(T �S)(t; x) = (T S)(t; x) = k0L(D)S0(t)�0 = �0S0(t)�0;

where S0(t) =
R
D S(t; x)�0dx = C

R
D S(t; x)dx. Finally, when k(x) = k0, we have

T �T S = T � (k0L(D)S0�0) = k0L(D)S0T ��0 = k20L(D)2S0�0 = �20S0�0;

meaning of course that
(T �T S)(t; x) = k20L(D)2S0(t)�0 = �20S0(t)�0;

Our aim is to substitute the expansions in (24) into the linearized system (19) and then project
along the eigenspaces spanned by �n for each n 2 N0, to obtain an in�nite set of ODEs that will govern
the temporal evolution of the expansion coe¢ cients (vn; Sn; pn; qn), n 2 N0. The full spatiotemporal
dependence can be regained by summing up the expansions in (24).

Consider now the system (19). We start from the �rst equation which is expressed as

@v

@t
= �d1�v + a1v + a2p+A1T S

so that substituting the expansions (24) yieldsX
n2N0

v0n�n = d1
X
n2N0

�nvn�n + a1
X
n2N0

vn�n

+ a2
X
n2N0

pn�n +A1�0S0�0;

where we used (56) for the T S term. Now take the inner product of this equation with �m for every
m 2 N0 and use the orthogonality. For m = 0 only the terms proportional to �0 will contribute
therefore

v00 = a1v0 + a2p0 +A1�0S0:

In all the other terms for m 6= 0, the last term will not contribute so

v0m = �d1�mvm + a1vm + a2pm; m 6= 0:

The second and the third one are done similarly giving

S00 = a3S0 + a4q0;

S0m = �d2�mSm + a3Sm + a4qm; m 6= 0;

and

p00 = a5v0 + a6p0 +A2�0S0;

p0m = d1�mpm + a5vm + a6pm; m 6= 0:

We now consider the fourth equation in (23) which is more complicated. This reads,

@q

@t
= �d2�q + a7S + a8q +A3T �v +A4T �T S +A5T �p;

and substituting the expansions in (24) and noting that

T �v = �0v0�0;
T �p = �0p0�0;

T �T S = �20S0�0;
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performing the necessary projections we see that

q00 = a7S0 + a8q0 +A3�0v0 +A4�
2
0S0 +A5�0p0;

q0m = d2�mqm + a7Sm + a8qm; m 6= 0:

We therefore reduce the linearized system (18) to the countable set of ODEs,

v00 = a1v0 + a2p0 +A1�0S0;

S00 = a3S0 + a4q0;

p00 = a5v0 + a6p0 +A2�0S0;

q00 = a7S0 + a8q0 +
�
A3�0v0 +A4�

2
0S0 +A5�0p0

	
and

(57)

v0n = �d1�nvn + a1vn + a2pn;
S0n = �d2�nSn + a3Sn + a4qn;
p0n = d1�npn + a5vn + a6pn;

q0n = d2�nqn + a7Sn + a8qn

Note that this is a system of uncoupled ODEs that may be solved for each n separately to provide
the full solution for (vn; Sn; pn; qn), n 2 N0 and then from that we may obtain by summing the
representations (24) the full spatiotemporal dependence.
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